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Abstract

Scientific fact-checking aims to determine the veracity of scien-
tific claims by retrieving and analysing evidence from research
literature. The problem is inherently more complex than general
fact-checking since it must accommodate the evolving nature of
scientific knowledge, the structural complexity of academic litera-
ture and the challenges posed by long-form, multimodal scientific
expression. However, existing approaches focus on simplified ver-
sions of the problem based on small-scale datasets consisting of
abstracts rather than full papers, thereby avoiding the distinct chal-
lenges associated with processing complete documents. This paper
examines the limitations of current scientific fact-checking systems
and reveals the many potential features and resources that could be
exploited to advance their performance. It identifies key research
challenges within evidence retrieval, including (1) evidence-driven
retrieval that addresses semantic limitations and topic imbalance
(2) time-aware evidence retrieval with citation tracking to mit-
igate outdated information, (3) structured document parsing to
leverage long-range context, (4) handling complex scientific expres-
sions, including tables, figures, and domain-specific terminology
and (5) assessing the credibility of scientific literature. Preliminary
experiments were conducted to substantiate these challenges and
identify potential solutions. This perspective paper aims to advance
scientific fact-checking with a specialised IR system tailored for
real-world applications.
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1 Introduction

Fact-checking aims to assess the veracity of factual claims based
on credible evidence [37, 116] and serves as a crucial safeguard
for mitigating misinformation. Scientific fact-checking is a spe-
cialised variant of this task, grounded in scientific knowledge, with
the objective of combating misinformation that affects the pub-
lic, helping researchers in knowledge discovery and assisting in-
dividuals in understanding scientific advancements [97]. This is
particularly important given the rapid emergence of new scien-
tific findings, where both professionals and the public must assess
the credibility of information. A prominent case occurred during
the COVID-19 pandemic, in which politically motivated misinfor-
mationÐranging from inflated infection statistics to unsupported
treatmentsÐcirculated extensively, eroding public trust and endan-
gering health communication [58]. However, existing approaches
to scientific fact-checking remain limited, primarily relying on the
retrieval of evidence from relatively simple and small-scale sources
[16, 49, 62, 72, 75, 100, 101, 104]. For example, SciFact-Open [101],
the largest available dataset for scientific fact-checking, contains
500,000 documents ś substantially smaller than PubMed, which con-
tains over 37 million biomedical publications. In addition, SciFact-
Open consists only of abstracts, rather than full-text papers, thereby
excluding critical structural and citation information, ignoring long-
range context and scientific expression conveyed through tables
and figures. These design simplifications may hinder the applicabil-
ity of current approaches in real-world settings, where scientific
evidence is embedded in long and structurally complex documents
with multimodal content.

Fact-checking is a knowledge-intensive task, where the verifica-
tion process relies on sourcing evidence from a reliable upstream
Information Retrieval (IR) system. Emerging findings indicate the
value of effective retrieval in improving fact-checking systems.
For example, introducing even a small amount of noise into evi-
dence can significantly degrade fact-checking performance [76].
Recent Retrieval-Augmented-Generation (RAG) techniques have
been widely used for fact-checking [28, 47, 63, 70, 80, 84, 94], where
retrieval models are fine-tuned to identify high-quality evidence
for claim verification. These observations underscore the critical
role of robust evidence retrieval, as an ideal IR system for fact-
checking should rank all relevant evidence at the top while filtering
out non-evidential noise. Ensuring retrieval robustness is crucial to
maintaining sufficient yet relevant evidence, which is essential for
improving scientific fact-checking accuracy.

Amajor trend in fact-checking research is to consider realistic set-
tings that employ rich, diverse and timely evidence sources, as seen
in FEVER (using Wikipedia) [90] and AVeriTeC (using web-wide
resources) [78]. In document level evidence retrieval, current
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general fact-checking systems over-rely on commercial search APIs,
which do not consider the specific requirements of fact-checking
[77, 91, 116]. Such reliance on commercial search APIs ś with lim-
ited adaptability ś has left document retrieval methodologies under-
explored in fact-checking, especially for domain-specific corpora
such as scientific fact-checking. Current scientific fact-checking sys-
tems primarily employ off-the-shelf IR methods [97], such as lexical
matching and semantic relevance ranking, which do not scale effec-
tively for large-scale scientific corpora. In addition, the distribution
of relevant evidence across scientific topics is highly imbalanced,
which degrades both retrieval effectiveness and efficiency, espe-
cially for claims with scarce supporting literature. SciFact-Open
[101], which extends the original SciFact dataset [100] for large-
scale evaluation, illustrates this issue: verification performance on
SciFact-Open drops by at least 15 F1 points for all well-performed
fact-checking systems developed in SciFact [101]. While increasing
corpus size enhances evidence diversity, it also amplifies retrieval
noise, reducing efficiency in both retrieval and verification. Beyond
that, high semantic relevance does not guarantee high evidential
relevance, and irrelevant yet semantically similar documents can
introduce noise into downstream verification [117]. These chal-
lenges underscore the necessity of developing tailored document
retrieval systems specifically designed for scientific fact-checking,
as effective retrieval is a prerequisite for accurate claim verification.

Beyond document-level evidence retrieval, within-document

evidence retrieval is also essential for processing complex sci-
entific literature. Scientific papers, unlike general fact-checking
documents, are long, structured, domain-specific and involve addi-
tional metadata. As scientific fact-checking evolves from abstract-
based to full-paper retrieval, retrieval models must account for
metadata (e.g., publish date, citations) and complex structured data
format (e.g., charts, tables, figures). This necessitates the adaptation
of verification models such as SciBERT [11] for domain-specific
terminologies [100], Longformer [12] for long-range dependen-
cies [102] and TAPAS [38] for tabular data verification [3]. Sci-
entific expressions in academic papers are highly structured and
contextually interdependent, where textual content, tabular data,
and figures mutually reinforce the conveyed information. How-
ever, existing scientific fact-checking systems primarily operate
at the abstract level, adopting methodologies similar to general
fact-checking [49, 50, 68, 72, 75, 97, 100, 102, 111, 119], albeit incor-
porating domain-specific models such as BioSentVec [21] and SciB-
ERT [11]. The development of public full-paper datasets aligns with
the requirement of real-world scientific fact-checking systems for
effective verification. This highlights the urgent need for retrieval
and verification methodologies that can leverage entire scientific
documents. Accordingly, within-document evidence retrieval and
its integration into verification pipelines should be explored to fully
unlock the potential of scientific literature for fact-checking.

This perspective paper presents a comprehensive examination of
the challenges associated with evidence retrieval in scientific fact-
checking, highlighting challenges that are not typically faced

within general fact-checking, leading to the need for specialised
retrieval and verification strategies. We advocate for proactive re-
search efforts to develop scalable methodologies while addressing
the limitations of current datasets. We structure our discussion into
two parts following a typical fact-checking pipeline: Sections 2ś3

explore document-level evidence retrieval while Sections 4ś8 ex-
plore within-document evidence retrieval in scientific publication
for scientific fact-checking. Each of the following sections identi-
fies a research challenge followed by a tentative and illustrative
research direction (RD).

2 Beyond Semantics

Evidence retrieval for fact checking is closely related to traditional
document retrieval techniques, which typically focus on retrieving
documents that are semantically similar to a query or containmatch-
ing keywords. While this approach is effective in many scenarios,
it often fails to address the ultimate objective of fact-checking ś
successful claim verification. Evidence retrieval that relies solely on
semantic similarity may prioritise irrelevant or low-context infor-
mation, introducing noise into the subsequent verification process.
Recent IR studies [67, 92] show that semantic relevance alone may
not ensure utility in knowledge-intensive NLP tasks under the RAG
framework, suggesting the importance of utility-aware retrieval
strategies. To improve the verification utility of evidence retrieval
systems, techniques such as fine-tuning, joint optimisation, and
learning from verification feedback have been developed. These
approaches leverage relevance labels derived from annotated gold
evidence [40, 68, 117, 119, 120]. Although graded relevance has
been extensively explored in general IR, current evidence retrieval
systems for fact-checking often oversimplify relevance as binary,
failing to differentiate between fully non-evidential and partially
relevant evidence. This coarse-grained labelling scheme fails to
differentiate between completely non-evidential documents and
partially relevant (plausible) evidence. Negative examples and ran-
domly retrieved examples are equally treated as 0, despite exhibiting
varying degrees of evidential support. We argue that evidence re-
trieval should distinguish between non-evidential information and
plausible evidence, enhancing the model’s ability to identify previ-
ously unobserved but potentially useful evidence within large-scale
corpora.

Developing an IR system that can effectively differentiate be-
tween evidential and non-evidential information requires access
to fine-grained relevance labels during training. However, manu-
ally constructing negative samples is both complex and resource-
intensive due to the vast number of unlabelled documents and
sentences that lack explicit pairing with given claims. Furthermore,
assessing the degree of evidential support for a claim within unla-
belled documents is inherently challenging. To validate the impact
of fine-grained evidential relevance, beyond semantic relevance, we
carry out preliminary experiments which explore the use of down-
stream verification feedback to capture different levels of evidential
values.

Experiment Overview. The experiment investigates whether
combining verification feedback with semantic relevance improves
the performance of document evidence retrieval. Figure 1 presents
the pipeline, where probabilities from downstream verification
serve as feedback. Specifically, we integrate two components: 1) the
semantic relevance score, computed using an off-the-shelf reranker
model, and (2) the verification success feedback score, derived from
a fine-tuned verifier model, indicating the degree to which a docu-
ment is evidential for a given claim.
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Figure 1: Pipeline of experiment

Approaches. monoT5-3B [64] has demonstrated strong perfor-
mance as a reranker for SciFact, as evidenced by its widespread
use as a strong baseline in studies [55, 86] on the BEIR benchmark
[89]. It also demonstrated state-of-the-art performance in evidence
retrieval for verification [68, 97, 102]. The model assigns a predicted
score, 𝑠𝑟

𝑐,𝑑
, representing the semantic relevance for a document 𝑑

to a claim 𝑐 as defined in Equation 1.

𝑓 (𝑐, 𝑑) → 𝑠𝑟
𝑐,𝑑

, 𝑠𝑟
𝑐,𝑑

∈ (0, 1) (1)

MultiVerS is the best-performing verifier model on SciFact [97,
102]. We reproduced this model using the official implementation1

while adjusting the negative sampling parameter from 20 to 5 to
avoid over-fitted verification feedback. The model predicts the veri-
fication outcome as per the calculated probabilities for a document
𝑑 either supporting 𝑝𝑟

𝑐,𝑑
, refuting 𝑝𝑠

𝑐,𝑑
or providing insufficient in-

formation 𝑝𝑛
𝑐,𝑑

, relative to a claim 𝑐 , as follows:

𝑉 (𝑐, 𝑑) = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝𝑟
𝑐,𝑑

, 𝑝𝑛
𝑐,𝑑

, 𝑝𝑠
𝑐,𝑑

) (2)

+Verification (Ideal Reranker Model) combines semantic relevance
and verification feedback to refine evidential retrieval. The final
retrieval score is calculated by summing the semantic score (𝑠𝑟

𝑐,𝑑
)

and the verification probabilities (𝑝𝑟
𝑐,𝑑

and 𝑝𝑛
𝑐,𝑑

), followed by a nor-

malisation step to ensure the score remains within (0,1), formulated
as:

𝑠𝑟+𝑣
𝑐,𝑑

= 1/2 ∗ (𝑠𝑟
𝑐,𝑑

+ 𝑝𝑟
𝑐,𝑑

+ 𝑝𝑠
𝑐,𝑑

) ∈ (0, 1) (3)

This formulation ensures that documents contributing to support
or refute labels receive higher retrieval scores, enhancing the evi-
dential quality of retrieved documents.

To evaluate retrieval effectiveness, we use Recall@k (R@k), a
common evaluation approach that measures the proportion of rele-
vant evidence successfully retrieved within the top 𝑘 results.

1https://github.com/dwadden/multivers

Table 1: Retrieval result on SciFact-Open and Check-COVID

SciFact-Open R@50 R@20 R@10 R@5 R@3 R@1

BM25 66.09 54.78 45.22 38.04 30.87 20.22
monoT5-3B 88.91 79.13 71.09 57.17 48.26 31.09
+Verification 91.96 81.95 71.30 62.61 52.83 32.17

Check-COVID R@50 R@20 R@10 R@5 R@3 R@1

BM25 87.91 81.96 75.02 67.59 61.35 46.18
monoT5-3B 95.84 93.16 89.49 82.06 74.93 58.28
+Verification 96.13 94.55 91.48 84.04 77.80 61.84

Table 2: Evidence positions in the retrieved list. We select an ex-

ample from the SciFact-Open dataset. Claim: Female carriers of the

Apolipoprotein E4 (APOE4) allele have a reduced risk forAlzheimer’s

disease. Gold Evidence: [E1,E2,E3,E4,E5]

reranker model E1 E2 E3 E4 E5

BM25 838th 141th 7th 163th 67th

monot5-3B 1st 8th 16th 2nd 302nd

+Verification 1st 3rd 5th 2nd 27th

Datasets. We conduct our evaluation using datasets including:
(1) SciFact [100]: A corpus of 5,183 abstracts from scientific arti-
cles, with 809/300/300 samples for train, validation and test sets.
The test set is not publicly accessible. (2) SciFact-Open [101]: An
extended version of SciFact with 500K abstracts, re-annotating evi-
dence documents for 279 claims from the original SciFact test set. (3)
Check-COVID [104]: A COVID-19-specific fact-checking dataset,
containing 347 abstracts from CORD-19 journal articles and 1,504
expert annotated news-related claims.

MultiVerS is trained on the SciFact train set to create a verifier
model that provides verification feedback. Since the SciFact test
set is inaccessible, we evaluate document evidence retrieval on
SciFact-Open and full Check-COVID.

Results. The integration of verification feedback consistently en-
hanced document evidence retrieval, as +Verification outperformed
monoT5-3B across nearly all cut-off thresholds in both SciFact-Open
and Check-COVID (Table 1). The improvements are particularly ev-
ident at lower cut-offs, where retrieving the most relevant evidence
is crucial. In SciFact-Open, Recall@5 and Recall@3 increased from
57.17% to 62.61% and from 48.26% to 52.83%, respectively. Similarly,
in Check-COVID, these metrics improved from 82.06% to 84.04%
and from 74.93% to 77.80%. These improvements are particularly
meaningful given that the average number of gold evidence doc-
uments per claim is 1 in Check-COVID and approximately 2 in
SciFact-Open. To illustrate this improvement, we conducted a case
study examining how different retrieval methods ranked specific
evidence documents (Table 2). Compared to monoT5-3B, +Verifi-
cation successfully elevated the ranks of E2, E3 and E5, retrieving
three additional pieces of evidence within the top 5 results. Notably,
E5, ranked 302nd by monoT5-3B, was effectively rescued by adding
verification feedback in +Verification, demonstrating the value of
integrating verification-informed retrieval signals.

These findings highlight a promising research direction: shift-
ing from semantic-only retrieval towards evidence-aware retrieval,
where retrieval models explicitly account for evidential value. Our
results suggest that leveraging well-performing verification models
can help refine retrieval systems by distinguishing between purely
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semantic relevance and plausible evidential relevance among unan-
notated documents. Furthermore, to continually improve evidence-
aware retrieval, we propose the development of tailored IR systems
capable of identifying evidential information, thereby enhancing
evidence retrieval for scientific fact-checking.

RD.1. Benchmark tailored IR system for fact-checking

The preliminary study presented in this work outlined a framework
to enhance evidence retrieval beyond only semantic relevance. To
overcome the limitations of existing IR systems in scientific fact-
checking scenarios, it is imperative to develop specialised IR sys-
tems capable of handling the specific challenges of verification tasks.
However, training an IR system on a single fact-checking dataset
risks poor generalizability and potential overfitting, particularly due
to data imbalance, a common issue in the relatively small datasets
characteristic of scientific fact-checking [97, 116]. Furthermore,
poor verification performance deteriorates retrieval accuracy, cre-
ating a vicious feedback loop that further degrades overall system
effectiveness. A multi-pronged strategy could mitigate these chal-
lenges by pooling verification signals from various high-performing
verifier models, leveraging large-scale datasets such as FEVER [90]
to improve training robustness, and providing a shared retrieval

checkpoint enable subsequent studies to fine-tune the model for
specific scenarios or datasets while reducing training cost. Recent
work [51, 74] has explored unified retrieval models for knowledge-
intensive NLP tasks, focusing on retrieval quality and downstream
task utility [73, 115], including question answering (QA) and fact-
checking. Similarly, we propose a verification-driven IR system for
evidence retrieval, which explicitly incorporates evidential infor-
matics. This approach follows a two-step training paradigm: general
pre-training on large, diverse datasets followed by domain-specific
fine-tuning. This approach balances scalability and domain speci-
ficity, ensuring IR models are both robust across different contexts
and highly effective in targeted fact-checking applications. Addi-
tionally, a corresponding benchmark should employ a diverse set
of evaluation metrics beyond for the fact-checking task to ensure
comprehensive assessment of performance within fact-checking
[6]. These metrics could include verification accuracy, reflecting the
downstream utility of retrieved evidence; decision latency, measur-
ing the computational efficiency of retrieval models; and robustness

to real-world conditions such as noisy data and incomplete evidence,
to improve system resilience.

Integrating verification feedback into evidence retrieval improves
relevance assessment beyond binary labels, enhancing retrieval per-
formance. Future research should focus on developing a benchmark
IR system tailored for fact-checking, incorporating fine-grained
relevance labels and verification-driven retrieval models. A scalable
pre-training and fine-tuning approach has the potential to improve
retrieval robustness and generalizability thereby producing more
accurate and efficient fact-checking systems.

3 Imbalanced resources of scientific topics

In existing general fact-checking datasets, such as FEVER which is
based on Wikipedia, the distribution of gold evidence per claim is
relatively even and sufficient. However, a significant imbalance of
evidence is observed in scientific fact-checking. While the SciFact

Table 3: Sufficient-evidence claim and none-evidence claim exam-

ples in SciFact-Open. ‘Evidence’ is the number of evidence in SciFact-

Open corpus and ‘Entities’ is the number of entities by searching

bold-keyword in PubMed.

Claim Evidence Entities

Obesity is determined in part by
genetic factors.

24 499k

LRBA controls CTLA - 4 expression. 0 0.27k

corpus (~5K documents) maintains a relatively balanced number of
evidence documents per claim, this balance was disrupted when the
dataset was expanded to create SciFact-Open (~500K documents).
In this larger corpus, the majority of claims have none or only
one piece of supporting evidence while others have over. Claims
related to less-researched topics are generally associated with fewer
scientific publications, as illustrated by the examples in Table 3.

However, most fact-checking systems do not explicitly account
for evidence imbalance. A common approach is to use a fixed re-
trieval cut-off (i.e., selecting a predefined number of top-ranked
documents for verification). One of the most inefficient approaches
is setting the cut-off equal to the maximum number of evidence
per claim in the dataset, ensuring that all possible evidence is re-
trieved. This heuristic has not previously caused major issues since
general fact-checking datasets contain a relatively balanced num-
ber of supporting documents per claim. However, the imbalance
in SciFact-Open suggests that the simple approach may not be
suitable for open-domain scientific fact-checking with two major
drawbacks:

(1) Inefficiency. Although the maximum number of gold evi-
dence documents in the SciFact-Open dataset is 24, less than one
third of claims have more than two. Using the maximum number as
a cut-off would be inefficient due to the large number of documents
that would have to be processed by the verifier.

(2) Inaccuracy. Introducing irrelevant evidence into downstream
verification degrades fact-checking performance, whether the noise
is semantically related or completely random [76] (as discussed in
Section 2).

To address these challenges in the current and future studies of
scientific fact-checking, we proposed a research direction based
on flexible cut-off strategy for retrieving evidence based on claim
characteristics.

RD.2. Flexible cut-off for Retrieved Evidence

Ranked List Truncation (RLT) refers to the task of selecting an opti-
mal prefix of a ranked list of retrieved documents, with the goal of
balancing retrieval effectiveness and efficiency. Prior work explores
both heuristic and learned approaches, using either relevance labels
or features derived from score distributions to determine the cut-off
point [10, 52, 59, 61, 103, 109]. A related line of work is stopping
methods in technology-assisted review (TAR) [14, 15, 85], which
aim to retrieve as much relevant information as possible while min-
imising the effort spent on examining irrelevant documents. Both
approaches aim to optimise an expected metric over candidate cut
positions, typically using metrics such as 𝐹1@𝑘 or 𝑟𝑒𝑐𝑎𝑙𝑙@𝑘 . The
datasets used in these prior studies on RLT and stopping methods,
such as CLEF and TREC [25ś27, 33, 43ś45], exhibit imbalance but
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typically contain enough relevant items per query to support recall-
based supervision and evaluation. This dependence on sufficient
relevance labels becomes problematic in fact-checking scenarios,
where gold evidence documents are typically rare, making both
recall-based stopping and supervised RLT approaches unsuited to
this problem.

To explore whether relevance score distributions indicate evi-
dence sufficiency, we compare well-studied and less-studied claims
from SciFact-Open. Following Wadden et. al. [101], claims with
four or more gold evidence documents are considered to be well-
studied and those with none to be less-studied. Using monoT5-3B,
we compute several statistics over the ranked document scores,
including first-document relevance, average and total scores, score
decay, and the initial-to-final score ratio. Table 4 shows that well-
studied claims tend to have higher top-ranked scores and sharper
decay patterns, suggesting that relevance distributions may serve
as indicators of evidence sufficiency.

Table 4: Statistical analysis of average relevance scores for

well-studied and less-studied claims. ‘I/F’ ratio is Initial-to-

Final ratio. ‘Exp k’ denotes the exponential decay factor k.

Metric 1st Doc Mean Sum I/F ratio Exp k

Less- 0.941 0.502 25.097 3.514 1.544
Well- 0.995 0.741 37.052 1.963 0.651

Based on these findings, one possible direction is to leverage
existing techniques to estimate whether a claim is less-studied or
well-studied. A prediction module could utilise statistical features
of relevance distribution such as those presented in Table 4. In addi-
tion, metadata such as retrieved entity counts in PubMed (Table 3)
can serve as auxiliary signals to refine the prediction. Claims pre-
dicted as less-studied ś e.g., with low total relevance or steep score
decay ś may be assigned smaller cut-offs to reduce verification cost,
while RLT and stopping techniques could be applied to well-studied
claims where concentrated high scores suggest richer evidence.

While this naive strategy relies on heuristic features, it does not
explicitly optimise verification performance. To address this, future
approaches could explore learning a cut-off policy using feedback
from the verification stage. Specifically, truncation points may be
selected based on reward signals, such as whether the claim is cor-
rectly verified or the confidence of the verifier. This would bypass
the need for relevance-labelled supervision, which is often infeasi-
ble in scientific fact-checking due to sparse annotations. Inspired
by prior RLT and stopping method work, such a learned policy
could optimise both efficiency and factual accuracy by aligning
truncation decisions with downstream verification performance.

4 Time and Citation

General fact-checking evidence corpus such as Wikipedia and fact-
checking websites, often lack sentence-level evidence timestamps,
making it difficult to determine the original publish time of sentence
evidence in verification and hindering the development of time-
aware retrieval methods. Timeliness is important in fact-checking,
but in science, evolving evidence makes outdated studies particu-
larly problematic. For instance, early COVID-19 treatment studies

Table 5: Results of health QA task considering the different

thresholds of the published time of literature [99]

Year Precision Recall F1 score

≥2020 59.7 60.3 58.7

≥2018 59.6 58.0 57.9
≥2015 61.1 56.0 53.9
≥2010 63.4 55.6 52.8
≥2005 68.1 56.5 52.0
≥2000 66.1 56.8 51.8
≥1990 65.6 55.4 51.3
≥1980 64.2 54.7 50.0

were later refuted, and outdated evidence may lead to harmful de-
cisions. This section discusses whether scientific publications are
more suitable for time-aware fact-checking and explores possible
ways to leverage their inherent temporal characteristics.

4.1 Timeliness of evidence

Unlike general fact-checking, where historical and static facts re-
main unchanged, scientific knowledge continuously evolves. This
fundamental difference necessitates time-aware retrieval in scien-
tific fact-checking to ensure that retrieved evidence remain valid
and reflective of the latest scientific consensus. A time-sensitive
retrieval mechanism should prioritise recent publications to en-
sure that fact-checking systems incorporate the most up-to-date
methodologies and factual updates. This is especially crucial in
fields like healthcare, where relying on outdated information could
lead to misleading conclusions or incorrect decisions. For example,
during a rapidly evolving pandemic, a medical treatment initially
considered effective might later be deemed unreliable. This sec-
tion discusses the challenges and opportunities of integrating the
evidence timestamp into scientific fact-checking.

Scientific fact-checking aims to find evidential information in
the literature to verify a claim. Intuitively, considering outdated
literature negatively affects verification. Research in healthcare
question answering (QA) has demonstrated that time-aware re-
trieval improves system performance [99], as shown in Table 5. The
F1 score of the healthcare QA system improves as the publication
year of evidence documents becomes more recent. By extension,
scientific fact-checking on a large-scale corpus may also suffer from
incorporating outdated evidence. These findings highlight the need
for time-aware filtering in scientific fact-checking systems to en-
hance reliability. Fact-checking datasets could explicitly incorporate
timestamps as metadata to facilitate research into temporal rele-
vance in retrieval and verification. A general fact-checking study
[9] collected the ‘timestamp of last update’ of claims and evidential
documents, allowing later research [8] to explore the impact of
temporal data on verification. This study found that a time-aware
system achieved a 15% improvement in macro F1 score, underscor-
ing the importance of temporal information. However, this work
was limited by: (1) focusing on verification only, where evidence
documents had already been retrieved in a separate initial step,
without ensuring that retrieval prioritised high-quality and tem-
porally relevant evidence, and (2) the use of fragmented evidence ś
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the general fact-checking datasets usually only contain small snip-
pets of web documents, omitting many important time expressions
present in full texts.

Given these findings, it is essential to develop a fact-checking
system that explicitly incorporates temporal awareness across both
retrieval and verification stages to meet real-world applications.

RD.3. Time-Aware Retrieval and Verification

Traditional fact-checking approaches often handle conflicting evi-
dence for a single claim by assigning neutral veracity labels, such
as “mixture," “unproven," or “not enough information" [37, 97].
However, conflicting evidence often arises due to outdated stud-
ies included in the retrieval process, which introduces noise and
adversely affects prediction accuracy [99]. This issue has been ob-
served in healthcare QA systems, where outdated evidence degrades
performance [99]. To address this issue, we propose a time-aware
approach that incorporates temporal information into both retrieval
and verification stages:

1.Retrieval Stage: Outdated evidence should be filtered or de-
prioritised during retrieval to ensure that the retrieved evidence
set is temporally aligned with the latest scientific findings.

2.Verification Stage: After filtering by time-aware retrieval, all
retrieved evidence should be considered but with differentiated
weighting based on temporal relevance. Recent evidence should be
prioritised through higher weights, while older evidence should
serve as supplementary or contextual information rather than pri-
mary evidence.

By processing outdated evidence differently across retrieval and
verification components, this direction explores how temporal in-
formation can reduce noise and improve the reliability of scientific
fact-checking systems.

4.2 Indirect evidence through citation

General fact-checking faces a number of challenges when attempt-
ing to determine the timeliness of evidence: (1) Lack of publication
timestamp [8]. Many fact-checking sources, such as Wikipedia and
fact-checking websites, do not provide precise publication dates
for individual sentences or paragraphs. Instead, they record only
the last edited timestamp, which does not accurately reflect when a
fact was first published. (2) Tracking the origin of evidence. Evidence
is often copied or paraphrased across multiple sources, making it
difficult to determine the original publication date of a statement.
(3) Search engine bias in retrieval. Pre-established fact-checking
datasets retrieve evidence using top-k search engine results, where
ranking mechanisms may prioritise recent documents due to time-
aware ranking biases. This can misrepresent the actual chronology
of claims and lead to fragmented evidence, making time extraction
unreliable.

While these challenges also affect scientific fact-checking, they
can be naturally mitigated by leveraging full-text papers rather than
abstract-only sources. Themain advantages of using full-text papers
include: (1) Explicit publication metadata: Each piece of literature
has a clearly defined publication date, ensuring accurate temporal
tracking. (2) Citation tracing for indirect evidence: Mandatory cita-
tion rules in academic publications facilitate source tracing, even
when statements are referenced indirectly. (3) Structured nature

of academic papers: provides an indication of the origin of state-
ments. For example, evidence in the background section typically
references prior studies, whereas those in the abstract or results
sections represent findings from the current publication. Given
these inherent advantages, incorporating timestamps as metadata
offers a promising research direction for full-paper-based scien-
tific fact-checking. Exploring the temporal dynamics of claims and
evidence should further enhance retrieval accuracy. Additionally, ci-
tation tracking to trace the original source of paraphrased evidence,
ensuring the first-published timestamp is accurately recorded.

Citation-based tracking provides a promising approach to esti-
mating evidence timestamps. However, the widespread presence of
multiple citations in scientific literature makes it difficult to iden-
tify which references should be tracked, increasing computational
costs and reducing efficiency. Moreover, indirect citations and para-
phrased references, particularly in introductory sections, further
obscure the retrieval of the first-published source. To address these
issues, we propose the following research direction to develop a
more effective approach for citation tracking and timestamp attri-
bution.

RD.4. Citation-Based Evidence Tracking

Intuitively, self-contained evidence refers to information directly
presented in the body of the current paper, while cited evidence is
derived from external sources referenced by the paper. To explore
this distinction, we analysed 22 accessible full papers out of 24
gold evidence for the claim in Table 2. We prompted GPT-4o to
search for supporting/refuting evidence and determine whether
each piece of evidence was paraphrased/summarised from a citation
or is self-contained.

Figure 2: Evidence sources in scientific literature.

The result shown in Figure 2 reveals, as expected, that cited
evidence is predominantly located in the introduction, while self-
contained evidence is more common in the results and conclusion
sections. While we observed a few inaccurate outcomes (e.g., one
‘From Cited’ evidence appearing in ‘Abstract’ is misjudged), the
overall distribution remains discernible and interpretable. In ad-
dition, we also observed that sentences in scientific literature fre-
quently contain multiple citations, making it costly to manually
extract the original timestamp of cited evidence. To address this
challenge, we propose a two-step approach:

1. Identify track-worthy citations.Not all citations are equally
important for fact verification. Track-worthy citations should in-
clude: conclusive evidence directly influences claim verification and
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plausible evidence that may impact claim assessment [108]. Since
checking every cited document is expensive, an initial filtering
step is required. A potential solution is to rank citations based on
their relevance and function. Citation recommendation [30, 34] is a
similar task to identify relevant publications for a given statement
using retrieval models. Beyond relevance, the function of citation
can be referred to as a signal to adjust priority. Citations are classi-
fied into eight categories: background, motivation, uses, extends,
similarities, differences, compare/contrast, and future work [42].
While single evidence has multiple citations, the function of cita-
tion can help identify the citations that align with the evidence.
For example, for predicted evidence ‘Experiments show model A
outperforms previous SOTA model B [citation 1,2,3]’, cited papers
for ‘model A/B’ in the ‘introduction’ function are less check-worthy
than the citation in the ‘compare/contrast’ function. By prioritising
high-impact citations, retrieval costs can be significantly reduced.

2. Track the original timestamp of evidence. Once track-
worthy citations are identified, the next step is to trace the original
timestamp of cited evidence via direct and indirect citation tracking.
Direct citation tracking can be applied if the publication date of the
cited paper is straightforward to retrieve. However, some evidence
is paraphrased or indirectly cited, requiring a deep tracking mech-
anism to trace the citation path. Citation graph analysis [17, 96]
can help map citation paths using directed graphs and applying
search algorithms to identify the earliest relevant source. A recent
study [118] found that reference errors ś references do not include
information to support statement ś frequently appear ranging from
11% to 41% across domains. Addressing these errors introduces
a sub-task for scientific fact-checking: verifying whether a cited
reference truly supports the claim. To ensure feasibility, an early
explorative study can assume that scientific literature generally
adheres to citation conventions, preventing infinite citation loops
in verification.

In summary, to explore time-aware fact-checking for scientific
literature, we propose two potential research directions: (1) Integrat-
ing temporal information into retrieval and verification to handle
outdated evidence and (2) Developing citation-based tracking meth-
ods to identify the original source and timestamp of evidence. These
directions provide a basis for studying the impact of time-aware
mechanisms in scientific fact-checking systems.

5 Structured Long-Context Evidence Retrieval

Existing scientific fact-checking datasets construct evidence cor-
pora using fragmented sentences, paragraphs, or abstracts [16, 49,
62, 72, 75, 100, 104]. However, scientific literature is typically pre-
sented in structured, visually rich formats, often as PDF documents,
where different sections serve distinct functions: abstracts, results,
and conclusions summarise key findings, while background and in-
troduction sections provide prior research context. With the diverse
and unique functionalities of scientific literature components, this
section explores challenges and potential research directions for
advancing scientific fact-checking at the full-paper level. Existing
fact-checking pipelines typically follow a document retrieval and
then sentence selection paradigm [37, 97, 116]. For general fact-
checking, evidence retrieval often uses top-ranked sentences from
top-ranked documents, treating them as self-contained evidence

Title       
Authors

Publish Venue
Publish Time

Citations: 
[ 25, 44 , 60 , 67, 78 , 82 , 92

Figure 3: An example for parsing the scientific literature

units. However, this approach neglects long-range context, as using
the extracted sentences ignores surrounding information to sup-
port verification. In contrast, scientific documents exhibit higher
document-level consistency of verdict, commonly one paper hav-
ing a sole standpoint to a given question, making document-level
processing necessary for scientific fact-checking [50, 102, 119].

LLMs have recently demonstrated growing capability to process
long contexts. However, it remains challenging to fact-check an
entire full-text document in a single pass [105]. LLMs are prone to
hallucinating content that is not grounded in the provided docu-
ments [2, 20, 23, 88] and are often susceptible to distraction from
irrelevant context [82]. Their reasoning capabilities also degrade
as text length increases [46]. A potential solution is context distil-
lation, as used in retrieval-augmented generation (RAG), to filter
high-quality context and mitigate hallucination, which improves
the performance of downstream QA tasks [106]. However, unlike
the QA task, fact-checking requires explicit retrieval of explicit. Fil-
tering context may remove crucial supporting evidence, leading to
incomplete verification. Moreover, much of the historical scientific
literature exists in PDF format. Although recent multimodal LLMs
are capable of consuming PDFs and conducting reasoning tasks,
their capabilities are still limited to surface-level understanding.
For example, they frequently fail to capture cross-page content
and complex layout structures [60, 87, 95]. By prompting GPT-4o
to locate evidence in PDF literature with the results presented in
Section 4.2, we observed that it mislocated evidence in incorrect
sections or non-existent sections. These limitations indicate that ex-
isting LLMs are not capable of supporting end-to-end fact-checking
for long-context scientific literature ś not only for raw PDFs but
also for plain-text documents.

In addition to their length, scientific papers follow a structured
format that introduces additional challenges for verification. Back-
ground and introduction sections often cite prior work, which
may conflict with conclusions drawn later, while discussion sec-
tions highlight limitations that can cast doubt on earlier findings.
These internally inconsistent signals may introduce misleading
information, demanding reasoning that accounts for both the fac-
tual assertions and the functional roles of different sections. Pars-
ing scientific documents into structured units enables a modular
pipeline where retrieval and verification can be independently opti-
mised. Thismodular structure facilitates interpretability, robustness,
and denoising of conflicting or irrelevant content. Layout-aware
tools offer a practical foundation for such structure-aware process-
ing [19, 32, 41, 56, 81], as illustrated in Figure 3.

442



ICTIR ’25, July 18, 2025, Padua, Italy Xingyu Deng, Xi Wang, Mark Stevenson

To address these challenges, we advocate for a retrieval frame-
work that explicitly considers the document structure commonly
found within scientific literature. Such a system should identify
targeted evidence, capture long-range context across sections, and
suppress irrelevant or conflicting content. We next outline a direc-
tion toward adaptive, section-aware retrieval strategies designed
to meet these requirements.

RD.5. Adaptive Section-Aware Evidence Retrieval

Scientific literature follows a structured format where different sec-
tions serve distinct functions, presenting challenges for traditional
evidence retrieval and verification in fact-checking systems. Exist-
ing retrieval methods often operate at the sentence or paragraph
level, neglecting the long-range context and the structured nature
of scientific documents. Additionally, large language models (LLMs)
struggle to accurately associate claims with the appropriate sec-
tions, leading to potential misinterpretations and inconsistencies.

A promising research direction is adaptive section-aware ev-

idence retrieval, which dynamically adjusts retrieval strategies
based on document structure and claim types. This approach con-
sists of two key components:

Claim-evidence matching. Claims should first be matched to
the most relevant sections. For instance, experiment-driven claims,
such as “X method improves accuracy compared to Y,ž should pri-
marily retrieve evidence from the ‘Results’ and ‘Conclusion’ sec-
tions, as these contain empirical findings. In contrast, background
or theoretical claims, such as “X method is widely used in Y applica-
tions,ž should focus on the Introduction and Background sections,
which provide foundational knowledge. Prioritising section-aware
evidence retrieval helps filter irrelevant context and reduces re-
trieval noise.

Contextual expansion. After retrieving primary evidence, the
system should augment it with relevant contextual information
from other sections to improve interpretability. For example, method-
ological details from the ‘Analysis’ section can provide additional
support for experimental claims, while historical context from the
Background section can clarify theoretical claims. Access to the full
document allows for retrieving finer-grained evidence or comple-
mentary details that fragmented approaches may overlook.

In summary, an effective adaptive section-aware retrieval sys-
tem must overcome challenges in accurately parsing document
structures, prioritising relevant sections based on claim types, and
efficiently handling conflicting evidence. By integrating structured
document parsing, hierarchical retrieval strategies, and context-
aware reasoning, future systems can leverage richer evidence from
full-paper scientific literature while reducing LLM hallucinations.
Advancing these techniques will enhance the reliability and inter-
pretability of scientific fact-checking systems.

6 Multimodal content in Science

Scientific literature often conveys key evidence using non-textual
elements such as tables, charts, and figures, which are commonly
used to present experimental results, statistical analyses, and the-
oretical models, as shown in Figure 3. For full-text scientific fact-
checking, especially across various fields of science and technol-
ogy, it is crucial to move beyond text and accurately interpret

these structured elements to ensure comprehensive verification.
Fact-checking and misinformation detection on individual modal-
ities ś such as figures [1, 65, 66, 69, 93, 112], charts [4, 7], and
tables [3, 13, 22, 29, 36, 57, 79, 83, 113] ś has been studied inde-
pendently [5]. To improve tabular reasoning, transformer-based
approaches such as TAPAS [38] and Table-BERT [114] have been de-
veloped. However, these techniques perform poorly in SCITAB [57],
a dataset for scientific fact-checking on tables, with results barely
above random. One possible cause is the lack of contextual ground-
ing for tables, which are rarely self-contained. Similarly, figures and
charts in scientific papers often require surrounding textual expla-
nations for correct interpretation. Recent datasets like AVerImaTeC
[18] address image-text verification using web-sourced data, but sci-
entific domains present greater challenges: figures are densely struc-
tured, often span multiple sections, and require domain-specific
understanding capability.

We argue that scientific fact-checking should shift toward full-
paper analysis, where structured elements are interpreted along-
side their textual context. Unlike standalone multimodal models,
document-level processing enables cross-referencing between fig-
ures/tables/charts and their descriptions, facilitating more faithful
and complete verification.

RD.6. Multi-modal Evidence Alignment

Scientific fact-checking requires integrating evidence across multi-
ple modalities, including text, tables, and figures, to ensure consis-
tency and completeness. Recent multimodal information retrieval
datasets in the scientific domain [71, 110] provide aligned pairs
of textual and structured content, offering a foundation for cross-
modal reasoning. However, in real scientific documents, structured
elements, such as figures and tables, are not always located close
to their descriptive text, making alignment a non-trivial challenge.

A promising direction is to explicitly align structured elements
with their corresponding textual explanations within the same
document. In scientific articles, tables and figures are typically ex-
plained through captions or surrounding sentences. Layout-aware
parsing techniques can help identify these elements and link them
to relevant text spans. Once aligned, their contents can be jointly
encoded, enabling claim verification that draws on both structured
data and contextual text. This alignment facilitates more coherent
retrieval and reasoning across modalities, improving the reliability
of multimodal fact-checking.

This unified framework contrasts with traditional multimodal
systems that process each modality in isolation. Effective alignment
demands progress in scientific document understanding [24, 60],
visual structure parsing [32], and domain-specific retrieval [71].
Integrating these efforts will support full-document, multimodal
verification, where structured evidence is faithfully grounded in its
textual context.

7 Credibility of scientific literature

Existing evidence retrieval models often favour high-ranking doc-
uments based on semantic relevance, often overlooking scientific
rigour [98]. As a result, low-quality documents may be retrieved
as evidence, undermining the credibility of scientific fact-checking.
The reliability of a claim verification process is inherently tied to
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the quality of the supporting literature, making evidence credibility
a crucial factor in scientific fact-checking.

In the domain of scientific literature, credibility assessment is
influenced by multiple factors, including peer-review status, which
ensures methodological scrutiny, citation impact which indicates
how influential a study is within its field, and experimental rigour,
reflecting the robustness of a study’s methodology. However, the
proliferation of non-peer-reviewed manuscripts and publications
from venues with varying editorial standards, particularly in open-
access repositories, poses a growing challenge. Such sources may
lack the rigorous methodological scrutiny necessary to ensure re-
liable scientific conclusions. Therefore, incorporating additional
quality indicators is essential for enhancing the robustness of sci-
entific fact-checking.

RD.7. Extending Indicators of Evidence Quality

Evaluating scientific literature quality extends beyond content
reliability, and should consider factors including venue reputa-
tion, methodological rigour, and experimental transparency. High-
impact journals and prestigious conferences generally enforce strin-
gent peer-review standards, contributing to the credibility of pub-
lished research. Similarly, the expertise and prior contributions of
an author, particularly in reputable venues, can provide further
insight into the credibility of a study. In addition to traditional
metadata, emerging indicators such as replication status, data avail-
ability, and adherence to reporting guidelines can further reflect
methodological soundness. Although metadata-based credibility
assessment is a useful heuristic, it is not foolproof. For example,
selective reporting and statistical manipulation still exist, as some
widely cited studies have later been retracted due to methodolog-
ical flaws [31]. While the integration of such metadata remains a
reasonable approach, as these indicators generally correlate with lit-
erature quality, their limitations must be acknowledged, given that
even widely cited studies can occasionally be subject to retraction
due to undetected methodological flaws.

8 Scientific terminology complexity

Scientific fact-checking systems often encounter challenges when
aligning claims with supporting evidence due to mismatches in
terminology granularity [101, 107]. The prevalence of hierarchical
and synonymous scientific terms introduces significant challenges
in fact verification. Many concepts exist at multiple levels of speci-
ficity, where broader categories encompass more specific subtypes,
leading to ambiguity in claim-evidence alignment. This issue is
further exacerbated by high token-level similarity among related
terms, making it difficult for models to differentiate between general
and specific concepts. As a result, models often misinterpret evi-
dence relevance, increasing the likelihood of incorrect verification
outcomes.

This issue arises when a claim uses a broad term, while the sup-
porting evidence provides a more specific instance, or vice versa.
As in the following example, such mismatches can lead to incor-
rect veracity assignments, as existing models struggle to recognise
hierarchical relationships between concepts.

Claim: Cancer risk is lower in individuals with a history of
alcohol consumption.

Supports: Alcohol consumption was associated with a decreased
risk of thyroid cancer.

This issue is commonwithin scientific fact checking and has been
reported to occurwithin 44% of annotated examples in SciFact-Open
[101]. Hence, we argue that capturing the hierarchical relationship
could be a research direction to improve verification performance
in the scientific domain, by solving the mismatch problem.

RD.8. Hierarchical Concept Modelling

To address this issue, ontology-based reasoning can be integrated
into fact-checking pipelines. Structured ontologies such as MeSH
[54] and UMLS [53] define hierarchical relationships that help sys-
tems infer term specificity. Recognising that ‘lung cancer’ is a sub-
type of ‘cancer’ enables better claim-evidence alignment, mitigat-
ing errors caused by lexical similarity. Beyond that, the knowledge
graph can enrich ontological reasoning by encoding both hier-
archical and associative relationships among scientific concepts
[39, 48]. However, its potential for resolving terminology granular-
ity mismatches in scientific fact-checking remains unexplored. Ad-
ditionally, representation learning techniques such as contrastive
learning can embed these hierarchical relationships into vector
space representations, reducing reliance on token-level similarity.
Domain-specific models like SciBERT [11] and PubMedBERT [35]
can further enhance contextual understanding by incorporating
structured knowledge into retrieval and verification processes. By
leveraging ontological reasoning, knowledge graphs, and struc-
tured embeddings, scientific fact-checking systems can better align
claims with relevant evidence, reducing verification errors caused
by terminology granularity mismatches. In addition to enhancing
precision, this also has potential to improve interpretability by
making model decisions more transparent.

9 Conclusion

This paper explores the evolution of scientific fact-checkingmethod-
ologies from abstract-level approaches to full-paper frameworks
on large-scale corpora. As the volume and diversity of scientific
knowledge continue to grow, the challenges of verifying claims
across heterogeneous sources become increasingly complex. By
addressing the complexities inherent in scientific literature, includ-
ing its evolving nature, structured format, and the necessity for
precise evidence retrieval, we underscore the importance of de-
veloping specialised retrieval systems capable of managing large,
multimodal, and time-sensitive evidence retrieval. Furthermore,
this work proposes several research directions aimed at improving
scientific fact-checking efficiency and reliability. They include the
integration of time-aware evidence retrieval to ensure the use of the
most relevant and up-to-date findings, adaptive document process-
ing to enable context-sensitive retrieval strategies, and multi-modal
evidence alignment to integrate text, tables and figures to enhance
verification accuracy. Overcoming these challenges has potential to
improve the accuracy of fact-checking processes and also facilitate
the scalability and applicability of these systems in diverse scientific
fact-checking scenarios. By bridging the gap between scientific fact-
checking and effective evidence retrieval, these advancements will
contribute to more robust, interpretable, and trustworthy scientific
fact-checking methodologies for real-world applications.
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