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Mask-prior-guided denoising diffusion 
improves inverse protein folding

 

Peizhen Bai    1,2, Filip Miljković    3, Xianyuan Liu    1,4, Leonardo De Maria    5, 

Rebecca Croasdale-Wood    2, Owen Rackham6 & Haiping Lu    1,4 

Inverse protein folding generates valid amino acid sequences that can 

fold into a desired protein structure, with recent deep learning advances 

showing strong potential and competitive performance. However, 

challenges remain, such as predicting elements with high structural 

uncertainty, including disordered regions. To tackle such low-confidence 

residue prediction, we propose a mask-prior-guided denoising diffusion 

(MapDiff) framework that accurately captures both structural information 

and residue interactions for inverse protein folding. MapDiff is a discrete 

diffusion probabilistic model that iteratively generates amino acid 

sequences with reduced noise, conditioned on a given protein backbone. 

To incorporate structural information and residue interactions, we have 

developed a graph-based denoising network with a mask-prior pretraining 

strategy. Moreover, in the generative process, we combine the denoising 

diffusion implicit model with Monte-Carlo dropout to reduce uncertainty. 

Evaluation on four challenging sequence design benchmarks shows that 

MapDiff substantially outperforms state-of-the-art methods. Furthermore, 

the in silico sequences generated by MapDiff closely resemble the 

physico-chemical and structural characteristics of native proteins across 

different protein families and architectures.

Proteins are complex, three-dimensional (3D) structures folded from 

linear amino acid (AA) sequences. They play a critical role in essentially 

all biological processes, including metabolism, immune response and 

cell cycle control. The inverse protein folding (IPF) problem is a fun-

damental structure-based protein design problem in computational 

biology and medicine. It aims to generate valid AA sequences with the 

potential to fold into a desired 3D backbone structure, enabling the 

creation of new proteins with specific functions1. Its enormous appli-

cations range from therapeutic protein engineering, lead compound 

optimization and antibody design2.

Traditional physics-based approaches consider IPF as an energy 

optimization problem3, suffering from high computational cost and 

limited accuracy. In recent years, deep learning has emerged as the 

preferred paradigm for solving protein-structure problems owing to its 

strong ability to learn complex nonlinear patterns from data adaptively. 

In deep learning for IPF, early convolutional neural network-based mod-

els view each protein residue as an isolated unit or the whole as point 

cloud data, with limited consideration of structural information and 

interactions between residues4–7. Recently, graph-based methods have 

represented 3D protein structures as proximity graphs, and then use 

graph neural networks (GNNs) to model residue representations and 

incorporate structural constraints. GNNs can aggregate and exchange 

local information within graph-structured data, enabling substantial 

performance improvement in graph-based methods.
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They learn to generate conditional or unconditional data by iteratively 

denoising random samples from a prior distribution. Diffusion-based 

models have been adopted for de novo protein design and molecule 

generation, achieving state-of-the-art performance. For example, 

RFdiffusion17 fine-tunes the protein structure prediction network 

RoseTTAFold18 under a denoising diffusion framework to generate 3D 

protein backbones, and torsional diffusion19 implements a diffusion 

process on the space of torsion angles for molecular conformer genera-

tion. In structure-based drug design, DiffSBDD20 proposes an equivari-

ant 3D-conditional diffusion model to generate new small-molecule 

binders conditioned on target protein pockets. Although diffusion 

models have a widespread application in computational biology, most 

existing methods focus primarily on generating structures in continu-

ous 3D space. The potential of diffusion models in inverse folding has 

not yet been fully exploited.

We propose a mask-prior-guided denoising diffusion (MapDiff) 

framework (Fig. 1) to accurately capture structure-to-sequence map-

ping for IPF prediction. Unlike previous graph-based methods, MapDiff 

models IPF as a discrete denoising diffusion problem that iteratively 

generates less-noisy AA sequences conditioned on a target protein 

structure. Owing to the property of denoising diffusion, MapDiff can 

Despite the advances in graph-based methods, structural infor-

mation alone cannot determine the residue identities of some chal-

lenging structural elements, such as intrinsically disordered regions8. 

In such uncertain, low-confidence cases, interactions with other 

accurately predicted residues can provide more reliable guidance 

for mitigating uncertainty in these regions. Moreover, existing deep 

learning-based IPF methods typically employ autoregressive decoding 

or uniformly random decoding to generate AA sequences, are prone 

to accumulating prediction errors9,10 and are limited in capturing 

global and long-range dependencies in protein evolution11,12. Recently, 

several non-autoregressive alternatives have shown the potential to 

outperform the autoregressive paradigm in related contexts9,13,14. In 

addition, protein-structure prediction methods, such as the Alpha-

Fold series15,16, often take an iterative generation process to refine 

non-deterministic structures by integrating well-predicted informa-

tion. These raise the question: can combining residue interactions 

with an iterative refinement and an efficient non-autoregressive 

decoding improve IPF prediction performance to generate more 

plausible protein sequences?

Recently, denoising diffusion models, an innovative class of deep 

generative models, have gained growing attention in various fields. 
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Fig. 1 | Mask-prior-guided denoising diffusion (MapDiff ) for inverse protein 

folding. a, The mask-prior pretraining stage randomly masks residues within the 

AA sequence and pretrains an invariant point attention (IPA) network with the 

masked sequence and the 3D backbone structure to learn prior structural and 

sequence knowledge, using BERT-like masked language modelling objectives.  

b, The mask-prior-guided denoising network ϕθ takes an input noisy AA sequence 
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also be viewed as an iterative refinement that enhances the accuracy 

of the generated sequences over time. Moreover, we have designed 

a two-step denoising network to adaptively improve the denoising 

trajectories using a pretrained mask prior. Our denoising network 

effectively leverages the structural information and residue interac-

tions to reduce prediction error on low-confidence residue prediction. 

To further improve the denoising speed and uncertainty estimation, 

we combine the DDIM21 with Monte-Carlo dropout22 in the discrete 

generative process. DDIM accelerates sequence generation by skipping 

multiple denoising steps, whereas Monte-Carlo dropout reduces uncer-

tainty by performing multiple stochastic forward passes with dropout 

enabled during inference. We conducted performance comparisons 

against state-of-the-art methods for IPF prediction, demonstrating the 

effectiveness of MapDiff across multiple metrics and benchmarks, out-

performing even those incorporating external knowledge. Moreover, 

when we used AlphaFold215 to fold the sequences generated by MapDiff 

back to 3D structures, such AlphaFold2-folded structures were highly 

similar to the native protein templates, even for cases of low sequence 

recovery rates.

This work shows the high potential of using discrete denoising 

diffusion models with mask-prior pretraining for IPF prediction.  

Our main contributions are three-fold: (1) we propose a discrete 

denoising diffusion-based framework named MapDiff to explic-

itly consider the structural information and residue interactions 

in the diffusion and denoising processes; (2) we have designed a 

mask-prior-guided denoising network that adaptively denoises the 

diffusion trajectories to produce feasible and diverse sequences 

from a fixed structure; and (3) MapDiff incorporates discrete DDIM 

with Monte-Carlo dropout to accelerate the generative process and 

improve uncertainty estimation.

Results
MapDiff framework
As shown in Fig. 1, the MapDiff framework formulates IPF prediction as 

a denoising diffusion problem (Fig. 1c). The diffusion process progres-

sively adds random discrete noise to the native AA sequence accord-

ing to the transition probability matrices to facilitate the training of a 

denoising network. In the denoising process, this denoising network 

iteratively denoises a noisy, randomly sampled AA sequence condi-

tioned on the 3D structural information to predict or reconstruct the 

native AA sequence. The diffusion and denoising processes iterate 

alternately to capture the sampling diversity of native sequences from 

their complex distribution and refine the predicted AA sequences.

We propose a mask-prior-guided denoising network to adaptively 

adjust the discrete denoising trajectories towards generating more 

valid AA sequences by means of three operations within each iterative 

denoising step (Fig. 1b). First, a structure-based sequence predictor 

employs an equivariant graph neural network (EGNN)23 to denoise the 

noisy sequence conditioned on the backbone structure. Second, we use 

an entropy-based mask strategy24 and a mask ratio adaptor to identify 

and mask low-confidence or uncertain (for example, structurally unde-

termined) residues in the denoised sequence in the first operation to 

produce a masked sequence. Third, a pretrained masked sequence 

designer network predicts the masked residues to obtain their refined 

prediction. The pretraining of the masked sequence designer is done 

before the diffusion and denoising processes by means of an invari-

ant point attention (IPA) network15 using masked language modelling 

(Fig. 1a), incorporating prior structural and sequence knowledge. The 

structure-based sequence predictor and masked sequence designer 

refine denoising trajectories by leveraging structural information and 

residue interactions. For efficient sequence generation, the denoising 

Table 1 | Performance comparison on the CATH 4.2 and CATH 4.3 datasets with topology classification split

Models External Model Perplexity (↓) Median recovery rate (%, ↑)

knowledge parameters Short Single-chain Full Short Single-chain Full

CATH 4.2

aStructGNN26 ✗ 1.4M 8.29 8.74 6.40 29.44 28.26 35.91

aGraphTrans26 ✗ 1.5M 8.39 8.83 6.63 28.14 28.46 35.82

aGVP43 ✗ 2.0M 7.09 7.49 6.05 32.62 31.10 37.64

aAlphaDesign44
✓ 6.6M 7.32 7.63 6.30 34.16 32.66 41.31

ProteinMPNN1 ✗ 1.9M 6.90 7.03 4.70 36.45 35.29 48.63

PiFold13 ✗ 6.6M 5.97 6.13 4.61 39.17 42.43 51.40

LM-Design45
✓ 659M 6.86 6.82 4.55 37.66 38.94 53.19

GRADE-IF38 ✗ 7.0M 5.65 6.46 4.40 45.84 42.73 52.63

MapDiff (uniform prior) ✗ 14.7M 3.99 4.43 3.46 52.85 50.00 61.03

MapDiff (marginal prior) ✗ 14.7M 3.96 4.41 3.43 54.04 49.34 60.93

CATH 4.3

aGVP-GNN-Large27 ✗ 21M 7.68 6.12 6.17 32.60 39.40 39.20

a+ AF2 predicted data ✓ 142M 6.11 4.09 4.08 38.30 50.08 50.08

aGVP-Transformer27 ✗ 21M 8.18 6.33 6.44 31.30 38.50 38.30

a+ AF2 predicted data ✓ 142M 6.05 4.00 4.01 38.10 51.50 51.60

ProteinMPNN1 ✗ 1.9M 6.12 6.18 4.63 40.00 39.13 47.66

PiFold13 ✗ 6.6M 5.52 5.00 4.38 43.06 45.54 51.45

LM-Design45
✓ 659M 6.01 5.73 4.47 44.44 45.31 53.66

GRADE-IF38 ✗ 7.0M 5.30 6.05 4.58 48.21 45.94 52.24

MapDiff (uniform prior) ✗ 14.7M 3.88 3.85 3.48 55.95 54.65 60.86

MapDiff (marginal prior) ✗ 14.7M 3.90 3.83 3.52 55.56 54.99 60.68

The results include the perplexity and median recovery rate on the full test set, as well as on short and single-chain subsets. The external knowledge column indicates whether additional 

training data or protein language models are used. aWe also quote partial baseline results from ref. 13 and ref. 27 for comparative analysis. The best result for each dataset and metric is marked 

in bold and the second-best result is in italics.
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network uses non-autoregressive decoding to generate sequences in 

a one-shot manner13. In addition, we incorporate DDIM21 to acceler-

ate inference by skipping multiple denoising steps and Monte-Carlo 

dropout22 to reduce uncertainty. The Methods provides more details.

Evaluation strategies and metrics
We conducted experiments across diverse datasets to evaluate MapDiff 

against state-of-the-art protein sequence design methods. We first 

evaluated two popular benchmark datasets, CATH 4.2 and CATH 4.3 

(ref. 25), using the same topology-based data split employed in previ-

ous works13,26,27. In addition to the full test sets, we also studied two 

subcategories of generated proteins: short proteins up to 100 residues 

in length and single-chain proteins (labelled with one chain in CATH). 

We used another two distinct datasets, TS50 (ref. 5) and PDB2022  

(ref. 24) to evaluate the zero-shot generalization of models. Further-

more, we studied the foldability of the generated protein sequences by 

means of AlphaFold2 (ref. 15) by comparing the discrepancy between 

the AlphaFold2-refolded structures and ground-truth native struc-

tures. This is an in silico evaluation rather than definitive proof that 

the designed sequences can fold into their intended structures. The 

‘Experimental setting’ section provides detailed information and sta-

tistics about these datasets.

We evaluated the accuracy of generated sequences using three 

metrics: perplexity, recovery rate and native sequence similarity 

recovery (NSSR)28. Perplexity measures the alignment between a 

model’s predicted AA probabilities and the native AA types at each 

residue position. The recovery rate indicates the proportion of accu-

rately predicted AAs in the protein sequence. The NSSR evaluates 

the similarity between the predicted and native residues by means 

of the blocks substitution matrix (BLOSUM)29, where each residue 

pair contributes to a positive prediction if their BLOSUM score is 

greater than zero. We used BLOSUM42, BLOSUM62, BLOSUM80 and 

BLOSUM90 to account for AA similarities at four different cutoff 

levels for NSSR computation. To evaluate the foldability, that is, the 

quality of refolded protein structures, we used six metrics: predicted 

local distance difference test (pLDDT), predicted aligned error (PAE), 

predicted template modelling (pTM), template modelling score 

(TM-score), root mean square deviation (RMSD) and global distance 

test-total score (GDT-TS), where pLDDT, PAE and pTM measure the 

confidence and reliability of predicted structures produced by Alpha-

Fold2, and TM-score, RMSD and GDT-TS measure the discrepancies 

between the predicted 3D structures and their native counterparts. 

Supplementary Information Section 9 provides the technical details 

for these metrics.
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Fig. 2 | Model performance comparison and sensitivity analysis across different 

scenarios on the CATH datasets. a, NSSR scores for MapDiff and baseline 

methods1,13,38,45 on the full test sets and the short and single-chain protein subsets 

for four different BLOSUM matrices and no BLOSUM matrix. b, Sum-normalized 

confusion matrices for MapDiff (left) and LM-Design (right) predictions, and the 

softmax-normalized native BLOSUM62 matrix (middle). Darker colours indicate 

a higher predicted likelihood, with diagonal elements masked. The Pearson 

correlation coefficient (PCC) between the predicted matrix and BLOSUM62 

quantifies their similarity and linear correlation. c, Breakdown of the recovery 

rates into hydrophilic and hydrophobic residues. d, Median sequence recovery 

rates across different protein lengths. e, Residue recovery performance across 

different secondary structures visualized in two groups for clarity, defined using 

the DSSP algorithm57. Coils correspond to regions without regular secondary 

structures and are considered disordered regions. Bends and H-bonded turns are 

regarded as less ordered regions owing to their flexibility and transient nature. For 

these regions, MapDiff outperforms the baselines substantially.

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 7 | June 2025 | 876–888 880

Article https://doi.org/10.1038/s42256-025-01042-6

Sequence recovery performance
First, we evaluated MapDiff’s sequence recovery with uniform or mar-

ginal priors against state-of-the-art baselines on the CATH datasets. 

Table 1 presents the prediction perplexity and median recovery rate on 

the full test set, along with short and single-chain subsets. The results 

demonstrate that MapDiff achieves the best performance across dif-

ferent metrics and subsets of data, highlighting its effectiveness in 

generating valid protein sequences. Specifically, we observe that: (1) 

MapDiff achieves a recovery rate of 61.03% and 60.86% on the full CATH 

4.2 and CATH 4.3 test sets, substantially outperforming the baselines 

by 7.74% and 7.20%, respectively. Furthermore, MapDiff shows recovery 

improvements of 8.20% and 6.61% on the short and single-chain test 

sets of CATH 4.2.; (2) MapDiff consistently achieves the lowest perple-

xity compared with previous methods and produce high-confidence 

probability distribution to facilitate accurate predictions; (3) MapDiff 

is a highly accurate IPF model that operates independently of external 

knowledge. In some of the compared baselines, external knowledge 

sources, such as additional training data or protein language models, 

are used to enhance prediction accuracy. Owing to its well-designed 

architecture and diffusion-based generation mechanism, MapDiff 

effectively uses limited training data to capture relevant patterns to 

achieve superior generalizability; and (4) MapDiff’s performance is 

largely unaffected by the choice of prior distribution. Therefore, we 

use the marginal prior30 in our experiments, as it is data-driven and 

better aligns with the true amino acid distribution.

We further study model performance across different scenarios. 

Figure 2a presents the mean NSSR scores for MapDiff and the baselines 

on the CATH datasets. MapDiff consistently achieves the best NSSR 

scores across different test sets. Figure 2b compares the confusion 

matrices of MapDiff and LM-Design with the native BLOSUM62 matrix 

on CATH 4.2. For clearer visualization and comparison, we normalized 

these matrices to the [0,1] probability range, with the diagonal ele-

ments masked. The confusion matrix denotes proportions for specific 

combinations of actual and predicted amino acid types, with darker 

cells indicating greater proportion. Many non-diagonal darker cells 

in MapDiff highlight the alignment between closely related residue 

pairs, as defined by the BLOSUM62 matrix, indicating that MapDiff can 

effectively capture the homologous substitutions between residues. In 

addition, MapDiff’s higher correlation with BLOSUM62 than LM-Design 

suggests a stronger alignment with substitution preferences.

Figure 2c,e shows the sequence recovery performance across 

different amino acid types, as well as eight secondary structures. 

Notably, MapDiff is the only model achieving over 50% recovery rate 

in predicting hydrophobic amino acids and substantial improve-

ments in recovering α-helix and β-sheet secondary structures. 

Figure 2d presents a sensitivity analysis of the recovery performance for  

varying protein lengths. For short proteins (less than 100 amino  

acids in length), several baselines show a marked decrease in 

performance. For example, the recovery rate of LM-Design falls  

below 40% for the short proteins. This could be due to the protein  

language model used in LM-Design being sensitive to protein length. 

By contrast, MapDiff, which employs a mask-prior-guided denois-

ing network and an iterative denoising process, consistently out-

performs all baselines and maintains high performance across all 

protein lengths.

To validate the zero-shot transferability of our method, we com-

pared the model’s performance on two independent test datasets, 

TS50 and PDB2022, which do not overlap with the CATH data, as 

shown in Table 2. The results demonstrate that MapDiff achieves the 

highest recovery and NSSR scores on both datasets. We can conclude 

that, even though LM-Design reaches a high recovery (66%) that is 

approaching our method on PDB2022, the performance gap widens 

on NSSR62 and NSSR90. By contrast, GRADE-IF and MapDiff can  

generalize better when considering the possibility of similar  

residue substitution. This suggests that diffusion-based models more 

effectively capture residue similarity in IPF prediction. For the TS50 

dataset, MapDiff substantially improves state-of-the-art methods 

by 6.33% on NSSR62, and is the best model, achieving a recovery 

rate of 68%.

Foldability of generated protein sequences
Foldability is a crucial property that evaluates whether a protein 

sequence can fold into the desired structure. In this study, we evalu-

ated the foldability of generated protein sequences by predicting their 

structures with AlphaFold2 and comparing the discrepancies against 

the native crystal structures. Table 2 presents six foldability metrics for 

the 1,120 structures in the CATH 4.2 test set. The results indicate that 

the generated protein sequences by MapDiff exhibit superior foldabi-

lity, the highest confidence and minimal discrepancy compared with 

their native structures. Notably, the foldability and sequence recovery 

Table 2 | Transferability: zero-shot performance comparison on transferability from CATH to PDB2022 and TS50 datasets

Models PDB2022 TS50

Recovery (↑) NSSR62 (↑) NSSR90 (↑) Recovery (↑) NSSR62 (↑) NSSR90 (↑)

Transferability

ProteinMPNN1 56.75 (56.65) 72.50 (72.59) 69.96 (69.95) 52.34 (51.80) 70.31 (70.13) 66.77 (66.80)

PiFold13 60.63 (60.26) 75.55 (75.30) 72.96 (72.86) 58.39 (58.90) 73.55 (74.52) 70.33 (71.33)

LM-Design45 66.03 (66.20) 79.55 (80.12) 77.60 (78.20) 57.62 (58.27) 73.74 (75.69) 71.22 (73.12)

GRADE-IF38 58.09 (58.35) 77.44 (77.51) 74.57 (74.97) 57.74 (59.27) 77.77 (79.11) 74.36 (76.24)

MapDiff 68.03 (68.00) 84.19 (84.30) 82.13 (82.29) 68.76 (69.77) 84.10 (85.27) 81.76 (83.08)

Models CATH 4.2

pLDDT (↑) PAE (↓) PTM (↑) TM-score (↑) RMSD (↓) GDT-TS(↑)

Foldability

ProteinMPNN1 87.13 ± 9.79 5.85 ± 3.17 77.42 ± 14.96 86.27 ± 16.32 3.08 ± 4.25 85.08 ± 15.53

PiFold13 87.42 ± 9.82 5.81 ± 3.22 77.75 ± 15.03 86.56 ± 16.21 3.10 ± 4.29 85.47 ± 15.49

LM-Design45 88.04 ± 9.00 5.78 ± 3.27 78.00 ± 14.80 85.36 ± 16.98 3.54 ± 5.00 84.08 ± 16.45

GRADE-IF38 85.32 ± 9.27 6.30 ± 3.10 75.63 ± 13.8 0 85.80 ± 14.93 3.11 ± 3.96 83.37 ± 14.43

MapDiff 88.63 ± 8.27 5.42 ± 2.76 79.00 ± 13.04 88.77 ± 13.48 2.57 ± 3.50 87.75 ± 13.24

We report the test results of models when trained on CATH 4.2 and CATH 4.3, with the results for CATH 4.3 in parentheses. Foldability: foldability comparison for the generated sequences on 

the CATH 4.2 test set using AlphaFold2. The results are presented as mean ± standard deviation. The best result for each dataset and metric is marked in bold and the second-best result is  

in italics.
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results do not always positively correlate. For example, although Pro-

teinMPNN performs poorly in sequence recovery, it achieves the best 

RMSD among baseline methods. Therefore, it is essential to compre-

hensively evaluate IPF models from both sequence and structure per-

spectives. Supplementary Information Section 2 and Supplementary 

Fig. 2 present analysis of the right-skewed RMSD distribution31.

In Fig. 3a, we illustrate exemplary 3D structures refolded by Alpha-

Fold2 from IPF-derived sequences generated by MapDiff, GRADE-IF 

and LM-Design for three different protein folds (PDB ID 1NI8 (ref. 32), 

2HKY (ref. 33) and 2P0X (ref. 34) with a preselected monomer pTM 

prediction argument. In addition to estimating the sequence recovery 

rate and foldability of derived 3D structures using the RMSD metric, 

we also inspected the alignment of native and generated sequences, 

including the agreement between refolded secondary structures and 

individual pairs of amino acids in Fig. 3b. Figure 3c,d presents quantita-

tive analyses of performance on different regions.

The first example is a 46-amino-acid-long monomer of the 1NI8 

structure (purple) representing an amino-terminal (N-terminal) 

fragment of the H-NS dimerization domain, a protein composed of 

three α-helices that is involved in structuring the chromosome of 

Gram-negative bacteria, and hence acts as a global regulator for the 

expression of different genes32. Two monomers form a homodimer 

which requires the presence of K5, R11, R14, R18 and K31 residues to 

engage in the prokaryotic DNA binding. MapDiff (red) managed to 

retrieve two out of the three α-helices, with an interhelical turn present 

at the same position as in the original structure (A17-R18), whereas 

GRADE-IF (orange) and LM-Design (blue) models only consisted of a 

single continuous α-helix. Moreover, MapDiff and GRADE-IF obtained 

a b

c d
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Fig. 3 | Comparison of three refolded structures (left) and the respective 

model-designed sequences (right) for proteins with PDB IDs 1NI8, 2HKY and 

2P0X. a, Refolded tertiary structure visualization of the sequences designed 

by three models MapDiff (red), GRADE-IF (orange) and LM-Design (blue). The 

refolded structures were generated by AlphaFold2 and superposed against the 

ground-truth structures (purple). For each model and structure, the recovery rate 

and RMSD value are indicated for foldability comparison. b, The alignment of the 

three native sequences and the respective model-designed sequences. The results 

are shown with secondary structure elements marked below each sequence: 

α-helices are shown in red cylinders, β-strands in blue arrows, and loops and 

disordered regions are unmarked. For the native proteins, the secondary 

structures were derived from their source PDB files. For the predicted proteins, 

the secondary structures were assigned by first identifying all interbackbone 

hydrogen bonds and then searching for hydrogen-bonding patterns that 

represent helices and strands. The refolded structures and sequence alignments 

are visualized using the Schrödinger Maestro software58. c, Recovery rates for 

loops and disordered regions (left panel) and α-helix and β-strand regions (right 

panel) across three structures. Bars indicate the recovery rates of three methods 

(MapDiff, Grade-IF and LM-Design). The percentage composition of regions for 

each structure is provided below the panel titles. MapDiff consistently achieves 

the highest recovery rates across different categories of regions for the three 

structures, with an average improvement of 5.1% in loops and disordered regions 

and 13.4% in α-helix and β-strand regions compared with Grade-IF. d, Jaccard 

region intersections between the predicted and ground-truth structures for loops 

and disordered regions (left panel) versus α-helix and β-strand regions (right 

panel). The Jaccard index measures the fraction of the overlap between two sets, 

and the results demonstrate that MapDiff achieves the highest score across both 

categories of regions.
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four out of five (K5, R11, R14 and R18) amino acids required for DNA 

binding and LM-Design obtained none. MapDiff and LM-Design gener-

ate glutamic acid (E) and GRADE-IF isoleucine (I), which, in comparison 

with the corresponding positively charged K31 in the original structure, 

are negatively charged and neutral residues, respectively. The single 

continuous α-helix displayed by GRADE-IF and LM-Design AlphaFold2 

models hence produces much worse RMSD values (14.5 Å and 14.2 Å, 

respectively) than the MapDiff model, which retrieved two helices at the 

right positions (RMSD = 4.6 Å). Consistent with this, MapDiff obtained 

a 10% higher recovery rate than GRADE-IF and LM-Design.

The second example is the 2HKY structure of 109-amino-acid-long 

human ubiquitous ribonuclease 7 (hRNase7), rich in positively charged 

residues, that possesses antimicrobial activity33. This α/β mixed pro-

tein contains 22 cationic residues (18 K and 4 R) distributed into three 

surface-exposed clusters that promote binding to the bacterial mem-

brane, which thus renders it permeable, which consequently elicits 

membrane disruption and death. In addition, it contains four disulfide 

bridges (C24–C82, C38–C92, C56–C107 and C63–C70), which are 

critical for its secondary and tertiary structure, three of which were 

successfully retrieved by MapDiff, whereas no cysteines were found 

in either GRADE-IF or LM-Design sequences. Furthermore, all second-

ary structure elements were nearly entirely recovered by MapDiff, 

unlike GRADE-IF and LM-Design solutions which contained little resem-

blance to the native structure, particularly in the carboxy-terminus 

(C-terminus) half. These structural findings were reflected in a fair 

recovery rate of 40.3% and an RMSD value of 5.0 Å for MapDiff, which 

was considerably better than in GRADE-IF and LM-Design structures 

(14.0 Å and 12.6 Å, respectively).

A third example displays AlphaFold2-refolded structures 

obtained from generated sequences with relatively low recovery 

rates that used the 2P0X structure of an optimized non-biological 

(de novo) ATP-binding protein as a template34. Here MapDiff retrieved 

all detected secondary structure elements, except for the C-terminus 

β-strand which was replaced by a loop. LM-Design was the second 

best with an α-helix substituting the aforementioned β-strand. Even 

if nearly all secondary structure elements were retrieved by both 

MapDiff and LM-Design AlphaFold2 models, the MapDiff model 

obtained by far the best RMSD (3.3 Å as opposed to 8.8 Å). Despite 

having a better recovery rate than LM-Design, GRADE-IF generated 

a sequence that folded poorly compared with the experimentally 

confirmed structure (15.0 Å).

In these cases, MapDiff achieved low RMSD values to successfully 

replicate the majority of secondary structure elements elucidated 

through experiments, including other structural features such as the 

disulfide bonds (2HKY) or positively charged residues that were sus-

pected to participate in protein function (1NI8). By contrast, Grade-IF 

and LM-Design predicted sequences that not only had lower recovery 

rates than MapDiff but also exhibited partially or entirely absent sec-

ondary structure elements, as shown by the experimentally derived 

3D structures, resulting in substantially worse RMSDs. Although the 

structures predicted by AlphaFold2 cannot entirely substitute the 

structural elucidation by experimental techniques such as X-ray or 

NMR (nuclear magnetic resonance), they provide the first glance at 

the foldability potential of de novo generated protein sequences by 

IPF models. A natural next step in future work would be to express the 

de novo designed protein sequences and experimentally determine 

their tertiary structures.

Supplementary Information Section 1 and Supplementary Fig. 1 

study the closest training structures and sequences of the three exam-

ples. The highest TM-scores for 1NI8, 2HKY and 2P0X from structures 

in the training set were 0.57 (1A7W), 0.25 (1V88) and 0.33 (1WIM), 

respectively, indicating that there are no highly similar structures 

during training. Similarly, the highest BLAST35 bit-scores for sequences 

in the training set were 23.1 (4ZEO), 26.6 (2BM8) and 24.6 (3MSR), 

respectively, indicating that no highly similar sequences are present 

during training.

Model analysis and ablation study
We performed analysis and ablation studies to assess the effective-

ness of key components in MapDiff. We focused on investigating the 

contributions of edge feature updating, node coordinate updating and 

global context learning within the base sequence predictor (G-EGNN) 

to the model performance. In addition, we examined the impact of 

the mask ratio adaptor and the pretrained IPA network in the residue 

refinement module on the predictions. As shown in Table 3, we studied 

five variants of MapDiff, each with different key components removed, 

and compared their results with the CATH 4.2 test set. The results show 

that each component positively enhanced the sequence recovery and 

Table 3 | Ablation study of the denoising network modules in MapDiff

Module Component MapDiff Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

G-EGNN

EdgeUpdate ✓ ✓ ✓ ✓ ✓

CoordinateUpdate ✓ ✓ ✓ ✓

GlobalContext ✓ ✓ ✓ ✓ ✓

Refinement
MaskAdaptor ✓ ✓ ✓ ✓

IPA network ✓ ✓ ✓ ✓ ✓

Sequence

Recovery (↑, %) 60.93 58.64 59.76 58.38 60.16 56.46

NSSR62 (↑, %) 78.57 76.73 77.32 77.04 77.80 75.69

NSSR90 (↑, %) 75.66 73.52 74.82 74.24 75.02 72.58

Foldability

pLDDT (↑) 88.63 88.08 88.24 87.95 88.30 86.95

PTM (↑) 79.00 78.42 78.61 78.24 78.74 77.20

PAE (↓) 5.42 5.57 5.54 5.62 5.49 5.86

TM-Score (↑, %) 88.77 88.25 88.47 88.16 88.58 87.50

GDT-TS (↑, %) 87.75 87.12 87.40 86.96 87.53 85.72

RMSD (↓) 2.57 2.67 2.65 2.65 2.53 2.76

Summary Change - ↓↓ ↓ ↓↓ ↓ ↓↓↓

We studied five model variants and investigated how much sequence recovery and foldability metrics decreased when key components were removed on CATH 4.2. The best result for each 

metric is marked in bold.
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foldability performance. For example, the IPA-based refinement mecha-

nism (variant 5) achieved the most substantial sequence improvement, 

increasing recovery by 4.47%, whereas the global context learning and 

coordinate updating (variants 2 and 4) in G-EGNN improved the recov-

ery by 1.17% and 0.77%, respectively. The impact on foldability increases 

with sequence recovery performance but remains less pronounced, 

indicating that AlphaFold2 is robust to these variations and predicts 

stable protein folds. In addition, Supplementary Information Section 7 

and Supplementary Fig. 3 analyse MapDiff’s sensitivity to the number 

of Monte-Carlo samples and DDIM skipping steps.

Discussion
In this work, we present MapDiff, a mask-prior-guided denoising dif-

fusion framework for structure-based protein design. Specifically, we 

regard IPF prediction as a discrete denoising diffusion problem, and 

developed a graph-based denoising network to capture structural 

information and residue interactions. At each denoising step, we used 

a G-EGNN module to generate clean sequences from input structures 

and a pretrained IPA module to refine low-confidence residues, ensur-

ing reliable denoising trajectories. Moreover, we integrated DDIM 

with Monte-Carlo dropout to accelerate generative sampling and 

enhance uncertainty estimation. Experiments demonstrate that Map-

Diff consistently outperforms the state-of-the-art IPF models across 

multiple benchmarks and scenarios. At the same time, the generated 

protein sequences exhibit a high degree of similarity to their native 

counterparts. Even in cases where the overall sequence similarity was 

low, these sequences could often refold into their native structures, as 

demonstrated by the AlphaFold2-refolded models. We also conducted 

a comprehensive ablation study to analyse the importance of different 

model components for the prediction results. MapDiff demonstrates 

transferability and robustness in generating new protein sequences, 

even with limited training data. Promising future directions include 

verifying the applicability of MapDiff in practical domains such as 

de novo antibody design and protein engineering, incorporating pre-

dicted structures from structure prediction models as external data 

for incremental training, integrating physics-informed constraints, 

leveraging sequential evolutionary knowledge from protein language 

models to further refine residue predictions, and further validating the 

foldability of the designed sequences by conducting folding simula-

tions or molecular dynamics simulations.

Methods
Discrete denoising diffusion models
Denoising diffusion models are a class of deep generative models 

trained to create new samples by iteratively denoising sampled noise 

from a prior distribution. The training stage of a diffusion model con-

sists of a forward diffusion process and a reverse denoising process. 

Given an original data distribution q(x0), the forward diffusion process 

gradually corrupts a data point x0 ∼ q(x0) into a series of increasingly 

noisy data points x1:T = x1, x2,⋯, xT over T time steps. This process follows 

a Markov chain, where q(x
1∶T

|x

0

) = ∏

T

t=1

q(x

t
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), 

aims to progressively reduce noise towards the original data distribu-

tion q(x0) by predicting xt − 1 from xt. The initial noise xT is sampled from 

a predefined prior distribution p(xT), and the denoising inference pθ 

can be parametrized by a learnable neural network. Although the dif-

fusion and denoising processes are agnostic to the data modality, the 

choice of prior distributions and Markov transition operators varies 

between continuous and discrete spaces.

In this work, we followed the settings of the discrete denoising 

diffusion proposed by Austin et al.36 and Clement et al.30. In contrast 

with typical Gaussian diffusion models that operate in continuous state 

space, discrete denoising diffusion models introduce noise to categori-

cal data using transition probability matrices in discrete state space. 

Let xt ∈ {1, ⋯ , K} denote the categorical data with K categories and its 

one-hot encoding represented by x
t

∈ ℝ

K. At time step t, the forward 

transition probabilities can be denoted by a matrix Q
t

∈ ℝ

K×K , where 

[Q
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ij
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= i) is the probability of transitioning from category 

i to category j. Therefore, the discrete transition kernel in the diffusion 

process is defined as
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where Cat(x; p) represents a categorical distribution over xt with prob-

abilities determined by p ∈ ℝ

K. As the diffusion process has a Markov 

chain, the transition matrix from x0 to xt can be written as a closed form 

in equation (2) with Q
t

= Q

1

Q

2

⋯Q

t

. This property enables efficient 

sampling of xt at arbitrary time steps without recursively applying 

noise. Following the Bayesian theorem, the calculation of posterior 

distribution (with the derivation in Supplementary Information  

Section 3) from time step t to t − 1 can be written as

q(x

t−1

|x

t

,x

0

) ∝ x

t

Q

T

t

⊙ x

0

Q

t−1

, (3)

where ⊙ is a Hadamard (element-wise) product. The posterior q(xt−1∣xt, 

x0) is equivalent to q(xt−1∣xt) owing to its Markov property. Thus, the 

clean data x0 is introduced for denoising estimation and can be used 

as the target of the denoising neural network. In MapDiff, we introduce 

two simple but effective choices for the transition matrix Qt: uniform 

transition36 and marginal transition30. The uniform transition is para-

metrized by Q
t

= (1 − β

t

)I + β

t

1

K

1

T

K

/K , where K = 20 represents the num-

ber of native amino acid types and the noise schedule βt ∈ [0, 1]. 

Similarly, the marginal transition is parametrized by Qt = (1 − βt)I + βt1KpT, 

where p ∈ ℝ

20 denotes the marginal probability distribution of AA types 

in the training data. All matrix values are strictly positive, and each row 

sums to one, ensuring the conservation of probability mass. Given 

these properties, along with the condition lim
t→T

β

t

= 1 , q(xt) can  

converge to a stationary uniform or marginal distribution, regardless 

of the initial x0.

Residue graph construction
IPF prediction aims to generate a feasible AA sequence that can fold 

into a desired backbone structure. Given a target protein of length L, 

we present it as a proximity residue graph 𝒢𝒢 = (X,A,E), where each node 

denotes an AA residue within the protein. The node features X = [Xaa, 

Xpos, Xprop] encode the AA residue types, 3D spatial coordinates and 

geometric properties. The adjacency matrix A ∈ {0, 1}N×N is constructed 

using the k-nearest-neighbour algorithm. Specifically, each node is 

connected to a maximum of k other nodes within a cutoff distance 

smaller than 30 Å. The edge feature matrix E ∈ ℝ

M×93  illustrates the 

spatial and sequential relationships between the connected nodes. 

More details on the graph feature construction are provided in Sup-

plementary Information Section 4. For sequence generation, we define 

a discrete denoising process on the types of noisy AA residues 

X

aa

t

∈ ℝ

N×20 at time t. Conditioned on the noise graph 𝒢𝒢
t

, this process is 

subject to iteratively refine noise Xaa

t

 towards a clean Xaa

0

= X

aa, which 

is predicted by our mask-prior-guided denoising network.

IPF denoising diffusion process
Discrete diffusion process. In the diffusion process, we incrementally 

introduced discrete noise to the clean AA residues over a number of 

time steps t ∈ {1, ⋯, T}, which resulted in transforming the original data 

distribution to a simple uniform or marginal distribution. Given a  

clean AA sequence Xaa

0
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|1 ≤ i ≤ N}, we used a cumulative  

transition matrix Q
t

 to independently add noise to each AA residue at 

arbitrary step t
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/K , and K denotes the number of native  

AA types (that is, K = 20). The weight of the noise, βt ∈ [0, 1] was deter-

mined by a common cosine schedule37.

Training objective of denoising network. The denoising neural net-

work, denoted by ϕθ, is an essential component to reverse the noise 

process in diffusion models. In our framework, the network takes a 

noise residue graph 𝒢𝒢
t

= (X

t

,A,E) as input and aims to predict the clean 

AA residues Xaa

0

. Specifically, we designed a mask-prior-guided denois-

ing network ϕθ to effectively capture inherent structural information 

and learn the underlying data distribution. To train the learnable net-

work ϕθ, the objective is to minimize the cross-entropy loss between 

the predicted AA probabilities and the real AA types over all nodes.

Reverse denoising process. After the denoising network has been 

trained, it can be used to generate new AA sequences through an itera-

tive denoising process. In this study, we first used the denoising net-

work ϕθ to estimate the generative distribution ̂

p

θ

(

̂

x

i

0

|x

i

t

) for each AA 

residue. Then the reverse denoising distribution p
θ

(x

i
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|x

i

t

) was para-

metrized by combining the posterior distribution with the marginal-

ized network predictions as follows:
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where ̂xi
0

 represents the predicted probability distribution for the ith 

residue xi
0

. The posterior distribution is defined as
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(8)

By applying the reverse denoising process, the generation of 

less-noisy Xaa

t−1

 from Xaa

t

 is feasible (derivation in Supplementary  

Information Section 3). The denoised result is determined by the pre-

dicted residues from the denoising neural network, as well as the pre-

defined transition matrices at steps t and t − 1. To generate a new AA 

sequence, the complete generative process begins with a random noise 

from the independent prior distribution p(xT). The initial noise is then 

iteratively denoised at each time step using the reverse denoising 

process, gradually converging to a desired sequence conditioned on 

the given graph 𝒢𝒢.

DDIM with Monte-Carlo dropout. Although discrete diffusion mod-

els have demonstrated impressive generation ability in many fields, 

the generative process suffers from two limitations that hinder their 

success in IPF prediction. First, the generative process is inherently 

computationally inefficient due to the numerous denoising steps 

involved, which require a sequential Markovian forward pass for the 

iterative generation. Second, the categorical distribution used for 

denoising sampling lacks sufficient uncertainty estimation. Many 

studies indicate that the logits produced by deep neural networks do 

not accurately represent the true probabilities. Typically, the predic-

tions tend to be overconfident, leading to a discrepancy between the 

predicted probabilities and the actual distribution. As the generative 

process iteratively draws samples from the estimated categorical dis-

tribution, insufficient uncertainty estimation will accumulate sampling 

errors and result in unsatisfactory performance.

To accelerate the generative process and improve uncertainty 

estimation, we propose a discrete sampling method by combining 

DDIM with Monte-Carlo dropout. DDIM21 is a widely used method that 

improves the generation efficiency of diffusion models in continuous 

space. It defines the generative process as the reverse of a deterministic 

and non-Markovian diffusion process, making it possible to skip cer-

tain denoising steps during generation. As discrete diffusion models 

possess analogous properties, Yi et al. (2023)38 extended DDIM into 

discrete space for IPF prediction. Similarly, we define the discrete DDIM 

sampling to the posterior distribution by

q (x

i

t−k

|x

i

t

,

̂

x

i

0

) = Cat(x

i

t−k

;p =

x

i

t

Q

T

t

⋯Q

T

t−k

⊙

̂

x

i

0

Q

t−k

̂

x

i

0

Q

t

(x

i

t

)

T

) , (9)

where k is the number of skipping steps.

Then we introduce the application of Monte-Carlo dropout within 

the generative process, a technique designed to enhance prediction 

uncertainty in neural networks. Specifically, we use dropout not only 

to prevent overfitting during the training of our denoising network, but 

also to maintain its activation in the inference stage. By keeping drop-

out enabled and running multiple forward passes (Monte-Carlo sam-

ples) during inference, we generate a prediction distribution for each 

input, as opposed to a single-point estimation. To improve uncertainty 

estimation, we aggregate the predictions by taking a mean pooling 

over all output logits corresponding to the same input. This operation 

leads to the predicted logits that perform reduced estimation bias, 

and their normalized probabilities can more accurately reflect the 

actual distribution. Therefore, we can leverage Monte-Carlo dropout 

to enhance the generative process towards more reliable samplings.

Mask-prior-guided denoising network
In diffusion model applications, the denoising network plays 

a crucial role in generation performance. We have developed a 

mask-prior-guided denoising network, integrating both structural 

information and residue interactions for enhanced protein sequence 

prediction. Our denoising network architecture encompasses a 

structure-based sequence predictor, a pretrained mask sequence 

designer and a mask ratio adaptor.

Structure-based sequence predictor. We adopt an EGNN with a 

global-aware module as the structure-based sequence predictor, which 

generates a full AA sequence from the backbone structure. EGNN is a 

type of graph neural network that satisfies equivariance operations 

for the special Euclidean group SE(3). It preserves geometric and spatial 

relationships of 3D coordinates within the message-passing framework. 

Given a noise residue graph, we use H = [h1, h2, ⋯ , hN] to denote the 

initial node embeddings, which are derived from the noisy AA types 

and geometric properties. The coordinates of each node are repre-

sented by Xpos

= [x

pos

1

,x

pos

2

,⋯x

pos

N

] , whereas the edge features are 

denoted by E = [e1, e2, ⋯ eM]. In this setting, EGNN consists of a stack of 

equivariant graph convolutional layers (EGCL) for the node and edge 

information propagation, which are defined as
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where l denotes the lth EGCL layer, x(0)
i

= x

pos

i

 and w
ij

= sigmoid

(ϕ

w

(e

(l+1)

ij

)) )

 is a soft estimated weight assigned to the specific edge 
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representation. All components (ϕe, ϕh, ϕx, ϕw) are learnable and para-

metrized by fully connected neural networks. In the information propa-

gation, EGNN achieves equivariance to translations and rotations on 

the node coordinates Xpos, and preserves invariant to group transforma-

tions on the node features H and edge features E.

However, the vanilla EGNN only considers local neighbour aggre-

gation while neglecting the global context. Some recent studies13,39 

have demonstrated the importance of global information in protein 

design. Therefore, we introduce a global-aware module in the EGCL 

layer, which incorporates the global pooling vector into the update of 

node representations: that is,

m

(l+1)

= MeanPool ({

̂

h

(l+1)

i

}

i∈𝒢𝒢

) , (13)
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,

̂

h
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i

)) , (14)

where MeanPool( ⋅ ) is the mean pooling operation over all nodes within 

a residue graph. The global-aware module effectively integrates global 

context into modelling and only increases a linear computational cost. 

To predict the probabilities of residue types, the node representations 

from the last EGCL layer are fed into a fully connected classification 

layer with softmax function, which is defined as

p

b

i

= softmax (l

b

i

) , l

b

i

= h

(L)

i

W

o

+ b

o

, (15)

where W
o

∈ ℝ

D

h

×20 and b
o

∈ ℝ

1×20 are a learnable weight matrix and a 

bias vector respectively.

Low-confidence residue selection and mask ratio adaptor. As previ-

ously mentioned, structural information alone can sometimes be 

insufficient to determine all residue identities. Certain flexible regions 

display a weaker correlation with the backbone structure but are 

strongly influenced by their sequential context. To enhance the denois-

ing network’s performance, we introduce a masked sequence designer 

module. This module refines the residues identified with low confi-

dence in the base sequence predictor. We adopt an entropy-based 

residue selection strategy, as proposed by Zhou et al. (2023)24, to iden-

tify these low-confidence residues. The entropy for the ith residue of 

the probability distribution pb
i

 is calculated as

ent

b

i

= −∑

j

p

b

ij

log (p

b

ij

) . (16)

Given that entropy quantifies the uncertainty in a probability 

distribution, it can be used to locate the low-confidence predicted 

residues. Consequently, residues with the most entropy are masked, 

whereas the rest remain in a sequential context. The masked sequence 

designer aims to reconstruct the entire sequence by using the masked 

partial sequence in combination with the backbone structure. In addi-

tion, to account for the varying noise levels of the input sequence in 

diffusion models, we designed a simple mask ratio adaptor to dynami-

cally determine the entropy mask percentage at different denoising 

steps: that is,

mr

t

= sin (

π

2

β

t

σ) +m, (17)

where βt ∈ [0, 1] represents the noise weight at step t derived from the 

noise schedule, and σ and m are the predefined deviation and minimum 

mask ratio, respectively. With the increase of βt, the mask ratio is  

proportional to its time step.

Mask-prior pretraining. To incorporate prior knowledge of sequential 

context, we pretrained the masked sequence designer by applying 

the masked language modelling objective proposed in BERT40. It is 

important to clarify that we used the same training data in the dif-

fusion models for pretraining purposes, to avoid any information 

leakage from external sources. In this process, we randomly sampled 

a proportion of residues in the native AA sequences and replaced 

them with the masking procedures: (1) masking 80% of the selected 

residues using a special MASK type; (2) replacing 10% of the selected 

residues with other random residue types; and (3) keeping the remain-

ing 10% residues unchanged. Subsequently, we input the partially 

masked sequences, along with structural information, into the masked 

sequence designer. The objective of the pretraining stage was to predict 

the original residue types from the masked residue representations 

using a cross-entropy loss function.

Masked sequence designer. We used an IPA network as the masked 

sequence designer. IPA is a geometry-aware attention mechanism 

designed to facilitate the fusion of residue representations and spatial 

relationships, enhancing the structure generation within AlphaFold215. 

In this study, we repurposed the IPA module to refine low-confidence 

residues in the base sequence predictor. Given a mask AA  

sequence, we denote its residue representation as S = [s1, s2, ⋯, sN], 

which is derived from the residue types and positional encoding. To 

incorporate geometric information, as with the IPA implementation 

in Frame2seq41, we constructed a pairwise distance representation 

Z = {z

ij

∈ ℝ

1×d

z

|1 ≤ i ≤ N, 1 ≤ j ≤ N}  and rigid coordinate frames 

𝒯𝒯 = {T

i

∶= (R

i

∈ ℝ

3×3

, t

i

∈ ℝ

3

)|1 ≤ i ≤ N} . The pairwise representation Z 

was obtained by calculating interresidue spatial distances and relative 

sequence positions. The rigid coordinate frames were constructed 

from the coordinates of backbone atoms using a Gram–Schmidt pro-

cess, providing a consistent local reference for ensuring the invariance 

of IPA to global Euclidean transformations. Subsequently, we took the 

residue representation, pairwise distance representation and rigid 

coordinate frames as inputs, and fed them into a stack of IPA layers for 

representation learning, which is defined as

S

(l+1)

,Z

(l+1)

= IPA(S

(l)

,Z

(l)

, 𝒯𝒯). (18)

The IPA network follows the self-attention mechanism. How-

ever, it enhances the general attention queries, keys and values by  

incorporating 3D points that are generated in the rigid coordinate 

frame of each residue. This operation ensures that the updated  

residue and pair representations remain invariant by global  

rotations and translations. More details on the IPA feature construc-

tion and algorithm implementation are provided in Supplementary 

Information Section 6. For the ith residue, the predicted probability 

distribution and entropy in the masked sequence designer are cal-

culated as
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where W
m

∈ ℝ

D

s

×20 and b
m

∈ ℝ

1×20 are the learnable weight matrix and 

bias vector, respectively. The training objective was to jointly minimize 

the cross-entropy losses for both the base sequence predictor and 

masked sequence designer. In the inference stage, we calculated the 

final predicted probability by weighting the output logits based on 

their entropy as
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By incorporating the mask-prior denoising network into the 

discrete denoising diffusion process, our framework enhanced the 

denoising trajectories, leading to more accurate predictions of protein 

sequences.

Experimental setting
Primary datasets. We evaluated MapDiff on experimentally validated 

protein structures curated from well-established databases. The CATH 

database25 is widely used in inverse folding research, enabling fair com-

parisons across different methodologies. It classifies proteins into hier-

archical levels based on class, architecture, topology and homologous 

superfamily, with filtering to reduce redundancy and ensure structural 

diversity. Following previous studies13,26,27, proteins are partitioned 

based on their CATH topology classification codes, ensuring that the 

training, validation and test sets contain non-overlapping topologies. 

This partitioning strategy provided a robust evaluation of the model’s 

generalization to unseen proteins. For CATH 4.2, the dataset consisted 

of 18,024 structures for training, 608 for validation and 1,120 for test-

ing. Similarly, in CATH 4.3, we followed the topology classification 

approach in ESM-IF27, resulting in 16,630 proteins for training, 1,516 for 

validation and 1,864 for testing. By including both CATH 4.2 and CATH 

4.3, we assessed the stability of model performance across dataset ver-

sions, ensuring robustness to updates in protein-structure databases.

Zero-shot generalization datasets. To further assess MapDiff’s 

zero-shot generalization ability, we evaluated it on the two independ-

ent TS50 and PDB2022 datasets. TS50 (ref. 5) is a commonly used 

benchmark for protein-sequence design, consisting of 50 diverse 

protein chains covering different structural classes. PDB2022 includes 

single-chain structures published in the Protein Data Bank (PDB)42 

between 5 January 2022 and 26 October 2022, curated by Zhou et al.24, 

with protein length ≤500 and resolution ≤2.5 Å. This dataset consists 

of 1,975 proteins published after those in the CATH dataset, ensuring 

a strict time-based test ‘split’ to evaluate real-world temporal gener-

alization. Both datasets are entirely separate from the CATH-derived 

training set, minimizing data leakage and providing a robust evaluation 

of structural and temporal generalization.

Baselines. We compared MapDiff with recent deep-graph models 

for inverse protein folding, including StructGNN26, GraphTrans26, 

GVP43, AlphaDesign44, ProteinMPNN1, PiFold13, LM-Design45 and 

GRADE-IF1. To ensure a reliable and fair comparison, we reproduced the 

open-source and four most state-of-the-art baselines (ProteinMPNN, 

PiFold, LM-Design and GRADE-IF) under identical settings in our experi-

ments. ProteinMPNN uses a message-passing neural network to encode 

structure features, and a random decoding scheme to generate protein 

sequences. PiFold introduces a residue featurizer to extract distance, 

angle and direction features. It proposes a PiGNN encoder to learn 

expressive residue representations, enabling the generation of protein 

sequences in a one-shot manner. LM-Design uses structure-based mod-

els as encoders and incorporates the protein language model ESM as a 

protein designer to refine the generated sequences. GRADE-IF employs 

EGNN to learn residue representations from protein structures, and 

it adopts the graph denoising diffusion model to iteratively generate 

feasible sequences. All baselines were implemented following the 

default hyperparameter settings in their original papers.

Implementation set-up. MapDiff is implemented in Python v.3.8 and 

PyTorch v.1.13.1 (ref. 46), along with functions from BioPython v.1.81 

(ref. 47), PyG v.2.4.0 (ref. 48), Scikit-learn v.1.0.2 (ref. 49), NumPy v.1.22.3 

(ref. 50) and RDKit v.2023.3.3 (ref. 51). It consists of two training stages: 

mask-prior pretraining and denoising diffusion model training, both 

of which use the same CATH 4.2/4.3 training set. The batch size was set 

to eight, and the models were trained up to 200 epochs in pretrain-

ing and 100 epochs in denoising training. We employed the Adam 

optimizer with a one-cycle scheduler for parameter optimization, 

setting the peak learning rate to 5 × 10−4. In the denoising network, 

the structure-based sequence predictor consisted of six global-aware 

EGCL layers, each with 128 hidden dimensions. In addition, the masked 

sequence designer stacked six layers of IPA, each with 128 hidden 

dimensions and four attention heads. The dropout rate was set to 0.2 in 

both the EGCL and IPA layers. A cosine schedule was applied to control 

the noise weight at each time step, with a total of 500 time steps. During 

sampling inference, the skip steps for DDIM were configured to 100, 

and the Monte-Carlo forward passes were set to 50. For the mask ratio 

adaptor, we set the minimum mask ratio to 0.4 and the deviation to 0.2. 

All experiments were conducted on a single Tesla A100 GPU. Following 

the regular evaluation in deep learning, the best-performing model was 

selected based on the epoch that provided the highest recovery on the 

validation set. After that, this selected model was subsequently used 

to evaluate performance on the test set. For the foldability analysis, 

we applied a single AlphaFold2 pTM model (that is, model_1_ptm) with 

three recycles to balance accuracy and computational efficiency. Multi-

ple sequence alignment information was generated for each sequence 

using the MMSeqs2 (refs. 52,53) server provided by ColabFold54. We 

provide the algorithm details for the training and sampling inference 

in Supplementary Information Section 5, and the scalability study 

in Supplementary Information Section 8 and Supplementary Fig. 4.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The experimental data used in this work are available at https://github.

com/peizhenbai/MapDiff/tree/main/data. All data were publicly col-

lected from the following resources. The CATH 4.2 dataset can be found 

at https://github.com/dauparas/ProteinMPNN; the CATH 4.3 dataset 

can be found at https://github.com/BytedProtein/ByProt; the PDB2022 

dataset can be found at https://github.com/veghen/ProRefiner and 

the TS50 dataset can be found at https://github.com/A4Bio/PiFold. 

The protein-structure data were obtained from Protein Data Bank at 

https://www.rcsb.org/ with the corresponding PDB IDs. Source data 

are provided with this paper.

Code availability
The source code and implementation details of MapDiff are available 

via GitHub at https://github.com/peizhenbai/MapDiff and via Code-

Ocean at https://doi.org/10.24433/CO.3441652.v1 (ref. 55). The code is 

also available via Zenodo at https://doi.org/10.5281/zenodo.15162932 

(ref. 56).
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