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A B S T R A C T 

Stars and planets in close systems are magnetized, but the influence of magnetic fields on their tidal responses (and vice versa) and 

dissipation rates has not been well explored. We present exploratory non-linear magnetohydrodynamical (MHD) simulations 
of tidally excited inertial waves in convective envelopes. These waves probably provide the dominant contribution to tidal 
dissipation in several astrophysical settings, including tidal circularization of solar-type binary stars and hot Jupiters, and orbital 
migration of the moons of Jupiter and Saturn. We model conv ectiv e env elopes as incompressible magnetized fluids in spherical 
shells harbouring an initially (rotationally aligned) dipolar magnetic field. We find that depending on its strength (quantified by 

its Lehnert number Le ) and the magnetic Prandtl number Pm , the magnetic field can either deeply modify the tidal response 
or be substantially altered by tidal flows. Simulations with small Le exhibit strong tidally generated differential rotation (zonal 
flows) for sufficiently large tidal amplitudes, such that both the amplitude and topology of the initial magnetic field are tidally 

impacted. In contrast, strong magnetic fields can inhibit these zonal flows through large-scale magnetic torques, and by Maxwell 
stresses arising from magnetorotational instability, which we identify and characterize in our simulations, along with the role of 
torsional Alfv ́en waves. Without tidally driven zonal flows, the resulting tidal dissipation is close to the linear predictions. We 
quantify the transition Le as a function of Pm , finding it to be comparable to realistic values found in solar-like stars, such that 
we predict complex interactions between tidal flows and magnetic fields. 

Key words: MHD – waves – instabilities – planets and satellites: gaseous planets – planet–star interactions – stars: low-mass –
stars: magnetic field. 
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 I N T RO D U C T I O N  

idal interactions are a key driver of orbital and rotational evolution 
n compact stellar and exoplanetary systems (e.g. Ogilvie 2014 ; 

athis 2019 ). Solar-like (low-mass) stars and giant gaseous planets 
eature conv ectiv e env elopes in which inertial waves restored by
oriolis forces – and in magnetized stars, magneto-inertial waves 

estored by both Coriolis and Lorentz forces – can be tidally 
xcited. Their dissipation is believed to contribute significantly to 
ngular momentum exchanges and spin–orbit evolution in these 
ystems. F or e xample, simplified calculations indicate that these 
aves may largely explain the observed orbital evolution of Jupiter’s 

nd Saturn’s moons (e.g. Ogilvie & Lin 2004 ; Dewberry 2023 ; Lin
023 ; Dhouib et al. 2024 ; Pontin, Barker & Hollerbach 2024 ), the
ircularization periods of solar-type binary stars (e.g. Barker 2022 ), 
nd the eccentricity distributions of hot and warm Jupiters (e.g. 
azovik et al. 2024 ). Ho we ver, many aspects of these waves in

ealistic astrophysical environments, like in differentially rotating 
nd/or magnetized envelopes with conv ectiv e motions and density 
tratification, and their resulting contributions to tidal dissipation are 
till poorly understood. 
 E-mail: a.a.v.astoul@leeds.ac.uk (AA); A.J.Barker@leeds.ac.uk (AJB) 
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Inertial waves are thought to be particularly important for tidal 
volution in systems with fast rotators, such as young stars or Jupiter-
ike planets. One reason is that inertial waves are only (linearly)
xcited for tidal frequencies satisfying | ω| ≤ 2 | �0 | , where ω is
he Doppler-shifted frequency in the frame rotating with the stellar 
ngular velocity �0 . This condition is more easily satisfied for faster
otation (larger values of �0 ). Secondly, the (frequenc y-av eraged) 
idal dissipation rate scales approximately with the square of the 
otational frequency in linear theory (e.g. Ogilvie 2013 ), so faster
otating stars or planets tend to be more dissipative than more slowly
otating ones (all else being equal), as been shown in Mathis ( 2015 ),
olmont & Mathis ( 2016 ), Gallet et al. ( 2017 ), and Barker ( 2020 )
sing 1D stellar evolution models. 
The solar convection zone is known to harbour a predominantly 

ipolar magnetic field with an o v erall strength of approximately
0 G at the surface, but this varies substantially across the surface
nd inside the conv ectiv e env elope (possibly up to several Tesla
or sunspot-forming toroidal flux ropes, Charbonneau 2013 , 2014 ). 
onv ectiv e fluid motions are thought to play a key role in the solar
ynamo, even if the extent to which this is the case is debated (e.g.
run & Browning 2017 ), as well as the location of the dynamo, either
eep down in the conv ectiv e env elope (and top of the radiativ e layer
arker 1993 ), in the bulk (e.g. Strugarek et al. 2017 ), or in the near-
urface shear layers (for instance, Vasil et al. 2024 ). Observations
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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lso indicate that magnetic fields are ubiquitous in low-mass stars,
s revealed by spectropolarimetry (e.g. Donati & Landstreet 2009 ;
einers 2012 ), which probes the large-scale magnetic fields at their

urfaces, and as predicted by 3D MHD simulations of conv ectiv e
ynamos (for a re vie w see K ̈apyl ̈a et al. 2023 , and references therein).
While Alfv ́en waves restored by the Lorentz force are the only

ow frequency (i.e. ignoring surface gravity and acoustic) waves
n a magnetized envelope, in a rotating and magnetized medium,
ixed types of wave arise due to the combined action of the Coriolis

cceleration and magnetic tension. These include slow and fast
agneto-inertial waves (also called magneto-Coriolis or MC waves),
hich arise depending on whether the two restoring forces cancel

ach other or sum up in the dispersion relation (Lehnert 1954 ; Malkus
967 ; Finlay 2008 , for a re vie w). In the latter case, the wav e frequenc y
xceeds the cut-off frequency 2 �0 of inertial waves, while in the
ormer case, the frequency is lower than the rotation frequency and
he waves are often called magnetostrophic w aves, for f ast rotators.

agneto-inertial wa ves ha ve been largely studied in the context of
he geodynamo, as they are expected in the liquid outer core of the
arth, and they have been studied e xperimentally, for e xample via

otating spherical Couette flow in liquid metal or sodium experiments
Schmitt et al. 2008 , 2013 ; Le Bars et al. 2022 , for a re vie w), or
hrough numerical simulations (e.g. Schmitt 2010 ; Aubert 2018 ).
ne type of wave that arises in this context is torsional Alfv ́en waves,
hich are (cylindrically) radially propagating waves in differentially

otating fluids that are invariant along the rotation axis. They may
eflect and form standing modes, the so-called torsional oscillations
e.g. Braginskiy 1970 ; Schaeffer et al. 2017 ; Hori, Nilsson & Tobias
023 , for a re vie w). 
In stellar envelopes, the effect of a magnetic field has been studied

n some specific torsional inertial modes (the r modes, as in Lander,
ones & Passamonti 2010 ; Abbassi, Rieutord & Rezania 2012 , for
eutron stars), and the propagation of shear Alfv ́en waves (with
issipative processes) has been investigated by Rincon & Rieutord
 2003 ) and Reese, Rincon & Rieutord ( 2004 ) in incompressible
though non-rotating) shells with a dipolar magnetic field. Very
ew global non-linear studies have been performed to explore the
idal response and its dissipation in conv ectiv e env elopes of rotating
tars and planets (e.g. Tilgner 2007 ; Favier et al. 2014 ; Astoul &
arker 2022 , 2023 ), and none with a magnetic field (though C ́ebron
 Hollerbach 2014 , simulated the elliptical instability in a full

phere in the presence of a magnetic field to study tidal dynamos).
revious theoretical studies of tidal inertial waves have primarily

nvolved linear calculations or explored non-linear tidal waves in
he absence of magnetic fields. With rotation, an important prior
tudy is Lin & Ogilvie ( 2018 , see also Wei 2016 in a local box),
ho performed linear calculations of tidal magneto-inertial waves in

onv ectiv e env elopes with an imposed rotationally aligned dipolar
agnetic field (or a uniform field aligned with the rotation axis, also

n Wei 2018 , for rapid rotators). They found that the (low-frequency)
requenc y-av eraged tidal dissipation when inertial waves are excited
s unmodified by a magnetic field. Ho we ver, the dissipation at a given
requency, as well as the nature of the waves and the mechanisms of
heir dissipation – whether this is due to viscosity or Ohmic diffusion,
nd whether it is due to turbulent or microscopic processes – can be
ery different when considering a magnetic field. Considering stellar
ides in hot Jupiter systems, 1 it has been shown that magnetic effects
NRAS 541, 1575–1599 (2025) 

 These systems are composed of a Jupiter-like planet orbiting within a few 

ays (typically) around a low-mass star. 
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hould not be neglected when computing tidal dissipation at a given
requency (Astoul et al. 2019 ). 

This moti v ates us to study here the interplay between tidal flows
nd magnetism using 3D non-linear simulations of rotating stellar or
lanetary convection zones, building upon our prior hydrodynamical
tudies in Astoul & Barker ( 2022 , hereafter AB22) and Astoul &
arker ( 2023 , hereafter AB23). 
In AB22 and AB23, we found that non-linear self-interactions

f tidally forced inertial waves induce cylindrical-like differential
otation (also called zonal flows, and also found in Morize et al.
010 ; Favier et al. 2014 ; C ́ebron et al. 2021 , using different kinds of
oundary forcing instead of the ef fecti ve body force in our studies).
his differential rotation is particularly strong for thin conv ectiv e
nvelopes, high tidal amplitudes (e.g. rele v ant for tides inside the
losest hot Jupiters and stellar binaries) and low viscosities (rele v ant
or the microscopic values in stars and planets), where non-linear
ffects (including w ave–w ave and wave–zonal flow interactions and
nstabilities) were observed to play an important role, as shown in
B2023. In such cases, we have found that non-linear simulations

xhibit important deviations from linear predictions for tidal dissi-
ation. In the following, we are particularly interested in exploring
he effects of magnetism on the generation of differential rotation
nd how it modifies tidal dissipation rates in simulations of tidally
riv en inertial wav es in conv ectiv e env elopes. To do so, we impose
n initial (axially aligned) dipolar magnetic field, with a strength that
e vary, along with varying the value of the Ohmic diffusivity. 
We structure this paper as follows. In Section 2 , we describe our
agnetohydrodynamical (MHD) model of tidal flows in conv ectiv e

nvelopes, including how we drive tidal waves and initialize the
agnetic field. We also derive the energetic balances in our model.

n Section 3 , we describe and analyse the results of our simulations
arying the Lehnert number, including exploring the evolution of
ifferential rotation and magnetic field, angular momentum fluxes,
nd identifying the presence of torsional waves. In Section 4 , we
ary the magnetic Prandtl number and also examine the occurrence
f magnetic instabilities. We present our conclusions, discuss the
strophysical implications of our results and fruitful avenues for
urther work in Section 5 . 

 N O N - L I N E A R  M H D  TI DAL  M O D E L  WI TH  A N  

NI TI AL  IMPOSED  D I P O L A R  MAGNETI C  

IELD  

e build on the hydrodynamical and non-linear tidal model described
n detail in AB22, to which we add an initial dipolar magnetic
eld. We turn to solving here the MHD equations for tidally excited
agneto-inertial waves in an incompressible and adiabatic (neutrally

tratified) conv ectiv e env elope of a low-mass star or giant planet.
he size of the inner core (normalized to the total radius R) is fixed

o α = 0 . 5, which represents a slightly thicker-than-solar envelope.
his value is relevant for modelling lower mass M or K stars

hroughout certain stages of their evolution, or to a giant planet
ith an extended dilute core that is sufficiently stably stratified

uch that it acts like a rigid boundary for low-frequenc y wav es in
he convection zone (e.g. Mankovich & Fuller 2021 ; Pontin et al.
024 ). This restriction is made in this initial study of magnetic effects
ecause envelopes with α = 0 . 5 have been the most-widely studied
n prior linear and non-linear studies to-date (Ogilvie 2009 ; Favier
t al. 2014 ; Lin & Ogilvie 2018 ; Astoul & Barker 2022 , 2023 ). The
hell rotates at a frequency �0 along the vertical unit vector e z , and
e assume that the envelope consists of fluid with a constant density
(which is set to 1, without loss of generality). The momentum,
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nduction, and continuity (plus solenoidal constraint on the magnetic 
eld) equations for the tidally excited magneto-inertial waves are 
iven by: 

 t u + 2 e z ∧ u + ( u · ∇) u = −∇p + Le 2 ( ∇ ∧ B ) ∧ B 

+ Ek � u + f t , (1a) 

 t B = ∇ ∧ ( u ∧ B ) + Em � B , (1b) 

 · u = 0 , (1c) 

 · B = 0 , (1d) 

ith u , B , and p the dimensionless velocity, magnetic field, and 
ressure, and � = ∇ 

2 the Laplacian operator. We adopt R, �−1 
0 ,

nd B 0 as units of length, time, and magnetic field, respectively, 
here the latter is a typical strength of the magnetic field. We
av e introduced sev eral dimensionless parameters, including the 
ehnert number Le = B 0 / ( 

√ 

μρR�0 ) (with μ the vacuum magnetic 
ermeability) which is a measure of the magnetic field strength in 
otational units (it is the ratio of the rotational time-scale to the
lfv ́en propagation time-scale o v er the distance R), and the viscous

nd magnetic Ekman numbers Ek = ν/ ( R 

2 �0 ) and Em = η/ ( R 

2 �0 ).
n the latter two, ν and η are the (assumed) constant kinematic 
iscosity and Ohmic dif fusi vity of the fluid, which can be considered
o represent turbulent values (e.g. from mixing-length theories). 

e also define the magnetic Prandtl number Pm = ν/η = Ek / Em , 
hich we vary in our simulations from 10 −1 to 5, while keeping

he Ekman number constant and set to Ek = 10 −5 . This choice is
oti v ated by mixing-length values for the solar conv ectiv e env elope

assuming such a turbulent viscosity damps tidal waves, e.g. Ogilvie 
 Lin 2007 ; Bekki, Cameron & Gizon 2022 , for inertial waves in the
un), by our previous hydrodynamical simulations that have explored 

his v alue extensi vely (AB22, AB23), and finally by computational 
imitations that prevent much smaller values of Ek (such as the tiny 

icroscopic ones that are of order 10 −15 in the solar envelope) from
eing simulated. 
We decompose the tidal flow into an equilibrium/non-w ave-lik e 

ide and a dynamical/w ave-lik e tide as in AB22 and AB23. The
ormer is assumed to be perfectly maintained on the time-scale of
ur simulations – which are designed to probe a brief snapshot in the
volution of a system – and to be described within linear theory, 2 but it
atisfies the correct tidally perturbed free surface boundary condition 
t r = R along with the conditions for a rigid core at r = αR . This is
ost directly applicable to modelling the equilibrium tide in a giant 

lanet with a solid core, but it approximately describes the flow in
he conv ectiv e env elope atop a radiative core. The w ave-lik e tide is
orced by the ef fecti ve tidal forcing: 

f t = Re 

{
−e z ∧ ∇ 

[(
r 2 + 

2 

3 
α5 r −3 

)
Y 

2 
2 ( θ, ϕ) 

]
ω C t 

1 − α5 
e −i ωt 

}
, 

(2) 

ritten here in dimensionless units, with ( r, θ, ϕ) and t being
pherical polar coordinates and time, Y 

2 
2 a quadrupolar spherical 

armonic, ω the tidal forcing frequency, and C t the dimensionless 
idal amplitude (see also Ogilvie 2013 ; Lin & Ogilvie 2018 ). We treat
 t as an input parameter in our study, and this is related to the di-
ensionless tidal amplitude ε = ( M 2 /M 1 )( R/a) 3 by C t = (1 + k 2 ) ε,
 It is by definition the quasi-hydrostatic adjustment of a body, and its 
ssociated flow, due to the tidal and self-gravitational potentials from the 
erturber and the perturbed body, respectively (e.g. Ogilvie 2014 ). 

t  

f

here M 2 and M 1 are the masses of the perturber and perturbed
ody , respectively , a is the orbital semimajor axis, and k 2 is the real
art of the quadrupolar Lo v e number (typically approximated by its
ydrostatic value). 

Note that equation ( 2 ) is purely hydrodynamical, namely, it only
akes into account the non-inertial term (i.e. the Coriolis pseudo- 
orce) acting on the equilibrium tide that is omitted from its definition
nd which is taken to drive tidal waves here. Astoul et al. ( 2019 ) have
tudied how magnetism can modify the equilibrium tide, and thus 
he excitation of magneto-inertial waves. Ho we ver, the impact of this

agnetic contribution to the tidal forcing is negligible (in the linear
egime) compared with equation ( 2 ), when considering either the
mplitude of large-scale magnetic fields of low-mass stars hosting 
ot Jupiters (for the tide in the star) or the magnetic field inside a
ot Jupiter itself (for the tide in the planet); therefore, we neglect
agnetic effects on equilibrium tides in this study. 
We follow AB22 and retain the non-linear terms involving tidal 

a ves only, b ut not those inv olving the equilibrium tidal flow. As
xplained in AB22, this is justified if the wavelengths of the waves
re much shorter than the radius of the body (and the tidal velocity
agnitudes of the waves are larger), which is typically satisfied in

ur calculations and is usually also expected in reality. Incorporating 
on-linear interactions with the equilibrium tide in our spherical shell 
eometry has also been found to lead to unphysical angular mo-
entum ev olution (Fa vier et al. 2014 , AB22). The same arguments

re expected to hold for the non-linear Lorentz force and magnetic
nduction terms involving the equilibrium tidal flow with the tidal 
aves and their magnetic field perturbations. Future work should 

xplore the additional contributions of non-linear interactions with 
he equilibrium tidal flow in realistic tidally deformed geometries, 
ut performing such studies will be a formidable task. 

We adopt stress-free and impenetrable boundary conditions for 
he velocity of the tidal waves, and current-free (i.e. insulating, e r ·
 ∇ ∧ B ) = 0) boundary conditions for the magnetic field at both the
nner and outer shells, where the field also continuously matches 
nto a potential field in the core and exterior of the body. Note that
mpenetrable conditions are not applied to the equilibrium tidal flow 

t the surface, which satisfies the correct free surface condition. 
We use the spherical pseudo-spectral code MAGIC to perform 

HD simulations of non-linear tidal waves in the presence of 
agnetic fields (see Section 2.1 ). In MAGIC , the velocity and
agnetic fields are described using a poloidal/toroidal decomposition 

ince they are both solenoidal [equations ( 1c ) and ( 1d )]. In other
ords, they can be decomposed as (here for the magnetic field): 

B = ∇ ∧ ( ∇ ∧ g e r ) + ∇ ∧ h e r , (3) 

here g and h are poloidal and toroidal scalar potentials, respectively. 
n the following, we will refer to the poloidal and toroidal magnetic
elds as B p = ∇ ∧ ( ∇ ∧ g e r ) and B t = ∇ ∧ h e r , respectively, with
orresponding poloidal and toroidal energies M p = Le 2 〈| B p | 2 / 2 〉
nd M t = Le 2 〈| B t | 2 / 2 〉 , respectively (with 〈·〉 denoting a volume
nte gral o v er the whole shell). 

Our model and go v erning equations (equations 1) are similar to
hose in Lin & Ogilvie ( 2018 ), except that we solve the fully non-
inear system for magnetic tidal waves whereas they performed linear 
alculations. We also adopt an initial dipolar magnetic field (rather 
han a ‘background field’ as in Lin & Ogilvie 2018 , but of the same
orm, with opposite sign): 

B ( t = 0) = B 0 = −
(α

r 

)3 
[

cos θ e r + 

sin θ

2 
e θ

]
, (4) 
MNRAS 541, 1575–1599 (2025) 
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Table 1. Values of the Lehnert number Le at different ages in a 1 M 
 star 
at the base (BCZ) and the top (TCZ) of the conv ectiv e env elope for slow 

and fast initial rotation from Astoul et al. ( 2019 ). These values adopt the 
magnetostrophic regime to estimate a mean magnetic field (this is likely to 
provide an upper limit on Le and agrees best with observations for low-mass 
stars o v er other scaling la ws discussed in Astoul et al. 2019 ). 

Zone BCZ TCZ 

Age \ initial rotation Slow Fast Slow Fast 

PMS ( t ∼ 10 7 yr) 10 −2 4 × 10 −3 2 × 10 −3 8 × 10 −4 

Beg. MS ( t ∼ 10 9 yr) 2 × 10 −2 4 × 10 −3 

End MS ( t ∼ 10 10 yr) 4 × 10 −2 5 × 10 −3 
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hich has dimensional amplitude B 0 . Thus, initially, the magnetic
nergy in the whole shell of volume V is: 

 0 = Le 2 
∫ 

V 

| B 0 | 2 
2 

r 2 sin θ d r d θ d ϕ = α3 Le 2 
π

3 

(
1 − α3 

)
. (5) 

he magnetic field B 0 is allowed to ev olve, b ut it is not self-sustained
y conv ectiv e motions, so it will decay Ohmically. We define a new
ehnert number which follows the evolution of the poloidal magnetic
eld M p ( t): 

e p ( t) = 

√ 

3 M p 

α3 π
(
1 − α3 

) , (6) 

uch that Le p = Le at t = 0, where M p is the poloidal magnetic
nergy (with M p = M 0 at t = 0). We also define a corresponding
oroidal Lehnert number, which takes a similar form: Le t ( t) =

 

3 M t / 
[
α3 π

(
1 − α3 

)]
, where Le t ( t = 0) = 0 initially. 

The sum of the integrated magnetic ( M = Le 2 〈| B | 2 〉 / 2 = M p +
 t ) and kinetic ( K = 〈| u | 2 〉 / 2) energies satisfies the energetic

alance described by: 

 t ( M + K) = P t + F P − D ν − D η. (7) 

his can be derived using equations (1) and the boundary conditions.
hen our simulations reach an o v erall steady state, the rate of energy

njected by the tide, i.e. the tidal power, defined by P t = 〈 u · f t 〉 ,
s mostly balanced by the sum of viscous and Ohmic dissipation,
 ν = −〈 Ek u · � u 〉 and D η = − 〈

Le 2 Em B · � B 

〉
. The Poynting

ux F P = Le 2 
∫ 

δV 
u · B B r d S, quantifies the transfer of magnetic

nergy through the inner and outer boundaries, but this is almost
l w ays found to be negligibly small in our simulations (see also
nufriev, Jones & Soward 2005 ) so can be ignored for our pur-
oses. 3 Furthermore, the total angular momentum is conserved in
he simulations given our choice of boundary conditions for the

agnetic field and velocity, following appendix A of Jones et al.
 2011 ), combined with the fact that the ef fecti v e wav e-like tidal
orque r ∧ f t ∝ e 2 iφ also vanishes when inte grating o v er the whole
hell (see AB22 for further details of the latter). We have verified
hat both energetic and angular momentum balances are accurately
atisfied in our simulations, as we will discuss further below. 

As in Favier et al. ( 2014 ), AB22, and AB23, we also define
he mean rotation rate of the fluid, relative to the reference frame
otating at the rate �0 , by δ� = 〈 u ϕ / ( r sin θ ) 〉 /V , where V is
he fluid volume, and the energy in the differential rotation E dr =
 

(〈 u ϕ 〉 ϕ − δ� r sin θ
)2 〉 / 2, where 〈·〉 ϕ denotes a ϕ-average. Note that

� can be non-zero despite global angular momentum conservation,
s a result of differential rotation produced within the fluid volume,
hough it is typically quite small. The energy in differential rotation
 dr is helpful in quantifying the generation of zonal flows by non-

inear self-interactions of tidal waves. 

.1 MAGIC code and ranges of parameter values 

e solve the system of equations (1) with the 3D pseudo-spectral
HD code MAGIC , 4 (version 6.2). We set the Ekman number to

k = 10 −5 , the radial aspect ratio to α = 0 . 5, the tidal frequency
NRAS 541, 1575–1599 (2025) 

 It is strictly non-zero, taking the value F P ≈ −2 . 18 × 10 −6 in linear theory 
or a fixed field with strength Le = 10 −2 with our default parameters. This 
s much smaller than the corresponding D ν ≈ 3 . 5 × 10 −3 (and D η ≈ 9 . 31 ×
0 −4 ). 
 https:// magic-sph.github.io/ 
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o ω = 1 . 1 (moti v ated by former studies as discussed for the aspect
atio in the beginning of Section 2 ), and finally the tidal forcing
mplitude C t = 10 −2 , unless otherwise stated. This choice allows us
o explore the impact of magnetism on tidal flows in the conv ectiv e
hell for a tidal frequency rele v ant for inertial wav e e xcitation, and we
xplore variations in the Lehnert number Le in the range [10 −5 , 1],
nd the magnetic Prandtl number Pm in the range [10 −1 , 5]. The
ange of Le co v ers weakly magnetized cases with Le = 10 −5 and
ases that are strongly magnetized with Le � 0 . 1. It can be compared
ith the range Le ∈ [10 −4 , 10 −1 ] computed in solar-type conv ectiv e

nvelopes from the pre-main sequence (PMS) to the end of the
ain sequence (MS) by Astoul et al. ( 2019 ) using a 1D stellar

volution code and scaling laws to estimate the o v erall amplitude
f the magnetic field, as reported in Table 1 for M = 1 M 
. 5 Le
ncreases as the star gets older, mainly because the star slows down
ts rotation. Smaller values with Le � 10 −4 are expected in giant
lanets like Jupiter (using values, and the magnetostrophic scaling
aw that is likely to provide an upper bound, in e.g. Wahl et al. 2017 ;
stoul et al. 2019 ), and Le � 10 −3 in spin-synchronized hot Jupiters

also using values from fig. 11 of de Vries, Barker & Hollerbach
023 ). Realistic values of Pm in stars are typically O(10 −2 ) using
icroscopic dif fusion coef ficients, and can be even smaller in giant

lanets (even O(10 −5 ), e.g. French et al. 2012 , where Em can be
stimated between 10 −13 and 10 −11 in the conv ectiv e re gion of a
upiter-like model). Ho we ver, if Ek is considered to represent a
urbulent viscosity in mixing-length theory, we might expect η to
lso represent a turbulent value, in which case Pm may be O(1) (e.g.
 ̈apyl ̈a et al. 2020 ). Note that C t = 10 −2 is the approximate value

or the tide in a hot Jupiter orbiting a solar-type star in one day, or
or the tide in a solar-type binary star also with an orbital period of
ne day. 
Our simulations are usually run for times t � 10 000, correspond-

ng to more than 0.1 global viscous times, which is usually sufficient
o reach a time-averaged steady state (for the tidal power and
issipation, although the magnetic field continues to slowly decay).
e use a CNAB2 scheme 6 for time integration with an adaptive time-

tep (d t) satisfying a Courant–Friedrichs–Lewy condition, which is
o larger than d t = 10 −2 to guarantee adequate time resolution. We
dopt a Chebyshev collocation method in the radial direction and
pherical harmonics in the horizontal directions in MAGIC . The spa-
ial resolution used in the simulations varies from case to case, from
 Values of Le are found to be of the same order of magnitude for other masses 
ith M = 0 . 6 , 0 . 8 , and 1 . 2 M 
. 
 It is a second-order scheme assembled from the combination of a Crank- 
icolson for the implicit terms (i.e. for the Coriolis and non-linear terms) 

nd a second-order Adams-Bashforth for the explicit terms (i.e. for the others 
inear terms) in the go v erning wav e equations. 

https://magic-sph.github.io/
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Figure 1. First and second columns: meridional, in the ( r, θ ) plane, magnetic field lines (in black, with arrows), along with the azimuthally averaged azimuthal 
magnetic field, 〈 B ϕ 〉 ϕ , at t = 0 (top left) and at the times indicated in three different simulations. 〈 B ϕ 〉 ϕ is predominantly antisymmetric about the equator so 
we have only plotted one quadrant. Upper left: initial dipolar magnetic field lines in all simulations. Right column: azimuthally averaged azimuthal velocity 
(symmetric about the equator) 〈 u ϕ 〉 ϕ in two simulations at the times indicated. The zonal flow for Pm = 5, Le = 2 × 10 −4 cannot be distinguished from the 
flo w sho wn here for Le = 6 × 10 −5 , Pm = 1 (that is why the former is not shown here). 
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 r, max = 97 (number of radial gridpoints), l max = 213 (maximum 

pherical harmonic degree), and m max = 10 (maximum spherical 
armonic order) for the less demanding simulations at low Lehnert 
umbers Le , up to n r, max = 193, l max = 341, and m max = 100 for
he more demanding simulations at high Le and/or high magnetic 
randtl numbers Pm . To guarantee adequate (horizontal and radial) 
patial resolution, we used an empirical ‘rule of thumb’ that ensures
hat there is at least 3 orders of magnitude of difference between the
eak of the energy spectrum and the energy in the highest resolvable
avenumbers, both for horizontal (spherical harmonic degree � and 

zimuthal order m ) and radial directions (in terms of Chebyshev 
pectral coefficients) when the simulation reaches an approximate 
teady state. 

 N U M E R I C A L  RESULTS  VA RY IN G  Le F O R  

m = 1 

ur simulations begin with an aligned dipole field (equation 4 ) in the
bsence of flow, with the tidal forcing being switched on at t = 0.
idal waves are excited and subsequently interact with the magnetic 
eld, which gradually decays on a long time-scale because of Ohmic 
iffusion. The resulting dynamics is due to a competition between 
idal forcing, hydrodynamic non-linearity, and viscous damping, as 
ell as the interaction of tidal flows with the magnetic field through
orentz forces, and the modification of the field by both the flows
nd Ohmic diffusion. We are particularly interested in the effects of
he field on tidal flows (both tidal waves and zonal flows) – and the

odifications of the resulting tidal dissipation with magnetic fields 
but also in studying the modification of the field by the tidal flows.

.1 Evolution of the magnetic field and differential rotation for 
eaker fields 

e first explore the impact of a weak dipolar magnetic field on tidal
 ave-lik e flows, setting the initial Lehnert number Le ∈ [10 −5 , 10 −3 ]

nd Pm = 1. The initial dipolar magnetic field lines in the meridional
lane are shown in the top-left panel of Fig. 1 , with the other panels
n this figure showing the meridional (equi v alently axisymmetric 
oloidal) magnetic field lines and mean azimuthal components at 
he specified times in simulations with different Le , together with 
xamples of the zonal flows in the right panels (a weak field case in the
ottom-right panel and a strong field case in the top-right). In Fig. 2 ,
e display the evolution of the poloidal and toroidal components 
f the magnetic energy, normalized by the initial squared Lehnert 
umber. For early times t � 500, the magnetic field is primarily
oloidal (as imposed by the initial conditions), before a toroidal 
omponent grows and becomes dominant. The latter is produced by 
he cylindrical differential rotation (zonal flows) – created by non- 
MNRAS 541, 1575–1599 (2025) 
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M

Figure 2. Total, poloidal, and toroidal magnetic energy normalized by the Lehnert number squared ( M/ Le 2 ) for Pm = 1 in solid, dashed, and dotted lines, 
respectively. Each cross indicates a local maximum of either the poloidal or toroidal magnetic energy for each simulation. Left: for low initial Lehnert numbers 
for which the tidally driven zonal flow is not destroyed. Right: for higher initial Lehnert numbers for which the tidally driven zonal flow is inhibited even shortly 
after the start of the simulation. 

Figur e 3. Ener gy in the dif ferential rotation E dr against time for lo w (left) to high (right) initial Lehnert numbers Le (in dif ferent colours). The hydrodynamical 
evolution of E dr (i.e. for Le = 0) is indicated in the pale dashed line in the left plot for reference. 
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inear self-interactions of inertial waves (see Tilgner 2007 ; Favier
t al. 2014 , AB22) – stretching poloidal field lines, i.e. by the so-
alled �-effect (e.g. Moffatt 1978 ; Spruit 1999 ) which we explore
n detail belo w. The dif ferential rotation is found to be stronger for
eaker magnetic fields, as we observe in the left panel of Fig. 3 .
his figure shows the energy in the differential rotation E dr and

ts tendency to evolve towards the hydrodynamical value ( Le = 0)
or smaller Le . For simulations with Le ≤ 2 × 10 −3 , these zonal
o ws ef ficiently stretch the poloidal magnetic field lines to produce
 toroidal magnetic field, as is shown (in colour) in the bottom-right
zonal flow) and bottom-left (toroidal field) panels of Fig. 1 . 

Since the tidally driven zonal flow (shown in the bottom-right panel
f Fig. 1 ) is axisymmetric and mainly independent of the vertical
oordinate z (along the rotation axis), we can write it as U ( s) =
 u ϕ 〉 z,ϕ e ϕ = s δ�( s ) e ϕ with s = r sin θ the cylindrical radius, and
here the azimuthal velocity is vertically and azimuthally averaged.
y ignoring Ohmic diffusion in equation ( 1b ), the interaction of the

nitial magnetic field B 0 with the zonal flow induces an axisymmetric
NRAS 541, 1575–1599 (2025) 
oroidal magnetic field B � satisfying: 

 t B � = ∇ ∧ ( U ∧ B 0 ) 

= e ϕ s ( B 0 · ∇) δ�( s ) = 

3 

2 
B 

r 
0 s sin θ e ϕ ∂ s δ�( s ) , (8) 

sing B 

r 
0 = − (

α
r 

)3 
cos θ = 2 B 

θ
0 cot θ from equation ( 4 ). It is not

traightforward to verify this quantitatively in simulations in which
he tidally driven zonal flow first develops before winding up the
nitial magnetic field. Thus, we have tested this mechanism by
lso restarting a hydrodynamical simulation (described in AB22)
ith a steady zonal flow with ω = 0 . 2 (for which we had suitable
ydrodynamical data, but the mechanism is the same for ω = 1 . 1
xcept that the zonal flows take a different form) and C t = 5 × 10 −2 ,
y injecting a dipolar magnetic field (equation 4 ) and solving
quation (1) from an initial time (relative to the hydrodynamic initial
tate) t = 10 000. From the ϕ-averaged snapshots shown in Fig. 4 , it
s clear that the �-effect explains the amplitude and the structure of
he azimuthal magnetic field early in the simulation. The snapshot
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Figure 4. Azimuthal average of the toroidal magnetic field produced by predictions of the �-effect 〈 B �〉 ϕ (left) and azimuthal magnetic field 〈 B ϕ 〉 ϕ (right) at 
t = 1050 from the outputs of a hydrodynamical simulation (from AB22) restarted at t = 10 4 with an initial dipolar magnetic field with Le = 10 −3 , Pm = 2, 
and ω = 0 . 2. Left: 〈 B ϕ 〉 ϕ computed using the right-hand side of equation ( 8 ), ×50 for time integration. Right: the colour range shown is the same as in the left 
panel (though the values taken slightly differ). 
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Figure 5. Evolution of the poloidal and toroidal magnetic energies M p and 
M t (normalized by Le 2 ) for various azimuthal wavenumber components, 
the m = 0 (axisymmetric) and m = 2 (non-axisymmetric) components, for 
two simulations with Le = 6 × 10 −5 (in green) and Le = 10 −3 (in yellow). 
Crosses indicate maxima. 
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fter 50 rotation periods (right panel) matches quite well with the 
rediction B � derived from equation ( 8 ). 
The time taken for differential rotation to build up a toroidal 
agnetic field of the same magnitude as the poloidal magnetic field 

an be estimated from equation ( 8 ). We refer to it as the winding-
p time, similarly as in Auri ̀ere et al. ( 2007 ) and Jouve, Gastine &
igni ̀eres ( 2015 ): 

 � = 

(
∂ δ�

∂ ln s 

)−1 

. (9) 

ote that, since the differential rotation becomes strong close to the 
oles in our simulations, sin θ (in equation 8 ) differs substantially 
rom one, reducing the right-hand side by almost an order of
agnitude. Taking into account this reduction, we estimate this time- 

cale (early in the simulation) to be t � = O(10) in the restarted
ydrodynamic case for Le = 6 × 10 −5 and t � = O(100) in other
imulations for Le � 2 × 10 −2 . These are consistent with the times
here M p = M t (see e.g. Fig. 2 ). After that (for t � 500), the poloidal
agnetic energy increases, possibly due to the m = 2 w ave-lik e
ow stretching the newly created axisymmetric toroidal magnetic 
eld, as suggested in Appendix B and by Fig. 1 (bottom-left panel),
here poloidal magnetic field lines are significantly modified close 

o the poles where the toroidal magnetic field is strong. The resulting
oloidal magnetic field should then have a quadrupolar component, 
hich is strongly corroborated by Fig. 5 that depicts evolution of

he dominant magnetic energy components. 7 Indeed, we observe a 
trong increase in M p ( m = 2) and M t ( m = 2) shortly after t ∼ 500.
imilarly, the rise of the latter may result from the action of the tidal
ow on B p ( m = 0). From t = 1700, the amplitude of M p ( m = 2)
or Le = 6 × 10 −5 exceeds that of M p ( m = 0) (which is decaying),
 The next strongest component m = 4 (due to superharmonics at 2 ω, Astoul 
 Barker 2022 ) is at least one order of magnitude lower than m = 0 or 2 

hroughout these simulations. 

M  

b
 

i
b

nd peaks at t = 3700 (as does M t ( m = 2)), later than M t ( m = 0)
hich peaks around t = 3600, supporting our inference that the
 ave-lik e flow u w ( m = 2) acts on B � to create B p ( m = 2). As a

esult, after a few thousand rotation units, the poloidal magnetic 
nergy is dominated by its quadrupolar component. This observation, 
oupled with the fast decay of M p ( m = 0), explains why the total
oloidal magnetic energy M p ≈ M p ( m = 0) + M p ( m = 2) increases
nd reaches a maximum earlier, around t = 3300 in Fig. 2 , while
 t , which is dominated by its axisymmetric component from the

eginning, peaks later, still around t = 3600. 
It is difficult to predict the maximum amplitude reached by the ax-

symmetric toroidal magnetic field, especially in simulations where 
oth magnetism and differential rotation are evolving on similar time- 
MNRAS 541, 1575–1599 (2025) 
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Figure 6. Le t ( t) versus Le p ( t) for simulations with Pm = 1 having different 
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points indicate the values reached at the end of each simulation. The left of the 
figure where Le t ∝ Le p indicates a kinematic regime where Lorentz forces 
are weak. 
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cales. 8 The saturation of the toroidal magnetic field amplitude could
esult from a complex interplay between Ohmic diffusion, magnetic
ension from the Lorentz force (this is very weak for Le = 6 × 10 −5 

ut is appreciable for larger Le ) and the production of axisymmetric
nd quadrupolar poloidal and toroidal components of the magnetic
elds. We estimate the shear length-scale (i.e. the length-scale o v er
hich the rotation varies substantially) close to the poles, where the

onal flow is produced, to be 

 � = ( ∂ ln �/ ∂ s) −1 , (10) 

hich takes the value l � = O(10 −1 ) for Le � 10 −3 , where � =
 + δ�. For this length-scale, the Ohmic diffusion time-scale is
 η = l 2 �/ Em = O(10 3 ), which is on the same order as the time-scale
or the saturation of the magnetic field. Ho we ver, the root mean
quare (RMS) amplitude of the Ohmic diffusion term is one order
f magnitude lower than the RMS induction terms in equation ( 1b ),
o Ohmic diffusion is unlikely to be solely responsible for saturating
 t . 
On the other hand, the Alfv ́en time-scale, which quantifies the

ime taken for magnetic perturbations to propagate energy out of
he shear region (defined later), varies from t ap ∼ 10 5 ( t ap ∼ 10 4 ) for
e = 10 −5 , to t ap ∼ 10 3 ( t ap � 10 2 ) for Le = 10 −3 , down to t ap � 10
 t ap � 10) for Le = 6 × 10 −2 when estimated at t ≈ 100 (at t ≈
00). It will be shown that t ap is relevant to explain the transition
etween regimes with strong or magnetically inhibited zonal flows,
ut it is too long to explain the saturation of M t occurring at a few
housand rotation units in simulations with low Lehnert numbers.

oreo v er, we hav e to account for decay of the poloidal magnetic field
ue to Ohmic diffusion, and for the newly created toroidal magnetic
eld B � being converted into B p ( m = 2) by the stretching effects of

he quadrupolar tidal flow (as explained before and in Appendix B ).
hese additional effects may reduce o v erall production of toroidal
agnetic energy . Finally , the evolution of the strength of the zonal
ow, with a peak of E dr around t = 7000 for Le = 6 × 10 −5 (see
ig. 3 ), is also likely to play a role. In the restarted hydrodynamical
imulation, where the zonal flow is nearly steady, both poloidal and
oroidal magnetic energies saturate a bit sooner (after 2000 rotation
nits) than in the non-restarted simulations (after nearly 4000 rotation
nits). 
As we decrease the initial Lehnert number, magnetic energies

onverge towards an asymptotic limit that seems to be reached for
e ≈ 6 × 10 −5 , with magnetic energy evolutions for lower Le being

dentical when rescaled by Le 2 (omitted from the figure). This implies
 kinematic regime for low enough Lehnert numbers, in which the
ole of Lorentz forces becomes negligible and the tidal flow is not
ffected by the magnetic field any more. In this regime, the induction
quation is linear in B . This kinematic effect of the tidal flows
n the magnetic field is further supported by Fig. 6 , which shows
he relationship between the RMS toroidal and poloidal magnetic
elds (equation 6 ) as they evolve in time in each simulation. The
imulations for low Lehnert number Le ≤ 10 −3 are first dominated
y the �-effect due to stretching of the poloidal field by differential
otation (vertical increase of Le t in Fig. 6 ) and by advection of the
ewly created azimuthal field by the tidal flow to a lesser extent (slight
orizontal bend toward higher Le p until a maximum is reached).
he maximum toroidal magnetic field is approximately six times

arger than the maximum poloidal magnetic field, given by the ratio
NRAS 541, 1575–1599 (2025) 

 For comparison, we observe that in the restarted hydrodynamical simulation 
ith ω = 0 . 2, the maximum toroidal magnetic energy is twice the maximum 

f M t taken in the non-restarted simulation for Le = 6 × 10 −5 . 

s  

9

4

e t / Le p . Once this value is reached and the differential rotation
ttains a steady state, Le t just decays linearly due to Ohmic diffusion,
.e. Le t ∝ Le p for Le ≤ 10 −3 . 

In our simulations, which do not model turbulent conv ectiv e
otions and the resulting dynamos, the magnetic field is not self-

ustained. Hence, in the absence of fluid motions substantially
aintaining (or amplifying) the field, magnetic energy is expected

o decay due to Ohmic diffusion, approximately according to 

 t M = −Le 2 Em 〈 ( ∇ ∧ B ) 2 〉 = −D η, (11) 

hen the induction term ∇ ∧ ( u ∧ B ) is neglected. Using a
oloidal/toroidal decomposition of the magnetic field, we can solve
he induction equation to find freely decaying modes (as in Ap-
endix A , following Moffatt 1978 ). For the single largest radial wave-
ength l = 1 mode, we predict a decay rate for the poloidal magnetic
nergy (i.e. for −d ln M p / d t) of approximately 1 . 79 × 10 −4 . This
s quite close to the observed decay rate for the same component
f the magnetic energy, which we measure to be 2 . 1 × 10 −4 in
he last thousand time units for 9 Le ∈ [10 −5 , 6 × 10 −2 ]. Since we
bserve the same decay for a comparison simulation with a lower
idal forcing amplitude C t = 10 −4 , we can rule out tidal flows acting
o enhance Ohmic decay, which could in principle explain the
mall difference in values by producing smaller magnetic length-
cales. Similar values, but one order of magnitude higher, are found
hen Pm = 0 . 1. For simulations with Pm = 2 and 5, the predicted
ecay rates are, respectively, 8 . 96 × 10 −5 and 3 . 59 × 10 −5 , while
he measured decay rates are again slightly higher, ∼ 1 . 1 × 10 −4 and

6 × 10 −5 , respectively. The small discrepancies between predicted
nd observed values could come from the initial dipole not being a
ingle free decay eigenmode. It can be represented as a sum of
ree decay eigenmodes (with different k α’s, using the notation of
ppendix A ), since the set of these forms an orthogonal basis for a

ingle l, m . Thus, we would not expect a single free decay eigenmode
o exactly explain the observed decay rate because the field in our
imulations is a superposition of these with different decay rates.
 We measure the same decay for a simulation with Le = 10 −3 running until 
0 000. 
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Figur e 7. Ener gy in differential rotation E dr (top) and viscous dissipation D ν (bottom) against the poloidal Lehnert number Le p for Pm = 1 and Ek = 10 −5 . Non- 
linear MHD simulations are shown in colour (non-black), each colour referring to a simulation with a different initial Lehnert number Le (with Le p ( t = 0) = Le ). 
Dots indicate the values reached at the end of the simulation around t = 10 4 . Dashed lines become solid for t ≥ 500 to indicate the evolution in time. For 
comparison, linear (magneto-)hydrodynamical predictions (black dotted and black dash–dotted lines) and non-linear hydrodynamical predictions (black solid 
lines) have been added. 
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evertheless, the approximate agreement between predicted and 
bserved values indicates that in most of our simulations the field 
s decaying Ohmically, and is not being sustained by, or subject to
nhanced (turbulent) diffusion by, the tidal flows. 

.2 Evolution for stronger fields, angular momentum fluxes, 
nd torsional waves 

or higher initial Lehnert numbers Le � Le c , where Le c = 3 × 10 −3 

s a critical value indicating a change of regime, the differential 
otation becomes substantially inhibited by the stronger initial 
agnetic fields within the first thousand time units. This difference 

etween stronger field cases and those with Le � Le c is demonstrated 
articularly clearly by comparing the bottom (small Le ) and top 
large Le ) right panels of Fig. 1 . In the latter, polar zonal flows are
ubstantially weaker and the net azimuthal flows are strongest in the 
magneto-)inertial wave shear layers instead. The evolution of the 
ifferential rotation is also shown in the right panel of Fig. 3 (and
n the upper panel of Fig. 7 ) where E dr is observed to be smaller
y more than two orders of magnitude for Le ∼ 10 −2 compared to 
e � 10 −3 . As a result of the correspondingly weaker �-effect, the

oroidal magnetic energy is also reduced, as is evidenced by the 2D
napshots in Fig. 1 (when comparing the o v erall amplitude of 〈 B ϕ 〉 ϕ 
n the top-middle panel with the bottom-left panels), and also in 
olume-integrated energies in Fig. 2 (right panel) and Fig. 6 . For the
argest Le , the poloidal magnetic energy becomes dominant o v er the
oroidal one throughout these simulations. 
2  
To better understand what causes the transition between regimes in 
hich tidally driven zonal flows develop strongly or not, we derive

n equation go v erning evolution of angular momentum. We take
he azimuthal component of the momentum equation in cylindrical 
oordinates, multiplied by the cylindrical radius s, to obtain: 

 t ( s ̂  u ϕ ) + 

1 

s 
∂ s ( sF s ) + ∂ z F z = 0 , (12) 

here the ̂  · symbol denotes the combination of taking a ϕ-average, z-
nte gration, and time inte gration (o v er an arbitrary time τ ), such that
or a variable A , ̂ A = 

∫ τ ∫ z o 
z i 

〈 A 〉 ϕ d z d t , with z i and z o the inner and
uter vertical heights of the spherical boundaries which depend on 
. In equation ( 12 ), we have introduced the cylindrical radial angular
omentum flux 

 s = s 
[ 
−Ek s ∂ s ( ̂  u ϕ /s) + 

̂ u s ̂ u ϕ + 

̂ u 

′ 
s u 

′ 
ϕ − Le 2 ̂ B s ̂

 B ϕ − Le 2 ̂ B 

′ 
s B 

′ 
ϕ 

] 
, 

(13

nd the vertical angular momentum flux 

 z = s 
[ 
−Ek s ∂ z ( ̂  u ϕ /s) + 

̂ u z ̂  u ϕ + 

̂ u 

′ 
z u 

′ 
ϕ − Le 2 ̂ B z ̂

 B ϕ − Le 2 ̂ B 

′ 
z B 

′ 
ϕ 

] 
. 

(14)

n these, we define the prime ′ symbol to denote non-axisymmetric 
uctuations to distinguish them from axisymmetric ones, such 

hat u i = 〈 u i 〉 ϕ + u 

′ 
i (since 〈 u 

′ 
i 〉 ϕ = 0). In both fluxes, from left

o right, we have the contributions from viscous diffusion (VD), 
eridional circulations (MC), Reynolds stresses (RS), magnetic 

orques (MT), and Maxwell stresses (MS, similarly as in Brun 
004 ; Browning 2008 , in spherical coordinates). Here, the MT (MC)
MNRAS 541, 1575–1599 (2025) 
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Figure 8. Angular momentum flux contributions within the cylindrical radial F s /s (top) and vertical F z /s (bottom) components, which are time integrated 
o v er the last 3000 time units and integrated along z o v er the Northern hemisphere only (because F z is antisymmetric about the equator, while F s is symmetric). 
We show MS, MT, RS, MC, and VD contributions. Left: Le = 6 × 10 −5 and Pm = 1. Right: Le = 4 × 10 −2 and Pm = 1. 
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epresents the m = 0 component of the magnetic (hydrodynamic)
ontributions to the angular momentum fluxes, whereas the Maxwell
Reynolds) stresses are defined to result from the non-axisymmetric
omponents. 

The different flux terms within F s and F z are each displayed in
ig. 8 for two examples, one with a low and one with a high initial
ipolar magnetic field strength. We show results after z−integration
nd time integration over the last 3000 rotation units, when the
imulation is approximately in a steady state but with a slowly
ecaying magnetic field (though at high Lehnert numbers the decay
f the magnetic field influences the differential rotation strength
ubstantially). When Le is low (left panels), strong Reynolds stresses
n F s (especially near the poles) generate differential rotation until
hey can be nearly perfectly compensated by VD (with opposite
igns), with negligible contributions from MC, MS, and MT. This is
imilar to what we expect from purely hydrodynamical simulations
hen the zonal flow reaches a steady state (see also appendix A in
stoul & Barker 2023 ), where RSs from tidal waves balance VD. The
C 

̂ u z ̂  u ϕ , which represents the large-scale correlations of vertical
nd azimuthal axisymmetric components, plays a more important
ole near the poles for F z than it does for F s . This suggests large-
cale recirculations in the polar columnar flow, both up and down
because of the opposite signs), from the reflection of the shear
ayers at the rotation axis. RSs are also important for F z and peak
NRAS 541, 1575–1599 (2025) 
n the outer tangent cylinder (OTC) at locations where the shear
ayers reflect at the inner/outer boundaries or at the equator. Note
hat F z is antisymmetric about the equator (while F s is symmetric),
o performing z-inte gration o v er the two hemispheres would almost
ancel out this component. 

When the initial Lehnert number is high (right panels), VD and
C are much less important than in the previous case, and RSs

re now balanced by MT. These inhibit development of zonal flows
nd result in much weaker differential rotation. Interestingly, MS
involving correlations of non-axisymmetric components) are small
ompared to MT here, which is the opposite of what has been found
n Brun ( 2004 ) and Browning ( 2008 ) in their conv ectiv e dynamo
imulations where MS seem to cancel out differential rotation in
ome regimes. Stronger MT may partly explain why, for Le � Le c ,
idally driven zonal flows have more difficulty developing or are
ompletely inhibited from the start for the highest initial Lehnert
umbers. Concomitantly, we also observe periodic oscillations on
ong periods ∼ 1500 (or somewhat shorter) in E dr , M t , and M p ( m =
), early in the simulations (see the right panels of Figs 2 , 3 , and
 ). These oscillations may correspond with torsional Alfv ́en waves,
estored by the magnetic tension component of the Lorentz force
e.g. the re vie w of Hori et al. 2023 ). To illustrate the emergence of
hese waves, we compute the vertically and azimuthally averaged
zimuthal velocity inside the shell, such that: 
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Figure 9. Amplitude of the fluctuating z- and ϕ-averaged zonal flow 〈 u ϕ 〉 z,ϕ − 〈 u ϕ 〉 z,ϕ,t v ersus time t and c ylindrical radius s for three simulations possibly 
exhibiting propagating torsional Alfv ́en waves. The time average for the zonal flow 〈 u ϕ 〉 z,ϕ,t is performed o v er the whole time range shown in each plot where 
the oscillations are observed. The green curve shows the Alfv ́en time-scale t A (averaged over an approximate cycle around which t A is dra wn) v ersus s. Left: 
Le = 6 × 10 −3 . Middle: Le = 10 −2 . Right: Le = 2 × 10 −2 . 
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 u ϕ 〉 ϕ,z = 

1 

h 

∫ z o 

z i 

〈 u ϕ 〉 ϕ d z, (15) 

rom which we remo v e the mean background state 〈 u ϕ 〉 z,ϕ,t =
 /τ

∫ τ 〈 u ϕ 〉 z,ϕ d t o v er an arbitrary time τ (chosen to define a repre-
entative mean state) in the manner of Teed, Jones & Tobias ( 2014 ).
e define h = ( z o − z i ) / 2, z o = 

√ 

1 − s 2 , and z i = 

√ 

α2 − s 2 in the
nner tangent cylinder (ITC), and z i = 0 in the OTC. The Alfv ́en
ime, 10 which describes the time-scale for radial propagation of these 
av es o v er a distance s, is defined by: 

 A = 

s 

Le 
√ 〈 B 

2 
s 〉 ϕ,z,t 

, (16) 

ith B s = B r sin θ + B θ cos θ , the cylindrical component of the
agnetic field. The temporally fluctuating mean zonal flows are 

hown versus s in Fig. 9 for three simulations with increasing 
nitial Lehnert numbers that possibly exhibit torsional waves. The 
uctuations of the zonal flows as a function of s and t are nicely
xplained by the variation of the Alfv ́en time-scale inside the ITC
equation 16 ), bending towards higher s and t , when averaging 
 v er one cycle around different initial times. This suggests that
he oscillatory and w ave-lik e nature of the zonal flows in these
imulations is likely to result from the propagation of torsional 
lfv ́en waves. These appear to be excited near the polar regions

nd to subsequently propagate outwards where they are primarily 
issipated, rather than being reflected to form torsional (standing- 
ode) oscillations. 
We observe that the zonal flow oscillation cycle is longer for lower

nitial Lehnert numbers, for example when comparing the time-scale 
f the first oscillation for Le = 6 × 10 −3 (about 1000 rotation units)
nd Le = 2 × 10 −2 (about 400). It also increases with time in each
anel since the poloidal magnetic field, therefore B s , decreases due 
o Ohmic diffusion (for instance, it is about 1500 for the second cycle
or Le = 6 × 10 −3 ). For Le = 10 −2 , similar time-scales are found as
or Le = 6 × 10 −3 , since torsional oscillations are triggered later in
he simulations (see the right panel in Fig. 3 ), so Le p (and so B s )
re of the same amplitude as can be seen in Fig. 7 (top panel). It
s interesting to see that for Le = 10 −2 (and for Le = 6 × 10 −3 ),
he amplitude of the MT, VD, and MC vary with the sign of the
uctuating zonal flows 〈 u ϕ 〉 z,ϕ − 〈 u ϕ 〉 z,ϕ,t , which we illustrate in
ig. B2 : when 〈 u ϕ 〉 z,ϕ < 〈 u ϕ 〉 z,ϕ,t (left panels) MT dominate, while
0 Since B s is antisymmetric compared to the equator, the square of it has 
een taken before performing the z average. 

d  

m
t  

p  
hen 〈 u ϕ 〉 z,ϕ > 〈 u ϕ 〉 z,ϕ,t (right panels) VD in F s and MC in F z take
 v er close to the pole. It is not clear whether the fast oscillations for
e = 2 × 10 −2 are of the same nature since this cyclic trend is not
bserved and MT dominate for all times like in Fig. 8 (right panels).
he transition between regimes where zonal flows are strong, like in
ydrodynamical cases, or are substantially quenched by MT (which 
lso corresponds with when slow torsional oscillations are observed) 
an be further interpreted by introducing the backreaction time-scale 
 ap of the magnetic tension on differential rotation. We define this in
 similar way (but modified) as Auri ̀ere et al. ( 2007 ) and Jouve et al.
 2015 ), as t ap = l �/v ap , with v ap = 

√ 〈 B 

2 
s 〉 ϕ,z the torsional Alfv ́en

elocity of the magnetic field in the cylindrical direction, and l � is
nce again the length-scale of variation of the differential rotation. 
For Le < 10 −3 , the backreaction time-scale is long compared to

oth the winding-up time-scale and the Ohmic damping time-scale 
f Alfv ́en waves t η, namely t ap � t � and t ap � t η, respectively. This
eans that differential rotation has time to stretch poloidal magnetic 
eld lines to create a strong toroidal component, while Alfv ́en waves
ave insufficient time to propagate before being damped by Ohmic 
iffusion. When Le ≈ Le c , we measure (at t = 100) t ap � t � � t η
all taking values around 500). From Fig. 3 (left panel), we indeed
ote the slight perturbation of E dr to set in at early times for this
ransitional Lehnert number. For higher initial Lehnert numbers Le > 

e c , t ap is smaller at a fixed time while t � and t η both stay the same, so
hat t ap � t � and t ap � t η. This means that Alfv ́en wa ves ha ve time
o propagate before being damped and their large-scale axisymmetric 
orrelations (MT) can act on differential rotation to quench it. 

.3 Tidal dissipation rates as a function of Le 

he variation in the strength of differential rotation (with Le and 
ime) has a substantial impact on tidal viscous dissipation rates D ν ,
s we show in the bottom panel of Fig. 7 . For low poloidal Lehnert
umbers Le p , since E dr is very close to the hydrodynamical prediction 
in the upper panel), D ν also matches the prediction computed with
ydrodynamic ( Le = 0) non-linear simulations (presented in AB22) 
hen the simulation reaches a time-averaged steady state. 
On the other hand, for much higher initial Lehnert numbers 

e > Le c , D ν ends up much closer to the linear hydrodynamical 
rediction, since differential rotation is too weak to impact viscous 
issipation in these simulations. Thus, for our set of parameters, the
ain ingredient controlling the magnitude of viscous dissipation is 

he strengths of the zonal flows, with the magnetic fields themselves
laying only an indirect role on D ν . For Pm = 1, the Ohmic
MNRAS 541, 1575–1599 (2025) 



1586 A. Astoul and A. J. Barker 

M

Figure 10. Time evolution of contributions to evolution of the total energy in equation ( 7 ). We show, in order, viscous dissipation, Ohmic dissipation, tidal 
power, and time derivative of the kinetic and magnetic energies ( Pm = 1). We omit the Poynting flux, since it is found to be negligibly small in both panels. The 
energy equation is thus accurately satisfied in our simulations. Left: Le = 6 × 10 −5 (weak field). Right: Le = 2 × 10 −2 (strong field). 
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issipation D η is quite low in all simulations compared to the tidal
ower and viscous dissipation, which mainly balance each other, as
s shown in Fig. 10 for two different initial Lehnert numbers. In these
imulations, the energy balance is well satisfied with an error at the
nd of the simulation of one-tenth of a percent for Le = 2 × 10 −2 

and much lower for 6 × 10 −5 ), which could be reduced even further
y increasing the spatial (and temporal) resolution. 
For large Lehnert numbers, the values of the dissipation rates D η

nd D ν are quite different from what is predicted by linear MHD
odels with an imposed dipolar magnetic field only (dotted black

ines in Fig. 7 , and Lin & Ogilvie 2018 ). Indeed, linear viscous
issipation is predicted to be strongly affected by the presence of a
agnetic field (with clear peaks and troughs) for Le � Le c , while

inear Ohmic dissipation is expected to be dominant. Ho we ver, these
inear predictions for D ν and D η do not account for toroidal and
on-axisymmetric components of the magnetic field, the modest
ifferential rotation that is present, and the fact the initial dipole
ecays o v er time, which e xplains why D η drops o v er time in Fig. 10 ,
eaving D ν as the only dominant sink of energy injected by tidal
o wer. Early time v alues of D ν and D η in non-linear simulations may
e closer to linear MHD predictions, but it is difficult to be definite
ecause the time to reach steady state is almost al w ays comparable
ith (or longer than) the Ohmic decay time for the imposed field. 

 D E P E N D E N C E  O N  T H E  MAGNETIC  

R A N D T L  NUMBER  

.1 Trends varying the magnetic Prandtl number 

e have also performed simulations varying the initial Lehnert
umber with different magnetic Prandtl numbers Pm ∈ [10 −1 , 2 , 5]
for the same Ek ) to explore the impact of variations in the Ohmic
if fusi vity (relati ve to the viscosity). The energy in the differential
otation E dr and the viscous dissipation D ν versus Le p are displayed
n Fig. 11 , with linear and non-linear hydrodynamical predictions
in black dashed dotted and solid lines, respectively) as in Fig. 7 for
m = 1. Similarly, we also plot linear MHD predictions (in black
otted lines) with an imposed dipolar magnetic field with a strength
iven by the initial Le p (following Lin & Ogilvie 2018 ). As for
m = 1 (Fig. 7 ), this exhibits a complicated dependence on Le p for
ach Pm . These predictions do not clearly match our simulations
or larger Le (where they differ from hydrodynamical predictions),
NRAS 541, 1575–1599 (2025) 
robably because the field in them has substantial toroidal and non-
xisymmetric components, and more importantly because the initial
ipole decays, unlike what is assumed in the linear calculations
sed to compute the black dotted lines. In Fig. 12 , we compute linear
HD values (for a fixed background dipolar field) of the viscous and
hmic dissipations for the Lehnert and magnetic Prandtl numbers

nv estigated here. F or high magnetic Prandtl numbers Pm = 2 and
, it is interesting to see that viscous dissipation al w ays dominates
hmic dissipation o v er Le . It differs from what has been found

n Lin & Ogilvie ( 2018 , fig. 4) for Pm � 1, where D η takes
 v er D ν for Le � 10 −4 . F or Pm = 1, D η starts to be dominant
or Le � 2 × 10 −2 (in Fig. 12 ), which may explain why the non-
inear viscous dissipation in Fig. 7 starts to be seriously mitigated
t this high Lehnert number. Lastly, for Pm = 0 . 1, D η � D ν from
e � 8 × 10 −3 (in Fig. 12 ), and the surge (and drops) in non-

inear D ν in Fig. 11 (right-bottom panel) around Le = 10 −2 , may
orrespond to the highest peak (and drops) found in Fig. 12 . Ho we ver,
lthough Ohmic dissipation dominates for lower Pm , Ohmic decay
s even faster for this low magnetic Prandtl number, making a direct
omparison between linear and non-linear MHD predictions even
ore difficult. 
For higher magnetic Prandtl numbers, two regimes, either having

trong (for small Le p ) or weak (for larger Le p ) differential rotation,
re observed in a similar way as for Pm = 1. Unlike cases with Pm =
, oscillations at the transition for Pm = 2 (e.g. when Le = 2 × 10 −3 

r 6 × 10 −3 ) are associated with repeated brief surges of the total
oloidal magnetic energy M p , concomitantly with an increase in M t ,
ut after E dr peaks. This is shown in Fig. 13 . In these simulations,
he quadrupolar component in the poloidal magnetic field (created by
tretching of the axisymmetric toroidal magnetic field by tidal waves)
ay play a role in the cyclic mitigation of differential rotation, as

videnced in Fig. 14 . Indeed, unlike in the previous cases when
m = 1, we notice the importance of MS (at the first ‘trough’ in
 dr ) which reflect here the strength of non-axisymmetric magnetic

orrelations. For low Le , we also note the important role of the zonal
ows, which more strongly shape magnetic fields for high magnetic
randtl numbers, and in particular poloidal magnetic field lines, as
e can see in Fig. 1 (bottom-middle panel). 
For an even larger magnetic Prandtl number Pm = 5, we also

bserve the transition between the two regimes, but it is shifted
urther towards a lower Lehnert number Le c ≈ 10 −3 , while it
as Le c ≈ 2 × 10 −3 for Pm = 2, and Le c ≈ 3 × 10 −3 for Pm = 1.
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Figure 11. Same as Fig. 7 , but for Pm = 2 (top, simulations ran until t = 20 000 here), Pm = 5 (middle), and Pm = 0 . 1 (bottom). 

W  

d  

c  

a  

a
i  

O
fi

h  

a
 

L
p
w  

t  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/541/2/1575/8176706 by guest on 12 August 2025
ith increasing Pm , the magnetic Ekman number ( Em = Ek / Pm )
ecreases, and so does D η, with the latter al w ays being negligible
ompared to P t and D ν . We do not observe a clear transition for
 low magnetic Prandtl number Pm = 0 . 1, though it may arise
round Le ≈ 10 −2 . In these simulations, the Ohmic dissipation D η

s non-negligible at early times, while D ν is smaller. Ho we ver, since
hmic dif fusi vity Em = 10 −4 > Ek is important there, magnetic 
elds decay relatively rapidly, and so does D η. The non-linear 
ydrodynamical regime is then reached more rapidly for Pm = 0 . 1
s Le p more rapidly decays with time in this case. 

The heuristic scaling la w deriv ed in Lin & Ogilvie ( 2018 , hereafter
O18) to distinguish between linear regimes dominated by (ap- 
roximately hydrodynamic) inertial or (inherently magnetic) Alfv ́en 
aves may be applied and modified for our study. When Pm � 1,

hey found that inertial waves pre v ail as long as Le < O( Em 

2 / 3 ), with
 prefactor depending on the direction of the magnetic field compared
MNRAS 541, 1575–1599 (2025) 
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Figure 12. Viscous and Ohmic dissipation D η and D ν computed in linear 
MHD calculations with a fixed background dipolar magnetic field as in Lin & 

Ogilvie ( 2018 ), versus dipolar Lehnert number Le p for various magnetic 
Prandtl numbers Pm . Viscous dissipation from a linear hydrodynamical 
calculation has been put for reference in black. 
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o that of the (wave) shear layer of width l (and of the zonal flow here,
hich modifies the direction of wave propagation). The inertial wave
ropagation time and the time-scale for setting up the zonal flow are
onstrained by either Ohmic dif fusi vity or viscosity, according to the
alue of Pm . For Pm � 1, the viscous damping time-scale l 2 / Ek
hould be preferred compared to the Ohmic diffusion one. In the
ntermediate regime when Pm ∼ 1, a geometric mean diffusion time
ould be used instead, such that the diffusion time-scale across a wave
eam becomes τi = l 2 / 

√ 

Ek Em instead. Using the same heuristic
rguments as in LO18 with the abo v e time-scale, LO18’s scaling law
ecomes Le = O( Ek 2 / 3 / Pm 

1 / 3 ) = O( Em 

2 / 3 Pm 

1 / 3 ). It is reported in
able 2 for Ek and Pm used in our simulations, along with the
alues of Le c roughly estimated from Figs 7 and 11 . For Pm ≥ 1, the
caling law may be rele v ant to predict the transition with an overall
roportionality constant of approximately 5, though it is less clear
hat it holds for Pm = 0 . 1. Such a proportionality constant could
e related to the fact that the inertial wave shear layers are inclined
ith respect to the magnetic field lines (close to the pole it is about
= arcsin ( ω/m ) from the rotation axis because the poloidal field

s nearly vertical). Further simulations exploring a wider range of
arameters, particularly varying Ek as well as Pm , would be useful to
xplore the validity of this trend before we can confidently extrapolate
t to stars and planets. Ne vertheless, the v alues here for Le c in our
imulations are close to (or within) the ranges of values expected
n stars and hot Jupiters, as discussed in Section 2.1 . Thus, we may
 xpect comple x interactions between tidal flows and magnetic fields
n many stars and planets. 

.2 Identification and analysis of magnetohydrodynamic 
nstabilities 

n our simulations with Pm = 5 and Le ∼ Le c (which have both
oderately strong differential rotation and magnetic field), we have

bserved MHD instabilities to operate, particularly for 11 Le ∈ [4 ×
0 −4 , 10 −3 ]. In Fig. 15 , we show snapshots of the meridional plane
NRAS 541, 1575–1599 (2025) 

1 In these simulations, we increased the spatial resolution to guarantee that 
he instabilities observed are well resolved, with a maximum number of 

t
1

d
i

n two examples exhibiting possible MHD instabilities. These show
rowth of localized spatially oscillatory patterns in the magnetic
eld close to the poles where the differential rotation is strongest,
s seen in both the axisymmetric ( 〈 B θ 〉 ϕ ) and non-axisymmetric
 B 

naxi 
ϕ = B ϕ − 〈 B ϕ 〉 ϕ ) components (each chosen to most clearly

isualize the instability). These snapshots have been taken at times
hich correspond to a maximum of the poloidal magnetic energy,

s we can see in Fig. 16 . This time is also correlated with abrupt
hanges in the toroidal magnetic energy and differential rotation. For
e = 4 × 10 −4 (left panel) the rapid, approximately exponential,
rowth of the poloidal magnetic energy is associated with a strong
ecrease of E dr (and to a lesser extent M t ) around t = 4800, while for
e = 10 −3 (right panel), we note periodic quasi-simultaneous bursty
ehaviours in each of M p , M t , and E dr (and E dr slightly precedes
he two others). These periodic bursts are associated with sinks
f the viscous dissipation D ν and tidal power P t , which drop by
pproximately 20 − 30 per cent during these periods. The periods
f exponential growth in magnetic energy, and the fall in E dr , indicate
he likely onset of MHD instabilities driven by the differential
otation. We have measured growth rates γ during the exponential
rowth phases of different magnetic components, which we present
n Table 3 . 

For Le = 4 × 10 −4 , the surge (drop) of M p ( E dr and M t ), seems
o be concomitant with a strong increase of the m = 1 toroidal com-
onent, and to a lesser extent, to the rise of the m = 2 components,
s shown in Fig. 16 . These modes (along with the m = 3 mode to a
esser degree, not shown here) are excited at the forcing frequency
 = 1 . 1, which precludes possible triadic resonances and parametric

nstabilities as found in AB22. For Le = 10 −3 , the m = 1 mode does
ot seem to trigger the initial instability associated with the bursty
ehaviour of the magnetic field, but may rather be a consequence of
t, since it arises latter in the simulation. Before the m = 1 mode kicks
n, a second sharper slope is visible in M p ( m = 2) and M t ( m = 2)
eaks, but it is not present in the axisymmetric poloidal magnetic
nergy M p ( m = 0), so both m = 0 and m �= 0 (first linked to m = 2
nd then to m = 1 modes) instabilities could be in operation. Thus, it
s difficult to determine from these time-series alone which magnetic
omponents (axisymmetric or non-axisymmetric) induce the other
i.e. whether the instability is axisymmetric or non-axisymmetric

or both), and which component could be a consequence of the
ther. It should be noted than higher growth rates are estimated for
on-axisymmetric m = 2 (and m = 1) magnetic energy components
n both simulations. Lastly, an important contribution of the (non-
xisymmetric) radial MS stands out close to the pole when the
nstability is triggered for Le = 4 × 10 −4 (see Fig. 17 ). These strong

S, that are also present for Le = 10 −3 , have been observed, to a
esser extent, in some simulations for Pm = 2 (see Fig. 14 ). They
eem to partially balance the RS generating the differential rotation,
hereby requiring somewhat weaker VD to maintain the zonal flow. 

Without any magnetic fields, the tidally driven zonal flow for
 = 1 . 1 is hydrodynamically stable according to the Rayleigh
riterion 12 (see AB22). Ho we ver, since the angular velocity decreases
utwards radially from the pole to the equator in our simulations,
he cylindrical zonal flow could host magnetorotational instabilities
MRI) in the presence of magnetic fields (see e.g. Balbus &
r, max 

he Legendre polynomials l max = 341 and m max = 50. 
2 This states that rotating flows in which angular momentum does not 
ecrease outwards from the axis are hydrodynamically stable to axisymmetric 
nstabilities. 
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Figure 13. Poloidal M p and toroidal M t magnetic energies along with energy in differential rotation E dr versus time for two simulations with Pm = 2 and 
Le = 2 × 10 −3 (left) and Le = 6 × 10 −3 (right). 

Figure 14. Flux terms within the cylindrical F s /s (left) and vertical F z /s (right) angular momentum fluxes, integrated along z over the Northern hemisphere 
only, for Le = 2 × 10 −3 and Pm = 2 at t = 650. 

Table 2. Transitional Lehnert numbers Le c for various magnetic Prandtl 
numbers Pm , estimated from the scaling law or approximatively inferred 
from Figs 7 and 11 . 

Le c \ Pm 0.1 1 2 5 

O( Em 

2 / 3 Pm 
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a wle y 1998 ; Balbus 2009 , for an introduction). These instabilities
ave been widely studied, for example in the context of accretion 
iscs, for their capacity to transport angular momentum outwards 
hrough turb ulence (e.g. Balb us & Ha wle y 1991 ; Ogilvie & Pringle
996 ), or in the context of the geodynamo (e.g. Acheson 1983 ;
etitdemange, Dormy & Balbus 2013 ). Local analytical models have 
een developed to study both axisymmetric and non-axisymmetric 
RI with different topologies of the magnetic field (e.g. Acheson 
 Gibbons 1978 ; Balbus & Ha wle y 1991 ; Kirillo v & Stefani 2010 ,

nd many others). The instability of an axial (vertical) magnetic 
eld in a cylindrical Taylor–Couette flow was initiated by Velikhov 
 1959 ), but its importance was realized when it was redisco v ered by
albus & Ha wle y ( 1991 ), and it is no w kno wn as the standard MRI
SMRI). The axisymmetric instability occurring with a combination 
f an axial and azimuthal magnetic fields is now sometimes called
he helical MRI (HMRI; e.g. Hollerbach & R ̈udiger 2005 ; Kirillov
 Stefani 2010 , where the latter points out its relation to SMRI),

nd the non-axisymmetric instability of a purely azimuthal magnetic 
eld is called the azimuthal MRI (AMRI; e.g. Acheson & Gibbons
978 ; R ̈udiger et al. 2007 ; Hollerbach, Teeluck & R ̈udiger 2010 ;
use v a et al. 2017 ). 
In Appendix C1 , we have explored the possible roles of ax-

symmetric SMRI or HMRI to explain the instability observed 
lose to the poles that varies along the rotation axis, based on
pplying the local linear stability analysis of Kirillov & Stefani 
 2010 ). The growth rate of the most unstable mode has been
alculated by solving the resulting quartic dispersion relation. Pre- 
icted growth rates match relatively well those measured in our 
imulations (see Fig. B3 , Table 3 , and Table C1 ), but the pre-
icted vertical wavenumbers are typically lower than the measured 
nes. 
Nevertheless, there are difficulties in applying the local analysis, 

artly because we must adopt appropriate values of the parameters 
MNRAS 541, 1575–1599 (2025) 
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Figure 15. Axisymmetric (left) and non-axisymmetric (right) latitudinal and azimuthal magnetic fields ( Le 〈 B θ 〉 ϕ and Le B 

naxi 
ϕ , respectively) for two simulations 

exhibiting instabilities near the poles. These cases have Le = 4 × 10 −4 at t = 4850 (top) and Le = 10 −3 at t = 2950 (bottom), both with Pm = 5. 
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sed in the model to compare with simulations, such as the vertical
nd azimuthal magnetic field strengths, and the shear rate, which we
ave estimated from the simulations. These vary substantially as a
unction of position, even within the region where the instability is
bserved, and with time. In addition, the short-wavelength (WKBJ 13 )
pproximations used to derive the dispersion relation may not be fully
atisfied, as we discuss further in the appendix. Finally, the basic
tate is evolving in time (i.e. specifically the differential rotation and
agnetic field profiles), whereas the local WKBJ theory assumes a

tatic or slowly varying (compared to the growth time of the mode)
asic state. 
In the two simulations examined in this section, the axisymmetric

zimuthal magnetic field is strongly dominant (see Fig. 16 ). There-
ore, and as discussed earlier, non-axisymmetric perturbations driven
NRAS 541, 1575–1599 (2025) 

3 Wentzel–Kramers–Brillouin-Jeffrey 

L  

a  
y this field may also be excited (see e.g. Hollerbach et al. 2010 ;
irillov & Stefani 2010 ). We have thus also explored the possibility
f non-axisymmetric AMRI in Appendix C2 following Acheson &
ibbons ( 1978 ) and Meduri, Ligni ̀eres & Jouve ( 2019 ). Although

he same limitations apply to this model as for SMRI/HMRI, the
nalytically predicted growth rates could also be consistent with the
easured ones (see Fig. C1 ), both for m = 1 or 2 non-axisymmetric

erturbations. 
In conclusion, both HMRI and non-axisymmetric AMRI could

redict MHD instabilities observed in the polar regions of these
imulations, as summarized in Fig. 18 , where the growth rate γ is
igher in some regions (especially for AMRI) but overall compatible
ith the measured values in Table 3 , and with (radial) magnetic
erturbations shown in black contours (similarly as fig. 10 of Jouve,
igni ̀eres & Gaurat 2020 ). To apply these local stability analyses
nd compute γ , azimuthal averages of the rotation and shear rates,
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Figure 16. Evolution of various key energy terms (see the legends) in two simulations when Pm = 5. Left: Le = 4 × 10 −4 . Right: Le = 10 −3 . 

Table 3. Measured growth rates of the (non-)axisymmetric poloidal and 
toroidal magnetic energies assuming that M p , t ∝ exp (2 γ t) at the burst 
and performing a linear interpolation. (1) and (2) refers to the first and 
second slopes, before and after t = 2800, respectively. 

Le γ ( M p ) γ
(
M 

m = 0 
p 

)
γ

(
M 

m �= 0 
p 

)
γ

(
M 

m �= 0 
t 

)
4 × 10 −4 6 . 5 × 10 −3 4 . 7 × 10 −3 7 . 1 × 10 −3 8 . 3 × 10 −3 

10 −3 (1) 7 . 1 × 10 −4 5 . 1 × 10 −4 1 . 7 × 10 −3 2 . 5 × 10 −3 

10 −3 (2) 3 . 4 × 10 −3 � 1 . 2 × 10 −2 10 −2 

v
c  

(  

L  

fi

p
fi  

i
a  

i  

i  

v  

(
a
s  

o
t
a
B
t
o  

d
t

5

W  

e  

e
t  

t
s  

a  

d
b
o  

s  

w  

h  

c  

f  

d  

c
i
m  

r
 

w
l
(
fl  

a  

a  

a
a
a
h
s
i

a
c
M
L
o
i  

fl  
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present study. 
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ertical and azimuthal magnetic fields, and their gradients, have been 
omputed at each point of the polar regions [equations ( C3 ) and
 C5 )], and we choose k z = 126 for Le = 4 × 10 −4 and k z = 94 for
e = 10 −3 , along with k x = 63 (see Table C1 ) based on by-eye
tting. 
A more comprehensive local analysis involving non-axisymmetric 

erturbations with both axisymmetric poloidal and toroidal magnetic 
elds may be useful to have better predictions of the unstable modes

nvolved in the instabilities seen in the simulations for Le = 4 × 10 −4 

nd 10 −3 . But any such local analysis is unlikely to substantially
mpro v e agreement with simulations, since the basic state is evolving
n time, and the modes are not truly local since the basic state
aries on a scale not much larger than the wavelengths of the modes
particularly with cylindrical radius). Finally, the non-axisymmetric 
nalysis assumes exponentially growing normal modes, which we 
how in the appendix is unlikely to be strictly valid due to the effects
f the differential rotation. Nevertheless, our analysis has identified 
he likely origin of the instabilities observed to be (axisymmetric 
nd/or non-axisymmetric) MRI driven by the differential rotation. 
roadly similar wavelengths and growth rates can be obtained in 

hese analyses with suitable parameter choices, keeping in mind all 
f the abo v e cav eats. The role of the MRI in controlling tidally driven
ifferential rotation – and its impact on tidal dissipation rates – is 
herefore worth studying further. 

 C O N C L U S I O N S  

e hav e e xplored the interactions of magnetic fields and tidally
 xcited inertial wav es in MHD non-linear models of the conv ectiv e
nvelopes of stars and gaseous planets. Our goals were to determine 
he influence of the field on tidal dissipation rates, and hence for
he spin–orbit evolution of many astrophysical systems, but also to 
tudy the effects of the flow on the magnetic field. We imposed
n initial dipolar field (thought to be generated by a conv ectiv e
ynamo) aligned with the rotation axis, with a strength determined 
y its Lehnert number Le , and explored the non-linear evolution 
f both the field and the tidal flow using MHD simulations. Our
imulations restricted the tidal frequency to one value in the inertial
ave range ( ω = 1 . 1 �0 , since this case has been well explored
ydrodynamically in Ogilvie 2009 ; Favier et al. 2014 , AB22, AB23),
onsidered a deep conv ectiv e shell with fractional radius 0.5 (rele v ant
or some low-mass stars or giant planets with large stably stratified
ilute cores), and fixed the Ekman number to a value approximately
onsistent with mixing-length expectations for a turbulent viscosity 
n solar-like stars. The non-linear interactions of tidal waves and 
agnetic fields have been found to be complex, with several different

egimes depending on Le and the magnetic Prandtl number Pm . 
For small Le � Le c � 1, below a critical threshold Le c , the tidal

a ves beha ve similarly to in hydrodynamical simulations, non- 
inearly generating differential rotation in the form of zonal flows 
strongest near the poles in our simulations). These strong zonal 
o ws ef fecti vely stretch the initial dipolar magnetic field to produce
n axisymmetric toroidal field via the �−effect. Moreo v er, non-
xisymmetric ( m = 2) w ave-lik e tidal flows also interacts with these
xisymmetric magnetic components to create quadrupolar poloidal 
nd toroidal magnetic components. Ho we ver, these magnetic fields 
re not observed to noticeably modify tidal dissipation rates over 
ydrodynamical non-linear simulations, where zonal flows remain 
trong and produce observable differences with linear hydrodynam- 
cal predictions (as in AB22 and AB23). 

For stronger fields with Le � Le c , tidally generated zonal flows 
re substantially inhibited, primarily by magnetic torques (from the 
ontributions of axisymmetric components of the field to the total 
axwell stresses 14 ) arising from the large-scale poloidal field. For 

e ∼ Le c , we observ e comple x interactions involving the excitation 
f torsional Alfv ́en waves (outwardly propagating from their launch- 
ng sites near the poles) leading to oscillations in both the zonal
ows and the field with a frequency proportional to the (cylindrical)
MNRAS 541, 1575–1599 (2025) 
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Figure 17. Flux terms within the radial (cylindrical) F s /s angular momentum flux integrated along z, for Le = 4 × 10 −4 and Pm = 5 before and close to the 
peak of M p (see Fig. 16 ) at t = 4200 (left) and t = 4850 (right), respectively. 

Figure 18. 2D colour maps of the growth rate γ in the polar region for the two simulations with Pm = 5 and Le = 4 × 10 −4 (the two leftmost panels) and 
Le = 10 −3 (the two rightmost panels), from local stability analyses of the axisymmetric helical (HMRI) and non-axisymmetric azimuthal (AMRI) with m = 1 
(second panel) and m = 2 (fourth panel) MRIs. Blue regions (also found everywhere for s > 0 . 22) indicate decaying modes (i.e. with γ < 0). Black contours 
represent the radial magnetic field B r ( ϕ = 0). 
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adial field strength. For smaller Le , their frequency decreases, with
agnetic torques becoming weaker, differential rotation becoming

tronger, and the Alfv ́en time-scale becoming longer than the Ohmic
iffusion time-scale, leading to a predominantly hydrodynamical
e gime. F or Le � Le c , (viscous) tidal dissipation rates transition
o a regime where they attain values close to the hydrodynamic
inear theoretical predictions without zonal flows (despite the ini-
ial field being strong enough to modify linear predictions by
tself). 

For some simulations with Le ∼ Le c , we have identified the MRI
o operate, which strongly modifies the differential rotation when
t occurs. To verify this interpretation, we have performed local
nalyses of the axisymmetric MRI in the presence of a poloidal
nd toroidal field, as well as the (weakly) non-axisymmetric MRI
ith a toroidal field. Our results suggest that the MRI is likely to be

n operation where the differential rotation is strongest in our simu-
ations, with growth rates and axial wavelengths broadly comparable
o those observed numerically. In the simulation with Le = 10 −3 and
m = 5, the MRI produces cyclic, bursty behaviour in the differential
otation and magnetic field, somewhat reminiscent of predator–prey
ynamics, while in the simulation with Le = 4 × 10 −4 , it has the
ole effect of strongly mitigating differential rotation. 

The transitional Le c found in our simulations is similar to some
stimates of Le near the surfaces, and in PMS phases, of low-mass
tars (see Table 1 ) and in hot Jupiters. This suggests that we might
NRAS 541, 1575–1599 (2025) 

a  
xpect a complex interplay between magnetic fields and tidal flows
n stars and planets. This is particularly the case if we interpret our
if fusi vities as turbulent ones, so that we might expect Pm = O(1)
n stars and planets, but less clear if the rele v ant dif fusi vities are
icroscopic ones. 
There are many ways in which our study should be extended. First,

e should explore a wider range of tidal frequencies, amplitudes,
nd conv ectiv e shell thicknesses. In our simulations, the magnetic
eld led to tidal dissipation rates approaching hydrodynamic linear

heoretical predictions, and it is important to explore whether this
esult is robust and is also found in other cases (including those
dopting an imposed ‘background magnetic field’ instead of an
nitial imposed field). Introducing convection and performing self-
onsistent simulations of conv ectiv e dynamos interacting with tidal
ows would be particularly interesting, as well as exploring possible

idally driven dynamos (as done for the elliptical instability in C ́ebron
 Hollerbach 2014 ; Vidal et al. 2018 , in intermediate-mass stars with

adiativ e env elopes). The influence of density stratification within the
nelastic approximation, and the roles of an interior radiation zone,
re also important to explore in future work. 
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PPENDIX  A :  D E C AY  O F  FREE  M O D E S  

hen injecting the poloidal ∇ ∧ ∇ ∧ [ g( r, θ, ϕ, t) e r ] or the toroidal
 ∧ [ h ( r, θ, ϕ, t) e r ] magnetic field component into the magnetic
iffusion equation ∂ t B = Em � B , each potential satisfies a partial
ifferential equation of the form (Moffatt 1978 ): 

∂ f 

∂ t 
= 

∂ 2 f 

∂ r 2 
− l( l + 1) 

r 2 
f , (A1) 

here f stands for either g or h when projecting onto a spherical
armonic of degree l (see also Wei & Goodman 2015 ). Setting f =
 l exp ( p αt) with decay rate −p α and changing variables such that
 

2 = −( p α/ Em ) r 2 as in Moffatt ( 1978 , section 2.7), we find that for
ree decay modes, f l satisfies Bessel’s equation 

 

2 ∂ 
2 f l 

∂ x 2 
+ 2 x 

∂ f l 

∂ x 
+ 

[
x 2 − l( l + 1) 

]
f l = 0 , (A2) 

hose solutions are a linear combination of spherical Bessel func-
ions of the first and second kinds, of fractional order, respectively,
 l+ 1 / 2 and Y l+ 1 / 2 (Abramowitz & Stegun 1972 ): 

 l = 

A √ 

r 
J l+ 1 / 2 ( k αr) + 

B √ 

r 
Y l+ 1 / 2 ( k αr) . (A3) 

ere, A and B are complex constants, and k 2 α = −p α/ Em . In
ddition, the poloidal g l and toroidal h l potentials are constrained
y the insulating boundary conditions at the inner: 

 r g l − l + 1 

r 
g l = 0 , and ∂ r h l = 0 , at r = α, (A4) 

nd outer spherical surfaces: 

 r g l + 

l 

r 
g l = 0 , and ∂ r h l = 0 at r = 1 . (A5) 

hen combining equations ( A3 ), ( A4 ), and ( A5 ), we can obtain the
ecay rate 2 p α = −2 Em k 2 α of the poloidal or toroidal magnetic
nergies ( ∝ g 2 or h 

2 ) for a given spherical harmonic degree l at
x ed Em . This pro vides the appropriate application of the deri v ation
f free decay modes in, e.g. Moffatt ( 1978 ), to our boundary
onditions. 
NRAS 541, 1575–1599 (2025) 
PPENDI X  B:  I N D U C E D  P O L O I DA L  

AGNETI C  FIELD  D U R I N G  T H E  KI NEMATIC  

HASE  

n the simulations for low enough Lehnert numbers, we observe an
ncrease in the poloidal magnetic energy at early times (like in Fig. 2 ,
eft panel) possibly due to interactions between non-axisymmetric
idal flows and the toroidal magnetic field. If this interpretation is
orrect, the generation of a poloidal magnetic field comes from the
articular induction term in the induction equation ( 1b ): 

 ∧ ( u w ∧ B t ) = ( B t · ∇) u w − ( u w · ∇) B t , (B1) 

here the non-axisymmetric tidal flow u w (mostly, the m = 2 compo-
ent) couples with the axisymmetric ( m = 0) toroidal component of
he magnetic field B t = 〈 B ϕ 〉 ϕ e ϕ . Indeed, we observe that while the
nduced toroidal magnetic component is mostly axisymmetric, the
xisymmetric component of the poloidal magnetic field just decays
ith time, so the bump in M p is purely non-axisymmetric (see Fig. 5 ).
ote that the second term on the right-hand side of equation ( B1 ) does
ot contribute to the energy balance after volume-averaging (only
he first term contributes), which makes sense since it locally cancels
ith part of the first term. Thus, the w ave-lik e poloidal magnetic
eld in the meridional plane can be written as 

B pw = 

∫ t 2 

t 1 

〈 B ϕ 〉 ϕ 
s 

(
e r ∂ ϕ u 

w 
r + e θ∂ ϕ u 

w 
θ

)
d t, (B2) 

hen integrating equation ( B1 ) with time. To compute the non-
xisymmetric meridional tidal flow, we set u 

w 
r,θ = u r,θ − 〈 u r,θ 〉 ϕ to

emo v e the background axisymmetric meridional flow. We display
he r and θ components of B pw in Fig. B1 (left panels) choosing
 = 0. The time integration has been performed between t 1 = 600
nd t 2 = 650 with a time-step of one rotational unit, namely when
he poloidal energy is rising and for a short period of time such
hat Ohmic diffusion does not have time to act. For comparison, the
on-axisymmetric components 

 

noaxi 
r,θ = B r,θ ( t 2 ) − 〈 B r,θ ( t 2 ) 〉 ϕ −

[
B r,θ ( t 1 ) − 〈 B r,θ ( t 1 ) 〉 ϕ 

]
, (B3) 

re shown at ϕ = 0 between t 2 and t 1 in the right panels. Fig. B1
erifies that our interpretation regarding the leading cause of the
eneration of poloidal magnetic energy at early times is correct. 
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Figure B1. Meridional snapshots in one quadrant at ϕ = 0 of the induced w ave-lik e magnetic field equation ( B2 ) (left panels) and the non-axisymmetric 
magnetic field equation ( B3 ) (right panels) between t 1 = 600 and t 2 = 650 from a simulation with Le = 10 −5 and Pm = 1. For each row, the intensity of the 
colour scales with the same extrema (which are symmetric). Top: r-components. Bottom: θ -components. 
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M

Figure B2. Flux terms within the cylindrical F s /s (top) and vertical F z /s (bottom) angular momentum flux es, inte grated along z o v er the North hemisphere 
only, for Le = 10 −2 and Pm = 1. Left: t ≈ 6500 close to a local minimum for the zonal flow amplitude. Right: t ≈ 7150 close to a local maximum for the zonal 
flow amplitude. 

Figure B3. Fastest growing modes with growth rates γ and vertical wavenumbers k z from SMRI/HMRI local stability analysis with axisymmetric vertical 
and azimuthal magnetic fields whose strengths are given by v A z (left) and ω A ϕ (right). Bullets and pentagons correspond, respectively, to predictions for 
Le = 4 × 10 −4 and 10 −3 using the specific sets of parameters ( S �, �, ω A ϕ ) (left panel) and ( S �, �, v A z ) (right) given in Table C1 for the two simulations. 
Black/grey outlined symbols correspond to the associated estimations using the values in Table C1 and the axisymmetric growth rates in Table 3 . The lower 
limit k z = 2 π/ (1 − α) is indicated by a blue line. 
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PPEN D IX  C :  L O C A L  LINEAR  STABILITY  

NA LY SES  

1 Axisymmetric (helical and standard) magnetorotational 
nstabilities 

e adopt the approach of Kirillov & Stefani ( 2010 ) to analyse the
rowth of axisymmetric perturbations in a differentially rotating 
ncompressible fluid in the presence of both a poloidal and toroidal 
agnetic field. This employs a local WKBJ approximation around a 
ducial point ( s, z). Linearized axisymmetric ( m = 0) perturbations
an be sought for each variable proportional to exp ( γ t + i k s s + i k z z),
here γ is the complex growth rate (at least when Re [ γ ] > 0),

nd k s and k z are the cylindrical radial and vertical wavenumbers, 
espectively (assumed to be real). The unstable modes can be 
etermined by solving the resulting dispersion relation, which is 
he following degree 4 polynomial (see Kirillov & Stefani 2010 , for
etails of the deri v ation): 

4 + a 1 γ
3 + a 2 γ

2 + ( a 3 + i b 3 ) γ + a 4 + i b 4 = 0 , (C1) 

here the coefficients are: 

 1 = 2( ω ν + ω η) , 

 2 = ( ω ν + ω η) 2 + 2( ω 

2 
A + ω νω η) + α2 κ2 + 4 α2 ω 

2 
A ϕ , 

 3 = 2( ω η + ω ν )( ω 

2 
A + ω ηω ν ) + 2 α2 κ2 ω η + 4 α2 ( ω η + ω ν ) ω 

2 
A ϕ , 

 4 = ( ω 

2 
A + ω νω η) 2 − 4 α2 ω 

2 
A �

2 + α2 κ2 ( ω 

2 
A + ω 

2 
η) + 4 α2 ω νω ηω 

2 
A ϕ , 

 3 = −8 α2 �ω A ω A ϕ , 

 4 = −4 α2 �ω A ω A ϕ (2 ω η + ω ν ) − κ2 α2 �−1 ω A ω A ϕ ( ω η − ω ν ) . (C2) 

e have also defined 

k = 

√ 

k 2 z + k 2 s , α = 

k z 

k 
, � = �0 + δ�( s) 

 A = 

k z B z √ 

μ0 ρ
, ω A ϕ = 

B ϕ √ 

μ0 ρ s 
, 

ω ν = νk 2 , ω η = ηk 2 , κ2 = 2 �

(
2 � + 

d δ�

d ln s 

)
= 2 �(2 � − S �) .

(C3)

his dispersion relation for axisymmetric modes describes the SMRI 
cting on a purely poloidal field if B ϕ = 0 (e.g. Balbus & Ha wle y
991 , 1998 ) and the HMRI involving a combination of a poloidal and
oroidal field otherwise (e.g. Hollerbach & R ̈udiger 2005 ; Kirillov 
 Stefani 2010 ). The presence of toroidal magnetic fields can affect

ome axisymmetric modes through hoop stresses, which is why B ϕ 

ppears in the dispersion relation, unlike in analyses that adopt a 
urely local Cartesian model (e.g. Dymott et al. 2024 ). 
Since it is not straightforward to choose a specific fiducial point 

 s, z) where to apply the local stability analysis to our simulations
especially in the vertical direction), we arbitrarily choose to take s =
 m 

where the ϕ- and z-averaged shear parameter S � = −d δ�/ d ln s 
s maximized at a specific time t . We then take the ϕ and z average of
he azimuthal Alfv ́en frequency ω A ϕ , the vertical Alfv ́en velocity
 A z = ω A /k z (defined to get rid of k z in ω A ), and the rotation
ate �, at this location s m 

.The values of these parameters are
isplayed in Table C1 for the two simulations showing signs of
HD instabilities at a time where M p is maximized (second peak for

e = 10 −3 shown in Fig. 16 ). The vertical wavenumber k z = 2 π/λz 

s estimated by computing the number of v ertical wav elengths λz 

n the domain in Fig. 15 (left panels). Lastly, the viscous and
hmic decay rates ω ν and ω η are computed using the global (mag-
etic) Ekman number Ek = 10 −5 and Em = Ek / Pm = 2 × 10 −6 for
m = 5. 
In Fig. B3 , we present predictions for growth rates γ and vertical

avenumbers k z from solving equation ( C1 ) with the parameters
iven in equations ( C2 ) and ( C3 ). We do so by varying either ω A ϕ or
 A z , and fixing the other parameters to the values listed in Table C1 .
nly the fastest growing mode is selected for each set of parameters,
hich is al w ays found to have k s = 0 (‘channel modes’). Increasing

he strength of the azimuthal magnetic field (by increasing ω A ϕ )
educes both γ and k z compared to SMRI with B ϕ = 0. Conversely,
ncreasing v A z boosts the growth rate, but not necessarily the value
f k z , which decays after a maximum around v A z ≈ 2 . 3 × 10 −3 .
his may be related to some known properties for SMRI. Without
iffusion, this would predict λz ∝ B z , so k z ∝ 1 /B z ∝ 1 /v A z . With
iffusion, this would be modified for small B z where those smaller
cale modes would be damped. Also, B ϕ would presumably play a
ole also in causing this maximum. Monotonic growth of both the
aximum γ and the corresponding k z is observed with increases 

n the shear parameter S � (not shown here). The modes predicted
elow the threshold k z = 2 π/ (1 − α) (blue line) should not be able
o develop in the shell (with size 1 − α), since they would be larger
han the domain size. Values of the growth rate measured in the
imulations (from M p ( m = 0) in Table 3 ) are indicated in grey/black
utlined symbols in both panels of Fig. B3 using the values of
 z , ω A ϕ , and v A z listed in Table C1 . The measured growth rates
atch quite well the analytically predicted ones, which are around 
 × 10 −3 and 7 × 10 −4 for Le = 4 × 10 −4 and 10 −3 , respectively.
o we v er, the predicted v ertical wav enumbers are lower than the

stimates in Table C1 . If the most unstable mode is not taken, but
 z is instead fixed to the last column of Table C1 , the predicted
odes would be stable. Ho we ver, it must be stressed that the values

or S �, ω A ϕ , �, and v A z vary substantially from one fiducial point
o another (and the z-average reduces values of S � and v A z , and
hus of k z ), while the growth rate has been measured from a global
oloidal quantity, which does not make the comparison with the local
nalytical model straightforward. Moreo v er, the validity of this local
ispersion relation relies on several assumptions that may not be fully
atisfied in our global simulations. First, the cylindrical and vertical 
ariations are assumed to be small compared with the characteristic 
ength-scales of variation of background flow and field quantities in 
he same directions. This is probably justified in the vertical direction, 
here the zonal flow and the vertical and azimuthal magnetic fields

re mainly invariant of z. However, it is marginally satisfied in
he radial direction, since the variation along s in Fig. 15 is only
lightly smaller than the typical length-scale on which the shear varies 
 � ∼ 0 . 1. In addition, the short-wavelength approximation relies on
he fact that k s s � 1, which is not satisfied here. Nevertheless, these
esults are suggestive that the MRI is in operation in our simulations.

2 Non-axisymmetric azimuthal magnetic instabilities 

n this section, we apply the local analytical model derived in Meduri
t al. ( 2019 ) to in vestigate AMRI in volving the growth of non-
xisymmetric perturbations in an incompressible and differentially 
otating fluid with a dominant azimuthal magnetic field (first de- 
ived by Acheson & Gibbons 1978 , but here we omit buoyancy
nd thermal diffusion). The o v erall approach is similar to that in
ppendix C1 to derive a dispersion relation, but here we consider

he presence of only an axisymmetric azimuthal magnetic field. 
y injecting non-axisymmetric small-amplitude perturbations of the 

orm exp { i( k s s + k z z + mϕ − σ t) } into the go v erning equations and
MNRAS 541, 1575–1599 (2025) 
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M

Figure C1. Predictions for the growth rate γ due to non-axisymmetric AMRI for a fixed vertical wavenumber k z = 94 as a function of the shear parameter 
S � and the azimuthal Alfv ́en frequency ω A ϕ . As in Fig. B3 , black outlined bullets are for Le = 4 × 10 −4 and grey pentagons are for Le = 10 −3 . These refer 
to growth rate estimates using either z-averaged ( S �, ω A ϕ ) from Table C1 (lowest pair of symbols), the maximum of ( S �, ω A ϕ ) o v er z at s m 

(upper right pair 
symbols), or a mix of the two (upper left pair of symbols), and the highest non-axisymmetric growth rates of the toroidal magnetic energy in Table 3 . Associated 
contour lines are also indicated in black (for γ = 8 × 10 −3 ) and grey (for γ = 10 −2 ). The white region indicates stable modes (with zero growth). Left: k x = 0. 
Right: k x = 63. Up: m = 1. Down: m = 2. 

Table C1. Values chosen to apply the HMRI and AMRI local stability 
analyses. The ϕ and z averaged parameters v A z , ω A ϕ , �, and S � have 
been e v aluated at a fiducial point s m 

which maximizes 〈 S �〉 z in the upper 
hemisphere at a time t . The vertical wavenumber k z is measured from the left 
panels of Fig. 15 . 

Le t s m 

v A z ω A ϕ � S � k z 

4 × 10 −4 4850 0.044 6 . 7 × 10 −4 0.17 1.2 0.23 126 
10 −3 2950 0.044 4 . 1 × 10 −4 0.18 1.1 0.13 94 
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inearizing (around the background axisymmetric state), we can
btain the dispersion relation below. The growth rate is γ = � σ when
he fluid is unstable ( � σ > 0) and the vertical and (cylindrical) radial
avenumbers are again k z and k s . The azimuthal wavenumber m is
xed to 1 or 2 in the following analysis, motivated by our simulations.
n this framework, the dispersion relation is again a fourth-order
olynomial: 

 4 ̃  ω 

4 + a 3 ̃  ω 

3 + a 2 ̃  ω 

2 + a 1 ̃  ω + a 0 = 0 , (C4) 
NRAS 541, 1575–1599 (2025) 
ith ˜ ω = σ/� − m the dimensionless Doppler-shifted frequency,
nd with coefficients: 

 4 = 1 + β2 , 

 3 = 2i 
(
1 + β2 

) (
Re −1 + Rm 

−1 
)
, 

 2 = −2 ( q + 2 ) + 2 L o 
2 
[
b − 1 − m 

2 
(
1 + β2 

)]
− (

1 + β2 
) (

Re −2 + Rm 

−2 − 4 Re −1 Rm 

−1 
)
, 

 1 = −8 m L o 
2 + i 

{
2 L o 

2 
[
b − 1 − (

1 + β2 
)
m 

2 
] (

Re −1 + Rm 

−1 
)

−4 ( 2 + q ) Rm 

−1 − 2 
(
1 + β2 

) (
Re −2 Rm 

−1 + Re −1 Rm 

−2 
)}

, 

 0 = m 

2 L o 
2 
{

2 q − L o 
2 
[
2 ( b + 1 ) − (

1 + β2 
)
m 

2 
]}

−2 L o 
2 
[
b − 1 − (

1 + β2 
)
m 

2 
]

Re −1 Rm 

−1 + 

(
1 + β2 

)
Re −2 Rm 

−2 

+ 2 ( 2 + q ) Rm 

−2 + i 
{

2 m L o 
2 
[
q Re −1 − (4 + q) Rm 

−1 
]}

. (C5) 

n equation ( C5 ), six additional dimensionless parameters have been
ntroduced (along with k = 

√ 

k 2 s + k 2 z ): 

β = 

k s 

k z 
, Re = 

�

νk 2 
, Rm = 

�

ηk 2 
, q = 

∂ ln �

∂ ln s 
− β

s 

z 

∂ ln �

∂ ln z 
, 

 o = 

ω A ϕ 

�
= 

B ϕ √ 

μρs�
, b = 

1 

2 

( 

∂ ln B 

2 
ϕ 

∂ ln s 
− β

s 

z 

∂ ln B 

2 
ϕ 

∂ ln z 

) 

, (C6) 
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uantifying, in order, the poloidal wavenumber ratio, the hydrody- 
amical and magnetic Reynolds numbers, the shear rate, and the 
zimuthal magnetic field amplitude and its gradient. This dispersion 
elation describes non-axisymmetric magnetorotational (differential 
otation-driven) instabilities and the Tayler (current-driven) instabil- 
ty (Tayler 1973 ; Ji, Fuller & Lecoanet 2023 , for instance in MHD
imulations). 

In our simulations, the zonal flow depends mainly on s, such that
= 1 + δ�( s), so its vertical gradient can be neglected and the shear

arameter can be approximated by q ≈ ∂ ln �/ ∂ ln s ≈ −S �/�. 
he vertical gradient in b is also quite weak in the region where

nstability is observed, with ( s/z) ∂ ln B 

2 
ϕ / ∂ ln z � 10 −3 , and the

adial gradient is of the order of unity with ∂ ln B 

2 
ϕ / ∂ ln s ≈ 1. We

hoose the same fiducial point s m 

as for SMRI/HMRI in Table C1 ,
s well as the same values for ω A ϕ , �, and S �. To illustrate the
ariability of the parameters in the simulations, the growth rate 
omputed using the maximum (along z) shear rate and azimuthal 
lfv ́en frequency are also displayed when computing the estimates 

symbols in Fig. C1 ). The Reynolds numbers Re and Rm are 
omputed using the global (magnetic) Ekman number Ek = 10 −5 

nd Em = Ek / Pm = 2 × 10 −6 together with the appropriate value 
f k. 
Contrary to our axisymmetric SMRI/HMRI stability analysis, we 

hoose to fix the wavenumbers. 15 Here, k z and k s are fixed and we
ary ω A ϕ and S �, as is shown in Fig. C1 , setting the local rotation
ate to the maximum of the two simulations � = 1 . 2. The vertical
avenumber has been set to k z = 94 as estimated for Le = 4 × 10 −4 ,

nd k s = 63 in the right panel is a rough estimation of the radial
avenumber k s = 2 π/λs in Fig. 15 , with λs the cylindrical radial
avelength. We pick m = 1, since it is expected to be the azimuthal
avenumber of the most unstable non-axisymmetric mode (see e.g. 
ollerbach et al. 2010 , and Fourier transform of the toroidal velocity

eveals that this component is non-negligible after the instability 
s triggered for Le = 4 × 10 −4 and 10 −3 ), along with the m = 2
orced mode in our simulations. The main effect of increasing k z 
not shown here) is to reduce the extent of the unstable region for
mall ω A ϕ and small S �. Increasing k s has the same effect, and
ore specifically shifts the region of unstable modes to higher shear 

ates S �, as seen when comparing the two columns of Fig. C1 .
igher azimuthal wavenumbers shift the region of unstable modes 

o lower azimuthal Alfv ́en frequencies for which the restoring effects 
f magnetic tension are weak er. Unlik e for SMRI/HMRI, an increase
f the azimuthal Alfv ́en frequency implies a larger growth rate. 
arger growth rates are also found for higher shear S �. The term
ncoding radial and vertical gradient of the azimuthal magnetic field 
n equation ( C5 ) may not play an important in our model, since

5 We adopt this approach, as in Meduri et al. ( 2019 ), because the fastest
rowing mode typically has very small k s , k z � 1. 
The Author(s) 2025. 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
utting b = 0 instead does not alter much the growth rate, which
robably rules out the possibility of a Tayler-type instability. 
Depending on the value used for the shear (either max 〈 S �〉 z or
ax [ S( s m 

, z)]) and for the azimuthal Alfv ́en wav e frequenc y (either
 ω A ϕ ( s m 

) 〉 z or max [ ω A ϕ ( s m 

, z)]), analytical predictions for the growth
ate can be found quite close to the measured values for both m = 1
nd 2, though higher growth rates (when values are in the unstable
egion) are often predicted theoretically. Hence, non-axisymmetric 

RI is a plausible explanation for the instability observed in these
imulations, potentially in addition to axisymmetric MRI. 

We caution once ag ain reg arding the difficulty of choosing the
ducial point, which has a major impact on the parameter values
nd the uncertainty surrounding our predictions of the growth rates 
nd wav enumbers. Moreo v er, the short-wav elength approximation 
ssumes the meridional wavelength perturbation 

m 

= 

√ 

λ2 
s + λ2 

z � r, l B ϕ , l �, (C7) 

ith r the spherical radius, l B ϕ = |∇ ln B ϕ | −1 and l � = |∇ ln �| −1 the
cale heights of the azimuthal magnetic field and rotation. Since ver-
ical variations of B ϕ and � are negligible compared to radial varia-
ions, the scale heights can be written as l B ϕ ≈ 2 s/ | ∂ ln B 

2 
ϕ / ∂ ln s| and

 � ≈ | ∂ s ln �| −1 , both taking values of order 0.1, like r . Depending
n the value of λs , the condition equation ( C7 ) is either not satisfied
if k s = 63, λm 

∼ 0 . 1 ∼ r, l B ϕ , l �) or is only marginally satisfied
if k s = 0, λm 

∼ 5 × 10 −2 � r, l B ϕ , l �). Moreo v er, the azimuthal
avelength of the perturbations must also satisfy λm 

� λϕ , which is 
ot well verified with λϕ = 2 πs m 

/m ∼ 10 −1 ∼ λm 

if m = 1 and 2.
inally, and perhaps most importantly, we also require the growth 

ime for the instability to be (much) shorter than the time-scale
o shear out non-axisymmetric perturbations for a (exponentially 
rowing in time) normal-mode analysis to be valid. This requires 

 � k s 
l �

�
γmax , (C8) 

ith γmax the maximum growth rate of the most unstable mode for a
pecific set of parameters ( ω A ϕ , S �) (see equation 26 of Meduri et al.
019 , and the associated arguments). The right-hand side of equation
 C8 ) is e v aluated here to be, at most, 63 × 0 . 1 × 10 −1 � 1 � m ,
mplying that non-axisymmetric perturbations with m = 1 and 2 
ill be substantially modified by the shear o v er the predictions of

his normal-mode theory. In this case, a transient amplification of 
on-axisymmetric modes is predicted instead, and the consequent 
ncrease in k s with time due to the action of the shear will enhance
he effects of diffusion and ultimately stabilize the modes. In addition,
he larger magnetic tension acting on these larger k s modes may also
elp to stabilize them. Hence, we expect the observed growth rates to
e smaller than the theoretical predictions, just as we have observed
umerically. 
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