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Abstract— Drilling of rivet/fastener holes in aircraft presents 

a major manufacturing challenge where manual processes are 

heavily relied upon. It is estimated that modern aircraft can 

require upwards of 1.5 million holes to be drilled using methods 

that involve some form of manual input. This introduces 

concerns over both hole accuracy and worker wellbeing. 

Industrial robotic arms offer a potentially promising solution 

due to their reach and flexibility. However, limitations in their 

positional accuracy can be a barrier.  

This paper presents an open-loop methodology to address 

these limitations by improving the positional accuracy of a 

robotic drilling platform using Gaussian process regression 

(GPR) models, without the need for permanently installing 

costly metrology equipment, such as laser trackers or secondary 

encoders. The models demonstrated an average reduction in the 

positioning error of the platform from 0.993 mm down to 0.022 

mm (97.7%) in x, and from 0.209 mm down to 0.055 mm (73.5%) 

in y in free air.  

This methodology is then demonstrated on physical drilling 

trials, where the average hole position error was reduced from 

0.688 mm to 0.323mm (53.0%) in x. However, due to limitations 

in the training of the models, the error in y increased from 0.261 

mm to 0.378 (45.1%). Despite these results being less successful, 

it is intended that they serve as a baseline for future development 

of the methodology so that it can include the effects of process 

(drilling) forces.  

I. INTRODUCTION 

Despite the trend for automating manufacturing processes 
over the past few decades, there are still significant gaps in 
industry where manual processes are heavily relied upon. In 
particular, the drilling of aircraft components to produce 
rivet/fastener holes still presents a major challenge, where it is 
estimated that around 65% of holes are drilled using manual or 
semi-automated1 drilling operations [1]. Considering that a 
typical aircraft can require upwards of 3 million drilled holes, 
[2] this necessitates a huge amount of manual input. This 
presents not only the typical quality concerns that arise from 
manual intervention (i.e. human error); but also concerns over 
worker wellbeing due to the labour-intensive nature of the 
operations, as hole locations can be awkwardly positioned 
(particularly those that are drilled upwards), and automated 
drilling units can be heavy and cumbersome.  

Although introducing robotics seems like an obvious 
solution due to their flexibility and reach over traditional 
machining platforms, the positional tolerances for such holes 
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1Although ‘semi-automated’ can cover a wide variety of assisted drilling 

methodologies, it typically relates to the use of a hand-held automated drilling 
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stipulated by “EN3201:2008 Aerospace series — Holes for 
metric threaded fasteners” can be as low as 0.15 mm [3]. This 
is well below the positional accuracy that can be achieved by 
off-the-shelf industrial robot arms, which are typically limited 
to accuracies around 1 mm. The positional errors present in 
robotic drilling operations can be broken down into three main 
categories: robot positional errors, arising from factors such 
as build quality issues and low stiffness of serial kinematics 
[4]; process (drilling) errors , which can be a result of issues 
such as the tool slipping across the surface of the workpiece 
away from the nominal position [5]; and workpiece errors, 
which could be related to poor geometrical quality of supplied 
material, or even damage caused during prior operations.  

Ideally, it would be possible to utilise in-process 
measurements of a robot’s position to provide closed-loop 
feedback to correct for any errors due to robot positional error 
or process error in real-time. This methodology has been 
demonstrated to be effective using various technologies, with 
examples from Stadelmann et al. [6] who utilised a 
combination of iGPS and an inertial measurement unit to 
improve the mean static end effector position error to 0.10 
mm; and from Gharaaty et al. [7] who were successful in using 
a photogrammetry system to minimise the pose accuracy of a 
robot to a target of less than 0.050 mm. However, in earlier 
work conducted at the University of Sheffield Advanced 
Manufacturing Research Centre (AMRC), Cho et al. [8] 
concluded that although the addition of permanent external 
measurement technology (vision or laser-based systems) has 
been shown to provide accuracy improvements, the additional 
cost and complexity that such systems introduce may be 
prohibitive. Instead, it is suggested that implicit methods (i.e. 
using data already available from the robot’s controller 
alongside a corrective model) might be a more viable option 
for industry.  

The long-term aim of this work is to create a combined 
model that can correct for both robot positional errors and 
process errors. However, the initial piece of work presented in 
this paper focuses on correcting only the robot positional error. 
This has the advantage of developing a methodology that is not 
only suitable for drilling operations but that could be adapted 
for any application that requires accuracies higher than those 
typically demonstrated by industrial robotic arms. By 
conducting drilling trials with only corrections for the robot 
positional error applied, it will serve as a baseline for how 
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significant the improvement can be without process error 
correction, as little could be found in the literature that presents 
such corrections being applied to physical robotic drilling 
trials. 

When considering the robot positional error, there are 
typically two main methods employed to generate a model: 
kinematics-based and kinematics-free [9]. Kinematics-based 
models rely on developing an accurate kinematic model of the 
robot under test, whereas kinematics-free models treat the 
robot kinematics as a black-box, and instead rely on machine 
learning (ML) to determine the relationship between the input 
(i.e. programmed position) and the output (i.e. actual attained 
position or positional error). The former often requires an in-
depth understanding of the construction of the robot arm, 
including all the potential error sources (e.g. stiffness, gear 
backlash, encoder accuracy, etc.) [10], all of which may be 
affected by the operational life of the robot. This means 
identical robot arms under different operating conditions could 
end up with different kinematic performances over time; so an 
understanding of how these errors propagate would also be 
required. It is for these reasons that generic kinematic models, 
even for a single model of robot arm, are difficult to develop. 
Although kinematics-free models are also subject to changes 
in performance over time or under differing conditions, it is 
generally a simpler task to re-capture the necessary data and 
retrain the model. This could be done at regular intervals, 
similar to calibration cycles, or when the accuracy of the robot 
drops below a certain level. 

To try and develop a simple methodology that would be 
feasible to employ within an industrial setting, this paper 
focusses instead on the kinematics-free approach; training a 
ML model to improve the positional accuracy of an industrial 
robotic drilling platform. This approach has been 
demonstrated by McGarry et al. [11], who demonstrated that 
support vector regression model was able to reduce the 
maximum positioning error of a collaborative robot in x, y, and 
z from 2.239 mm, 6.107 mm and 3.636 mm, down to 0.252 
mm, 0.595 mm and 0.896 mm, respectively. Similarly, Jiang 
et al. [12] utilised a back-propagation artificial neural network 
to reduce the maximum error in positioning of a collaborative 
robot from 3.993 mm to 0.656 mm.  

The proposed methodology relies upon positional data to 
be captured from a laser tracker to initially train the model. 
However, unlike methods that require continuous online 
feedback from the measurement system such as those 
proposed by Stadelmann et al. [6] and Gharaaty et al. [7], this 
methodology allows the position of the robot to still be 
corrected once the measurement system has been removed.  

This paper is organised as follows: Section II describes the 
platform upon which the testing took place, as well as the 
measurement equipment used; Section III outlines the method 
used for capturing data and the subsequent training and testing 
of the system; Sections IV and V present the results and 
discussion, respectively; and the conclusions and further work 
are provided in Section VI.  

II. EQUIPMENT 

The following sections provide details on the robotic 
drilling platform used (Section A), including information on 

the cutting tools and workpiece material used for the drilling 
trials; and the metrology equipment used for training and 
validation (Section B). 

A. Robotic drilling platform  

The platform used for this research (known as VIEWS) 

consisted of a KUKA KR240 R2900 Ultra with a drilling end 

effector, including pressure foot. The cell also includes a large 

reconfigurable fixturing solution, allowing workpieces to be 

mounted over a wide area of the working volume of the robot, 

which is shown in Figure 1. Despite this work focussing on 

correcting only robot positioning error, utilising the VIEWS 

platform allows data to be captured under conditions 

representative to robotic drilling (i.e. with the mass of a 

drilling end effector mounted); as well as during rphysical 

drilling trials through measuring hole positions. The drilling 

trials were conducted in coupons of aluminium 5083 using 

10mm solid carbide drill bits. 

 

B. Metrology and analysis equipment 

The measurement of the robot’s tool centre point (TCP) 

position was conducted using a Leica AT960 laser tracker in 

conjunction with a Leica T-Mac (Tracker-Machine control 

sensor) which allows measurements in six degrees of 

freedom. The T-Mac was mounted onto the drilling end 

effector and had previously been measured so that the relation 

between this and the TCP was known. A Leica T-Probe was 

also used in conjunction with the AT960 to measure the 

locations of holes once drilled.  

Measurement data was captured by a PC running 

SpatialAnalyzer (SA) software, whilst a custom script in 

MATLAB was used to capture the ‘reported’ positional data 

(i.e. the TCP and individual joint position of the robot 

reported by the encoders) from the robot controller via an 

OPC UA server setup on the platform’s PLC.  

III. METHOD 

This section explains the steps taken to develop the 
accuracy improvement algorithm, and how it was tested. There 
were two regimes under which this was done. The first being 
simple robot TCP positioning relative to the robot base frame 
(RBF); and the second being drilling trials relative to a 
common datum (CD). The reason behind testing these two 

Figure 1: The robotic drilling cell with reconfigurable fixturing. 
 



  

regimes was two-fold. The RBF scenario was a more 
straightforward test, relying on no other external frames to be 
setup and translated into. This allowed for any accuracy 
improvements to be gauged easily, and so the methodology 
could be trialled in a straightforward manner.  

The introduction of a CD was opted for during the drilling 
trials, as it is common within industry for operations to be 
conducted relative to a datum that is either defined on a fixture 
or on a feature of the workpiece itself. This could therefore 
provide the evidence that accuracy improvements can be 
achieved under both regimes.  

A. Corrections relative to the robot base frame 

The RBF is the frame in which all robot’s motions are 

conducted. It is therefore a requirement to measure it to be 

able to gauge the robot’s accuracy as per ISO 9283:1998 [13]. 

As the RBF is typically located within the body of the robot, 

it is not possible to measure this directly, and so instead must 

be inferred experimentally.  

1) Measurement of the robot base frame 

There are several ways that the RBF measurement can be 

achieved. For this work, the RBF of the KUKA robot was 

measured using a laser tracker and employing the method 

described as the ‘robot base frame general construction 

process’ by McGarry et al. [14]. In summary, this involved 

best fitting a circle by measuring the robot whilst rotating 

joint 1; the centre of which when projected onto the plane of 

the robot’s mounting plate gave the origin and z-direction (i.e. 

the normal to the circle). The frame alignment can then be 

fixed by best fitting a line measured during a motion of joint 

2 when joint 1 is fixed at 0 degrees. To ensure backlash was 

accounted for, this second step was repeated with the 

movement of joint 1 to 0 degrees conducted from both a 

positive and negative direction, with the midpoint between the 

best fit lines taken as the final x-direction. 

With the data from the measurement of the RBF loaded 

into the SA software, any subsequent measurements taken of 

the robot would provide the TCP in relation to the RBF. 

2) Measuring the robot error 

To gather the error in the robot’s positional accuracy, a 

program was written to drive the robot in cartesian space to a 

grid of positions distributed across the working volume of the 

fixture (i.e. over the flexible fixturing solution). Although 

drilling in aerospace often involves operations in a range of 

orientations, to simplify the data capture and testing 

requirements at this stage, it was decided that the grid would 

be constructed in the plane of fixed z-height of 750 mm (just 

above the fixturing), and the drilling end effector would be 

fixed in a vertical orientation to emulate drilling a flat 

component laid horizontally across the fixture. This meant B 

and C of the robot had to be fixed at 0 deg and 180 deg, 

respectively; and A was fixed at 30 deg to ensure the T-Mac 

could be measured by the laser tracker at all points across the 

working volume. 

The vertical orientation of the end effector put constraints 

on the reach of the robot, and so the grid was constructed to 

be between -1000 mm and +1000 mm in y, and 1400 mm and 

2400 mm in x, with spacings of 100 mm in both directions. 

This resulted in a total of 232 points arranged as shown in 

Figure 2.  

The robot was programmed to move the TCP to each of 

these x-y coordinates at 800 mm in z. At each location, it 

would lower the TCP to the desired 750 mm z-height, dwell 

for 5 seconds, then retract to 800 mm before moving to the 

next location as this emulates the motion conducted whilst 

undertaking drilling operations.  

The tracker was configured in SA to measure the TCP 

when the T-Mac was detected as being stable, meaning a 

measurement was automatically captured at each of the dwell 

locations. The OPC UA MATLAB script was also run in 

parallel to capture the reported TCP values and joint 

positions.  

The resulting OPC UA data and tracker data was then 

combined into a table comparing the ‘desired’ and ‘attained’ 

TCP positions, with each location represented by an 

individual row. It was then simple to add in two additional 

columns to the table consisting of the calculated error in x 

(xerror) and y (yerror) of the TCP, respectively: 

 xerror = xattained − xdesired () 

 yerror = yattained − ydesired () 

where xattained and yattained are the measured position of the 
robot TCP, and xdesired and ydesired are the desired (nominal) 
TCP location.  

3) Training the models 

MATLAB’s Regression Learner application was utilised 

on the resulting table to train models that could predict xerror 

and yerror, respectively. xdesired and ydesired were used as the 

inputs (predictors) to the models, with xerror or yerror being the 

output (response). It should be noted that as this application 

can only train models with single response variables, separate 

models for xerror and yerror had to be developed. Five-fold cross 

validation was used for the initial training/testing process, as 

well as 10% of the data being held back from to act as unseen 

data for final testing purposes. The Regression Learner 

application allowed 26 different types of regression model to 

be trained for each response, including models ranging from 

simple linear regression models to more complex neural 

networks. By identifying the model with the lowest validation 

and test root mean squared error (RMSE) values (presented in 

Figure 3), it was straightforward to select the most accurate 

model for predicting xerror and yerror, respectively. 

 
Figure 2: The measurement grids with respect to the robot base frame. 



  

In this case Gaussian process regression (GPR) models 

with an exponential kernel and Matern 5/2 kernel were 

selected for having the lowest root mean squared errors 

(RMSEs) when predicting xerror and yerror, respectively. 

Hyperparameter tuning was not investigated and so the 

default hyperparameters in the Regression Learner 

application were selected. 

4) Testing and validation 

The selected GPR models were used to update the 

programmed x and y positions (xcorrected and ycorrected, 

respectively) for each point in the measurement grid using the 

following equations: 

 xcorrected = xdesired – xpredicted error () 

 ycorrected = ydesired – ypredicted error () 

where xpredicted error and ypredicted error are the outputs from each 

of the x and y models, respectively. 

To test the models’ capabilities in interpolating and 

extrapolating, a second measurement grid was constructed (as 

shown in Figure 2). This was identical to the original nominal 

measurement grid in size, shape, and number points; but was 

offset by +50 mm in both x and y. This meant each point was 

situated in a location where the robot positioning error had not 

been measured previously, and so unseen by the models. 

These desired offset coordinates also went through the 

correction process provided by the GPR models to give 

xcorrected and ycorrected for the offset grid. 

Once the robot program had been updated to include all of 

the corrected values (both from the original and offset grids), 

the same process as described in Section III.A.2) was repeated 

to measure the residual error of the robot TCP when revisiting 

these locations. 

B. Corrections relative to the common datum 

To ensure that this methodology is also effective in a 

situation where operations are relative to a frame defined by 

something external to the robot (e.g. a feature on the 

component, part of a fixture, etc.), the model was re-trained 

in a coordinate system defined by a CD.  

1) Measurement of the common datum 

In this case, the CD was defined as the centre of a SMR 

mounted at position a on the fixture when in drilling location 

1, as shown in Figure 4. The orientation of the frame was set 

by measuring the SMRs a, b and c using the laser tracker 

which could then be used to define the y-z plane, and therefore 

the direction of x normal to this. The z axis direction could 

then be fixed by measuring the vertical direction between d 

and e.  

By driving the robot close to the CD and measuring the 

robot’s TCP using the T-Mac, it was possible to calculate the 

distance and rotation between the two frames in SA. The robot 

controller could then be updated with this information to 

define the CD as the robot’s new working coordinate system.  

2) Measuring the robot error 

The robot TCP position was then remeasured whilst 

repeating a similar grid of positions to that of the original 

measurement grid. This used the same methodology as 

described in Section III.A.2), but this time with commanded 

positions and measurements relative to the CD rather than the 

RBF. From these measurements, a table containing xerror and 

yerror of the TCP relative to xdesired and ydesired in the CD frame 

could be calculated using Eq. (1) and (2). 

3) Training the model 

MATLAB’s Regression Learner application was once 

again used to train and test two sets of models in predicting 

xerror and yerror with only xdesired and ydesired (relative to the CD) 

as predictors. It was found that the same GPR models 

(exponential and 5/2 Matern kernels) had the lowest RMSE 

values and so selected as the most effective in predicting xerror 

and yerror (for brevity, the results from these are omitted due to 

the similarity to those shown in Figure 3). This is perhaps 

unsurprising as the error map of the robot is unchanged – only 

a shift in the coordinate system. Corrections could again be 

provided for subsequent operations using (3) and (4).  

4) Drilling trials 

This time, rather than simply re-running the original or offset 

measurement grids, a set of drilling trials were conducted. As 

these were situated in arbitrary positions with respect to the 

CD, these would not fall perfectly on the previously measured 

positions, and so acted as an analogous test to the offset grid. 

These trials consisted of drilling a pattern of 6 holes (shown 

  
(a) (b) 

Figure 4: Locations of (a) the common datum and SMRs (a-e) on the 

fixture; and (b) the fixture at different drilling locations (1-5) – with 1 being 

the location for the fixture when defining the common datum. 

 
Figure 3: Comparison of the various model validation and test RMSE 

values when trained to predict xerror and yerror, respectively (selected models 

highlighted in green). 



  

in Figure 5) in a coupon mounted to the top of the fixture 

when located at each of the 5 drilling locations (shown in 

Figure 4). This resulted in a total of 30 holes drilled across the 

platform’s working volume. This was repeated both with and 

without corrections provided by the models to gauge the 

improvement in hole location. 

The hole centre positions (HCPs) were determined by 

measuring 5 points around the internal circumference close to 

both the top and bottom surface of the coupon for each hole 

using the T-Probe. A best fit cylinder could then be 

constructed in SA for each hole, from which the HCP could 

be determined. It was then straightforward to gauge xerror and 

yerror in the drilled hole position using (1) and (2). 

To help discriminate between robot positional error and 

the process error introduced by the drilling operation itself, 

the T-Mac was also measured whilst the robot was in position 

above each hole, immediately prior to the pressure foot being 

applied. This provided a measurement of the TCP with no 

process forces acting upon it – meaning the portion of the hole 

position error related solely to robot positional error could be 

determined for each hole. 

IV. RESULTS 

A. Corrections relative to the robot base frame 

The distribution of TCP errors for x and y relative to the 

RBF both before and after correction are illustrated in Figure 

6. This includes the corrected measurements for both the 

original grid, and the offset grid. These results are quantified 

in Table I. 

 

TABLE I.  TOOL CENTRE POINT ERROR REDUCTION RELATIVE TO THE  

ROBOT BASE FRAME FOR BOTH ORIGINAL AND OFFSET GRIDS 

 Max error (mm) Mean error (mm) 

x y x y 

Uncorrected original 1.412 0.502 0.993 0.209 

Corrected original 0.093 0.189 0.022 0.055 

Corrected offset 0.235 0.174 0.085 0.051 

Reduction original (%) 93.4 62.4 97.7 73.5 

Reduction offset (%) 83.4 65.3 91.4 75.8 

B. Corrections relative to the common datum 

The distribution for HCP errors for x and y relative to the 

CD is shown in Figure . It should be noted that in this case, 

the error in y after correction increases. This is quantified in 

Table II. To help discriminate between robot positional error 

and process error, Figure  shows the distribution of TCP errors 

for x and y relative to the CD immediately prior to the drilling 

operation. This is quantified in Table III. 

 

TABLE II.  HOLE POSITION ERROR REDUCTION RELATIVE TO THE 

COMMON DATUM 

a. where a negative number indicates an increase in error. 

 

 

 

TABLE III.  TOOL CENTRE POINT ERROR REDUCTION RELATIVE TO THE 

COMMON DATUM IMMEDIATELY PRIOR TO DRILLING 

 

 Max error (mm) Mean error (mm) 

x y x y 

Uncorrected 0.945 0.598 0.688 0.261 

Corrected 0.523 0.695 0.323 0.378 

Reduction (%)a 44.6 -16.3 53.0 -45.1 

 Max error (mm) Mean error (mm) 

x y x y 

Uncorrected 0.503 0.421 0.180 0.164 

Corrected 0.199 0.208 0.092 0.082 

Reduction (%) 60.5 50.7 48.8 50.3 

 

Figure 5: Example of the 6 holes drilled at each location – relative 

orientation of x and y axes provided for reference. 

Figure 6: Comparison of the tool centre point errors (magnitude) in x and 
y measured relative to the robot base frame before and after correction for 

both the original and offset grids. 

 

Figure 7: Comparison of the hole position errors (magnitude) in x and y 

measured relative to the common datum before and after correction. 



  

V. DISCUSSION 

As can be seen in the distributions for TCP errors relative 

to the RBF (Figure 6), there is a significant reduction in the 

positional error for both the original and offset grids; with the 

maximum and mean errors being reduced by over 80% and 

60% for x and y, respectively. There is a marginal reduction 

in the performance of the model in correcting errors in x for 

the offset grid compared with the original grid, but this is to 

be expected since the model is having to interpolate between 

trained positions. In fact, by examining the mean error values 

achieved for both original grid (0.022 mm in x, 0.055 mm in 

y) and offset grids (0.085 mm in x, and 0.051 mm in y), it can 

be seen that this open-loop methodology performs marginally 

better in correcting for static robot positioning error than the 

closed-loop models reported in the literature [6],[7]  (between 

0.050 mm and 0.10 mm).  

The maximum error values for the original grid (0.093 mm 

in x, 0.189 mm in y) and offset grid (0.235 mm in x, and 0.174 

mm in y) are also lower than the maximum error values 

achieved by McGarry et al. [11] (0.252 mm in x, 0.595 mm in 

y); and by Jiang et al. [12] (0.656 mm). This therefore 

demonstrates that the presented models are successful in 

achieving significant improvement of the positioning 

accuracy of the drilling platform across its working volume, 

including positions previously unseen by the models.  

By interrogating the values presented in Tables I and III, 

it is possible to compare the performance of the models in 

correcting TCP error for the RBF and CD scenarios. Although 

the percentage reductions are lower for the CD scenario, it 

should be noted that the uncorrected maximum and mean 

errors are not as high as those in the RBF scenario. This could 

be due to the fact that the methodology used for measuring 

the CD provided a more accurate fit than that used to 

measuring the RBF. The CD could be measured directly using 

the T-Probe, whereas the RBF is inferred by measuring robot 

motion (as outlined in Sections III.B.1) and III.A.1), 

respectively). Therefore, by comparing the corrected 

maximum and mean errors, the values of the CD scenario are 

comparable to those of the corrected offset grid in the RBF 

scenario. This is to be expected as the positions used for the 

CD scenario were unseen by the model, analogous to the 

offset grid in the RBF scenario. 

However, upon reviewing the distributions for hole 

position errors (Figure ), the effectiveness of employing the 

models in physical drilling operations are not so clear.  

Although there is a reduction in both maximum and mean 

hole position errors in x (44.6% and 53.0%, respectively); 

there is an overall increase in hole position error for y.  

It is therefore thought that the majority of the hole position 

error is introduced by the drilling process. This is supported 

by the error values provided for the TCP immediately prior to 

drilling at each hole location. The maximum and mean errors 

for both x and y are reduced by around 50% or more, 

demonstrating that the model is still effective in these 

particular locations.  

It is hypothesised that the increase in hole position error 

in the y direction after correction could be due to the drilling 

process introducing error in the same direction as the 

correction provided by the model. This means that in the 

uncorrected case, the drilling error moves the hole position 

closer to the desired position. However, when the correction 

from the model is applied, the combination of the drilling 

process error and the correction makes the final hole position 

overshoot the desired position, thus increasing the error.  

This means that although the models are successful in 

correcting for the robot positional error, this may not always 

be suitable when attempting to improve the accuracy of an 

overall process being undertaken by a robotic platform. A 

model that also takes into account of the process errors may 

be more successful. 

VI. CONCLUSIONS AND FURTHER WORK 

This paper has demonstrated the effectiveness of an open-

loop methodology based on GPR models in reducing robot 

positional errors. This methodology was able to reduce the 

mean positioning error of a robotic drilling platform by 97.7% 

and 73.5% in x and y, respectively; with mean error values 

achieving comparable values to those achieved by closed-

loop methodologies in the literature.  

However, it has also highlighted the potential downsides 

of using such open-loop methodologies in real-world 

applications. When utilising the same methodology during 

drilling operations, the reduction in mean hole position error 

in x was significantly lower (only 53.0%), and the maximum 

error in y increased by 45.1%. This was thought to be due to 

the model providing corrections in the same direction as the 

error introduced by the drilling process causing the final hole 

position to overshoot the desired location.  

Despite these complications, the overall methodology of 

open-loop correction for improving robot accuracy has been 

demonstrated successful. This can be useful in many 

applications where process forces are less of an issue (eg. 

inspection, welding, additive manufacturing, etc.).  

Further work is still required to address the main 

drawback of this open-loop methodology; namely the 

introduction of process forces. Although it might be possible 

to develop a single model to account for both robot positional 

errors and process errors, it might be advantageous to develop 

a modular methodology.  

This modular methodology could be made up of an initial 

model that corrects for robot positional error, and a process 

Figure 8: Comparison of the tool centre point errors (magnitude) in x and y 

measured relative to the common datum immediately prior to drilling; 

before and after correction. 



  

error model then augments the correction based on the process 

being undertaken. This could then allow the process error 

model to be swapped or updated based on the particular 

process being undertaken without the need for a 

comprehensive re-measurement of the robot across the entire 

volume. This could be particularly advantageous where a 

robotic platform equipped with a tool changer can utilise a 

number of end effectors to undertake a range of different 

operations.  

The methodology presented was also limited to testing on 

a two-dimensional plane – focussing on the drilling of flat 

components. In real-world applications, there is a need for 

drilling operations to be undertaken at various heights and 

orientations (particularly for aerospace). It would therefore be 

beneficial to develop models that can work across the entire 

configuration space (rather than task space) of the robotic 

platform. 

Other work could include development of a model that can 

improve the accuracy of milling operations. This is 

particularly challenging due to the more dynamic nature of 

milling compared with drilling. This would therefore require 

continuous updates to be provided to the robot controller 

based on its live location and machining parameters, rather 

than discrete corrections based on each hole location. 

ACKNOWLEDGMENT 

The authors would like to thank EPSRC in supporting this 
research as part of the Made Smarter Connected Factories 
Programme. For the purpose of open access, the authors have 
applied a Creative Commons Attribution (CC BY) licence to 
any Author Accepted Manuscript version arising from this 
submission. 

REFERENCES 

[1] Atlas Copco UK Holdings Ltd., ‘The role of the 

manual drill in the aerospace manufacturing 

industry’. Accessed: Nov. 28, 2024. [Online]. 

Available: https://www.atlascopco.com/en-

uk/itba/expert-hub/articles/the-role-of-the-manual-

drill-in-the-aerospace-manufacturing-industry 
[2] Applied Fasteners and Tooling, ‘Understanding the 

Different Types of Aerospace Drills’. Accessed: 

Mar. 07, 2025. [Online]. Available: 

https://aft.systems/understanding-the-different-

types-of-aerospace-drills/ 

[3] BSI, ‘BS EN 3201-2008 Aerospace series — Holes 

for metric threaded fasteners’, May 2008. 

[4] D. Chen, P. Lv, L. Xue, H. Xing, L. Lu, and D. 

Kong, ‘Positional error compensation for aviation 

drilling robot based on Bayesian linear regression’, 

Eng Appl Artif Intell, vol. 127, p. 107263, Jan. 2024, 

doi: 10.1016/J.ENGAPPAI.2023.107263. 

[5] J. R. Diaz Posada, U. Schneider, S. Pidan, M. 

Geravand, P. Stelzer, and A. Verl, ‘High accurate 

robotic drilling with external sensor and compliance 

model-based compensation’, Proc IEEE Int Conf 

Robot Autom, vol. 2016-June, pp. 3901–3907, Jun. 

2016, doi: 10.1109/ICRA.2016.7487579. 

[6] L. Stadelmann, T. Sandy, A. Thoma, and J. Buchli, 

‘End-Effector Pose Correction for Versatile Large-

Scale Multi-Robotic Systems’, IEEE Robot Autom 

Lett, vol. 4, no. 2, pp. 546–553, Apr. 2019, doi: 

10.1109/LRA.2019.2891499. 

[7] S. Gharaaty, T. Shu, W. F. Xie, A. Joubair, and I. A. 

Bonev, ‘Accuracy enhancement of industrial robots 

by on-line pose correction’, 2017 2nd Asia-Pacific 

Conference on Intelligent Robot Systems, ACIRS 

2017, pp. 214–220, Jul. 2017, doi: 

10.1109/ACIRS.2017.7986096. 

[8] Y. H. Cho, D. Sawyer, C. Burkinshaw, and C. 

Scraggs, ‘Robotic Drilling: A Review of Present 

Challenges’, in SAE Technical Papers, SAE 

International, Mar. 2024. doi: 10.4271/2024-01-

1921. 

[9] D. Chen, P. Lv, L. Xue, H. Xing, L. Lu, and D. 

Kong, ‘Positional error compensation for aviation 

drilling robot based on Bayesian linear regression’, 

Eng Appl Artif Intell, vol. 127, p. 107263, Jan. 2024, 

doi: 10.1016/J.ENGAPPAI.2023.107263. 

[10] H. N. Nguyen, J. Zhou, and H. J. Kang, ‘A 

calibration method for enhancing robot accuracy 

through integration of an extended Kalman filter 

algorithm and an artificial neural network’, 

Neurocomputing, vol. 151, no. P3, pp. 996–1005, 

Mar. 2015, doi: 10.1016/J.NEUCOM.2014.03.085. 

[11] L. McGarry et al., ‘Machine Learning Methods to 

Improve the Accuracy of Industrial Robots’, in SAE 

International Journal of Advances and Current 

Practices in Mobility, SAE International, Mar. 2023, 

pp. 1900–1918. doi: 10.4271/2023-01-1000. 

[12] Y. Jiang, L. Yu, H. Jia, H. Zhao, and H. Xia, 

‘Absolute Positioning Accuracy Improvement in an 

Industrial Robot’, Sensors 2020, Vol. 20, Page 4354, 

vol. 20, no. 16, p. 4354, Aug. 2020, doi: 

10.3390/S20164354. 

[13] British Standards Institution, ‘BS EN ISO 

9283:1998 - Manipulating industrial robots - 

Performance criteria and related test methods’, 1998. 

[14] L. McGarry, J. Butterfield, and A. Murphy, 

‘Assessment of ISO Standardisation to Identify an 

Industrial Robot’s Base Frame’, Robot Comput 

Integr Manuf, vol. 74, p. 102275, Apr. 2022, doi: 

10.1016/J.RCIM.2021.102275. 

  

 


