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Abstract

Despite a blossoming of research activity on racks and their homology for over two decades,

with a record of diverse applications to central parts of contemporary mathematics, there are

still very few examples of racks whose homology has been fully calculated. In this paper,

we compute the entire integral homology of all permutation racks. Our method of choice

involves homotopical algebra, which was brought to bear on the homology of racks only

recently. For our main result, we establish a spectral sequence, which reduces the problem to

one in Borel’s equivariant homology, and for which we show that it always degenerates. The

blueprint given in this paper demonstrates a high potential for further exploitation of these

techniques.

Keywords Permutations · Racks · Rack homology · Equivariant Borel homology · Spectral

sequences

Mathematics Subject Classification 20N02 · 18G40 · 18G50 · 55N91 · 55T99

Racks are fundamental algebraic structures boasting applications to knots [6, 10], singularities

[3], monodromy [22], branched covers [7, 19], Yang–Baxter equations [4, 15, 16], Hopf

algebras [1], and the integration of Leibniz algebras [13], to name just a few. Just as group

homology is an important invariant of groups, racks come with rack homology [11], and

these rack homology groups are what the applications most often require. So far, complete

computations of homological invariants of racks were limited to a few isolated cases [5,

9, 17]. In this paper, we pursue the approach to rack homology via Quillen’s homotopical

algebra, initiated in [21]. It allows us to compute the entire integral homology for a whole

family of racks: the permutation racks.

Recall that a rack (X ,⊲) is a set X together with a binary operation ⊲ such that the

left multiplications y �→ x ⊲ y are automorphisms for all x in X . (Automorphisms are, as

usual in algebra, bijective morphisms, and the left multiplications are morphisms if and
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only the self-distributivity equation x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) holds for all x, y, z

in X .) Basic examples are the permutation racks (X , φ), where these automorphisms are

independent of the left factor: we have x ⊲ y = φ(y) for a permutation φ on the set X . We

note that permutation racks (X , φ) are, essentially, sets X with an action of the infinite cyclic

group Z, or Z–sets for short: the integer n acts as φn . This basic observation will play a crucial

part in the paper. For instance, it suggests refining the set X/φ of orbits to the homotopy orbit

space X//φ of the action, also known as the Borel construction. For the infinite cyclic group Z,

the resulting space is nothing but the mapping torus of the generator φ, and computations

become accessible. Our main result reads as follows:

Theorem A For every permutation rack (X , φ), there is a spectral sequence of homological

type whose E2 page is given by

E2
•,q

∼= H•(X//φ)⊗(q−1) ⊗ H•(X//φ),

and which abuts to the rack homology HR•(X , φ) of (X , φ). This spectral sequence always

degenerates from its E2 page on.

The spectral sequence in Theorem A is constructed in Theorem 4.1 of the main text, and the

degeneracy is proven in Theorem 6.1. As for the description of the E2 page, the spaces X//φ

are the homotopy orbit spaces of the permutation φ acting on X . We review their definition

in Sect. 3. They decompose, up to homotopy, into a disjoint union of contractible lines, one

for each infinite orbit of φ, and circles, one for each finite orbit of φ. In particular, we know

their homology, the Z–equivariant Borel homology of (X , φ), see Proposition 3.2. This extra

information makes the spectral sequence efficient. The rest of this introduction spells out the

computational consequences of Theorem A.

For free permutation racks, where all orbits are infinite, there is no difference between the

homotopy orbit space X//φ and the usual orbit space X/φ, which is discrete. This implies

that, in this particular case, the spectral sequence has only one column and degeneracy is

obvious.

Theorem B Let (X , φ) be a free permutation rack with the set of orbits S = X/φ. There are

natural isomorphisms

HRn(X , φ) ∼= ZS
⊗(n−1)

⊗ ZS,

where ZS is the free abelian group on the set S, and ZS is the free abelian subgroup of linear

combinations whose coefficients add up to zero. In particular, the homology is a free abelian

group in each degree. If the number |S| = r of orbits is finite, then

r(r − 1)n−1 = (r − 1)n + (r − 1)n−1

is the n–th Betti number of the free permutation rack.

Actually, we use this result in the proof of Theorem A, and therefore provide an indepen-

dent proof beforehand, as Theorem 2.3.

In general, the spectral sequence is concentrated in the region of the first quadrant

where p � q . This easily implies the vanishing of the differentials in low dimensions and

gives:
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Theorem C For any permuation rack (X , φ) we have

HR0(X , φ) ∼= Z,

HR1(X , φ) ∼= ZS ∼= Zr ,

HR2(X , φ) ∼= (ZS ⊗ ZS) ⊕ ZSfin
∼= Zr(r−1)+rfin ,

where Sfin ⊆ S is the subset of finite orbits, and |Sfin| = rfin denotes its size.

These formulas for HR0 and HR1 agree with the known formulas for general racks.

However, our computations for HR2, especially important for applications, are new.

While our spectral sequence is built upon our direct computation for the free permutation

racks, we can use it to compute the entire integral homology for the opposite extreme as well:

for permutation racks that do not contain any free orbit, such as all finite permutation racks.

Theorem D Let (X , φ) be a finite permutation rack or, more generally, a permutation rack

such that all its orbits are finite. Then

HRn(X , φ) ∼= (ZS)⊗n

is a free abelian group on the set of n–tuples of orbits, where S = X/φ as before. In particular,

there is no torsion in the homology.

This is proven as Theorem 5.1 and Remark 5.2 in the main text. Briefly, we show that

the functional equation satisfied by the Poincaré series of the E2 page implies that the upper

bound on the homology given by the E2 page coincides with the lower bound known from the

rational computations in [8]: the n–th Betti number of (X , φ) equals rn , where r = |X/φ| is

the number of orbits. In the case of a single finite orbit, the result recovers the computation

for cyclic racks from [14, Thm. 6].

In the final Sect. 6, we prove the degeneracy of the spectral sequence in general, using

most of our earlier results. As a consequence, in Corollary 6.3, we can compute the entire

integral homology of any permutation rack:

Theorem E Let (X , φ) be any permutation rack. Then the homology is a free abelian group.

In particular, it is torsion free. The Poincaré series is given as

∞
∑

n=0

rank HRn(X , φ)T n =
1 + T

1 − (r − 1)T − rfinT2

if the number r of orbits is finite; here rfin is the number of finite orbits.

Alternatively, the Betti numbers βn = rank HRn(X , φ) can be computed by the following

recursive formula:

βn =

⎧

⎪

⎨

⎪

⎩

1, if n = 0,

r , if n = 1,

(r − 1)βn−1 + rfinβn−2 if n � 2.

Beyond this definite result, we expect that the techniques of proof exposed in this paper

will find applications to other computations of rack and related homologies.
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1 Preliminaries on the homology of permutation racks

In this section, we present some general tools that help us produce and detect homology

classes in permutation racks.

Let X be a set. We will write ZX for the free abelian group on X . Its elements are the

formal linear combinations of the elements of X . The subgroup ZX of ZX consists of those

linear combinations whose coefficients sum up to zero.

Let T(ZX) be the tensor algebra on the free abelian group ZX . This a graded abelian

group that is free in each degree: in degree n, we have the group (ZX)⊗n = Z(Xn), with

basis Xn . Using the algebra structure, we can write the elements as non-commutative mono-

mials x1 . . . xn rather than x1 ⊗· · ·⊗xn or (x1, . . . , xn), which might have been more precise.

If (X ,⊲) is a rack, then the tensor algebra supports a differential of degree −1 which

makes it a chain complex:

d(x1 · · · xn) =

n−1
∑

k=1

(−1)k−1(x1 · · · xk−1xk+1 · · · xn − x1 · · · xk−1(xk ⊲ xk+1) · · · (xk ⊲ xn))

=

n−1
∑

k=1

(−1)k−1x1 · · · xk−1(xk+1 · · · xn − (xk ⊲ xk+1) · · · (xk ⊲ xn)).

This chain complex is denoted by CR•(X ,⊲), and its homology HR•(X ,⊲) is the rack

homology of the rack (X ,⊲). Note that the differential is not a derivation with respect to the

tensor algebra structure.

Example 1.1 A rack (S,⊲) is trivial if the rack operation ⊲ = pr2 is given by the projection,

that is s ⊲ t = t for all s and t in the set S. In that case, the differential on the chain

complex CR•(S, pr2) is zero by direct inspection, and therefore the homology of the trivial

rack on S is the tensor algebra: HRn(S, pr2) = (ZS)⊗n .

Trivial racks are examples of permutation racks (S, pr2) = (S, id), where id = idS

refers to the identity permutation on S. It turns out that the trivial permutation racks help us

understand all other permutation racks by means of functoriality: Let (X , φ) be a permutation

rack. The canonical projection X → X/φ is a morphism of racks if the set X/φ = S of

orbits is endowed with the trivial rack structure as in Example 1.1. This leads to an induced

homomorphism

HRn(X , φ) −→ HRn(X/φ, id) = (ZS)⊗n (1.1)

in homology. This homomorphism gives us a means to detect elements in the homology

of permutation racks. We remark that the underlying homomorphism on the chain level is

obviously surjective, but this does not have to be the case on the level of homology.

If (X , φ) is a permutation rack, the permutation φ on X extends to an automorphism of

the tensor algebra, and the formula for the differential becomes

d(x1 · · · xn) =

n−1
∑

k=1

(−1)k−1x1 · · · xk−1(xk+1 · · · xn − φ(xk+1 · · · xn))

= x2 · · · xn − φ(x2 · · · xn) − x1d(x2 · · · xn).

We can rewrite this formula as

d(xw) = w − φ(w) − xd(w) (1.2)

123
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for all x in X and w in CR•(X , φ). Equation (1.2) immediately leads to a few fundamental

observations. Here is the first:

Proposition 1.2 The permutation φ : X → X, which is a rack automorphism, induces the

identity map HRn(X , φ) → HRn(X , φ) in rack homology for all n.

Proof Recall that two morphisms f and g of chain complexes are chain homotopic if their

difference is of the form f − g = dh + hd for an operator h that increases degrees by one.

Then f and g induce the same homomorphism in homology. In the present situation, the

formula (1.2) for the differential shows that multiplication by any element in the rack X is

such an operator for f = id and g = φ. ⊓⊔

Here is another consequence of Eq. (1.2):

Lemma 1.3 Let T be a subset of (X , φ) that meets every orbit at least once. Then, modulo

boundaries, every n–chain in CRn(X , φ) can be represented as a linear combination of basis

elements w = x1x2 · · · xn that start in T in the sense that x1 ∈ T .

This lemma shows that in our case it might (and will!) be fruitful to change the usual order

of things and study all chains up to boundaries before restricting ourselves to cycles only.

Proof It suffices to show that every basis element w = x1x2 . . . xn can be represented, modulo

boundaries, as a linear combination of elements that start in T .

Let t ∈ T be any element. Then we have d(tw) = w−φ(w)− td(w) by the formula (1.2)

for the differential. This says that, modulo boundaries, we can make the difference between w

and φ(w) start with any chosen t ∈ T . By induction, the same holds for all elements φk(w)

in the same orbit as w. It remains to be noticed that φk(w) itself starts with an element t ∈ T

at some point: take an integer k such that φk(x1) ∈ T . This exists by our assumption on the

set T . ⊓⊔

Remark 1.4 The lemma with its proof are valid for any rack R, not just permutation racks,

and any generating set T of R.

Recall the suspension C[1] of a chain complex C : we have C[1]n = Cn−1 and dC[1] =

−dC . The name is justified by the equation Hn(C[1]) = Hn−1(C).

Proposition 1.5 For all v ∈ ZX, the multiplication with v is a morphism

v : CR•(X , φ)[1] −→ CR•(X , φ)

of chain complexes.

Proof Let us first assume that v = x − y is the difference of two basis elements. The

formula (1.2) for the differential implies

d((x − y)w) = −(x − y)d(w) (1.3)

for all chains w in the complex CR•(X , φ), when all differentials are computed in CR•(X , φ).

This is the equation saying that multiplication with v = x − y is compatible with the differ-

entials when we use the differential from CR•(X , φ)[1] on one side: the suspension accounts

for the sign and is required because the map is multiplication by a degree 1 class.

In general, every element v ∈ ZX is a linear combination of elements of the form x −

y, and multiplication with that element v is the corresponding linear combination of the

multiplications with the x − y’s. ⊓⊔
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Proposition 1.5 makes it easy for us to write down cycles for the homology of any

permutation rack (X , φ). Indeed, all elements x of X are 1–cycles. Therefore, for given

elements x1, . . . , y1, . . . in X , the element

(x1 − y1)(x2 − y2) · · · (xn−1 − yn−1) xn (1.4)

is automatically an n–cycle. Of course, many of these elements will be boundaries if not

zero. Fortunately, the homomorphism (1.1) already provides a device that allows us to detect

elements in the homology of permutation racks.

In general, not all homology classes can be described by cycles of the form (1.4). Here is

another device that produces new cycles from old:

Proposition 1.6 For all fixed points x in X, the multiplication with x2 is a morphism

x2 : CR•(X , φ)[2] −→ CR•(X , φ)

of chain complexes.

Proof This is a straightforward computation: from (1.2) we have

d(x2w) = xw − φ(xw) − xd(xw)

= xw − xφ(w) − x(w − φ(w) − xd(w))

= x2d(w)

for all chains w in the complex CR•(X , φ). ⊓⊔

Remark 1.7 This cycle construction can be generalized to any element x from a finite d–

element orbit of X . We only need to replace the map x2 above with the trace

xtr : CR•(X , φ)[2] −→ CR•(X , φ),

w �−→ x

d−1
∑

i=0

φi (xw).

The computation from the proof of Proposition 1.6 can be adapted as follows:

d(x

d−1
∑

i=0

φi (xw)) =

d−1
∑

i=0

(φi (xw) − φi+1(xw)) − x

d−1
∑

i=0

(φi (w) − φi+1(w)) + x

d−1
∑

i=0

φi (xd(w))

= (xw − φd(xw)) − x(w − φd(w)) + x

d−1
∑

i=0

φi (xd(w))

= (xw − xφd(w)) − x(w − φd(w)) + x

d−1
∑

i=0

φi (xd(w))

= x

d−1
∑

i=0

φi (xd(w)).

2 The homology of free permutation racks

In this section, we explain our computation of the homology of free permutation racks.
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A permutation φ on a set X is essentially the same structure as an action of the infinite cyclic

group Z on X . A permutation rack (X , φ) is called free if the corresponding action is free,

that is, all orbits are infinite. In that case, the permutation rack is isomorphic to a permutation

rack of the form (Z × S, φ), where S is some set, the basis, and φ(n, s) = (n + 1, s) is the

permutation acting on the Cartesian product Z × S. In that example, we will shorten (0, s)

to s and identify the set (Z × S)/φ of orbits with S.

Lemma 2.1 Given a free permutation rack (X , φ) with basis S, let c be any chain

in CR•(X , φ) that differs from its image φ(c) under φ by a linear combination of mono-

mials starting in S. Then the chain c is zero.

Proof We can write any chain c as a linear combination of monomials w = x1 . . . xn with

integral coefficients. Fix one monomial w. We shall show that the coefficient in front of w is

zero if c satisfies the assumption in the statement.

By freeness, there is exactly one integer m such that the monomial φm(w) starts in S.

Either m is positive and φn(w) does not start in S for all n � 0, or m is non-positive

and φn(w) does not start in S for all n � 1. We shall show that the coefficient in front of w

is zero in both cases.

Assume first that φn(w) does not start in S for all n � 0. Then w does not start in S and, by

assumption, it has to appear in φ(c) with the same coefficient. It follows that φ−1(w) appears

in c with the same coefficient as w. Inductively, we see that all the φn(w) with n � −1

appear in c with the same coefficient. Since only finitely many coefficients can be non-zero,

all the coefficients of these φn(w) have to be zero, and this holds, in particular, for the one

in front of w.

Assume now that φn(w) does not start in S for all n � 1. Then the monomial φ(w) appears

in c and φ(c) with the same coefficient, which is the coefficient of w in c. Inductively, we

see that all φn(w) with n � 0 have the same coefficient in c. As above, this coefficient has

to vanish. ⊓⊔

Lemma 2.2 Given a free permutation rack (X , φ) with basis S, any n–cycle c, with n � 2,

can be represented in ZS ⊗ CRn−1(X , φ) modulo boundaries.

Proof We already know from Lemma 1.3 that we can represent any chain c modulo boundaries

by an element that lives in ZS ⊗ CRn−1(X , φ). This means that we can assume c to be of

the form

c =
∑

s∈S

scs

for suitable chains cs . We choose an element t in S and rewrite the expression for c as

c =
∑

s∈S

(s − t)cs + t

(

∑

s∈S

cs

)

.

Since s − t ∈ ZS, it is sufficient to show that the rightmost sum vanishes.

We recall that c is assumed to be a cycle, so that we know

0 = d(c) = −
∑

s∈S

(s − t)d(cs) +

(

∑

s∈S

cs

)

− φ

(

∑

s∈S

cs

)

− td

(

∑

s∈S

cs

)

from (1.3) and (1.2). We see that the sum
∑

s∈S cs satisfies the conditions of Lemma 2.1: it

differs from its image under φ only by monomials that start in S. It follows from the lemma

that the sum is zero, as claimed. ⊓⊔

123
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We are now ready for the main result of this section.

Theorem 2.3 For any sets S, let (Z × S,+1) be the free permutation rack on S, with the

permutation +1(n, s) = (n + 1, s). The natural homomorphism

ZS
⊗(n−1)

⊗ ZS
∼=

−→ HRn(Z × S,+1),

given by multiplication, is an isomorphism.

Taking a one-element set S, we recover the homology of the free monogenic rack, cf. [9,

12]:

HRn(Z,+1) ∼=

{

Z if n = 0, 1,

0 if n �= 0, 1.

Proof Let us first note that the map is well-defined: Take a typical elementv1 ⊗ · · · ⊗ vn−1 ⊗ s

with v j ∈ ZS and s ∈ S. It follows from Proposition 1.5 and the discussion following it that

this defines a cycle in CR•(Z × S,+1), and then it represents a homology class.

It follows from Lemma 2.2, inductively, that the resulting homomorphism is surjective

onto the homology. It remains to be seen that it is injective. We do this by composing it with

the morphism

HRn(Z × S,+1) −→ (ZS)⊗n

from (1.1). Since all maps are the identity on representatives, this composition is the inclusion,

hence injective. Then the first map also has to be injective, as claimed. ⊓⊔

Corollary 2.4 The homology of a free permutation rack (X , φ) is free as an abelian group.

In particular, it is torsion-free. If the number of orbits is finite, say r , then the Betti numbers

are given by

rank HRn(X , φ) = (r − 1)n−1r = (r − 1)n + (r − 1)n−1

for all n � 1.

Remark 2.5 The free permutation rack is the product of racks:

(Z × S,+1) ∼= (Z,+1) × (S, id).

Our theorem and Example 1.1 yield the entire homology of the three racks involved, and

we will use the occasion to point out that a naive version of the Künneth theorem for rack

homology is false. Indeed, given two racks (X ,⊲X ) and (Y ,⊲Y ), and their direct prod-

uct (X × Y ,⊲X × ⊲Y ), it is tempting to conjecture the existence of a short exact sequence

0 →
⊕

p+q=n

HRp(X) ⊗ HRq(Y ) −→ HRn(X × Y )

−→
⊕

p+q=n−1

Tor1
Z
(HRp(X), HRq(Y )) → 0.

For a free permutation rack, this sequence would imply

HRn(Z × S,+1) ∼=
⊕

p+q=n

HRp(Z,+1) ⊗ HRq(S, id)

∼= (ZS)⊗n ⊕ (ZS)⊗(n−1),

contradicting our theorem.
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Remark 2.6 Similar ideas yield a very explicit computation of the homology of the free

rack FRn on a generating set {x1, . . . , xn} with n elements, considerably more concise

than the method from [9]. Recall that such a free rack FRn can be modelled on the

set Fn × {x1, . . . , xn}, where Fn is the free group on the set {x1, . . . , xn}, and the rack

operation is given by (u, x) ⊲ (w, y) = (uxu−1w, y). This free rack has n orbits, and the ele-

ments X i := (e, xi ) are convenient orbit representatives, where e is the neutral element in the

group. The action of these orbit representatives is particularly simple: X i ⊲(w, y) = (xiw, y).

We will denote the inverse of this action by X−1
i ⊲ (w, y) = (x−1

i w, y). Observe that the

data of (w, y) and X±1
i ⊲ (w, y) allow us to recover the element X i . We can now use this

notation to show that

HRm(FRn) ∼=

⎧

⎪

⎨

⎪

⎩

Z if m = 0,

Zn if m = 1,

0 if m �= 0, 1.

For m � 1 the result is classical. Therefore, let us take an m–cycle with m > 1. We want

to see that it is a boundary. As explained in Remark 1.4, we can add boundaries to the cycle

until all monomials appearing in it start with one of the orbit representatives X i . When that

is done, we can write the cycle in the form

c =
∑

k

εk X j(k)wk, (2.1)

where εk = ±1 is a sign, the X j(k) ∈ {X1, . . . , Xn} are orbit representatives, and wk ∈

FRm−1
n . We will now show that the terms of c cancel each other in pairs, so that the whole

expression (2.1) is zero. To start with, an analogue of formula (1.2) yields

0 = d(c) =
∑

k

εkwk −
∑

k

εk X j(k) ⊲ wk −
∑

k

εk X j(k)d(wk). (2.2)

Here the action ⊲ is extended from FRn to FRm−1
n diagonally. Since the sum (2.2) vanishes,

the monomials in (2.2) can be partitioned into pairs of identical monomials appearing with

opposite signs. Let us fix such a partition into pairs, and let us call two of its pairs connected

if one contains the monomial εkwk , and the other the monomial −εk X j(k) ⊲wk , for the same

index k. Since wk ∈ FRm−1
n and m − 1 > 0, we have wk �= X j(k) ⊲ wk for all indices k.

Thus, a pair with at least one monomial coming from the part
∑

k εkwk −
∑

k εk X j(k) ⊲ wk

of the sum (2.2) is connected to one or two pairs. If the cycle c is non-zero, then this part of

the sum is non-empty, and there exist connected pairs. Since the sum is finite, the connected

pairs form at least

(a) a closed chain, or

(b) an open chain where the first and the last pair involve a monomial from the

part
∑

k εk X j(k)d(wk) of the sum.

Recall that each X j(k) is in fact some X j = (e, x j ). Thus, in any of the two situations (a)

and (b), there is a chain of connected pairs between two monomial pairs ±w and ±w′, both

in FRm−1
n , whose first FRn components (u, x) and (u′, x ′) have the same Fn part: u = u′

and x = x ′ in case (a), and u = u′ = e in case (b). By construction, the monomials from

two connected pairs are each related by the action of some X i . Thus, we get a relation of the

form

(u′, x ′) = X±1
i(l) ⊲ · · · ⊲ X±1

i(1)
⊲ (u, x) = (x±1

i(l) · · · x±1
i(1)

u, x),

123



    5 Page 10 of 18 V. Lebed, M. Szymik

where the parentheses were omitted to enhance the readability. As a result of u = u′, the

non-empty word x±1
i(l) · · · x±1

i(1)
represents the neutral element of the free group Fn . This word,

therefore, contains neighbouring elements xi and x−1
i , and these elements yield a chain of

connected pairs ±X i ⊲ w, ±w, ±X i ⊲ w (or ±w, ±X i ⊲ w, ±w). Then, the part
∑

k εkwk

of the sum (2.2) contains the monomials w and −w (respectively, the part
∑

k εk X j(k) ⊲

wk of the sum contains the monomials X i ⊲ w and −X i ⊲ w) coming from the identical

monomials X iw and −X iw of c, just with opposite signs. Therefore, we can cancel this pair,

and continue until the whole expression (2.1) for c becomes zero.

3 Permutations and their equivariant homology

Permutation racks (X , φ) are essentially sets X with an action of the infinite cyclic group Z,

or Z–sets for short. The integer n acts as φn . We refer to [20, Sec. 3] for a detailed discussion

of the relation between racks and permutations on the categorical level. In this section, we will

very briefly review the equivariant homology theory for actions of a fixed group G, and then

we specialize it to the case of the infinite cyclic group Z. Proposition 3.2, the computation

of the equivariant homology of permutation actions, will be used in the following Sect. 4.

Let us fix a discrete group G. If the group G is not trivial, then not all G–sets X are

free. Therefore, we need to choose free resolutions. These are G–maps F• → X that are

equivalences, where F is a simplicial G–set, and the G–action on F is free (on each set

of n–simplices). For instance, the classifying space EG• coming from the bar construction

is a contractible space on which the group G acts freely; it provides functorial free simplicial

resolutions

EG• × X = F• → X (3.1)

for all G–sets X . The equivariant homology HG
• (X) of a G–set X is the homology of the orbit

space F•/G ≃ EG• ×G X . Up to homotopy, this space does not depend on the resolution F•

used to compute it, and it is common to denote this homotopy orbit space by X//G. These

constructions work more generally for G–spaces, or rather simplicial G–sets, and they are

interesting even for the trivial G–set X = ⋆ consisting of one fixed point only: its equivariant

homology is the homology of the group G.

Remark 3.1 Equivariant homology in this form was initiated by Borel [2]. It is obvious from

the description above that Borel’s equivariant homology theory agrees with Quillen’s general

homology theory [18] when specialized to the algebraic theory of G–sets for a fixed group G.

This fact is well-known and we emphasize that it plays no role in the following. We refer to

[21] for Quillen’s homology theory when specialized to the algebraic theory of racks.

The situation is particularly transparent for the infinite cyclic group G = Z of interest to

us. A Z–action is determined by the permutation φ corresponding to the generator. The real

line R gives us a suitable intuition for the classifying space EZ•, as it is contractible and the

group Z acts freely on it. However, the topological space R is not a simplicial set, and we

have to use a simplicial model, such as EZ•, for it. We then need to know the equivariant

homology

HZ

• (X) = H•(X//φ)

of any Z–set X . For actions of the group Z, the homotopy orbit space X//φ = EZ• ×Z X is a

simplicial model for the mapping torus R ×Z X of the self-map φ : X → X . The homology
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of the mapping torus sits in a long exact sequence

· · · H•(X)
id −φ•

H•(X) H•(X//φ) H•−1(X)
id −φ•

· · · .

Proposition 3.2 Let φ be a permutation on a set X. Let S = X/φ be the set of orbits of φ,

and let Sfin ⊆ S be the subset of finite orbits. Then the equivariant homology of (X , φ) is

given as

Hn(X//φ) ∼=

⎧

⎪

⎨

⎪

⎩

ZS if n = 0,

ZSfin if n = 1,

0 otherwise.

Proof Let us first assume that X is a single orbit. If X is a free orbit, then there is no need

to resolve X , and X//φ ≃ X/φ is a point. This proves the claim for a single free orbit. If X

is a finite orbit, then the mapping torus X//φ is a circle. Therefore, or by inspection of the

long exact sequence, we see that the claim is true for finite orbits, too. In general, any G-set

is the disjoint union of its orbits, and the homology of a disjoint union is the direct sum of

the homologies. This proves the claim in general. ⊓⊔

This result is the reason why finite and infinite orbits play fundamentally different roles

in the homology of permutation racks.

4 The spectral sequence: construction and first applications

Finally, we can now address the following question: Given a set X with a permutation φ,

how can we compute the cohomology of the associated permutation rack (X , φ)? Our answer

follows the blueprint given by Quillen in [18, Sec. 8]. He computes the associative algebra

homology of commutative algebras from the knowledge of the associative algebra homology

of free commutative algebras (polynomial rings). Here we adapt his methods and deduce the

homology of permutation racks from the homology of free permutation racks via a spectral

sequence.

Theorem 4.1 For every permutation rack (X , φ), there is a spectral sequence of homological

type which has its E2 page given as

E2
•,q

∼= H•(X//φ)⊗(q−1) ⊗ H•(X//φ)

and which abuts to the rack homology of (X , φ).

The homology groups on the right hand side are the ones computed in Proposition 3.2.

We’ll spell out the consequences after the proof.

Proof We choose a simplicial resolution X ← F• by free permutations, such as (3.1) in

Sect. 3. Then we apply the rack chain complex functor CR•(?) to it. This gives a simplicial

chain complex CR•(F•). The Moore construction, which turns a simplicial abelian group

into a chain complex with differential ∂ =
∑

j (−1) j∂ j , turns this into a double complex

E0
p,q = CRq(Fp).

This double complex comes with two spectral sequences that converge to the same target:

the homology of the totalization. We will inspect these in order.
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First, let us consider the spectral sequence that computes the differential in the horizon-

tal p–direction first. For a fixed q , Lemma 2.3 in [21] says that the Moore complex CRq(F•)

is a free resolution of the abelian group CRq(X). It follows that we get

E1
p,q

∼=

{

CRq(X) if p = 0,

0 if p �= 0.

The vertical differential is the one coming from the rack complex, by naturality, so that we

get

E2
p,q

∼=

{

HRq(X) if p = 0,

0 if p �= 0.

Since this is concentrated in the 0–th column, the spectral sequence necessarily degenerates

from E2 on. This shows that the target of this (and the other!) spectral sequence is the rack

homology of X .

Second, let us consider the spectral sequence that computes the differential in the verti-

cal q–direction first. By now, we already know that its target is the rack homology of X , but

we haven’t given a useful description of the initial terms, yet. The starting page is

E0
p,q = CRq(Fp)

as before. If we fix p, and compute the vertical differential, we get

E1
p,q = HRq(Fp),

the rack homology of the free racks Fp . We have already computed this in Sect. 2. If we

let Sp be the set of orbits of Fp , then Theorem 2.3 gives a natural isomorphism

HRq(Fp) ∼= ZS
⊗(q−1)

p ⊗ ZSp.

Naturality implies that, for a fixed degree q , we have an isomorphism

HRq(F•) ∼= Z(X//φ)
⊗(q−1)

⊗ Z(X//φ) (4.1)

of simplicial abelian groups, where X//φ is the simplicial set of orbits of F•. It follows that

the q–th row of the E1 page of the spectral sequences is the Moore complex of the right

hand side of (4.1). Up to equivalence, the Moore complex commutes with tensor products.

The Moore complex for Z(X//φ) computes the homology of X//φ, and the Moore complex

for Z(X//φ) computes the reduced homology of X//φ. Both can be read off immediately from

our Proposition 3.2. Since all of these homologies are free, the Künneth theorem implies that

we have an isomorphism

E2
•,q

∼= H•(X//φ)⊗(q−1) ⊗ H•(X//φ),

as claimed. ⊓⊔

It follows from Proposition 3.2 that we have E2
p,q = 0 whenever p > q . This implies that

all the differentials involving the E2
p,q with p + q � 2 are zero. Since all of these abelian
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groups are also free, again by Proposition 3.2, there are no extension problems, and we get

HR0(X , φ) ∼= Z

HR1(X , φ) ∼= H0(X//φ)

∼= ZS

HR2(X , φ) ∼=

(

H0(X//φ) ⊗ H0(X//φ)

)

⊕ H1(X//φ)

∼= (ZS ⊗ ZS) ⊕ ZSfin,

where S is the set of orbits of φ on X , and Sfin is the subset of finite orbits. Theorem C

follows.

Remark 4.2 Another important invariant of a rack (X ,⊲) is its structure group, given by the

presentation

G(X ,⊲) = 〈ga, a ∈ X | ga gb = ga⊲bga, a, b ∈ X〉.

This is the value of the left-adjoint to the forgetful functor from the category of groups to

the category of racks which sends a group to its conjugation rack. It is easy to compute

the structure group of a permutation rack (X , φ): it is the free abelian group on the set of

orbits of φ. (Indeed, the defining relation reads ga gb = gφ(b)ga for such a permutation rack.

Choosing a = b, we obtain gbgb = gφ(b)gb, hence gb = gφ(b) for all b in X . Therefore, a set

of orbit representatives suffices to generate the group G(X , φ). Inserting the equation gb =

gφ(b) back into the relation, we get ga gb = gbga , hence G(X , φ) is abelian.) In particular, up

to isomorphism, the group G(X , φ) depends on the number of orbits of φ only. According

to our preceding computations of HR2(X , φ), two permutation racks with the same (finite)

number of orbits but different numbers of finite orbits then have isomorphic structure groups

but non-isomorphic homology groups. Hence in this case homology turns out to be a stronger

invariant.

Example 4.3 If X is a free permutation rack, then H•(X//φ) is concentrated in degree 0, and

so the spectral sequence is concentrated in the 0–th column from E2 on. Then it degenerates,

and we recover the result of Theorem 2.3. Of course, we have used that result already when

setting up the spectral sequence, and this example only serves as a consistency check.

5 The spectral sequence degenerates for finite racks

We now turn to a more substantial example and prove Theorem D.

Theorem 5.1 Let (X , φ) be a finite permutation rack. Then the spectral sequence degenerates

from its E2 page on, and the rack homology HRn(X , φ) is a free abelian group of rank rn ,

where r = |X/φ| is the number of orbits of φ acting on X.

Proof We inspect the E2 page of the spectral sequence in Theorem 4.1. We have a free abelian

group in every bidegree (p, q), hence in every total degree n. We will now show that the rank

of the E2 page in total degree n is rn .

Let f (T) be the Poincaré series of H•(X//φ). If r is the number of orbits, then we have

f (T) = (r − 1) + r T (5.1)
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by Proposition 3.2. This satisfies the functional equation

1 − f (T)T = (1 + T)(1 − r T), (5.2)

as is straightforward to verify from (5.1). Note that we used that all orbits are finite; otherwise

the Poincaré series f (T) is a bit more complicated. From the description of the q–th row

of the E2 page of the spectral sequence, we get that its Poincaré series is 1 for q = 0

and f (T)q + f (T)q−1 for all q � 1, regardless of the orbit structure. Therefore, we have

∑

n�0

(

∑

p+q=n

rank(E2
p,q)

)

Tn =
∑

p,q�0

rank(E2
p,q)Tp+q

=
∑

q�0

(

∑

p�0

rank(E2
p,q)Tp

)

Tq

= 1 +
∑

q�1

(

f (T)q + f (T)q−1

)

Tq

=
∑

q�0

f (T)qTq +
∑

q�0

f (T)qTq+1

= (1 + T)
∑

q�0

f (T)qTq

=
1 + T

1 − f (T)T
.

In our specific situation, we can use the functional equation (5.2) to see that this equals

1

1 − r T
=

∑

n�0

rnTn,

as claimed.

It is known from the work [8, Cor. 4.3] of Etingof and Graña that the n–th Betti number of

a finite permutation rack with r orbits is rn . So rn is the rank of the E∞ page in total degree n

as well. Given that all the groups on the E2 page are free abelian, if the spectral sequence

would not degenerate from its E2 page on, the rank of the E∞ page would be strictly less

than that of the E2 page, contradicting what we have shown above. Therefore the spectral

sequence does degenerate from its E2 page on. Since E∞ ∼= E2 is free abelian, there are no

extension problems, and we find that HRn(X , φ) is the totalization of it, which we have just

shown to be of rank rn in total degree n. ⊓⊔

Remark 5.2 It is easy to generalize Theorem 5.1 slightly to cover all permutation racks (X , φ)

for permutations φ without free orbits. These are the unions of their finite subracks, and

homology is compatible with unions. It follows that the rack homology HR•(X , φ) of these

racks is always free abelian in each degree.

6 The spectral sequence always degenerates

This final section completes the proof of Theorem A by establishing the following result.

Theorem 6.1 For any permutation rack (X , φ), the spectral sequence in Theorem 4.1 degen-

erates from its E2 page on.
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Proof As in Remark 5.2, it is clear that we can assume that the permutation φ on X has

only finitely many orbits: any differential involves only finitely many of them.

Under this assumption, the E2 page consists of finitely generated free abelian groups in

each bidegree. Therefore, as in our proof of Theorem 5.1, it is sufficient to demonstrate the

degeneracy with rational coefficients: this is enough to detect non-zero differentials between

finitely generated free abelian groups. For the rest of the proof, we can and will assume

that (X , φ) is a permutation rack with finitely many orbits, and all homology will be with

rational coefficients.

We construct a new permutation rack (X , φ) from (X , φ) as a quotient, by collapsing each

finite orbit onto a single fixed point, leaving the free orbits as they were. The new permutation

rack has the same number of orbits and of finite orbits, but it is semi-free: the complement of

the fixed point set is free. The quotient map (X , φ) → (X , φ) is a morphism of (permutation)

racks.

We claim that this morphism induces an isomorphism of spectral sequences from the E2

pages on. To justify this claim, note that the E2 pages are given in terms of the equiv-

ariant homology of the homotopy orbit spaces X//φ and X//φ, respectively. The induced

map X//φ → X//φ between the homotopy orbit spaces is as follows: The components

coming from free orbits are contractible, so any map is a homotopy equivalence. The com-

ponents coming from the finite orbits are equivalent to circles, and the collapse of an orbit

of length n � 1 to a single fixed point induces an n–fold covering. Both maps yield isomor-

phisms on the level of rational homology. Together with naturality, this proves our claim: we

have a morphism of spectral sequences that is an isomorphism from their E2 pages on.

After all this dévissage, we are left to deal with a semi-free permutation rack (X , φ) with

finitely many orbits. We can compute the Poincaré series of the E2 page as in the proof of

Theorem 5.1:

∑

n�0

⎛

⎝

∑

p+q=n

rank(E2
p,q)

⎞

⎠ Tn =
1 + T

1 − f (T)T
.

In contrast to Theorem 5.1, we now have

f (T) = (r − 1) + rfinT,

where r is the number of orbits, and rfin is the number of finite orbits. Therefore, the Poincaré

series of the E2 page equals

1 + T

1 − (r − 1)T − rfinT2
.

Equivalently, the Betti numbers βn =
∑

p+q=n rank(E2
p,q) can be computed from the fol-

lowing recursion formula:

β0 = 1, β1 = r , (6.1)

βn+2 = (r − 1)βn+1 + rfinβn, n � 0. (6.2)

We thus obtain an upper bound on the Poincaré series of the E∞ page, which agrees

with the Poincaré series of the homology HR•(X , φ). We claim that this bound is sharp:

they are equal. Once we have established that claim, the result follows because any non-zero

differential would contradict the equality of the Poincaré series.

To prove the claim, we will use Propositions 1.5 and 1.6 to produce a sufficient supply

of homology classes in HR•(X , φ). Choose a set Q ⊆ X of orbit representatives. Let F �
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Q denote the set of fixed points. (The case Q = F was treated in Sect. 5). Choose any

element q∗ ∈ Q\F . Define subsets Bn ⊆ CR•(X , φ) inductively by

B0 = { 1 },

B1 = Q,

Bn = { (q − q∗)b1 | q ∈ Q \ {q∗}, b1 ∈ Bn−1 } ∪ { ( f q∗ + q∗ f − q∗q∗)b2 | f ∈ F, b2 ∈ Bn−2 }.

By construction, the cardinalities |Bn | satisfy the same recursive formula as the Betti num-

bers βn above, hence |Bn | = βn for all n. Moreover, since

f q∗ + q∗ f − q∗q∗ = f f − ( f − q∗)( f − q∗), (6.3)

Propositions 1.5 and 1.6 allow us to move the differential d through a chain b ∈ Bn all the way

to the right, and show that b is a cycle. It remains to check that these cycles induce linearly

independent homology classes in each HRn(X , φ). We will actually prove slightly more: the

images of these homology classes in HRn(S, id) = (ZS)⊗n under the map (1.1) are linearly

independent. Identifying the orbit set S = X/φ with the set of orbit representatives Q, we

reduce our task to proving linear independence in the free abelian group (ZQ)⊗n = Z(Qn).

Consider any order on the set Q of orbit representatives that has q∗ as its minimal ele-

ment and extend it anti-lexicographically to the basis Qn of Z(Qn). By construction, any

element b ∈ Bn is a product of some terms of the form (q − q∗), and some terms of the

form ( f q∗ + q∗ f − q∗q∗), possibly with another element of Q appended on the right.

As any element b can also be written, uniquely, as a linear combination of monomials

from Qn , let us consider the maximal monomial, say m = m(b), appearing in this linear

combination; it is obtained from b by selecting the q from the terms (q − q∗), and the q∗ f

from ( f q∗ + q∗ f − q∗q∗). On the other hand, per our design, the element b is uniquely

reconstructible from its maximal monomial m: Indeed, the chosen minimal element q∗ can

appear in m either on the right, or followed by some f ∈ F . Replacing each subword of the

form q∗ f in m with ( f q∗ + q∗ f − q∗q∗), and then each letter q that remained untouched,

except for the rightmost letter of m, with (q − q∗), we recover the element b from m. This

shows that the matrix of coefficients with respect to the chosen order is triangular, and the

elements are linearly independent in Z(Qn), and this proves our claim. ⊓⊔

Remark 6.2 When we need an explicit description of the homology classes of semi-free per-

mutation racks, then instead of Bn we can take a more manageable basis, defined recursively

as follows:

B ′
0 = { 1 },

B ′
1 = Q,

B ′
n = { (q − q∗)b1 | q ∈ Q \ {q∗}, b1 ∈ B ′

n−1 } ∪ { f f b2 | f ∈ F, b2 ∈ B ′
n−2 }.

Indeed, by construction, the sets Bn and B ′
n have the same cardinalities, and by (6.3) they

have the same linear span. This basis can be extended to the case of general (non-semi-free)

permutation racks: we only need to replace the elements f f b2 with the more involved trace

construction ftr(b2) from Remark 1.7. In the proof we preferred not to do so, and collapsed

all finite orbits to fixed points instead, keeping the main line of thought as non-computational

as possible.

Corollary 6.3 Let (X , φ) be a permutation rack with rfin of the r orbits finite. Then all its

homology groups HRn(X , φ) are free abelian, and the Poincaré series of the rack homology
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is

∞
∑

n=0

rank HRn(X , φ)T n =
1 + T

1 − (r − 1)T − rfinT2
.

The reader can easily check that this formula specializes to the ones given earlier in the

cases when (X , φ) is free (rfin = 0) or all orbits are finite (rfin = r ).

Remark 6.4 Standard manipulations transform the above formula into an equivalent one,

which can be more suitable in practice:

∞
∑

n=0

rank HRn(X , φ)Tn =

∞
∑

n=0

(r − 1)n

(

1 + T

T

) (

T

1 − rfinT2

)n+1

.

The recursive formulas (6.1) and (6.2) are probably even more convenient for computations.
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