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Abstract10

Building stock modelling is a vital tool for assessing material inventories in buildings, playing a critical role in11

promoting a circular economy, facilitating waste management, and supporting socio-economic analyses. However,12

a major challenge in building stock modelling lies in achieving accurate component-level assessments, as current13

approaches primarily rely on archetype-based statistical data, which often lack precision. Addressing this challenge14

requires scalable methods for estimating the dimensions of interior components across large building stocks. In15

this study, we introduce the UKResi dataset, a novel dataset containing 2,000 residential houses in the UK,16

designed to predict interior wall systems and room-level spatial configurations using exterior building features.17

Benchmark experiments demonstrate that the proposed approach achieves high predictive performance, with an18

R2 score of 0.829 for interior wall length and up to 0.880 for bedroom counts, 0.792 for lounge counts, and 0.94319

for kitchen counts. Contributions of this work also include the introduction of a multi-modal approach into the20

field of building stock modelling, integrating exterior features and facade imagery. Furthermore, we analyse the21

driving factors influencing wall length and room predictions using permutation importance and SHAP values,22

providing insights into feature contributions, especially facade opening information being a critical driving factor23

of modelling interior features. The UKResi dataset serves as a foundation for future component-level building24

stock modelling, offering a scalable and data-driven solution to assess building interiors. This advancement holds25

significant potential for improving material inventory assessments, enabling more accurate resource recovery, and26

supporting sustainable urban planning.27
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building material29
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1 Introduction30

In the global pursuit of meeting the 1.5◦C target set by the Paris Agreement and advancing the United Nations31

Sustainable Development Goals (SDGs) (United Nations, 2015; United Nations Framework Convention on Climate32

Change (UNFCCC), 2015), particularly Goal 11 (Sustainable Cities and Communities) and Goal 12 (Responsible33

Consumption and Production), residential buildings play a pivotal role in reducing embodied and operational carbon34

emissions. Low-rise residential buildings (≤ 3 storeys) are particularly significant in this context. In the United35

Kingdom, these structures constitute 79% of the total housing stock count (Ministry of Housing, Communities &36

Local Government, 2018) and accommodate 78% of households (Office for National Statistics, 2023). Meanwhile,37

they are responsible for extensive material (e.g. clay, sand and timber) and energy consumption, resulting in38

significant embodied and operational carbon emissions throughout their lifecycle (Z. Cao et al., 2020; Heeren et al.,39

2015; Zhong et al., 2021, 2022). Low-rise residential buildings have also been identified as the primary contributor40

to housing material stock accumulation in countries such as Austria (Haberl et al., 2021) and the United States41

(Frantz et al., 2023). Therefore, understanding the mass composition, energy consumption and spatial distribution42

of these buildings is critical for climate change mitigation and the advancement of a circular economy. This is par-43

ticularly pertinent in the UK, in light of the targeted delivery of over 300,000 homes per year (UK Government, 2024).44

45

Among the state-of-the-art building material stock accounting methods, the bottom-up approach serves as a46

fundamental tool for estimating the material mass stocks at the building level (Lanau et al., 2019; Pei et al., 2024).47

This method assumes building material composition to be homogeneous within a predefined archetype, multiplying48

associated material intensity coefficients by building geometries (e.g. floor area or volume) to calculate mass stock.49

50

Accuracy in the extraction of dimensional exterior building features and the calculation of material intensity51

coefficients are key factors in the bottom-up approach. Owing to advancements in remote sensing and machine52

learning technologies, methodologies for extracting exterior building features (e.g. height (Cai et al., 2023; Y. Cao53

& Weng, 2024) and footprint (Buyukdemircioglu et al., 2022; Guo et al., 2022)) at scale are increasingly being54

explored. Simultaneously, the widespread availability of point-cloud data has made precise modelling of building55

envelopes feasible (Q. Hu et al., 2021; Krapf et al., 2023), with pre-processed inventory datasets for use in building56

stock modelling also growing in availability (Milojevic-Dupont et al., 2023).57

58

Despite increasing insight on national material intensities and generalised international databases (Fishman et al.,59

2024; Lanau & Liu, 2020), the assumption of homogeneous material distribution within the same predefined60

archetype has been questioned in a number of studies. These have found significant discrepancies in material61

intensity within the same archetype (Arceo et al., 2021, 2023; Miatto et al., 2023; Nasiri et al., 2023), potentially62

leading to substantial errors in subsequent material accounting. Currently, material intensities are also typically63

reported at the aggregated-material level (i.e. ‘steel’) rather than component form (i.e. ‘steel beams’), failing64

to provide sufficient compositional information for required insights on associated reuse and recycling potential.65

Whole-building circular economy potential is similarly neglected, with a typically limited consideration of the66

configuration (e.g. within a wall, floor or roof) and provided function (e.g. as part of a bedroom, kitchen or67

bathroom) of existing residential material stocks.68
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69

Such an effect is worsened by stock studies’ focus on the ‘structure’ and ‘skin’ layers, often overlooking the inventory70

of (semi-)permanent interior items (e.g. radiators and plumbing, kitchens and sanitary-ware and appliances and71

furniture) in the ‘services’,‘space’ and ‘stuff’ layers (Brand, 1995). In addition to their variable composition, the72

primary challenge in accounting for these items using the bottom-up approach lies in their heterogeneity within73

archetypes and individual buildings and resultantly poor scaling with floor area or volume. For this reason, recent74

research on interior residential stocks predominantly relies on top-down statistical data (Arora et al., 2019; X. Li75

et al., 2023; Liu et al., 2020) and/or focuses on fast moving consumer goods (e.g. food and clothing) (Di Donato76

et al., 2015; Kissinger & Damari, 2021).77

78

Where residential structural material stocks may be estimated using external features and geometries, estimating the79

quantity, form, configuration and function of (non-)structural residential materials requires nuanced understanding80

of interior features. Understanding building interiors at large scale is challenging due to the difficulty of data81

acquisition. Physical surveys of every building in a city or nation to ascertain interior layouts would be prohibitively82

time consuming and thus cost intensive. Thus research has explored ways of predicting internal features from83

external images. This includes attempts to understand the interior space of buildings include techniques such84

as interior image segmentation (Zhou et al., 2019), interior scene reconstruction (Budroni & Boehm, 2010) and85

consequent BIM (Building Information Modelling) model auto-generation (Mahmoud et al., 2024), though the86

necessary data, i.e. from the interior, remains largely inaccessible. Huang et al. use facade images to predict the87

floor area of houses, suggesting a promising direction for employing more readily available exterior features to infer88

interior details (Huang et al., 2024). In our previous research, considering a preliminary dataset of 300 samples, we89

investigated the potential of using exterior house features to predict the length of interior walls in UK housing (Dai90

et al., 2024). Although estimating the quantity, form and configuration of both structural and non-structural wall91

materials, this did not provide insight on their function nor facilitate consideration of (semi-)permanent interior92

items in the ‘services’,‘space’ and ‘stuff’ layers (Brand, 1995).93

94

This study builds upon our previous work by developing the multi-modal ‘UKResi’ dataset, containing internal95

and external imagery (e.g. facade and room interior), geometry (e.g. building width/depth and wall length) and96

labelled features (e.g. room function and window/door counts) for 2,000 houses in the UK. Utilising the UKResi97

dataset, we apply a range of multi- and single- modal machine learning techniques to successfully predict a number98

of internal building features (e.g. wall length and room counts) from external images and derived attributes (e.g.99

building width and depth). Following this, we categorise exterior features according to their availability and100

prediction importance, providing further insight on the potential for large-scale residential interior stock prediction101

under a range of different scenarios.102
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2 Materials and Methods103

2.1 Dataset Construction104

Data Collection and Annotation Process The constructed UKResi dataset consists of 2,000 housing units105

from England and Wales. These samples were acquired through Zoopla, a real estate platform established in106

2007 that ranks among the largest property search websites in the UK (Hancock, 2022). The dastaset documents107

housing units with facade images, interior photographs, floor plans, and geographical locations. Three authors108

with architectural expertise formed the annotation team. To maintain consistency, only one member performed109

the dataset annotation, while the other two independently verified consistency. This approach ensured consistent110

labelling without the need for an inter-annotator agreement.111

112

A significant obstacle in utilising this data was the variability in floorplan quality, as the information is sourced113

from various agencies, each providing data with differing levels of quality. To address this, the authors, who114

possess architectural expertise, were tasked with verifying the quality of the samples before proceeding with115

the annotation process. The procedure for data acquisition also took into account the geographical location of116

properties. Attention was given to guarantee an approximately even distribution of the 2,000 samples across the117

nine regions of England and Wales.118

119

Figure 1 illustrates the comprehensive annotation methodology employed in developing the UKResi dataset.120

The dataset encompasses four categories of data extracted from the Zoopla website: location details, facade121

images, interior photographs, and floorplans. Initially, data collection involved the local download of relevant122

information which was then organised into separate folders corresponding to each category of data - excluding the de-123

scription. The latter, displayed on the website, was methodically recorded in a CSV (Comma-Separated Values) file.124

125

The annotation process was performed using Computer-Aided Design (CAD) software and comprised three stages:126

1) scaling, 2) measuring, and 3) quality assessment. Scaling consisted of importing the floorplan data into the127

CAD system to use the scaling tool and the labelled dimension of the floorplan to bring the floorplan to its actual128

dimensions. In the measuring phase, CAD’s ruler tool was used to measure all pre-specified features. Quality129

assessment was conducted during data collection, with authors possessing architectural expertise visually inspecting130

the floorplan, and at the conclusion of the annotation process. The data screening process involved using facade131

and interior images as ground truth of the building to compare against the floorplan layouts. For example, if132

the facade image shows two windows on the ground floor but the floorplan indicates only one, that sample was133

rejected. Similarly, if an interior image shows an open-plan kitchen and dining room, but the floorplan depicts134

these spaces as separate, the sample was excluded. This rigorous approach ensured that only accurately matched135

floorplans were retained. In this article, the term ‘ground floor’ refers to the building’s lowest level at ground136

level, and ‘first floor’ denotes the level immediately above the ground floor. In the final quality assessment phase,137

external feature dimensions were used to cross-verify the accuracy of measurements. Facade imagery was applied to138

estimate window and building dimensions using elements of known sizes, such as bricks, and these estimates were139

compared with those obtained from floorplans. The early and the late quality assessments ensured the reliability140
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Figure 1: The schematic of the dataset construction process: Part-A involves the identification of appropriate
samples by examining their data completeness, types and geographical locations; Part-B presents sample examples
which encompass images of facades and interiors, floorplans, and descriptive data; Part-C depicts the data
annotation procedure, which incorporates the use of scaling and ruler tools; Part-D indicates the compilation of
this data into a CSV file.
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of both data and measurement quality. Worth noting is the use of Google Street View for quality assurance in141

cases where the facade image from the Zoopla website was not usable due to too large viewing angles or obstructions.142

143

Feature Definitions and Annotation Details In total, 38 features were identified and documented or annot-144

ated. These features encompass extensive information retrievable from the gathered multi-modal data. Depending145

on the source of the label extraction, the thirty-eight features were categorised into ten exterior features related to146

dimensions, twenty-one interior features, and seven property features related to building attributes (e.g., building147

energy performance labels). These attributes are summarised with their definitions in the supporting information,148

SI-attributes summary.149

150

Multiple features were used to properly describe the shape irregularities of building footprints. Beyond typical151

features such as building width, depth, area, and perimeter, the short depth was annotated (i.e., the length of the152

house’s shorter side). The average depth was also registered, which reflects the area-standardised building depth153

and is calculated by dividing the gross area of the building by its facade width, as shown in Figure 2-I. Additionally,154

Figure 2-II documents the width and count of the building facade openings, encompassing both windows and doors.155

156

The set of 21 interior features was designed to thoroughly account for wall attributes that offer structural support157

and divide the interior into distinct zones and their respective functions, i.e. bedroom, kitchen, etc. Within these158

features, an interior wall was categorised as either a main inner wall or a storage wall. As illustrated in Figure159

2-II, the main inner wall includes both load-bearing and partition walls, as the floorplan data did not facilitate160

distinctions between the two. In contrast, the storage wall, which creates a permanent storage area, could be161

identified through inspections of both floorplans and interior images.162

163

Doors, a critical component in the interior space that provides control of space combinations, was characterised164

through 11 features. As shown in Figure 2-III, four different types of opening were defined, including standard165

door, non-standard door, storage door, and non-door opening. For each door type, their widths were also measured,166

in addition to door counts.167

168

The dataset specifies eight distinct zoning function attributes, encompassing bedroom, kitchen, bathroom, toilet,169

lounge, small room, dining room, and total number of spaces. Small rooms were identified as compact individual170

spaces often used for wardrobes, or offices. The distinction between bathrooms and toilets was based on the presence171

of shower facilities. Furthermore, three connection features—living-dining, kitchen-dining, and kitchen-living—were172

included to characterise open-plan designs found in some buildings, illustrating varied space functionalities.173

Examples can be seen in Figure 2-III. The total room count represents the aggregate of each separate room. The174

seven property features include number of floors, building attachment type, price, energy label, location, form type175

(whether the sample is a house or a bungalow) and whether a loft conversion exists.176
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Figure 2: Illustrations of annotations for various features. Panel I shows the methods used to determine width and
depth. Panel II illustrates the definition of opening, perimeter, and interior wall length. Panel III illustrates the
annotation of interior openings.
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2.2 Dataset Summary177

The built dataset contains 2,000 individual buildings with 3,859 floors. Their spatial distributions are presented178

in the supporting information, SI-Data Distributions. The 2,000 samples are evenly distributed across the nine179

regions of England and Wales. We also conduct a comparative analysis between the building type compositions180

and overall floor areas of the constructed dataset and those derived from the English Housing Survey (Department181

for Communities and Local Government, 2016; Ministry of Housing, Communities & Local Government, 2010)182

in the same supporting information document. The result demonstrates that when comparing the two data183

sources—UKResi and the English Housing Survey—across the four house types (detached, semi-detached, terraced,184

and bungalow) and three gross area categories (< 70sq.m., 70 − 89sq.m., > 90sq.m.), while subtle distinctions185

exist, the two datasets present broadly consistent compositions: For detached houses, both sources report a strong186

concentration in the > 90sq.m. category, though UKResi shows a slightly higher proportion (2%). Semi-detached187

houses in UKResi are somewhat more skewed toward larger sizes, with 12% differences between 70-89 sq.m. and188

> 90sq.m., than those in the UK Housing Survey, which appear evenly distributed. Terraced homes, while generally189

leaning to the larger category in UKResi, another 12% difference, show a 5% greater share in the mid-range sizes190

according to the UK Housing Survey. Bungalows exhibit a notable contrast, with UK Housing Survey data placing191

a 12% more share in the smallest size category than UKResi. Despite these differences in emphasis, the overall192

patterns are broadly similar: both datasets suggest that Detached and Terraced homes tend to be larger, while193

Bungalows are more commonly smaller, and Semi-Detached units often fall between these extremes.194

2.3 Benchmark Experiment195

Benchmark Pipeline and Model Selection To establish a unified framework for advancing the house interior196

prediction task, benchmark experiments were developed to deploy various machine learning models on the construc-197

ted UKResi dataset. These tests ensured that all methods were assessed using identical data and metrics, thereby198

fostering fairness, reproducibility, and advancement. By consistently evaluating performance, we can confidently199

rely on improvements, spotlight leading solutions, and inform future investigations. Essentially, benchmarks uphold200

standards and drive the discipline forward which has been validated as essential in machine learning research (Deng201

et al., 2009).202

203

This dataset was primarily designed to facilitate scalable estimation of building interior inventories, encompassing204

both wall components and enduring items. To achieve this objective, nine key features were established as the205

benchmark targets: namely, the length of interior walls (serving as an indicator of the wall inventory) and the206

counts of eight distinct spaces (reflecting the stock of enduring items stated in Section 2.1). In the context of207

scalable estimation, the primary challenge lies in the availability of data. Consequently, when using the constructed208

dataset on a large scale, the accessibility or practicability of extracting annotated exterior features becomes crucial209

to consider. Initially, we categorised the annotated exterior features into three distinct levels based on their access-210

ibility, as indicated in Table 1. The classification demonstrated that features derivable from the building footprint211

were designated as high level. Features obtainable from facade images necessitating an image classification model212

were labelled as medium level, while those requiring object detection or segmentation for extraction were identified213

as low level. Subsequently, the access hierarchy could serve as a tool to evaluate the influence of external features on214

internal prediction. By assessing feature impacts based on different levels of accessibility, the minimum cost of apply-215
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ing the method at a large scale can be evaluated which significantly contributes toward the scalability of the method.216

217

Access
Features Accessibility

Level

High area, long depth, short depth, aver-
age depth, width, perimeter

footprint data e.g.
Google(Google
Research, 2021),
Bing(Microsoft,
2024), OS Mas-
terMap(Ordnance
Survey, 2023)

Medium attachment type, form type facade image e.g. street
view services (Anguelov
et al., 2010) and clas-
sification model (Dai,
2023)

Low counts and widths of facade win-

dows and doors, number of floors

facade image and detec-
tion model (H. Li et al.,

2023)

Table 1: The table presents the defined exterior feature accessibility hierarchy and the corresponding data sources or
methodologies for acquiring. High-level features can be derived directly from footprint data. Medium-level features
require facade images and a classification model. Low-level features demand more advanced image processing,
including detection models applied to facade images.

This benchmark test was constructed using a multi-task learning framework because the given problem required218

predicting multiple outputs concurrently. Multi-task learning is a machine learning paradigm in which related219

tasks are learned simultaneously, allowing knowledge gained from one task to benefit others. This approach can220

significantly reduce computational overhead and improve model generalisation (Zhang & Yang, 2021). In the221

context of the interior prediction task, forgoing a multi-task setup would necessitate training nine separate models,222

substantially increasing both computational cost and deployment complexity.223

224

In addition to multi-task learning, this benchmark also employed a multi-modal learning technique. Multi-modal225

learning, a rapidly advancing area of machine learning research, integrates multiple data types—such as images226

and text—into a single model. By merging complementary information sources, multi-modal models can learn227

richer, more nuanced representations than single modality can provide (Ramachandram & Taylor, 2017). This228

approach has been shown to enhance prediction performance in numerous applications (Xu et al., 2023). For229

the interior prediction task specifically, we integrated facade imagery with annotated structured data. Since230

facade images typically contain rich building-related information, including age and construction style, we hypo-231

thesised that combining these visual cues with structured data will lead to improved interior prediction performance.232

233

Figure 3 illustrates the benchmark experiment setup and the corresponding models. Part A presents the feature234

combinations according to the accessibility hierarchy defined in Table 1. For the single-modal tests, three common235

machine learning models—Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), and Random Forest236

(RF)—were adopted (Part C). Each model was trained on each set of feature to systematically evaluate how237

removing varying accessibility levels of exterior attributes affected the performance of interior feature estimation.238

Part D depicts the proposed multi-modal model, FacIntNet. FacIntNet includes a feature extraction network that239

processes facade images, applying a 1 × 1 convolution to reduce the number of channels from the extracted features.240
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Figure 3: The figure illustrates the pipeline for benchmark tests and the architecture of the developed multi-modal
deep learning model. According to the feature access tiers outlined in Table 1, exterior features are organised
by progressively removing lower access level features, as depicted in Part A. Subsequently, these three generated
datasets are benchmarked using three widely adopted machine learning models, as shown in Part C. These distinct
datasets are then integrated with facade image data to assess the potential influence of facade images on predicting
interior features in Part D.

A global average pooling layer (Lin, 2013) then compresses the resulting feature maps into a vector. This vector is241

concatenated with the structured data vector, and the combined features are input into an MLP to generate the242

final predictions. The design of FacIntNet aims to determine whether incorporating facade image features can243

improve the accuracy of interior predictions. Three different feature extraction networks were adopted including244

ResNet50 (He et al., 2016), ResNetV2 (Szegedy et al., 2017) and Xception (Chollet, 2017). All three models have245

demonstrated strong feature extraction capabilities and have achieved significant success (Chen et al., 2018; J. Hu246

et al., 2018; Woo et al., 2018).247

248

Training Configurations and Results Evaluation All benchmark tests were performed using Python on a249

workstation with a Linux Ubuntu 22.04 operating system, an Intel Xeon Silver 4310 processor, a Nvidia RTX 4090250

graphics card and 64 gigabytes(GB) of RAM. Initially, the 2,000 samples were randomly divided into training and251

validation sets based on their building IDs in an 80%:20% ratio, a standard choice in machine learning, utilising a252

random seed of 28. Subsequently, the floor data associated with each building ID was clustered into their respective253

sets to construct the training and validation datasets.254

255
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The single-modal models were implemented using the scikit-learn library(Pedregosa et al., 2011). A grid search256

procedure was employed to determine optimal hyper-parameters for each model. Specifically, for the Multi-Layer257

Perceptron (MLP), the number of layers ranged from 3 to 8 with 10 to 50 neurons per layer. For the Random258

Forest (RF), the number of estimators ranged from 10 to 40 and the maximum tree depth from 10 to 50. Due to259

the limitation of the Support Vector Machine (SVM) model, individual models for each attribute were built for260

the SVM test, the search explored various regularisation coefficients, C including 0.1, 1, 10, 100 and 1000, kernel261

functions, rbf or poly, epsilon values including 0.01, 0.1, 0.5 and 1.0, and gamma values, scale or auto.262

263

The multi-modal models were implemented using TensorFlow (Abadi, 2016). Training configurations included a264

batch size of 16 and an initial learning rate of 0.0001, which was halved every 10 epochs, if without loss decrease,265

until reaching 0.00001. The models used the Adam (Kingma & Ba, 2014) optimiser. Input images were padded to266

square shape and resized to 512×512 pixels, and data augmentation—consisting of a 0.1 spatial shift and 50%267

chance of horizontal flips—was applied. Each model was trained for 500 epochs with an early stopping setting of268

50 epochs.269

270

All models were evaluated using three common regression metrics: R2, RMSE, and MAE. The R2 score measures271

the correlation between predictions and ground truth, while RMSE quantifies the average magnitude of errors,272

placing greater emphasis on larger deviations. MAE measures the average magnitude of errors on a linear scale.273

For outputs related to the number of spaces and different rooms, predictions were rounded to the nearest integer274

before computing these metrics. The functions used for calculating these three metrics are listed below, where275

yi is the observed value, ŷi is the predicted value, ȳ is the mean of the observed values and n is the number of276

observations.277

R2 = 1 −

∑

n

i=1 (yi − ŷi)
2

∑

n

i=1 (yi − ȳ)2 (1)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)
2 (2)

MAE =
1

n

n
∑

i=1

|yi − ŷi| (3)

Furthermore, Permutation Importance (Altmann et al., 2010) and SHapley Additive exPlanations (SHAP)278

(Lundberg, 2017) values were used to quantify the contributions of each individual exterior feature to the279

predictions of interior features. Permutation Importance evaluates the significance of a feature by measuring the280

impact of randomly shuffling its values on the model’s performance. This method helps determine the extent281

to which the model relies on a particular feature for making accurate predictions. In contrast, SHAP values282

provide a detailed explanation of a model’s output by assigning each feature a numerical value representing its283

contribution to a specific prediction (sample-based). SHAP offers insights into both the magnitude and direction284

of a feature’s influence on the prediction. Finally, to enhance the interpretability of the model’s behaviour, the285
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top five best-performing and least-performing examples were visualised. This visualization facilitates a deeper286

understanding of how the model makes predictions and responds to different input features.287

3 Results288

3.1 Benchmark Test Results289

Table 2 demonstrates the results of the feature-based ablation study for three machine learning models: Multi-Layer290

Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM). The highest R2 score for each291

feature set exceeding the defined 0.6 threshold is highlighted in bold, serving as an indicator of a good fit. As292

shown in the table, the model performance generally declines as the number of exterior features decreases, moving293

from the High + Medium + Low feature set to the High + Medium set, and finally to the High set. This294

trend is particularly evident in the prediction of interior wall length and total room count, where the R2 score295

of the interior wall length prediction drops from 0.842 when using all defined exterior features, to 0.770 after296

removing low-level features, and further to 0.749 when only high-level features are retained. For total room count297

predictions, the R2 score decreases from 0.661 when using all features, to 0.490 when facade features are removed,298

and finally to 0.460 when only footprint features are used. In the predictions of other room counts, the performance299

decline hierarchy is not as visible as the two aforementioned attributes. This is mostly due to starting from300

removing low-level features, room counts are not able to properly predicted leading to similar outcomes in High +301

Medium and High sets as shown in Table 2. In addition, for the toilet count and small room count, none of the302

trained models achieve an R2 score above the 0.6 threshold across all feature sets. This suggests that the vari-303

ability or randomness in the configurations of these room types may be contributing to the models’ poor performance.304

305

Among the three selected models, the Multi-Layer Perceptron (MLP) consistently achieves the best performance306

for predicting interior wall length and total room count across all feature sets. Specifically, the MLP achieves307

an R2 score of 0.842 for wall length prediction and 0.661 for total room count prediction when all features are308

included. The Random Forest (RF) model follows closely, achieving the second-best performance for these metrics.309

In contrast, the Support Vector Machine (SVM) shows the poorest performance for predicting wall length and total310

room count. However, when predicting the number of specific rooms, including bedrooms, lounges, kitchens, and311

dining rooms, the SVM model outperforms the MLP and RF models. For instance, the SVM achieves the highest312

R2 scores of 0.878 for bedroom count, 0.792 for lounge count, and 0.933 for kitchen count when using all fea-313

tures. This indicates that the SVM is more effective at handling tasks involving distinct, discrete categories of rooms.314

315

Examining the error metrics, such as the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), further316

confirms the decline in model performance as the number of exterior features is reduced. For example, the RMSE317

for the MLP’s wall length prediction increases from 2.885 with all features to 3.642 when only high-level features318

are used. This trend underscores the importance of exterior facade features in maintaining model accuracy. Remov-319

ing these features significantly impacts the models’ ability to predict interior attributes, particularly for room counts.320

321

These results highlight the strengths and limitations of each model. The MLP is robust for predicting aggregate322

12



Feature
Model Metric

Interior Attributes

Sets Wall Bed Lounge Kitchen Dinning Bath Toilet Small Total

MLP
R

2 0.842 0.854 0.757 0.923 0.670 0.661 0.046 0.028 0.661

RMSE 2.885 0.552 0.283 0.140 0.316 0.415 0.450 0.442 0.862

High MAE 2.167 0.239 0.075 0.020 0.097 0.169 0.202 0.185 0.564

+
RF

R
2 0.833 0.876 0.784 0.933 0.688 0.677 0.312 -0.004 0.657

Medium RMSE 2.967 0.507 0.266 0.131 0.307 0.405 0.382 0.450 0.866

+ MAE 2.223 0.213 0.068 0.017 0.092 0.164 0.146 0.186 0.549

Low
SVM

R
2 0.805 0.878 0.792 0.933 0.692 0.684 0.325 0.087 0.653

RMSE 3.212 0.503 0.261 0.131 0.305 0.400 0.378 0.429 0.872
MAE 2.170 0.201 0.066 0.017 0.091 0.160 0.143 0.176 0.550

MLP
R

2 0.770 0.056 -0.289 -0.417 -0.367 -0.183 -0.394 -0.037 0.490
RMSE 3.487 1.402 0.651 0.601 0.643 0.774 0.543 0.457 1.056

MAE 2.712 1.247 0.416 0.356 0.403 0.584 0.295 0.201 0.761
High

RF
R

2 0.764 0.053 -0.233 -0.397 -0.302 -0.154 -0.401 -0.083 0.476
+ RMSE 3.534 1.404 0.637 0.596 0.627 0.765 0.545 0.467 1.071

Medium MAE 2.806 1.239 0.398 0.350 0.386 0.561 0.297 0.205 0.774

SVM
R

2 0.723 0.032 -0.345 -0.618 -0.722 -0.322 -0.425 -0.057 0.460
RMSE 3.826 1.419 0.665 0.642 0.722 0.819 0.549 0.461 1.087

MAE 2.789 1.264 0.429 0.407 0.503 0.597 0.302 0.202 0.776

High

MLP
R

2 0.749 0.034 -0.285 -0.484 -0.336 -0.170 -0.413 0.009 0.460
RMSE 3.642 1.418 0.650 0.615 0.636 0.770 0.547 0.447 1.087
MAE 2.809 1.262 0.417 0.373 0.396 0.575 0.299 0.197 0.777

RF
R

2 0.749 0.051 -0.269 -0.459 -0.284 -0.172 -0.481 -0.135 0.445
RMSE 3.641 1.405 0.646 0.609 0.623 0.771 0.560 0.478 1.102

MAE 2.846 1.243 0.409 0.366 0.383 0.563 0.314 0.213 0.789

SVM
R

2 0.709 0.007 -0.517 -0.721 -0.527 -0.423 -0.450 0.002 0.415
RMSE 3.921 1.438 0.706 0.662 0.680 0.850 0.554 0.448 1.131

MAE 2.848 1.282 0.475 0.433 0.451 0.614 0.307 0.193 0.789

Table 2: The table displays the results of the single-modal benchmark assessment using three prevalent machine
learning models: where MLP denotes the multi-layer perceptron, RF symbolises the random forest, and SVM
signifies the support vector machine. The highest R2 score for each feature set test exceeding 0.6 is highlighted in
bold.
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measures like wall length and total room count, while the SVM excels at predicting individual room counts. The323

RF model strikes a balance, performing consistently across most metrics. The findings suggest that an ensemble324

learning model which combines multiple models may further enhance predictive performance. Overall, the study325

demonstrates that the selection of features plays a crucial role in model performance. Facade features appear326

particularly important for achieving accurate predictions.327

328

Table 3 presents the results of the ablation study incorporating an additional facade image modality. Three distinct329

feature extraction networks—ResNet50, ResNetV2, and Xception—are employed within the same architecture to330

predict interior attributes. A consistent trend of performance drop is observed as the number of input features331

is progressively reduced from High + Medium + Low to only High-level features, similar to the single-modality332

results in Table 2. For example, the wall length prediction R2 score decreases from 0.829 in the High + Medium +333

Low set to 0.750 in the High + Facade set, highlighting the importance of additional exterior features (e.g., facade334

details and building types). This trend confirms that the models perform optimally when a comprehensive set of335

exterior features is included. The predictions for toilet count and small room count continue to fall below the R2
336

threshold of 0.6 across all models and feature sets. This further suggests that the randomness or variability in the337

configurations of these room types makes them inherently difficult to predict.338

339

By cross-comparing both single- and dual- modal experiments, the inclusion of facade imagery does not yield340

significant improvements in predictions. Slight improvements are observed in the bedroom, kitchen and total341

spaces count predictions, where these performances improve with the inclusion of the facade image modality. For342

instance, in Table 2, the SVM model achieves a R2 score of 0.878 under the High + Medium + Low feature set. In343

Table 3, the ResNet50 model achieves a slightly higher R2 score of 0.880 for the same attribute. In similar veins,344

kitchen prediction increase from 0.933 to 0.943 and total spaces prediction increase from 0.661 to 0.673. This345

may suggest that the facade image modality provides additional visual cues that are particularly beneficial for346

these specific room counts predictions. However, for other attributes like interior wall length, bathroom count, the347

performance generally declines.348

349

When comparing model performance, the ResNet50 model achieves the best results overall in the multi-modal350

setup. For instance, ResNet50 attains the highest R2 scores of 0.829 for wall length, 0.880 for bedroom count, and351

0.673 for total room count predictions under the High + Medium + Low feature set. The ResNetV2 and Xception352

models perform slightly worse, with lower R2 scores and generally higher error metrics. The error metrics, Root353

Mean Square Error (RMSE) and Mean Absolute Error (MAE), further confirm the trends discussed. For example,354

the RMSE for wall length prediction increases from 3.003 in the High + Medium + Low set to 3.666 in the High +355

Facade set using ResNet50. This increase in error reflects the loss of predictive accuracy caused by the reduction356

in features, despite the additional facade modality.357

358

A critical observation arises when examining the facade-only results (bottom rows of Table 3), where no attribute359

achieves a meaningful R2 score. For example, the wall length prediction produces R2 scores as low as -0.021360

(ResNet50) and -0.012 (Xception), while predictions for other interior attributes, including room counts and total361
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Feature Stem
Metric

Interior Attributes

Sets Model Wall Bed Lounge Kitchen Dinning Bath Toilet Small Total

ResNet50
R

2 0.829 0.880 0.792 0.928 0.692 0.645 0.281 0.093 0.673

High RMSE 3.003 0.501 0.261 0.136 0.305 0.424 0.390 0.427 0.846

+ MAE 2.220 0.211 0.066 0.018 0.091 0.180 0.152 0.175 0.554

Medium
ResNetV2

R
2 0.825 0.871 0.788 0.943 0.688 0.671 0.219 0.074 0.656

+ RMSE 3.038 0.519 0.264 0.120 0.307 0.408 0.407 0.432 0.868

Low MAE 2.316 0.219 0.067 0.014 0.092 0.167 0.165 0.178 0.562
+

Xception

R
2 0.814 0.864 0.764 0.912 0.675 0.671 0.263 0.080 0.645

Facade RMSE 3.137 0.532 0.278 0.149 0.314 0.408 0.395 0.430 0.881

MAE 2.318 0.231 0.075 0.022 0.096 0.167 0.156 0.177 0.580

ResNet50
R

2 0.728 0.064 -0.237 -0.397 -0.289 -0.170 -0.394 -0.004 0.450
RMSE 3.790 1.396 0.638 0.596 0.624 0.770 0.543 0.450 1.098

High MAE 2.894 1.203 0.396 0.350 0.379 0.559 0.295 0.194 0.785

+
ResNetV2

R
2 0.763 0.060 -0.245 -0.417 -0.349 -0.149 -0.407 0.002 0.496

Medium RMSE 3.540 1.399 0.640 0.601 0.639 0.763 0.546 0.448 1.050
+ MAE 2.759 1.235 0.402 0.356 0.398 0.564 0.298 0.193 0.751

Facade

Xception

R
2 0.759 0.054 -0.253 -0.392 -0.306 -0.141 -0.363 0.009 0.499

RMSE 3.567 1.404 0.642 0.595 0.629 0.761 0.537 0.447 1.047
MAE 2.806 1.222 0.402 0.349 0.390 0.550 0.289 0.194 0.762

ResNet50
R

2 0.746 0.052 -0.269 -0.469 -0.328 -0.149 -0.419 -0.024 0.458
RMSE 3.666 1.405 0.646 0.612 0.634 0.763 0.548 0.454 1.089
MAE 2.826 1.249 0.409 0.369 0.394 0.564 0.301 0.198 0.785

High
ResNetV2

R
2 0.750 0.031 -0.289 -0.495 -0.319 -0.146 -0.438 -0.031 0.444

+ RMSE 3.636 1.421 0.651 0.617 0.632 0.762 0.552 0.455 1.103
Facade MAE 2.805 1.257 0.419 0.375 0.394 0.563 0.304 0.199 0.794

Xception

R
2 0.738 0.026 -0.317 -0.474 -0.319 -0.152 -0.425 -0.070 0.426

RMSE 3.720 1.424 0.658 0.613 0.632 0.764 0.549 0.464 1.121
MAE 2.837 1.247 0.423 0.370 0.388 0.560 0.302 0.202 0.801

ResNet50
R

2 -0.021 -0.122 -0.557 -0.886 -0.805 -0.196 -0.438 -0.024 -0.024
RMSE 7.346 1.528 0.715 0.693 0.739 0.779 0.552 0.454 1.497

MAE 5.227 1.352 0.509 0.480 0.493 0.596 0.304 0.196 1.133

ResNetV2

R
2 -0.010 -0.122 -0.557 -0.891 -0.809 -0.196 -0.438 -0.024 -0.024

Facade RMSE 7.305 1.528 0.715 0.694 0.740 0.779 0.552 0.454 1.497

MAE 5.251 1.352 0.509 0.482 0.495 0.596 0.304 0.196 1.133

Xception
R

2 -0.012 -0.122 -0.557 -0.886 -0.809 -0.196 -0.438 -0.024 -0.024
RMSE 7.313 1.528 0.715 0.693 0.740 0.779 0.552 0.454 1.497

MAE 5.244 1.352 0.509 0.480 0.495 0.596 0.304 0.196 1.133

Table 3: The table illustrates the results from the multi-modal benchmark employing three distinct feature
extraction networks, all implemented within the same architecture as depicted in Figure 3. Additionally, this
experiment incorporates a single-modal analysis using only the facade image. The highest R2 score for each feature
set test exceeding 0.6 is highlighted in bold.
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counts, yield near-zero or negative values. These results indicate that when using pure facade images without362

additional features, the models fail to extract meaningful predictive information for interior attributes. This363

highlights the limitations of relying solely on facade imagery and underscores the necessity of combining image364

data with structured features for effective prediction.365

366

In summary, while the addition of facade image data introduces slight improvements for specific attributes such as367

bedroom count, it generally leads to performance degradation for other interior attributes, particularly when the368

number of exterior features is reduced. The consistent underperformance for toilet and small room counts further369

underscores their inherent prediction difficulty.370

3.2 Explainability Analysis371

Figure 4 presents the heatmaps for Permutation Importance (left) and SHAP values (right), providing insights372

into the contributions of exterior features to the predictions of various interior attributes. From the Permutation373

Importance heatmap, it is clear that for interior wall length predictions, the most influential features are area,374

width, and house perimeter. These three features are the primary driving factors, aligning well with the results375

observed in the ablation study, where footprint features play a critical role. Following these, features such as facade376

window width, facade door width, house type (0-detached), and floor numbers emerge as secondary contributors.377

Features related to depth (long, short, and average) and form type (0 or 1) play relatively lesser but still notable378

roles. This pattern corroborates the findings from Table 2, where removing facade features leads to a performance379

drop, emphasising their importance in maintaining prediction accuracy.380

381

For specific room predictions, the total room count follows a similar trend to that observed for interior wall length382

predictions. Key features such as floor numbers, building width, area, and facade door width are identified as383

dominant factors. Additionally, predictions for individual room types—such as bedrooms, lounges, dining rooms,384

and bathrooms—exhibit a similar dependency on the floor features. These results highlight the logical relationship385

between floor levels and room arrangements, which is particularly consistent with the architectural layout of UK386

housing.387

388

The SHAP values heatmap, visualised using a logarithmic scale, provides a more granular representation of the389

contributions of each exterior feature. For interior wall length predictions, the short depth feature exhibits slightly390

higher importance compared to the other two depth features (long and average). Among the four attachment types,391

type 0 (detached) and type 2 (terraced) are identified as more significant contributors than type 1 (semi-detached)392

and type 3 (end-terraced). For total room count predictions, the contribution pattern closely mirrors that of393

interior wall length predictions but with smaller SHAP values, reflecting the relatively lower R2 scores observed in394

the ablation study. In the predictions of specific rooms, floors and facade door width emerge as dominant factors,395

with their influence being particularly prominent in kitchen predictions. This indicates that the distribution and396

arrangement of different rooms across various floors are key determinants, which aligns with the typical layout397

structure of UK residential housing.398

399

16



Figure 4: The figure illustrates matrices based on the permutation importance from R2 and the average SHAP
values, utilising the random forest model trained on the complete dataset. On the left is the permutation heatmap
that signifies the model’s dependency on particular features. On the right is the heatmap of average SHAP
values, calculated by averaging the SHAP values for each individual sample. The final presentation employs a
logarithmic scale to enhance readability. Raw data of drawing the figure is appended in the supporting information,
SI-Fig 4.xlsx.

In summary, the heatmaps provide consistent insights into the critical exterior features that drive interior attribute400

predictions. Permutation Importance highlights high-level feature contributions, while SHAP values reveal a more401

detailed contribution structure. The results emphasise the importance of footprint features (e.g., area, width, and402

perimeter) and floor features for aggregate predictions like interior wall length and total room count. Additionally,403

facade-related features, such as window and door widths, play significant roles in specific room predictions. These404

findings align with the trends observed in the ablation study and reflect the logical spatial arrangements commonly405

seen in UK housing.406

407

Figure 5 presents the top-5 best-performing examples (Part A) and the top-5 least-performing examples (Part B).408

All examples have been scaled to represent their actual sizes for consistency and comparability. In Part A, four out409

of the five best-performing samples correspond to first-floor layouts. These examples exhibit regular geometric410

sizes and well-distributed functional zones, which likely contribute to more confident and accurate predictions by411

the models. The clear spatial organisation and uniformity in these layouts facilitate better feature extraction and412

learning, resulting in higher predictive performance.413

414

In contrast, Part B highlights the least-performing examples, all of which are ground-floor layouts. These examples415

lack clear functional zoning, with irregular or ambiguous spatial distributions. It is also evident in a number of the416
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Figure 5: This figure illustrates the five most and least optimal cases by presenting their respective floor plans. All
floor plans are adjusted to accurately reflect their actual dimensions.

floor plans that their internal layout has been altered during the building lifespan, e.g. walls knocked through417

to create an open plan space, thus the current floor plan does not match the original construction. The absence418

of distinct, well-defined zones introduces uncertainty in the model’s predictions, leading to poor performance.419

Ground floors, by their nature, may also include additional structural complexities (e.g., open spaces, garages,420

or undefined areas), further reducing the model’s ability to accurately interpret their features. In summary, the421

results emphasise that regular spatial layouts and well-defined functional zones are critical for achieving reliable422

predictions, while irregular and poorly zoned configurations, particularly on ground floors, present challenges for423

model performance.424

4 Discussion425

4.1 Scalability of Modelling House Interior Using Exterior Features426

Transitioning to a circular economy and effectively managing existing building and material stocks requires a427

detailed understanding of the geospatial location, quantity and use of potential secondary resources. The absence428

of detailed information about the interior composition of buildings poses a significant challenge to achieving this,in429

particular through limited consideration of non-structural elements, the configuration of elements within a building,430

and their provided function. To address this, we develop the UKResi dataset, containing internal and external431

imagery (e.g. facade and room interior), geometry (e.g. building width/depth and wall length) and labelled features432

(e.g. room function and window/door counts) for 2,000 houses in the UK. The UKResi dataset is used to explore433

the relationship between interior and exterior features using a range of multi- and single- modal machine learning434

techniques. This reveals ability to predict internal building features (e.g. wall length and room counts) from435

external images and derived attributes, with potential for these attributes to be used in determining the quantity,436

configuration and function of internal residential material stocks across the structural, space and service layers.437

438

The developed dataset is the first to estimate interior building structures using exterior features. Prior to this study,439
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research on building-attribute extraction focused predominantly on remote sensing techniques to gather exterior440

attributes, while interior features were examined exclusively through interior data such as images or floorplans. By441

bridging these two domains, our dataset enables scalable interior stock accounting.442

443

In the designed benchmark experiments, exterior features were categorised based on their accessibility and evaluated444

using machine learning models. The results demonstrate that interior wall length can be estimated with a high445

degree of accuracy using footprint-extracted features alone, achieving an average error of only 0.6 meters when446

compared to using a comprehensive feature set. This finding is significant as it shows that wall component447

dimensions can be reasonably approximated from readily available exterior data. Building on this foundation, it448

is plausible that the dimensions of other critical interior components, such as floor systems and roof structures,449

could also be estimated using similar approaches. These predictions provide an essential first step toward spatially450

informed material stock modelling, enabling more precise assessments of material quantities within the built451

environment.452

453

Despite the promising results for wall length prediction, we observe that the accuracy of interior space predictions454

is highly dependent on facade features, including doors, windows, and their corresponding floor assignments. With455

the increasing availability of street-view imagery services and advancements in deep learning technologies, such as456

the Segment Anything Model (SAM) (Kirillov et al., 2023), the cost of analysing facade structures at scale has457

been or will foreseeably be significantly reduced. However, the scalability of this approach remains limited due to458

issues with data quality, particularly in regions with insufficient street-view coverage or inconsistent imagery (Hou459

& Biljecki, 2022). These limitations hinder the immediate large-scale application of our dataset for interior space460

prediction tasks.461

462

A widely adopted solution in bottom-up stock modelling is to employ archetypes—generalised building models463

that represent groups of similar structures. While the scalability of direct interior space prediction remains a464

challenge, the developed UKResi dataset can serve as a foundation for deriving geometry-encoded archetypes465

through unsupervised learning techniques such as clustering. By identifying groups of buildings with similar466

exterior geometries that correlate to specific interior spatial configurations, these archetypes can enhance the467

scalability of material stock modelling efforts. This approach not only mitigates the challenges posed by limited468

facade data but also provides a scalable framework for estimating material stocks across larger building inventories.469

470

In summary, while direct predictions of interior material stocks face data-related scalability challenges, the471

demonstrated feasibility of wall length estimation highlights the potential for similar approaches to estimate other472

interior components. The development of geometry-informed archetypes offers a practical pathway to scale these473

methods, supporting broader applications in circular economy practices, such as material stock accounting and474

resource recovery.475
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4.2 Contributions to Digital Twins of Cities476

The developed UKResi dataset systematically captures interior wall and room function information, making it477

a valuable resource for reconstructing indoor spaces. In addition to the features used for benchmark tests, the478

dataset includes linkage information such as interior doors and room connectivity, enabling the creation of a479

room connection graph based on room types and spatial relationships. For example, consider a ground floor480

with a lounge, bathroom, and kitchen, where the lounge is accessible from both the bathroom and kitchen. This481

layout can be represented as a graph in which each room is a node, and edges indicate the presence of a door482

between two rooms. By concluding the linkage patterns, these graphs can serve as a foundational representa-483

tion of interior layouts, providing a structured framework for understanding indoor spatial compositions. This484

has potential applications in assessing the building-level circular economy potential of existing stocks, includ-485

ing the potential for adaptation through subdivision (i.e. splitting one property into multiple), conversion (i.e.486

changing of the use of a property or room) and/or extension (i.e. adding new space above or adjacent to a property).487

488

Leveraging advancements in generative artificial intelligence (AI) technologies, such as the HouseGAN series489

models (Nauata et al., 2020, 2021), these connection graphs can be used to generate interior floor layouts. Spe-490

cifically, when combined with building footprint constraints, the generative models can produce pseudo-interior491

layouts that approximate realistic indoor configurations. This process enables the reconstruction of indoor spaces,492

even in the absence of direct indoor data, addressing one of the key challenges in creating digital twins of cities.493

The significance of this lies in the role of digital twins as dynamic, virtual representations of urban environments.494

While outdoor and exterior building information can be readily obtained through remote sensing and street-view495

imagery, acquiring detailed indoor data remains a significant hurdle, particularly at scale. By utilising the UKResi496

dataset and the predictive capabilities of AI-driven models, it becomes feasible to reconstruct indoor spatial layouts,497

thereby bridging the data gap for indoor environments. This reconstructed spatial data can significantly increase498

the level of detail (LoD) of urban digital twins from LoDs 2 or 3 (3D models without and with external architectural499

details, respectively) to LoD4, in which interior details are included (Jeddoub et al., 2023). Such inclusion of500

interior elements is key to enable a variety of sustainability-related modelling such as energy modelling, occupancy501

simulations, retrofit planning, and material stock assessments.502

503

In summary, the UKResi dataset, with its rich feature set and connectivity information, provides a robust foundation504

for reconstructing indoor spaces. Combined with generative AI models and footprint constraints, it offers a scalable505

solution for approximating indoor layouts. This approach holds significant potential for advancing digital twins506

of cities, where comprehensive indoor data is critical for enabling more accurate simulations, sustainable urban507

planning, and smarter building management.508

4.3 Future Work509

While the UKResi dataset provides a solid foundation for linking exterior features to interior spatial conditions,510

several areas of improvement and expansion remain to enhance its utility and scalability further. Firstly, future511

work will focus on developing more detailed archetypes that incorporate a wider range of exterior features for512

improved material stock modelling and room-level predictions. By leveraging advanced unsupervised learning513
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techniques such as clustering, we aim to create exterior-encoded archetypes that can represent diverse building514

typologies more accurately. These archetypes will help generalise the relationship between exterior and interior515

features across similar buildings, thus supporting large-scale bottom-up stock modelling and resource assessments.516

517

Secondly, the dataset will be expanded to include a greater variety of house types to address limitations observed518

in predicting ground-level interiors. The current performance drop for ground-floor predictions, particularly for519

attributes such as room counts and spatial layouts, can be attributed to the inherent irregularity and variability520

(particularly over time due to renovations) in these configurations. By incorporating houses from different521

architectural styles, construction periods, and geographical regions, the dataset will better represent the diversity522

of residential buildings. This expanded coverage will help mitigate the challenges associated with ground-level523

predictions, ensuring the models achieve more robust and reliable performance. These advancements will further524

support the creation of accurate and scalable digital twins of cities, facilitating sustainable urban planning and525

resource management.526

21



Author Contributions527

Menglin Dai: Conceptualisation; Formal analysis; Methodology; Software; Validation; Visualisation; Writing -528

original draft; Writing - review & editing. Jakub Jurczyk: Data curation; Visualisation; Writing - review & editing.529

Charles Gillott: Conceptualisation; Writing - original draft; Writing - review & editing. Kun Sun: Visualisation;530

Writing - review & editing. Maud Lanau: Writing - review & editing. Gang Liu: Conceptualisation; Funding531

acquisition; Project administration; Resources; Supervision; Writing - review & editing. Danielle Densley532

Tingley: Conceptualisation; Funding acquisition; Project administration; Resources; Supervision; Writing - review533

& editing.534

Data and Code Availability Statement535

The code used in the benchmark experiment will be made available on the designated GitHub repository:536

https://github.com/MerlinDai/UKResi. The developed UKResi dataset will be available upon request from the537

corresponding author upon reasonable request.538

Supporting Information539

1. SI-Data Distributions.doc This supporting information provides additional statistical and spatial visualisations540

of the constructed UKResi dataset.541

2. SI-fig 4.xlsx This supporting information provides the values to generate Figure 4.542

3. SI-attributes summary.xlsx This supporting information provides the attributes definitions of the constructed543

UKResi dataset.544

Funding545

We appreciate financial support from the National Natural Science Foundation of China (71991484), EPSRC546

BuildZero: transforming the UK’s buildings for zero material extraction, zero carbon and zero waste, United547

Kingdom [EP/Y530578/1], EPSRC Multi-Scale, Circular Economic Potential of Non-Residential Building Scale548

[EP/S029273/1], and the Fundamental Research Funds for the Central Universities of Peking University.549

22



References550

Abadi, M. (2016). TensorFlow: learning functions at scale. Proceedings of the 21st ACM SIGPLAN International551

Conference on Functional Programming, 1–1.552
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