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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Cryptosporidium river concentrations 
were modelled in a large, complex 
catchment.

• A range of potential inputs were trialled 
to explore effects on model 
performance.

• Final models predicted 69–75 % of >1 
oocysts L−1 exceedances.

• Explainable AI methods revealed 
importance of both animal and human/ 
urban sources.

• Models can inform abstraction strategy 
to reduce Cryptosporidium loadings to 
WTWs.
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A B S T R A C T

Cryptosporidium is a waterborne pathogen which poses a major challenge to water utilities because of its resis-
tance to chlorination and its infectivity at very low concentrations. The ability to make predictions of Crypto-
sporidium concentrations in rivers would aid significantly in abstraction-based risk management of water 
resources, but current models are inappropriate for making predictions at the temporal resolutions required to 
inform abstraction decision-making. This study utilises Cryptosporidium data collected over 7 years at a major 
river abstraction site in South East England, alongside publicly-available remote sensing data, to train a Bagging- 
XGBoost model for Cryptosporidium predictive applications at daily timescales. Different combinations of 
catchment-averaged and spatially distributed datasets were trialled as model inputs. The highest-performing 
models predicted 69–75 % of >1 oocysts L−1 exceedances, and they also predicted the timing of 78–89 % of 
higher (>2 oocysts L−1) exceedances. Interpretation of predictions using SHapley Additive exPlanations analysis 
indicated that sources near (<30 km) to the intake were the most important and identified catchment-averaged 
rainfall at 1 and 2-day lag time and antecedent Cryptosporidium measurements as significant inputs. The study 
demonstrates the potential of such models when an unparsimonious approach to feature selection is taken, 
because of their ability to discern non-linear trends and their resistance to multicollinearity and redundancy in 
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the input data. Such models could improve the ability of water utilities to predict Cryptosporidium peaks and aid 
abstraction decision-making, thereby reducing the loadings of this pathogen to reservoirs and water treatment 
works.

1. Introduction

Cryptosporidium is a pathogen of major concern to drinking water 
providers because of its resistance to chlorination and its infectivity at 
very low concentrations. The organism was identified as the leading 
cause of 63 % of waterborne outbreaks reported worldwide between 
2011 and 2016 (Efstratiou et al., 2017a). Cryptosporidium persists in the 
environment in its transmissible “oocyst” form, with each oocyst 
measuring approximately 4-6 μm in diameter and protected by a robust 
outer shell (Rose et al., 2002). When using standard methods, it is 
estimated that Cryptosporidium will be detectable in 45.3 % of surface 
water samples globally (Daraei et al., 2020). Infection in humans and 
animals can lead to cryptosporidiosis, a self-replicating gastrointestinal 
illness which can be particularly dangerous for immunocompromised 
patients (Bouzid et al., 2013). Current risk management of Cryptospo-
ridium in water systems is often reactive and/or precautionary, largely 
because of inadequacies in the understanding of key sources, pathways 
and processes within the water cycle, and the lack of a robust means of 
quantifying risk. Elevated concentrations of the Cryptosporidium organ-
ism in raw water can pose significant challenges to water treatment 
works (WTWs) in terms of treatment costs and potential risks to public 
health if removal and/or deactivation methods prove inadequate 
(Betancourt and Rose, 2004). In the UK, detections of Cryptosporidium in 
drinking water must be reported to the regulator (the Drinking Water 
Inspectorate (DWI)) and can lead to enforcement measures, including 
regulatory fines for the associated water company (DWI, 2022).

The pathogen is typically of greatest concern to those WTWs which 
rely on surface waters for their source water, although groundwater 
supplies can also be contaminated (Bouchier, 1998). The major diffuse 
sources of Cryptosporidium in rivers are believed to be faecal waste from 
grazing livestock (Sturdee et al., 2007) and animal/human waste-based 
fertilisers (including manures, slurries and digestates). Pathogens from 
these waste-associated sources can be mobilised by runoff generated 
during rainfall events, usually entering rivers as overland flow 
(Bhattarai et al., 2011; Swaffer et al., 2014). Previous studies have 
identified infection prevalence and oocyst loadings as higher in cattle 
than in other major livestock groups, although poultry, pigs, goats, 
sheep and other farmed animals also constitute important reservoirs of 
environmental Cryptosporidium (Golomazou et al., 2024). Diffuse runoff 
containing waste from wild animals can also contribute to Cryptospo-
ridium river loadings in many catchments (Sturdee et al., 1999). Point 
sources of Cryptosporidium are regarded as largely human (Medema and 
Schijven, 2001), entering the river either as treated discharge from 
sewage treatment works (STWs) (Bukhari et al., 1997), or untreated 
sewage spilled from combined sewer overflows (CSOs) (Gibson III et al., 
1998). It is generally accepted that rainfall is a key driver of Crypto-
sporidium contamination of surface water bodies (Bhattarai et al., 2011), 
but correlations between rainfall and Cryptosporidium concentrations in 
rivers are not found at all sites (Atherholt et al., 1998), and where they 
are present, they are often weak and limited to certain times of the year 
(Coffey et al., 2010). Because laboratory analysis is costly and time 
consuming, there is an overall lack of published data on Cryptosporidium 
in surface waters, especially at resolutions which would facilitate anal-
ysis of sources and pathways in the environment.

Changes in the contaminant/water quality status of the raw surface 
waters can be managed by selective surface water abstraction and/or the 
adjustment of water treatment options. For example, daily abstraction 
volumes from major intakes on the River Thames are currently adjusted 
in response to the routine monitoring of Cryptosporidium concentrations 
in the raw water, with decisions concerning abstraction suspension, 

reduction or resumption triggered at threshold concentrations of 1, 2, 4, 
and 5 oocysts L−1 (depending on the storage times of the reservoirs to 
which the river water is being abstracted) (Thames Water, 2021). Un-
fortunately, long Cryptosporidium analysis times (typically 2 days) mean 
that there is a lag between contamination events and operational 
decision-making, so that in many cases water above key threshold levels 
is still pumped into the reservoirs. Equally, resumption of abstraction 
after the Cryptosporidium-contaminated water has passed downstream of 
the abstraction point is also delayed – a particular concern for regions 
such as South East England, which are under water stress. Furthermore, 
the effectiveness of such decision-making is heavily reliant on frequent 
(ideally daily) monitoring, which is not undertaken at all abstraction 
points because of the high cost and time demands associated with 
Cryptosporidium sampling and analysis. The ability to predict/model 
Cryptosporidium concentrations in rivers over a short (e.g. daily) time-
frame would therefore significantly improve risk management and 
decision-making strategies (Dobson and Mijic, 2020), as well as assisting 
in water resource management.

2. Background

Catchment hydrological-water quality models have traditionally 
been classified as either spatially distributed, semi-distributed or 
catchment-averaged (also known as “aggregated” or “lumped”) models, 
with the former typically requiring greater complexity, increased 
computing time and higher data demands than the latter (Tran et al., 
2018). Studies comparing distributed and catchment-averaged models 
have demonstrated that increased spatial-distribution of data and model 
design does not automatically equate to increased predictive power 
(Sinha et al., 2022). Some distributed deterministic models have been 
developed for the specific purpose of predicting raw water contaminant 
concentrations at sub-daily resolution, with a view to informing 
abstraction timing (Asfaw et al., 2018; Suslovaite et al., 2024). To date, 
these approaches have only been applied to a small number of con-
taminants (including metaldehyde and E. coli, but not Cryptosporidium) 
and limited to relatively small (≈ 300 km2) test catchments.

Previous attempts to explicitly model Cryptosporidium river concen-
trations are summarised in Fig. 1. They are generally limited to lower 
temporal resolution (monthly and above) models, or snapshot-based 
models intended to capture the current loadings to, or concentrations 
within, rivers. Four models did generate daily predictions (Brion et al., 
2001; Medema and Schijven, 2001; Dorner et al., 2006; Tang et al., 
2011), but these were validated against extremely limited datasets of 
≤68 Cryptosporidium measurements (taken at intervals of many days/ 
weeks). The models are predominantly deterministic and vary in spatial 
scale and complexity. The partially-distributed Soil Water Assessment 
Tool (SWAT) has been used for three catchment-scale Cryptosporidium 
models, with two focusing on very small (<30 km2) homogenous 
catchments (Coffey et al., 2010; Tang et al., 2011) and a third (Liu et al., 
2019) looking at a larger (≈ 4000 km2) catchment and addressing 
possible mitigation scenarios. The SWAT studies combine a rainfall- 
runoff element (accounting for mobilisation and transport of Crypto-
sporidium, and dilution effects) with components which quantify oocyst 
loadings from animal and/or human waste-based sources. The latter can 
include parameters which are indicative of initial oocyst quantities at 
the source (e.g. infection rates, shedding estimates, total faecal matter 
from grazing animals and wastewater discharge volumes), alongside 
factors which affect either oocyst survival (e.g. temperature and sunlight 
hours), or which might impede oocyst transport (e.g. adsorption to soil 
particles and settling processes). Other models working at either the 
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catchment scale (Walker Jr and Stedinger, 1999; Ferguson et al., 2005) 
or the global scale (Hofstra and Vermeulen, 2016; Vermeulen et al., 
2019) predict loadings to water courses averaged over the monthly, 
yearly or very long-term (i.e. not in real time).

In recent years, machine learning (ML) modelling tools have been 
increasingly adopted for water quality applications due to their ability to 
consider complex non-linear relationships and their applicability to 
large, complex catchments in which deterministic approaches would be 
computationally expensive and challenging to calibrate. Brion et al. 
(2001) produced the first data-driven ML model for predicting Crypto-
sporidium river concentrations in the form of a neural network model of a 
large (17,527 km2) mixed urban-rural catchment in the USA, with inputs 
of river discharge, rainfall and water quality (including microbiological) 
parameters. Similarly, Ligda et al. (2020) applied a Linear Discriminant 
Function Analysis (LDFA) model, with inputs of mean monthly air 
temperature, total weekly rainfall and faecal indicator bacteria (FIB) 
data to produce mean monthly predictions of broad categories of 
Cryptosporidium concentrations. Both models were trained and validated 
on relatively small datasets (containing a total of 68 and 136 data points, 
respectively). The dataset used by Ligda et al. (2020) was later re- 
applied in a new study (Ligda et al., 2024), which trialled and 
compared the performance of different ML models in combination with 
additional physicochemical water quality inputs for the prediction of 
Cryptosporidium and Giardia river concentrations. The models trialled 
were Support Vector Machines (SVM), K-Nearest Neighbours (KNN), 
Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), with RF 
and XGBoost found to be the best-performing models for Cryptosporidium 
and Giardia, respectively. All three studies showed the potential 

advantages of combining meteorological and/or hydrological data with 
river water quality data to generate predictions, but it is also worth 
noting that the use of FIB data (which usually requires analysis times of 
≥24 h) would be a significant limitation on the applicability of such 
models for making real-time daily predictions for water resource 
management.

The choice of appropriate inputs (or “feature selection”) is a key 
element of model design and it is common practice to perform model 
trials using different combinations of inputs, then to compare the per-
formance metrics of the validated models in order to identify the most 
important features (Dhal and Azad, 2022). For time series-based ML 
models which contain environmental data, such trials can also be used to 
decide on the spatial and temporal resolution of the input data and the 
use of data at different time lags to capture delayed effects – e.g. due to 
contaminant travel times (Choubin et al., 2018). Many ML models 
incorporate methods for calculating feature importance, but in recent 
years model-agnostic methods have also been developed, such as 
SHapley Additive exPlanations (SHAP) – a game theory-based approach 
which quantifies the scale and direction of impact (i.e. additive or 
subtractive) for each feature, along with local interpretation – i.e. the 
assessment of feature importance for each prediction in isolation 
(Lundberg and Lee, 2017). SHAP was deployed to assess the Crypto-
sporidium ML models developed by Ligda et al. (2024), and such ap-
proaches have huge potential for enhancing the use of ML tools as 
exploratory methods in order to advance understanding of system pro-
cesses (Piraei et al., 2023).

In summary, previous attempts to model Cryptosporidium highlight a 
number of ongoing challenges, including: (i) a lack of robust 

Fig. 1. Summary of key characteristics and input parameters used in previous Cryptosporidium models. (Notes: †Spatial distribution often varies with input type, 
hence sometimes two figures are provided; *ML models (all other models are deterministic); **SWAT models; ***New models (presented in this paper). For 
deterministic models, the number of Cryptosporidium river measurements was used for validation (v) only, whereas for ML models, the number of both training (t) and 
validation (v) data points is provided.)
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understanding concerning key catchment sources and transport mech-
anisms, and their relative significance and required level of detail when 
modelling at different scales and resolutions; and (ii) the need to access 
larger Cryptosporidium and environmental datasets at higher temporal 
resolution (e.g. with daily instead of monthly intervals), either for the 
purpose of training more effective ML models, or for providing the in-
formation required to develop a process-based understanding of Cryp-
tosporidium fluxes in response to specific rainfall events and conditions. 
To date there are no published models which have been proven to 
provide an operational understanding of the risk posed by Cryptospo-
ridium to water abstraction systems at daily or sub-daily resolution; 
addressing the above challenges would be a significant step towards 
developing such a model. Recent advances in the availability of catch-
ment sensing data – much of which is publicly available – combined with 
a parallel increase in open source ML tools, do however provide new 
opportunities for modelling and predicting catchment water quality 
(Chen et al., 2022). For example, in the UK an extensive network of 
sensors has been installed on the vast majority of CSOs, providing Event 
Duration Monitoring (EDM) of spills of untreated wastewater into rivers, 
lakes and coastal waters (Giakoumis and Voulvoulis, 2023; Suslovaite 
et al., 2024).

The present study will present the development and testing of a data- 
driven tool for predicting Cryptosporidium concentrations in a river 
within a large and complex catchment. Making use of a new dataset 
comprising 7 years of Cryptosporidium measurements (much of which is 
at daily resolution) and open source environmental data, together with 

freely-available ML software, the aim is to produce a predictive tool 
which can be used operationally to inform abstraction management 
decisions. Specific objectives of the study are to (1) carry out trials using 
an appropriate ML model to demonstrate for the first time that well- 
validated Cryptosporidium predictions can be made at daily timescales; 
(2) compare models using different inputs (including catchment- 
averaged and spatially distributed data) to determine which (if any) 
produces the best performing model; and (3) use model performance 
and feature importance metrics to identify the key features for predict-
ing elevated Cryptosporidium concentrations, including drawing con-
clusions about key source types and locations.

3. Methods

3.1. Study area and Cryptosporidium monitoring

The catchment area is defined by a downstream monitoring and 
abstraction point at Walton WTW, located to the west of London (Fig. 2). 
The catchment covers an area of approximately 9300 km2 and contains 
both extensive rural areas and major urban centres. The Walton raw 
water intake, along with three intakes within 30 km (river distance) 
upstream, and one intake approximately 2 km downstream, all abstract 
to a series of bankside reservoirs. As a collective, these five intakes are 
the source for approximately 70 % of London’s drinking water, serving 
approximately 6.5 million people, while the river system as a whole 
provides drinking water for a number of large towns and cities, 

Fig. 2. Maps showing the catchment location on the mainland and the towns, cities and river network within the catchment boundary, along with the five major 
abstraction points on the River Thames which provide raw water for approximately 70 % of London’s drinking water. Base map: OS MiniScale (Ordnance Sur-
vey, 2025).
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including Oxford, Swindon, Reading, Slough, Maidenhead and Guild-
ford. 127 sewage treatment works (STWs) and 285 CSOs discharge into 
the catchment, as defined by the Walton intake. For the purpose of this 
study, the catchment has been subdivided into 443 5×5 km cells, cor-
responding to the cells for which rainfall radar data is available.

Cryptosporidium monitoring data for the River Thames (sampled at 
the Walton intake) was made available by Thames Water for the period 
between Jan 2000 and Mar 2023. From 2016 onwards, most of this data 
is at approximately daily temporal resolution, especially during the 
months where Cryptosporidium is at its highest. Cryptosporidium analysis 
was carried out by a UKAS-accredited laboratory using the Blue Book 
method described in The Microbiology of Drinking Water, Part 14 
(Environment Agency, 2010).

3.2. Model type

The model described below was designed to predict daily Crypto-
sporidium concentrations at the Walton intake on the River Thames. The 
predicted concentration outputs were then converted into positive or 
negative classification outputs, representing exceedances of different 
threshold concentrations (1, 2, 3, 4 and 5 oocysts L–1). These thresholds 
were selected in accordance with the abstraction management trigger 
levels currently applied operationally by Thames Water.

A Bagging-XGBoost model was used, in combination with an 
unparsimonious approach to feature selection. XGBoost is a supervised 
learning algorithm, which resembles earlier ensemble tree-based models 
(such as Random Forest) by generating multiple decisions trees to 
reduce overfitting and improve model performance (Chen and Guestrin, 
2016; Bisong, 2019). XGBoost also incorporates a gradient descent 
function to correct the errors of previous trees constructed in the algo-
rithm (Friedman, 2001). Although not specifically designed for working 
with time series data, it has been used extensively for time series 
modelling in water resources engineering (Niazkar et al., 2024), and 
specifically applied to water quality modelling studies aimed at esti-
mating water quality indices (Masood et al., 2023) and predicting 
persistent organic pollutant concentrations in the Great Lakes of the USA 
and Canada (Wu et al., 2021a). Numerous studies have demonstrated 
the superior predictive performance of XGBoost for a variety of water 
quality applications when compared with other ML algorithms (e.g. 
Random Forest and neural network-based models) (Wu et al., 2021b; 
Masood et al., 2023; Rawat et al., 2023). XGBoost is effective at 
modelling non-linear trends (Bisong, 2019) and it has the capacity to 
handle datasets with a large number of features and different data types 
(e.g. both numerical and categorical data). Furthermore, its perfor-
mance is not generally impaired by the presence of redundant inputs or 
multicollinearity (i.e. the use of multiple correlating features) (Pham 
and Ho, 2021).

Prior to adopting an XGBoost-based approach, preliminary trials 
were conducted using a range of alternative regression models, 
including Multiple Linear Regression, Random Forest, Support Vector 
Machine and Multilayer Perceptron models, with default hyper-
parameter settings throughout and with the inputs matching those used 
in Models 1b and 5b (as described in Section 3.5). XGBoost-based 
models were found to give the best overall predictive performance 
(based on the metrics outlined in Section 3.7), which further justifies this 
choice of ML approach for the present study.

The term “bagging” involves running models multiple times on 
different subsets of data and aggregating the model outputs. Bagging can 
be incorporated into an individual XGBoost model by setting the sub-
sample hyperparameter (which defines the proportion of data randomly 
sampled for each tree) to a value of <1. When bagging across multiple 
models (as in the present study), a different random state setting is 
applied with each run of the model in order to ensure that the data is 
subsampled differently (and reproducibly) each time. Bagging across 
multiple iterations of a model generally reduces overfitting and is 
particularly effective where the input data is noisy or highly variable 

(Hastie et al., 2009). Aggregation of model outputs is typically per-
formed using weighted averages as part of a Bayesian or frequentist 
statistical approach (Dormann et al., 2018), or by simple averaging 
(Deng et al., 2022), which was the method adopted in this study.

Although it is considered good practice to remove autocorrelating 
and redundant features prior to running ML models (Zhu et al., 2023), 
such feature engineering can be laborious and runs the risk of removing 
inputs which contain useful data – a particular concern given the current 
knowledge gaps regarding the most important inputs for predicting 
Cryptosporidium. For this reason, an unparsimonious approach to feature 
selection was adopted and the models were run with a high (>90) 
number of features, including highly autocorrelating inputs at different 
time lags.

Various forms of the model (trialling different combinations of inputs 
as described below) were executed using the XGBoost library (v. 1.5) 
installed in a Python environment (v. 3.8.8) and using the Anaconda 
distribution (available from www.anaconda.com).

3.3. Model inputs

The choice of input parameters was informed by existing literature 
detailing Cryptosporidium sources, mobilisation mechanisms and factors 
affecting the pathogen’s longevity in catchments (see Fig. 1). The pa-
rameters used can be divided into three categories: (i) core inputs 
(common to all models presented here); (ii) environmental inputs (e.g. 
meteorological and hydrological data); and (iii) CSO inputs (specifically 
the EDM datasets). A full description and justification of parameters 
used is provided below. It should be noted that a number of water 
quality parameters – including turbidity, nitrate, ammonium, phosphate 
and electrical conductivity, measured in grab samples at the intake, or 
upstream sonde stations – were also considered as possible inputs, but 
were dismissed due to substantial gaps in the available data.

3.3.1. Core inputs
Three core inputs were deployed uniformly across all models. The 

first of these was Crypto_Rolling_Mean, a 3-week rolling mean Crypto-
sporidium concentration, based on historical measurements from T−7 to 
T−28 days (where T0 is the current day on which Cryptosporidium con-
centrations are to be predicted by the model). It was necessary to include 
this feature as a scaling input to allow the model to distinguish between 
the severity of Cryptosporidium seasons. A temporal input – Day_of_Year – 

was included to capture cyclical annual trends that may not be covered 
by the other input data; for example, events in the farming calendar, or 
time windows during which heavy rainfall might be more likely to 
mobilise Cryptosporidium. This input was defined by a numerical value 
from 1 to 366. A third input – High_Season – was included to group 
together the commonly “high” Cryptosporidium months (Oct-Feb) into 
individual seasons, therefore allowing the model to learn to delineate 
temporally between more and less severe Cryptosporidium seasons 
(which were evident in the data). Seasons are here defined as from 1st 
Oct to 28th/29th Feb, and were delineated in the input by starting year 
number (e.g. 2016 for the Oct 2016-Feb 2017 season). Days in the period 
from Mar-Sept were designated a zero value in all years.

3.3.2. Environmental inputs
Environmental inputs include: rainfall, number of consecutive 

antecedent dry days, soil moisture, soil temperature, river discharge and 
river discharge rate-of-change. These are outlined in greater detail 
below.

Previous models have applied rainfall as a catchment-averaged 
parameter (Brion et al., 2001), or as a spatially distributed (location- 
specific) value (Dorner et al., 2006). In the latter case, routing is 
required to impose appropriate lag times which are reflective of the 
time-of-transport from the source to the abstraction/monitoring point. 
In the present study, rainfall was used in different forms in both 
catchment-averaged and spatially distributed versions of the models.
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Rainfall radar data (NIMROD) for 5x5 km cells at 15-min resolution 
was obtained from the Centre for Environmental Data Analysis (CEDA) 
(Met Office, 2003) and converted to mean daily rainfall values. Gaps in 
the radar data were filled using the HadUKGrid 5x5 km daily rainfall 
measurements (Met Office et al., 2021). The rainfall data in this form 
was used in the spatially distributed versions of the model by imposing 
location-specific time lags (see Section 3.4.2).

Catchment-averaged daily rainfall was obtained by calculating the 
daily mean for all cells within the catchment. The number of consecutive 
dry days is important for capturing first-flush effects, when relatively 
large amounts of faecal waste may be washed from fields or from CSO 
pipes following an extended dry period (Mamun et al., 2020). This 
parameter was calculated from the catchment-averaged rainfall, with a 
dry day defined as one with <1 mm of rainfall.

Soil moisture was included because of its positive impact on runoff 
generation during rainfall events (Singh et al., 2021) and its effect on 
Cryptosporidium survival, with desiccation regarded as one of the most 
important mechanisms of oocyst deactivation (Robertson et al., 1992). 
Daily soil moisture values compiled by the COSMOS-UK network were 
obtained from the UK Centre for Ecology & Hydrology (UKCEH) (Smith 
et al., 2024). Data at the four measurement sites in the catchment was 
retrieved (Chimney Meadows, Chobham Common, Sheepdrove and 
Waddesdon) and averaged to give a mean soil moisture value as % 
volumetric content at 5 cm depth.

Temperature can be a significant factor controlling oocyst survival, 
with very low (<−10 ◦C) or very high (>37 ◦C) temperatures known to 
dramatically increase rates of oocyst deactivation (King et al., 2005). 
Because a major source of Cryptosporidium in the environment is 
believed to be animal waste on agricultural land, soil temperature (as 
opposed to air temperature) was taken as an input, with values 
measured by gauging stations at the four COSMOS-UK sites and avail-
able from the same website. Hourly measurements were averaged to 
obtain a mean daily soil temperature in ◦C.

The locations of the four monitoring sites for soil moisture and soil 
temperature are spread across the catchment (see Supplementary ma-
terial 1 for locations and variability over time). Whilst the correlation 
between sites is very high (>0.84 for soil moisture; >0.97 for soil tem-
perature) and overall variability is low, it is acknowledged that the 
average of these values is unlikely to fully represent the full spatial 
variability of catchment conditions. Future studies could consider the 
value of populating these inputs with spatially distributed satellite- 
based data; however, for the present study priority was given to reli-
ability of the data and its availability in real time.

River discharge has been a key input in previous Cryptosporidium 
river models (e.g. Liu et al., 2019). Increases in flow will typically follow 
rainfall-runoff events and may coincide with increased spills from CSOs. 
Abrupt changes in discharge can also liberate entrained oocysts from 
bed and bankside sediment (Crockett, 2004). Conversely, high flow rates 
can have a diluting effect, leading to lower Cryptosporidium concentra-
tions (Knapp et al., 2022). Daily discharge data (in m3 day−1) for the 
nearest downstream gauging station (Kingston-upon-Thames) was 
accessed via the Hydrology Data Explorer, managed by Defra (https:// 
environment.data.gov.uk/hydrology).

3.3.3. CSO inputs
The major human sources of Cryptosporidium released to rivers in the 

UK are believed to be discharges of treated sewage effluent (from STWs) 
and spills of untreated sewage (from CSOs) (Medema and Schijven, 
2001). Despite the large number (127) of STWs in the study catchment 
and the sizeable contribution of treated wastewater to the Thames river 
network, the daily regularity of effluent discharge volumes means that 
these would not generally be expected to generate abrupt increases in 
Cryptosporidium in the river. By contrast, CSO spills of untreated sewage 
are highly intermittent and therefore present a more obvious cause of 
sudden spikes, particularly given that they are also likely to contain 
higher concentrations of oocysts than treated discharges (Nasser, 2016). 

EDM data recording CSO spills in the catchment was made available by 
Thames Water for the period from January 2018 to August 2022 (note 
this data also includes discharges from storm tanks, but for simplicity all 
releases of untreated sewage will be referred to henceforth as CSO 
spills). EDM data from post-August 2022 was obtained via the publicly- 
accessible Thames Water API Portal (https://data.thameswater.co.uk). 
EDM sensors record the time and date at which spills from CSOs start 
and stop (at 1-min resolution). Of the 285 CSOs which fall within the 
study catchment, EDM data for 201 CSOs has been acquired, although 
monitoring at each site commenced at different times. At the start of 
2019, 44 of the CSOs were being monitored; by the start of 2020, this 
figure had risen to 161, rising further to 189 monitored CSOs by 
September 2020. All EDM data was converted into daily binary form – i. 
e. the timestamped spill start and spill stop records were converted into 
continuous daily binary time series, with 0 denoting no spills in a day, 
and 1 denoting a day in which one or more spills occurred. A catchment- 
averaged version of the CSO spill data, catchment-wide CSO spills (or 
CSO_Sum), was also calculated by summing all of the spilling CSOs for 
each day.

3.4. Travel times and time lags

3.4.1. Multi-lagged inputs: time lag trials for catchment-averaged inputs 
and discharge inputs

The selection of appropriate lag times for the catchment-averaged 
inputs (rain, consecutive dry days, soil moisture and soil temperature), 
along with river discharge, discharge rate-of-change and catchment- 
wide CSO spills, was essential because events resulting in the mobi-
lisation and transport of Cryptosporidium can affect in-river concentra-
tions of the pathogen many days later (Atherholt et al., 1998). The 
simplest (catchment-averaged) version of the model (see Table 1) was 
trialled using a minimum lag time of 1 day and maximum lag (MaxLag) 
times ranging from 2 to 30 days, to determine the most suitable 
maximum time lag (in days), based on model performance. For example, 
in the first test the lag times were 1 and 2 days; in the second test they 
were 1, 2 and 3 days; in the third test they were 1, 2, 3 and 4 days (and so 
on). The minimum lag time was fixed at 1 throughout because recent 
conditions were presumed to exert a strong influence over Cryptospo-
ridium concentrations. In each trial, the lag times were applied uni-
formly to all lagged inputs. 30 days was deemed an appropriate upper 
limit, since this exceeded the estimated river travel times for all of the 
5×5 km cells of the catchment under a Q50 flow regime (see Fig. 3). Lag 
times for features are denoted by an “L” followed by the number of days 
(e.g. L02 refers to a 2-day lag time).

3.4.2. Single-lagged inputs: calculating flow regime-dependent travel times 
for spatially distributed data

Single-lagged inputs were restricted to the spatially distributed data 
– i.e. the 5×5 km cell rainfall and CSO spill data – which were lagged and 
averaged according to estimated travel times under different flow re-
gimes. Note that these two types of spatially distributed data were 
chosen because they represented the primary mechanisms/sources 
which could lead to the sudden increases in Cryptosporidium in the river 
(Medema and Schijven, 2001; Bhattarai et al., 2011; Swaffer et al., 
2014). Because of the size and the complexity of upstream river system, 
it was necessary to make broad estimates of in-river travel time ranges 
from each cell within the catchment to the Walton intake. An empirical 
approach described in Jobson (1997) was adopted, in which catchment 
area and discharge values are used to estimate the transport velocity of a 
contaminant peak through a river network.

The present study applied the Jobson (1997) method, using 110 
catchment travel time datapoints obtained through a combination of 
tracer tests carried out by Environmental Tracing Systems Ltd. (un-
published results) and a spill time-of transport model developed by 
Wallingford HydroSolutions (unpublished results). Both sources pro-
vided data for limited areas of the catchment, including sections of the 
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Table 1 
Input parameters included in each of the tested models, as indicated by greyed-out cells. (*Sp. Dist. = spatially 
distributed.)

Models

Input parameters Input Name Units 1

a

1

b

2

a

2

b

3

a

3

b

4

a

4

b

5

a

5

b
C

o
re

Day of year Day_of_Year Day

High Season Oct-Feb High_Season -

Cryptosporidium 3-week 
mean

Crypto_Rolling_Mean oocysts L-1

C
a
tc

h
m

e
n

t-
A

v
e
ra

g
e
d

Catchment-averaged 
rainfall

Catchment_Rain mm

Continuous antecedent dry 
days

Dry_Days Days

Discharge Discharge m3 s-1

Discharge daily-rate-of-
change

Discharge_ROC m3 s-1

Soil moisture Soil_Moisture % volume

Soil temperature Soil_Temp ⁰C

Catchment-wide CSO spills CSO_Sum Spills

S
p

. 
D

is
t.

* Cell-based rainfall Rainfall_Cell mm

CSO spills (individual CSOs) CSO Spills

Fig. 3. Estimated travel times for 5×5 km cells under three different flow regimes in the study catchment.
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Thames and a number of its tributaries. Curve-fitting was applied 
separately to the tributaries, to the upper Thames (with catchment areas 
of <1600 km2), and to the lower Thames (with catchment areas of 
>1600 km2). QGIS (v. 3.32.3) combined with OS Open Rivers Data and 
OS 1:50,000 terrain data (Ordnance Survey, 2025) was used to obtain 
the catchment area and river distances for the most downstream point in 
each 5×5 km catchment cell, following which mean velocity (and sub-
sequently travel time) was calculated under different flow regimes (Q01 
to Q99) for all cells within the catchment. The quantile of each day’s 
discharge was calculated and rounded to the nearest Q10 to give a 
quantile interval that could then be used to look up appropriate travel 
times. When broken down by flow regime, error at 68 % confidence 
interval for example cells in the catchment was shown to be <1 day 
when distances between cell and abstraction point were <150 km at 
high (Q10) flow, <60 km at medium (Q50) flow, and <20 km at low 
(Q90) flow. The error at low flow is not regarded as a critical limitation 
to the model because 70 % of >1 oocyst L−1 exceedances occur at flows 
of Q50 and above, and because inputs for more distant cells were 
averaged over multiple days. Estimated travel times in the catchment for 
the three flow regimes are shown in Fig. 3. Further information con-
cerning curve-fitted equations and error analysis is provided in Sup-
plementary material 1.

3.5. Input selection for models

Table 1 shows the inputs included in each tested model. All models 
contained the three core features, along with the following time-lagged 
inputs: discharge, discharge rate-of-change, catchment-averaged soil 
moisture, catchment-averaged soil temperature and catchment- 
averaged consecutive antecedent dry days. Models labelled “a” 

omitted catchment-averaged rainfall, whereas those labelled “b” 

included this input. Model 2 also contained catchment-wide CSO Spills, 
whereas Models 3 and 4 contained spatially distributed cell rainfall data 
and CSO data, respectively. Model 5 contained both spatially distributed 
cell rainfall data and CSO data. (A full list of inputs for each model is 
provided in Supplementary material 2.)

3.6. Hyperparameter tuning

Hyperparameter tuning was initially carried out using Scikit-Learn’s 
GridsearchCV (Pedregosa et al., 2011) but the tuned parameters did not 
differ markedly from the default settings and produced no improvement 

in model predictions. Automatic hyperparameter tuning was therefore 
omitted entirely from future models and – with two exceptions – the 
default hyperparameter settings were adopted throughout. The excep-
tions were n_estimators (number of decision trees in the model) and 
subsample (percentage of the training data randomly sampled and used 
in each decision tree). Preliminary model trials were performed using 
values between 5 and 500 for the n_estimators hyperparameter and 
values of 0.1 to 1.0 for the subsample hyperparameter. The minimum 
number of “bagging” repeats (No of iterations) was established by 
training and validating models through different iteration totals, 
ranging from 5 to 200, in order to establish at which point no further 
improvement in performance was achieved. Model performance was 
significantly improved by shuffling the input data columns before each 
iteration, an approach which reduces biases in the XGBoost random 
sampling method (Alsahaf et al., 2022). Random seeds were used for 
both the subsampling and column shuffling so that the results could be 
reproduced. All of the manual model trials described above were carried 
out using Model 1b (which had the smallest number of features, with the 
exception of 1a) and Model 5b (which had the highest number of fea-
tures) to see if hyperparameter tuning was feature-dependent.

3.7. Model validation and performance metrics

Walk-forward validation was applied so as to replicate the way in 
which the developed model would be deployed operationally (Fig. 4). 
This is as an appropriate alternative to K-fold validation where data has 
a time-determined order. In walk-forward validation, the model is 
trained using the latest available data in a sliding or extending window, 
to predict the next time step (Suradhaniwar et al., 2021). Because of the 
minimum 2-day analysis time for Cryptosporidium and the need to 
incorporate mean Cryptosporidium data from days T−7 to T−28, the latest 
data included in the training model was at T−4. The trained model was 
then used to predict the current day’s Cryptosporidium concentrations (i. 
e. on day T0). The training data commenced on 01.01.2016 and initially 
ended on 28.02.2021 (containing a minimum of 1165 Cryptosporidium 
measurements). The initial validation start date was 01.03.2021, with a 
final validation date of 28.02.2023, generating two full years of vali-
dation data (containing a total of 683 measurements). Days (i.e. rows) in 
the training data for which Cryptosporidium measurements were un-
available were removed prior to training and validating the model. The 
validation outputs from all iterations of a single model were averaged to 
give a final predicted concentration, in accordance with the bagging 

Fig. 4. Diagram of model processes and model outputs, showing dates (T) over which training and validation data is split for walk forward validation, alongside key 
hyperparameters, outputs and evaluation metrics.
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method described in Section 3.2.
Model outputs were assessed using four performance metrics, 

beginning with (i) the Root Mean Square Error (RMSE), which was 
applied to the concentration output and represents the standard devia-
tion of residuals (i.e. the error in the concentration predictions). The 
remaining three metrics evaluated the model’s performance when 
concentrations were converted into classification outputs – i.e. positive 
or negative exceedances of the 1, 2, 3, 4 and 5 oocysts L−1 thresholds. 
These metrics were: (ii) Recall (R), which is the proportion of predicted 
exceedances – i.e. True Positives (TPs) – relative to the total number of 
measured exceedances; (iii) Precision (P), representing the proportion of 
predicted exceedances which were correct; and (iv) F-score (F), which 
provides a combined evaluation of R and P (calculated from the har-
monic mean of the two metrics) (Alpaydin, 2014). An increase in the 
number of TPs results in higher R, P and F scores, but likewise, an in-
crease in the number of False Positives (FPs) (i.e. incorrectly predicted 
exceedances), will produce lower P and F scores. Because reliable pre-
diction of exceedances is central to the use of the model in abstraction 
decision-making, the exceedance-based metrics (R, P and F) were 
regarded as most important for assessing model performance.

3.8. Local interpretation using SHAP values

SHAP analysis was carried out on the models to quantify the relative 
contribution of individual features to model predictions above and 
below threshold levels. The SHAP approach provides local interpret-
ability – i.e. the quantification of feature importance at the level of the 
individual prediction – revealing both the magnitude of a feature’s 
impact the direction of that impact (i.e. whether it increases or decreases 
the predicted value) (Lundberg and Lee, 2017). Analysis was performed 
on the validation data and averaged across all iterations within each 
model. The results were then applied in three different ways: (i) as time 
series plots of the cumulative totals of the core and lagged discharge and 
catchment-averaged values; (ii) as bar plots of maximum impact scores 
for the most important features and for features grouped by type; and 
(iii) to produce maps of the maximum impact of the spatially distributed 
inputs (rainfall cells and CSOs) for comparison with livestock and 
human population distributions. Livestock density data (for cattle, 
sheep, pigs and poultry) was obtained from the livestock surveys of 
Great Britain (APHA, 2022), and the residential human population data 
was taken from the 2011 UK census (Reis et al., 2017).

4. Results

4.1. Lag time and hyperparameter tuning

Final results from the maximum lag time and hyperparameter trials 
using Models 1b and 5b are shown in Table 2. Note that trials were 
carried out multiple times to zero-in on the settings which produced the 
highest performing models, with the results for each trialled element 
obtained using the “optimum” settings for the other three elements. 
Performance was reduced when values lower than those stated in 
Table 2 were used, whereas higher values either reduced performance 
(in the case of MaxLag and subsample), or increased computation time 
without improving performance (in the case of n_estimators and No. of 
iterations). (See Supplementary material 1 for a more detailed presen-
tation of the hyperparameter tuning outputs.)

4.2. Overall performance and comparison of models

Performance metric results for the different models are presented in 
Table 3. RMSE showed minimal variation (<0.04 oocysts L−1) between 
the models, indicating that when predicting absolute concentrations, the 
models differed only marginally. The exceedance-based metrics (R, P 
and F) do show more pronounced variation, however. All of the models 
performed well when predicting lower (>1 oocysts L−1) threshold 

exceedances, but were less effective when predicting moderate (>2 
oocysts L−1) exceedances (with R1 scores more than twice the value of 
the R2 scores in every case). A maximum of two higher exceedances (>3 
oocysts L−1) were predicted by the models and there were no predictions 
higher than 4 oocysts L−1, hence metrics for these levels have been 
omitted from the results.

On the whole, catchment-averaged models (Models 1 and 2) per-
formed similarly to the spatially distributed models (Models 3–5), but 
there were subtle differences. Model 1b performed better than the other 
three catchment-averaged models, including those with catchment-wide 
CSO inputs (Models 2a and 2b). The inclusion of spatially distributed 
data (Models 3–5) led to a slight increase in Recall (because of a cor-
responding increase in TPs), but this came at the cost of Precision, with 
Models 3–5 suffering from higher numbers of FPs, compared with Model 
1b. Spatially distributed models based on CSO data (4a and 4b) per-
formed slightly better than those based on cell rainfall data (3a and 3b). 
Although the differences are modest, Model 5b – which incorporated all 
of the catchment-averaged parameters (except CSO_Sum) along with all 
available spatially distributed parameters – was the highest performing 
model, with the lowest RMSE, the highest R1 and R2 scores and the 
second highest F1 and F2 scores.

It is notable that including rainfall data in some form was shown to 
have a positive effect on the predictive performance of the models at the 
1 oocysts L−1 threshold levels. Models which incorporated this input (i.e. 
those subscripted with “b”, or containing cell rainfall inputs) had F1 
scores of 0.677–0.702, whereas those models which omitted rainfall 
entirely had lower F1 scores of 0.584–0.667.

On many occasions, the reduced model performance at higher 
exceedances was a question of prediction magnitude, not prediction 
timing – i.e. although the models did not predict a majority of the 
moderate-to-high exceedances, they frequently predicted a lower ex-
ceedance on the same day, with Models 1b and 5b forecasting a >1 
oocyst L−1 exceedance on 67–100 % of moderate-to-high (>2 to >5 
oocysts L−1) exceedances. Taking all of the >1 oocysts L−1 exceedances 
together, the models correctly predicted 69–75 % of exceedances, 
whereas for all >2 oocysts L−1 exceedances, the models predicted a >1 
oocysts L−1 on 78–89 % of occasions.

Fig. 5a shows predicted outputs from the highest performing 
catchment-averaged model (Model 1b) and the highest performing 
model incorporating spatially distributed data (Model 5b), alongside 
measured Cryptosporidium values. The differences between the two 
model outputs are subtle, with Model 5b correctly identifying seven 
more exceedances than Model 1b, although it did this at the cost of 
reduced precision (see Table 3). Measured Cryptosporidium peaks were 
higher and more frequent in Oct 2022-Feb 2023 than they were in the 
preceding year (Oct 2021-Feb 2022); the outputs of both models re-
flected this, with notably fewer predicted exceedances in the earlier 
period, indicating that the models are capable of distinguishing between 

Table 2 
Optimised maximum lag time and hyperparameter settings following initial 
trials.

Model setting/ 
hyperparameter

Optimum 
value

Explanation/significance

MaxLag (days) 18 All catchment-averaged/discharge-related 
inputs in models 1–5 are applied with lag 
times from 1 to 18 days

n_estimators 25 Each iteration of the XGBoost model 
generates 25 decision trees (i.e. estimators) 
from the training data

Subsample 0.5 The XGBoost model randomly subsamples 
50 % of the training data for each decision 
tree

No. of iterations 20 Each model reruns the XGBoost algorithm 
20 times, producing mean Cryptosporidium 
concentration predictions from the 
combined outputs of each iteration
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more and less severe Cryptosporidium seasons. Fig. 5b–c shows two key 
environmental variables (catchment-averaged rainfall and discharge), 
illustrating that the highest peaks in Cryptosporidium sometimes coin-
cided with, or lagged slightly behind, rainfall events and increases in 
discharge.

For the most part the models underestimated the highest measured 
Cryptosporidium peaks, but for two months (Aug and Oct 2022) the 
predictions consistently exceeded observed values. The environmental 
variables do not offer any clear explanation for these incorrectly high 
predictions, although the occurrence of several small rainfall events at a 
time when discharge was low may provide a partial explanation.

4.3. SHAP analysis

Fig. 5d–f displays mean SHAP impact scores for the three core inputs 
and catchment-averaged inputs (expressed as cumulative values across 
all lag times) for Model 1b. Crypto_Rolling_Mean was the most positively 
impactful feature (i.e. increasing the predicted concentration) for the 
more severe Cryptosporidium season (Oct 2022-Feb 2023), but it had 
very little impact on the less severe season (Oct 2021-Feb 2022), where 
instead Day_of_Year was more impactful. During the months in which 
observed Cryptosporidium is typically low (defined here as Mar-Sept), 
predictions are shown to be partially dominated by the negative 
impact (i.e. acting to reduce the predicted concentration) of 
Crypto_Rolling_Mean.

Of the non-core inputs, Discharge, Catchment_Rain, Soil_Moisture and 
Soil_Temp have the most influence on predictions, although these im-
pacts vary with the time of year. Discharge has the most striking positive 
impact in Aug-Oct 2022 and a negative impact in Dec 2022 and Jan 
2023. Catchment_Rain’s impact is predominantly positive, but also much 
more intermittent than the other catchment-averaged/discharge-based 
inputs, and often of higher magnitude. Soil_Moisture’s impact is also 
largely positive and (like Discharge) occurs most prominently in Aug-Sep 
2022, whereas Soil_Temp switches frequently from imposing a small 
positive to small negative impact, with the highest-magnitude impact 
occurring in late Jan 2023.

The combined SHAP values for spatially-distributed inputs (Fig. 5g) 
show that the impact of Rainfall Cells is of much greater magnitude than 
the CSOs, although CSOs do occasionally have a higher impact (e.g. in 
early Sept, mid-Oct and early Dec 2022). As with Catchment_Rain, the 
spatially-distributed inputs have a very intermittent, high-magnitude 
(relative to other catchment-averaged inputs) impact on predictions. 
This impact is generally positive, although negative impacts of moderate 
magnitude do occur in Dec-Jan of both winter seasons.

Ranking the features by their highest maximum positive impact 
(Fig. 6) shows that in both Model 1b and 5b, catchment-averaged 
rainfall has the greatest effect when applied with a 2-day lag time 
(Catchment_Rain_L02), although a 1-day lag time is also important for 
Model 1b. Rainfall Cells within 30 km river distance of the intake pro-
vided the highest positive impact on Model 5b, although Rainfall Cells ≥

Table 3 
Performance metric results for the different models. Blank values arise where True or False Positives were not pre-
dicted by the model. Cell shading denotes the highest (green), intermediate (yellow) and lowest (red) performing 
models for each metric.

Model

Catchment-Averaged & 
Discharge Inputs

Catchment-Averaged, Discharge + 
Spatially Distributed Inputs

Without
CSO Data

With
CSO Data

With
Cell Rain

With
CSOs

With
Cell Rain + 

CSOs

Metric
Type

Threshold
(oocysts L-1)

Metric 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b

True 
Positives

1 TP1 40 44 44 43 45 45 47 46 47 48

2 TP2 6 8 4 8 8 9 8 9 9 10

3 TP3 1 1 1 1 1 0 0 1 2 0

False 
Positives

1 FP1 33 20 32 20 25 24 30 21 26 25

2 FP2 2 5 2 5 11 13 4 10 14 12

3 FP3 1 1 1 1 1 2 0 2 1 2

Recall 1 R1 0.625 0.680 0.688 0.672 0.703 0.703 0.734 0.719 0.734 0.750

2 R2 0.261 0.348 0.174 0.348 0.348 0.391 0.348 0.391 0.391 0.435

3 R3 0.083 0.083 0.083 0.083 0.083 0.000 0.000 0.083 0.167 0.000

Precision 1 P1 0.548 0.688 0.579 0.683 0.643 0.652 0.610 0.687 0.644 0.658

2 P2 0.750 0.615 0.667 0.615 0.421 0.409 0.667 0.474 0.391 0.455

3 P3 0.500 0.500 0.500 0.500 0.500 0.000 0.333 0.667 0.000

F-score 1 F1 0.584 0.688 0.629 0.677 0.672 0.677 0.667 0.702 0.686 0.701

2 F2 0.387 0.444 0.276 0.444 0.381 0.400 0.457 0.429 0.391 0.444

3 F3 0.143 0.143 0.143 0.143 0.143 0.133 0.267

Root Mean Square Error RMSE 0.590 0.564 0.587 0.559 0.558 0.564 0.562 0.564 0.560 0.552

Total Number of Features 93 111 111 129 522 540 279 297 708 726

Total 

Number of 

Exceed-

ances

1 64 (9.4%)

2 23 (3.4%)

3 12 (1.8%)

4 6 (0.9%)

5 4 (0.6%)

Total Measurements 683
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Fig. 5. (a) Measured and predicted concentrations of Cryptosporidium (generated by Models 1b and 5b), (b) catchment-averaged rainfall and (c) discharge. SHAP 
values showing the impact on Model 1b predictions of (d) core inputs, (e) hydrological inputs and (f) soil meteorological inputs (presented as cumulative values for 
all lag times), and (g) the impact on Model 5b of rainfall cells and CSOs as cumulative totals. (Note: for simplicity, the effect of SHAP base values has been omitted.)
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30 km from the intake also had a high maximum collective impact. 
Crypto_Rolling_Mean and Day_of_Year had roughly equal impact on both 
models, but Soil_Moisture and Discharge were more impactful in Model 1b 
than 5b. Discharge had the most impact at a 6-day lag time, whereas 
Discharge_ROC has most effect on Model 1b at a 1-day lag time. The 
maximum impact of CSOs on Model 5b was relatively low.

4.4. Identifying possible source locations/areas

Fig. 7a–b shows the locations of spatially distributed features (rain-
fall cells and CSOs), along with their maximum positive SHAP impact 
scores (from Model 5b). Here, high-scoring features can be treated as an 
indicator of possible Cryptosporidium sources areas/locations (see 
further discussion on this in Section 5.4). The most impactful rainfall 
cells are 387, 444, 498 and 583, all of which are within 30 km river 
distance of the intake, which is also an area of relatively high (human) 
population (Fig. 7b). The majority of the moderately impactful cells are 
also located near to the intake, although there are exceptions in the 
north-east of the catchment (245), central areas (296 and 349), and 
seven cells in the far west of the catchment (e.g. 310 and 426). There 
isn’t a clear overlap between rainfall cell impact and livestock distri-
butions, although the higher-impact cells in the west do coincide with 
higher cattle densities (Fig. 7c), and those positioned towards the centre 
and north-east of the catchment coincide with higher sheep, pig, poultry 
and cattle densities.

The impact of the CSO inputs is lower in magnitude than that of the 
rainfall cells. The most impactful CSO inputs (006 and 033) are far 
(>100 km river distance) from the intake and in relatively low popu-
lation areas, although one moderately impactful CSO (224) is much 
closer to the intake and in a higher population area.

5. Discussion

5.1. Predicting Cryptosporidium at daily timescales

This study has demonstrated that predictions of Cryptosporidium can 
be made at daily timescales using an ML model. Although four previous 
studies have used either ML or deterministic models to generate daily 
predictions (Brion et al., 2001; Medema and Schijven, 2001; Dorner 
et al., 2006; Tang et al., 2011), each of these was validated against 
sparse data (with ≤ 68 Cryptosporidium measurements), whereas in this 
study models were trained using a minimum of 1165 Cryptosporidium 
measurements over approximately 5 years and validated with 683 
measurements spread across 2 years. Furthermore, unlike several of the 
cited studies, this model does not require FIB data as an input. Such a 
well-validated demonstration of the predictability of Cryptosporidium at 
daily time scales constitutes an important finding, given the variety and 
uncertainty of pathogen sources, the daily, seasonal and annual vari-
ability in Cryptosporidium concentrations in the river, and the size and 
complexity of the catchment concerned. Predictions of the type pre-
sented here are very likely to have operational utility, since water supply 
managers do not normally require absolute Cryptosporidium values in 
order to make abstraction decisions, but only a reliable indicator of 
whether or not concentrations are likely to exceed certain thresholds – 

and the highest-performing models correctly predicted 69–75 % of >1 
oocysts L−1 exceedances, and predicted elevated concentrations on 
78–89 % of >2 oocysts L−1 exceedances. The approach taken – namely, 
the application of a Bagging-XGBoost model with an unparsimonious 
approach to feature selection – also has the benefit of simplicity in that it 
does not require extensive preliminary data analysis in order to reduce 
dimensionality.

Fig. 6. Maximum positive and negative SHAP impact scores for key individual features and grouped features in (a) Model 1b and (b) Model 5b. (Note: catchment- 
averaged and spatially distributed features with an absolute maximum impact of <0.25 are grouped together by feature type; RD = River Distance (km) from Walton 
intake; Ln = lag time, expressed as n days.)
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5.2. Differential performance of catchment-averaged and spatially 
distributed models

The highest performing spatially distributed model (Model 5b) 
slightly outperformed the highest performing catchment-averaged 
model (Model 1b) on the majority of metrics. More generally, those 
models incorporating spatially distributed features predicted more 
exceedances (i.e. had higher Recall values), but they also suffered from 
lower Precision values than Model 1b. This may be due to the far larger 
number of features used in the spatially distributed models, which can 
be a source of feature noise or overfitting (Dhal and Azad, 2022) – an 
effect which could be amplified by the high levels of multicollinearity 
known to be present in the input data (Chan et al., 2022). The fact that 
the spatially distributed models with the fewest features (Models 4a and 
4b) had higher precision than those models with >500 features, adds 
further credence to this interpretation.

The higher Recall of Model 5b compared with Model 1b indicates 
that cell rainfall and CSO data provided relevant extra (source-related) 
information to the model. A major component of this is the more distant 
(≥ 30 km) rainfall cell inputs (see Fig. 6b), which will differ greatly from 
catchment-averaged rainfall because of the combination of extended 
time lags and averaging over multiple days. Catchment-averaged rain-
fall will serve as a reasonable proxy for the more impactful nearby (<30 

km) rainfall cells, hence the reason why catchment-averaged models are 
still relatively effective. However, cell rainfall data for more distant lo-
cations in the catchment (and therefore more distant Cryptosporidium 
sources) plays a dominant role in increasing the number of exceedances 
predicted by Model 5b relative to the catchment-averaged models.

Based on these results, it is arguable that the simpler catchment- 
averaged modelling approach provides a more time-efficient and 
robust option for many water abstraction operators, since for large 
catchments it would require a much smaller number of input features 
and it would also remove the need to obtain travel time estimates for 
discrete points within the catchment.

5.3. Applying model performance and SHAP analysis to understand 
Cryptosporidium transport and sources

Rainfall was shown to be a key input, with comparison of the models 
consistently demonstrating that the inclusion of rainfall features in some 
form resulted in improved performance. This was further supported by 
the SHAP analysis, which showed that rainfall inputs taken as a collec-
tive were the most impactful features in the two highest performing 
models (1b and 5b). This is an important finding, and one which high-
lights the centrality of rainfall as a mechanism for transferring Crypto-
sporidium into rivers, by mobilising and transporting (as rainfall-runoff) 

Fig. 7. Maximum SHAP impact scores for (a) 5×5 km rainfall cells and (b) CSO binary inputs, with (c) human population density from 2011 Census (Reis et al., 
2017), alongside livestock densities for (d) cattle, (e) pigs (f) poultry and (g) sheep from APHA (2022).
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oocysts which are present in faecal matter on fields and in urban areas, 
as well as flushing oocysts from drainage networks and increasing the 
volumes of untreated sewage entering rivers (via CSO spills). This 
interpretation is well-supported by previous studies (Atherholt et al., 
1998; Bhattarai et al., 2011) and established theory regarding Crypto-
sporidium transport in catchments (FWR, 2011).

The importance of catchment-averaged rainfall at 2-day lag time to 
both Models 1b and 5b indicates that rainfall over nearby sources (i.e. 
within 2 days’ travel time) influences Cryptosporidium concentrations in 
the river more than rainfall over more distant areas – and therefore that 
nearby sources are more dominant. This is backed-up by the Model 5b 
SHAP output, in which cells that were near (<30 km river distance) to 
the intake had the largest impact on predictions. Existing theory states 
that Cryptosporidium from more distant sources will be subject to greater 
levels of dispersion and die-off during transport (Medema and Schijven, 
2001), and hence will generally have a less pronounced effect on 
pathogen concentrations than sources which are near to the monitoring 
point. However, more distant sources are still relevant, as shown by the 
high impact of rainfall cells ≥30 km upstream of the intake, and by the 
improved performance of the models when extended lag times (up to 18 
days) were applied to the catchment-averaged data, suggesting that less 
recent rainfall events – and hence more distant upstream sources – do 
have an important secondary effect on Cryptosporidium concentrations at 
the intake.

In Model 5b, the higher overall impact of rainfall cells relative to 
CSOs lends support to the theory that mobilisation of livestock-shed 
oocysts by rainfall-runoff is more important than mobilisation of 
human-shed oocysts in CSO spills. On the other hand, the correspon-
dence of the most impactful rainfall cells with areas of moderate-to-high 
human population and relatively low livestock population (e.g. cells 387 
and 444) contradicts this and points to the significance of human 
sources. It is important, however, to draw a distinction between human 
and urban inputs; CSO spills can contain both untreated sewage and 
urban storm water, and are therefore likely to be dominated by human- 
shed oocysts in many cases. However, rainfall-runoff over higher 
(human) population areas will also generate discharges of urban storm 
water into the river system, which can contain oocysts shed by domestic 
animals and wild animals. Indeed, previous studies show that oocysts 
shed by non-human animals (e.g. dogs and pigeons) can be the primary 
source of surges in Cryptosporidium river concentrations after rainfall 
over built-up areas (Müller et al., 2020).

The superior performance of spatially distributed models which 
included CSO data (i.e. Models 4a, 4b, 5a and 5b) relative to those which 
excluded CSOs (Models 3a and 3b) also adds support to the significance 
of human sources. This could be particularly true at certain times of the 
year, such as in autumn or early winter, when river levels are often lower 
than in mid-late winter, and so potential dilution effects are reduced; 
this effect appears to be in evidence for periods in Oct and early Dec 
2022, when the CSOs have a greater impact than the rainfall cells 
(Fig. 5g). It should be noted however that the binary form of the CSO 
inputs may serve to inhibit their effectiveness, since the data in this form 
provides no information to the model concerning the scale of untreated 
sewage spills. Overcoming these deficiencies in the CSO input data is 
challenging and would require access to information which was un-
available for the present study, including dimension data for each in-
dividual asset, which could then be used to estimate/scale flow volumes 
(Suslovaite et al., 2024).

Viewed as a whole, the SHAP analysis of the spatially distributed 
inputs can be taken as evidence that livestock, human and urban sources 
of Cryptosporidium are all important in determining river concentrations 
of the pathogen (with urban sources made up of a mixture of human and 
non-human oocysts). The impact of rainfall cells is of higher magnitude 
than the CSO inputs, but the CSOs add an important “polishing” effect to 
the final prediction (i.e. by raising predictions above threshold con-
centrations when their lower-magnitude impacts are applied).

Soil moisture was shown to have the most (positive) impact in Aug- 

Oct – this corresponds to the months in which surface moisture levels 
often undergo significant change as the drier conditions of late summer 
transition into the wetter period of autumn. This observation matches 
well with theory, since high moisture values should reduce the rate of 
oocyst desiccation on the land (Robertson et al., 1992) and increase 
runoff volumes (and hence the potential for Cryptosporidium mobi-
lisation) during rainfall events (Singh et al., 2021). It should also be 
noted that basing the average soil moisture (and soil temperature) on 
data taken from four sites in the catchment is a potential model limi-
tation. In particular, the use of spatially distributed (satellite-based) soil 
moisture data could complement (and increase the predictive utility of) 
the spatially distributed rainfall data.

Discharge also had the most positive impact in Aug-Oct, whereas the 
negative (i.e. subtractive) impacts of high discharge were shown to play 
an important role later in the season, as illustrated by the SHAP outputs 
for Nov 2022-Feb 2023 (Fig. 5e). The effects of this input parameter are 
expected to be non-linear. For example, high discharges may sometimes 
coincide with higher loadings of Cryptosporidium from rainfall-runoff or 
CSO spills, and with more rapid transport of mobilised oocysts in the 
catchment. However, high discharge could also lead to greater dilution, 
and hence reduced concentrations of the pathogen (Knapp et al., 2022). 
The impact of discharge rate-of-change at 1-day time lag on Model 1b 
(Fig. 6a) could represent the influx of Cryptosporidium oocysts liberated 
by re-suspended bed and bankside sediment in the wake of abrupt 
changes in flow (Crockett, 2004; Drummond et al., 2018).

Two of most impactful features – Crypto_Rolling_Mean and Day_of_-
Year – serve as surrogates for other processes for which we lack the 
appropriate data. Day_of_Year represents seasonal elements, such as the 
annual farming calendar (e.g. when manure-based fertiliser might be 
applied to the fields, or when livestock may be transferred from grazing 
fields to winter holds), or the timing of peak infection rates in the UK in 
both human and livestock populations – typically in the months of Oct 
and Apr, respectively, although the monitoring of infections in livestock 
is arguably too patchy to provide a reliable picture of seasonal trends 
(Public Health England, 2019; APHA, 2024). Crypto_Rolling_Mean pro-
vides a surrogate for seasonal and longer-scale (e.g. annual) variations in 
Cryptosporidium. There are many factors which may result in longer-term 
variation, including sporadic outbreaks in the animal or human pop-
ulations, as well as differential rates of oocyst survival and/or release 
into the environment as a result of meteorological or farming effects 
which have not been represented elsewhere by the input data. This 
feature’s centrality is consistent with the model design, since it was 
included precisely for purpose of providing a scaling factor to inform the 
model of the severity of the current Cryptosporidium season.

5.4. Modelling and feature interpretation limitations

All models were ineffective at predicting the magnitude of exceed-
ances above 3 oocysts L−1, although they were much more effective at 
predicting the timing of such exceedances. This is to be expected, given 
that higher exceedances are much rarer in the dataset and hence the 
models have fewer such instances on which to train. The performance of 
the models may also be limited by the quality of the Cryptosporidium data 
itself, which is subject to issues of sampling representativeness, analyt-
ical recovery and subjectivity of analysis method (Efstratiou et al., 
2017b; Hassan et al., 2021). These data quality challenges underline the 
necessity to work with large Cryptosporidium datasets when training 
models.

A one-day time-step was adopted because this was the maximum 
temporal resolution of the Cryptosporidium data, but sub-daily time-steps 
(using sub-daily Cryptosporidium and environmental data) may reveal 
subtleties that are not visible in the current models. It should also be 
noted that travel time calculations for such a complex river network are 
challenging and it is therefore probable that inaccurate lag times have 
been applied to some of the spatially distributed features. If this is the 
case, it will of course compromise the effectiveness of the spatially 
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distributed models and the associated SHAP analysis. Interpretation of 
the spatially distributed rainfall data is likely to be further impaired by 
the homogeneity of rainfall events over what is a region of relatively low 
relief. In particular, the high correlation between adjacent/proximate 
rainfall cells will reduce the ability of an ML model to discern the effects 
of rainfall over different parts of catchment. The higher-impact cells 
highlighted by the SHAP analysis may in fact represent effects produced 
by nearby cells, which could complicate the interpretation of likely 
sources when SHAP outputs are compared with livestock and human 
population data. Furthermore, a number of factors not considered here 
are also likely to influence the potential for animal waste to reach sur-
face water bodies; these include the storage locations of waste-based 
fertilisers, soil type, land gradient and the proximity of grazing ani-
mals to watercourses.

Finally, it is important to bear in mind that although XGBoost model 
performance has a high tolerance for multicollinearity in the input data, 
this is less true for model interpretability by feature importance analysis 
(including SHAP), with the potential generation of outputs which over/ 
under-estimate individual feature impacts (Drobnič et al., 2020). This is 
one drawback of the unparsimonious approach used here. The spatially 
distributed features are a particular concern in this context because of 
the low magnitude of their associated SHAP impacts; findings con-
cerning the most important sources/source areas and their relative sig-
nificance should therefore be treated with caution. Other studies have 
analysed model inputs beforehand and removed highly-correlating 
features (Takefuji, 2025), but even when such approaches are adop-
ted, the question regarding which features to retain/remove remains 
problematic, and can result in the loss of valuable input data (O’Brien, 
2017). However, there is undoubted scope for future researchers to 
engage with the challenging problems posed by feature importance and 
multicollinearity in the context of data-rich ML-based pathogen river 
models; such work could also seek to understand the effect of feature 
interactions (Alomari and Andó, 2024).

6. Conclusions

The present study represents the first published attempt to make 
daily predictions of Cryptosporidium concentrations in a complex river 
system by training and validating a model using approximately daily 
monitoring data in a long-term (7-year) dataset. It successfully demon-
strates that such predictions – which are of great relevance to water 
resource management – can be practically made utilising commonly 
available environmental datasets alongside existing data for Cryptospo-
ridium in raw water. XGBoost was used because of its reputation for high 
predictive performance and its ability to deal with multicollinearity in 
the input data – a key quality, given of the use of input parameters at 
multiple lag times.

The most successful model (containing both catchment-averaged and 
spatially distributed data) achieved F-scores of 0.701 and 0.444 when 
predicting exceedances above 1 and 2 oocysts L−1, respectively. A 
simpler model (using catchment-averaged inputs) performed almost as 
well; it may therefore be preferable in an operational setting to opt for a 
catchment-averaged model, particularly if spatially distributed data and 
associated travel time estimates are unavailable, or challenging to 
obtain. Models which excluded rainfall entirely from the input data 
performed less well, demonstrating the centrality of rainfall as a mobi-
lisation mechanism.

All of the models tended to underestimate moderate-to-high 
exceedances (>2 oocysts L−1), although the models were more suc-
cessful at predicting the timing of such exceedances, predicting a >1 
oocysts L−1 exceedance on 78–89 % of days when Cryptosporidium 
exceeded 2 oocysts L−1.

Sources near to the intake were shown to have the greatest effect on 
Cryptosporidium concentrations in the river, as demonstrated by the 
importance of catchment-averaged rainfall at 2-day lag time and by the 
impact of spatially-distributed rainfall features <30 km upstream. SHAP 

analysis of spatially distributed model inputs supports the theory that 
livestock, human and mixed urban sources of Cryptosporidium are all 
important in determining the pathogen’s concentrations in the river. 
However, the effectiveness of spatially distributed features may have 
been partially impeded by potential errors in travel time estimation and 
(in the case of CSO inputs) by the binary form of the data. The SHAP 
analysis results should be considered in the light of the high number of 
features and multicollinearity in the input data, which is particularly 
high in the case of the spatially distributed rainfall inputs.

Discharge antecedent to rainfall events was also shown to be an 
important feature, with discharge rate-of-change, soil temperature and 
soil moisture adding further useful information to the model, although 
the vital contribution of two proxy inputs, representing antecedent 
Cryptosporidium concentrations and day of the year, show that there are 
still major knowledge and data gaps which, if addressed, could lead to an 
improved model.

The approach outlined here could be readily adopted at many 
abstraction sites, at little or no cost. Although such ML models rely on 
extensive training data, it should be noted that many water providers in 
the UK and around the world have already collected substantial Cryp-
tosporidium datasets as part of their routine monitoring regimes (Smeets 
et al., 2007). When combined with remote sensing environmental data 
and powerful ML software tools (both of which are often freely avail-
able), these existing datasets contain significant untapped potential, 
which could be harnessed to support future modelling and advance 
understanding of Cryptosporidium sources, transport and temporal 
trends.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2025.179794.
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