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Abstract

We present a novel framework for analyzing dynamic vocal

tract deformations by integrating volumetric Magnetic Reso-

nance Imaging (MRI) data and real-time MRI (rtMRI) bound-

ary constraints within an iterative Large Deformation Diffeo-

morphic Metric Mapping (LDDMM) framework. More pre-

cisely, we apply LDDMM to morph volumetric vocal tract

shapes using rtMRI boundary constraints that enable a smooth

and anatomically plausible articulatory transformation. We

demonstrate the method and discuss the issues involved using

a vowel-consonant-vowel sequence. We show the influence of

varying the number of rtMRI images on the resulting articula-

tory transformation.

Index Terms: speech production, magnetic resonance imaging,

large deformation diffeomorphic metric mapping

1. Introduction

Speech production involves rapid movements of articulators,

coordinated through dynamic articulatory gestures, which con-

tinuously reshape the configuration of the vocal tract [1, 2, 3, 4].

Volumetric structural magnetic resonance imaging (MRI) has

long been used to obtain high-resolution snapshots of vocal

tract configurations during sustained phonation [5, 6, 7]. How-

ever, because volumetric MRI requires long acquisition times,

it is inherently limited to capturing steady states rather than the

transient movements that occur during fluent speech. In con-

trast, real-time MRI (rtMRI) offers the temporal resolution nec-

essary to observe articulatory dynamics in vivo, although typi-

cally at somewhat reduced spatial resolution [8, 9]. Integrating

these different modalities to model physiological deformation

pathways, such as transitions between vowels and consonants,

poses significant challenges, particularly in ensuring that com-

putational models reflect physiologically plausible motion tra-

jectories.

One powerful framework for capturing and quantifying

morphological changes between shapes in biomedical imag-

ing is Large Deformation Diffeomorphic Metric Mapping (LD-

DMM). LDDMM provides a way to align complex anatomical

structures by defining a smooth, invertible transformation i.e.,

a diffeomorphism between a source and a target shape, with an

associated Riemannian metric on the space of diffeomorphisms

[10]. This method has been widely used in neuroimaging and

computational anatomy, where subtle shape changes must be

accurately quantified [11, 12, 13]. In speech production re-

search, the vocal tract also undergoes significant shape defor-

mations, making LDDMM a natural candidate for the regis-

tration of different articulatory configurations. However, even

though the vanilla LDDMM formulation is effective at reduc-

ing geometric dissimilarities, it does not take into consideration

the temporal changes in articulatory movements that are seen in

natural speech.

3D morphing of the vocal tract is an interesting area of

research for articulatory synthesis and speech training. While

morphable vocal tract models, where one shape is deformed

into another, have shown potential for simulating intermediate

articulatory postures, ensuring physiologically plausible transi-

tions remains an open challenge [14]. In this regard, LDDMM

stands out for its ability to produce smooth and invertible defor-

mations, that theoretically respect the anatomical constraints if

guided by intermediate articulatory data.

In this study, we propose an iterative LDDMM-based ap-

proach to morph one static 3D vocal tract configuration to an-

other using rtMRI data as boundary constraints. We present an

example of the sequence /a:ôa:/, and compare the outcome of an

unconstrained LDDMM deformation to one that uses vocal tract

boundary coordinates extracted from the rtMRI video frames to

sequentially guide the deformation path, ensuring that it follows

the actual articulatory trajectory observed during the transition.

2. Methods

Data were collected from a female adult native speaker of Stan-

dard Southern British English as a part of a pilot investigation

within a larger project. For the initial analysis we focused on the

intervocalic consonant sequence /a:ôa:/ ± a rhotic approximant

/ô/ flanked by the low vowel /a:/.

2.1. Vocal Tract Imaging

Vocal tract imaging was performed using rtMRI and 3D vol-

umetric MRI, as per the methodology and acquisition param-

eters outlined in [15]. MRI data were acquired on a Siemens

Magnatom Prisma 3D scanner with a 64-channel head/neck re-

ceiver coil. The resulting rtMRI videos were reconstructed at 72

frames per second with an in-plane resolution of 0.97mm2 per

pixel. 3D volumetric imaging was performed during sustained

vowel production with a voxel size of 1.6× 1.6× 2.0 mm.

2.2. Vocal Tract Segmentation

Volumetric data, stored in DICOM format, were segmented us-

ing ITK-SNAP [16]. After enhancing image contrast, the Snake

evolution tool based on the active contours model was used to

perform the segmentation [17] (Figure 1). The rt-MRI frames

were segmented via inspect rtMRI [18], a MATLAB-based

tool that supports visualization and semi-automated segmenta-

tion of rtMRI data. The segmentation involved manual identifi-

cation of anatomical landmarks such as the glottis, hard palate,

alveolar ridge, and labial midpoint as reference points. Vocal

tract boundaries were then segmented for all frames correspond-



ing to transitions between /a:/ to /ô/ and /ô/ to /a:/ (Figure 2).

Figure 1: Midsagittal slice and segmented 3D volume of sus-

tained [a:] (top) and [ô:] (bottom).

Figure 2: RtMRI frames corresponding to the first vowel (V1),

the consonant (C), and the second vowel (V2) in the VCV tran-

sition with highlighted airways, omitting the intermediate artic-

ulatory frames.

2.3. Co-registration

To integrate the volumetric MRI and rtMRI data, a midsagittal

slice from the volumetric dataset (in DICOM format) was co-

registered with a corresponding rtMRI frame. Participant spe-

cific anatomical landmarks (pronasale, subnasale, and a surface

landmark in the mid-neck area) were identified in each image,

guiding an affine transformation.

2.4. LDDMM

In this study, we use the shape analysis method known as Large

Deformation Diffeomorphic Metric Mapping (LDDMM) [19,

10]. LDDMM describes the transformation of one surface, C,

into another surface, S, through a smooth flow of diffeomor-

phisms within the ambient space, R3, where the surfaces reside.

Rather than working directly in the space of diffeomorphisms,

the LDDMM algorithm employs time-dependent vector fields,

v(t) : R3 → R
3 for t ∈ [0, 1], which represent the infinitesimal

displacements of the flow. The diffeomorphic flow, denoted as,

ϕv(t,X), defined on a subset X ⊂ R
3, evolves according to

the following partial differential equation:

∂ϕv(t,X)

∂t
= v(t) ◦ ϕv(t,X) , (1)

where ◦ represents function composition.

At the initial time t = 0, the diffeomorphism is simply the

identity: ϕv(0, C) = C. As the flow progresses to t = 1,

the mapping transforms C into S: this can be expressed as

ϕv(t, C)|t[0→1] = S. The time dependent vector fields, v(t),
are elements of a Hilbert space of smooth vector fields char-

acterized by a kernel, kV , and a norm || · ||V , which quantify

the infinitesimal cost of the flow. In LDDMM, the goal is to

solve an inexact matching problem, minimizing the cost func-

tion, JC,S , defined as:

JC,S

(

v(t)t∈[0,1]

)

= γ

∫ 1

0

||v(t)||2V dt

+ E
(

ϕv(t, C)|t:[0→1], S
)

, (2)

Here E represents a squared error measure that quantifies

the mismatch between ϕv(t, C)|t:[0→1] and S. In this study, we

use the Hilbert space of currents [20, 21, 22] or varifolds [23] to

compute E as they provide landmark-free shape matching using

distributional representations of geometry.

2.5. Constrained Iterative LDDMM

The presented method combines the global shape registra-

tion capabilities of LDDMM with anatomically informed con-

straints derived from rtMRI frames. For the present study, we

compute a set of deformations from /a:/ to /ô/ (/a:/ → /ô/), and a

second set of deformations from /ô/ to /a:/ (/ô/ → /a:/).

In each iteration, we first compute a deformation from

the source mesh (e.g. /a:/) to the target mesh using the stan-

dard LDDMM framework (global deformation) resulting in a

set of momentum vectors p0 determining the transformation.

This transformation corresponds to a normalized time interval

t ∈ [0, 1]. In order to apply boundary constraints provided by

rtMRI, we break the deformation into nt steps, where nt corre-

sponds to the number of rtMRI frames being used to constrain

the deformation. The time interval for each deformation step

is ∆t = 1/nt. At the end of each time step, we interrupt the

global 3D mesh transformation and run a second and separate

LDDMM morphing between the mesh vertices corresponding

to the midsagittal cross-section of the 3D mesh and the ver-

tices of the 2D vocal tract boundary contours from the rtMRI

data. We apply the momentum vectors determined by the sec-

ond LDDMM morphing operation to transform the 3D mesh at

the given time step to better match the midsagittal cross-section

determined by the rtMRI frame and better reflect the observed

articulatory dynamics. The proposed algorithm is presented in

graphical form in Figure 3 for easier interpretation.

Figure 3: The proposed constrained LDDMM algorithm.



3. Experiments and Results

We performed two separate morphing tasks: (1) transforming

the sustained vowel /a:/ into the sustained consonant /ô/, and (2)

transforming /ô/ into a second instance of the sustained vowel

/a:/. Both transformations were carried out with and without

the constraints based on rtMRI, allowing a direct comparison

between an unconstrained LDDMM registration and a version

informed by local articulatory data.

For the transitions from /a:/ → /ô/ and /ô/ → /a:/, 20 inter-

mediate frames from rtMRI recordings were used. However, it

should be noted that the number of rtMRI frames between /ô/

and /a:/ was about half the number of frames between /a:/ and

/ô/ in the original rtMRI recording. This can be attributed to

the gradual tongue retraction and shaping needed to achieve the

rhotic articulation from the vowel [24].

3.1. LDDMM Parameter Setting

The LDDMM formulation involves several key parameters:

1. σV in the Gaussian Kernel governs the spatial scale of defor-

mations.

2. σW governs the spatial scale for the data attachment term,

controlling the geometric discrepancies between the de-

formed source and the target shape.

3. γ balances the smoothness of the deformation against the data

attachment term. Larger γ emphasizes smooth, invertible de-

formations.

4. Number of optimization iterations and time steps jointly dic-

tate the refinement level of the resulting deformation path.

In the global deformation from /a:/ → /ô/ and from /ô/ →
/a:/, σV is varied over the set {20, 17, 15, 12, 9, 5}. For each

σV , 10 optimization iterations were performed, except for the

smallest scale, where 40 iterations were performed to stabilize

finer deformations. The number of timesteps was set to 20,

matching the rtMRI frames within the transitions, and applied

consistently to both constrained and unconstrained versions.

During local deformation, we set σV = 30 and γ = 0.001,

with 20 optimization iterations spread over 20 timesteps.

3.2. Comparison of Midsagittal Contour Alignment

We extracted the midsagittal coordinates from the intermediate

deformed 3D meshes generated by both constrained and uncon-

strained versions. These were then compared against the corre-

sponding rtMRI-derived boundaries.

3.2.1. Vowel-Consonant Transition

In Figure 4 we illustrate intermediate timesteps 5, 10, and

15 in the morphing sequence from /a:/ → /ô/. Each column

shows rtMRI derived midsagittal contours along with the un-

constrained LDDMM contours and the constrained LDDMM

contours. Both methods produce comparable deformations,

tracking the overall shape of the vocal tract. However, the un-

constrained version deviates more, particularly in regions that

should remain relatively stationary, such as the hard palate and

the pharyngeal wall. In contrast, the constrained approach

maintains better alignment with the rtMRI contour. The un-

constrained version also tends to transition more rapidly to-

wards the final target shape, whereas the constrained version

progresses in finer increments, respecting the temporal gran-

ularity and the natural articulatory trajectory captured in the

rtMRI frames.

3.2.2. Consonant-Vowel Transition

Figure 5 shows selected intermediate steps in the /ô/ → /a:/ tran-

sition, comparing the midsagittal contours derived from rtMRI

with unconstrained and constrained LDDMM outputs. As in the

previous case, the constrained approach produces deformations

that more closely track the observed articulatory trajectories.

However, misalignments in the tongue-lower-lip and alveolar

areas were more prominent compared to the /a:/ → /ô/ transi-

tion. Since the varifold model used in the /a:/ → /ô/ transition

did not generalize well for the reverse pathway, we opted to use

a currents based model. Even so, the unconstrained version still

exhibited inaccurate deformations towards later timesteps. This

demonstrates that, even with a the model based on currents, lo-

cal misalignments can accumulate when no additional cues are

provided.

A key challenge in the /ô/ → /a:/ transformation is that the

vocal tract must transition from a relatively constricted tongue

shape to a more open vowel shape. This involves expansion

in some regions of the airway, introducing topological and ge-

ometric difficulties in during deformation when no additional

constraints are provided.

3.3. Analysis on the Number of Intermediate rtMRI

Frames

We investigated how the number of intermediate rtMRI frames

used to constrain the LDDMM affects the resulting deforma-

tions. For this, the 20-frame setup was considered the ªground

truthº and compared against reduced sets of 10, 5, and 2 rtMRI

frames. In each reduced condition, we maintained 20 timesteps

for the LDDMM integration to preserve the overall temporal

smoothness of the deformation.

After deriving the final deformation paths, we measured the

Hausdorff distance between the meshes produced at timesteps

5, 10, and 15 and their corresponding ground truth data from the

deformation constrained with 20 rtMRI frames. Table 1 sum-

marizes the Hausdorff distances for the /a:/ → /ô/ transitions.

As expected, using fewer rtMRI frames led to greater deviations

from the 20 frame baseline.

Table 1: Housdorff distances for reduced sets of rtMRI frames

evaluated against the 20 frame setup on intermediate steps 5,

10, and 15. Lower values indicate better alignment with the

ground truth.

/a:/ → /ô/ Transition

10 frames 5 frames 2 frames

Step 5 4.34547 3.11548 7.95816

Step 10 3.72375 5.42923 5.41805

Step 15 4.50758 5.48704 5.98918

4. Discussion

It is interesting to explore the change in a fixed cross-sectional

slice during the transformation of the 3D vocal tract mesh along

the constrained /a:/ → /ô/ morphing trajectory, as shown in Fig-

ure 6. The cross sections are extracted by first computing a

central line from the lips to the glottis and determining a per-

pendicular plane at a selected segment along that line. We then

identify the mesh vertices lying on the plane and project them

(Figure 6 - Left). This reveals how the vocal tract systemat-

ically transitions from the open /a:/ to the more constricted /ô/

posture at intermediate timepoints (Figure 6 - Right).



Figure 4: Midsagittal contours of intermediate deformations during /a:/ → /ô/ transition at timesteps 5, 10, and 15 for constrained (top)

and unconstrained (bottom) versions.

Figure 5: Midsagittal contours of intermediate deformations during /ô/ → /a:/ transition at timesteps 5, 10, and 15 for constrained (top)

and unconstrained (bottom) versions.

Figure 6: Change in the vocal tract cross section along the mor-

phing trajectory.

Manual segmentation of both modalities is vulnerable to

human error, particularly in regions with soft tissue boundaries.

This is evident when looking around the epiglottis and the glot-

tis in Figures 4 and 5. Furthermore, Figure 6 shows the sensi-

tivity of the final cross-sectional shape to manual segmentation.

Especially when looking at the hard palate where soft tissue

boundaries are not sharply defined.

While this study assessed the alignment of midsagittal con-

tours, there is currently no established framework to evaluate

the accuracy of the deformations. Simulating the acoustic out-

put from the deformed geometries offers a way to directly val-

idate the articulatory-to-acoustic mapping, ensuring that the re-

sulting shapes are both anatomically and acoustically accurate.

5. Conclusions

We propose a new constrained iterative LDDMM framework

that combines volumetric MRI data with rtMRI to model the

dynamic evolution of the vocal tract during speech. The ex-

periments on vowel-consonant and consonant-vowel morphing

demonstrate that adding rtMRI as a constraint results in more

anatomically plausible intermediate vocal tract shapes with high

temporal granularity. With further validation through acoustic

simulations, this framework can serve as an important step to-

ward accurate 3D reconstructions of the dynamic vocal tract.
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