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 A B S T R A C T

Accurate instrument pose estimation is a crucial step towards the future of robotic surgery, enabling 
applications such as autonomous surgical task execution. Vision-based methods for surgical instrument pose 
estimation provide a practical approach to tool tracking, but they often require markers to be attached to the 
instruments. Recently, more research has focused on the development of markerless methods based on deep 
learning. However, acquiring realistic surgical data, with ground truth (GT) instrument poses, required for deep 
learning training, is challenging. To address the issues in surgical instrument pose estimation, we introduce the 
Surgical Robot Instrument Pose Estimation (SurgRIPE) challenge, hosted at the 26th International Conference 
on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2023. The objectives of this 
challenge are: (1) to provide the surgical vision community with realistic surgical video data paired with 
ground truth instrument poses, and (2) to establish a benchmark for evaluating markerless pose estimation 
methods. The challenge led to the development of several novel algorithms that showcased improved accuracy 
and robustness over existing methods. The performance evaluation study on the SurgRIPE dataset highlights 
the potential of these advanced algorithms to be integrated into robotic surgery systems, paving the way for 
more precise and autonomous surgical procedures. The SurgRIPE challenge has successfully established a new 
benchmark for the field, encouraging further research and development in surgical robot instrument pose 
estimation.
1. Introduction

Robot-assisted Minimally Invasive Surgery (RAMIS) has evolved sig-
nificantly in the last decade driven by advances in artificial intelligence 
(AI) and surgical robotics. Platforms like the da Vinci®system have 
revolutionized surgical procedures by providing enhanced instrument 
control and intraoperative visualization, greatly improving surgical 
assistance. Accurate pose estimation of surgical instruments has become 
a crucial task in RAMIS, as it is essential for enabling applications such 
as autonomous surgical task execution (Wang et al., 2018), surgical skill 
assessment (Gao et al., 2014), and surgical workflow analysis (Lecuyer 
et al., 2020).
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Commercial external devices, such as depth cameras and electro-
magnetic trackers (Federico et al., 2019), can provide accurate instru-
ment pose estimation. However, their applicability intraoperatively is 
limited due to space requirements and hardware setup constraints in 
the Operating Room. Another solution for surgical instrument pose 
estimation is the use of kinematic information (Wang et al., 2022) 
from the integrated joint encoders of robotic platforms such as the da 
Vinci®system. Although it does not rely on extra hardware, this method 
requires additional hand–eye calibration and suffers from estimation 
errors due to the complexity of the cable-driven robotic system (Cui 
et al., 2023).
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Table 1
Comparison of the surgical tool localization datasets.
 Dataset Labeled frames Type Annotation type  
 SurgRIPE 2841 Real endoscope 3D pose & Segmentation mask  
 ROBUST-MIS (Roß et al., 2021) 10 040 Real endoscope Segmentation mask  
 SuPer (Li et al., 2019) 2000 Real stereo endoscope Kinematics Info & Segmentation mask 
 EndiVisPose (Du et al., 2018) 1850 Real endoscope 2D keypoints & Segmentation mask  
 EndoVis17 RobSeg (Allan et al., 2019) 3000 Real endoscope Segmentation mask  
 EndoVis18 RobSeg (Allan et al., 2020) 5700 Real stereo endoscope Segmentation mask  
Marker-based vision methods for surgical instrument pose estima-
tion use external markers to simplify the task (Cartucho et al., 2021). 
They are limited by the fact that they rely on the marker always 
being visible in the camera’s Field-of-View (FOV) and are sensitive to 
background variations such as light reflection and occlusion. Moreover, 
these markers do not directly reflect the pose of the instrument, re-
quiring the calculation of complex geometrical transformations. There-
fore, markerless methods offer a promising and practical approach to 
surgical instrument tracking without hardware modifications.

Object pose estimation has been well studied in the computer vision 
literature, with benchmarks like LineMOD (Brachmann et al., 2014) 
and YCB-Video (Xiang et al., 2018) utilizing RGBD sensors and ArUco 
markers for 6 Degrees of Freedom (DoF) pose estimation in non-medical 
scenes. These datasets have facilitated significant advancements in pose 
estimation methods for natural scene tasks. However, a comparable 
benchmark for 6DoF pose estimation for surgical tasks and environ-
ments is lacking. Existing medical datasets focus on the processing of 
2D information as shown in Table  1. These datasets neglect the 3D 
information that is required for the estimation of 6DoF pose. For exam-
ple, EndoVis18 RobSeg (Allan et al., 2020), EndoVis17 RobSeg (Allan 
et al., 2019) and ROBUST-MIS (Roß et al., 2021) provide datasets with 
2D segmentation annotations. EndoVisPose (Du et al., 2018) provides 
data with ground truth 2D instrument keypoints. SuPer (Li et al., 
2019) provides ground truth kinematic information. However, in the 
latter case, the relevant 6DoF pose cannot be derived directly from the 
kinematic information.

State-of-the-art (SOTA) methods, such as Peng et al. (2019) and 
Wen et al. (2023), have been established for natural scene 6DoF object 
pose estimation tasks. However, due to the lack of surgical benchmarks 
and datasets, translating these methods to RAMIS is difficult due to the 
following factors which are unique to surgery:

• Partial object visibility. The limited operating space in RAMIS 
means that the endoscopic camera remains very close to the 
surgical instruments, allowing only partial visibility within the 
camera’s field of view. This partial visibility hinders the perfor-
mance of some state-of-the-art pose estimation methods due to 
the common requirements for full object visibility.

• Surgical scene variations and occlusions. In RAMIS, surgical 
tools interact with soft tissue and organs, leading to potential 
occlusions of the tool tip (e.g. due to blood), making pose estima-
tion unstable. In addition, variations in the surgical scene, such 
as lighting conditions and specular reflections, further affect the 
accuracy of pose estimation.

• High precision requirement. Pose estimation datasets often use 
RGBD cameras to generate ground truth data, resulting in errors 
of centimetre scale. However, given that the typical diameter 
of surgical tools is around 5 mm, the accuracy requirements in 
RAMIS are of millimetre scale.

To address the above issues, we present the SurgRIPE challenge, 
hosted at the 26th International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI) in 2023. This 
paper first introduces the SurgRIPE dataset, which has been created 
for markerless estimation of the 6DoF pose of the wrist mechanism 
of surgical instruments. To acquire accurate and consistent ground 
truth surgical instrument poses while capturing video data in a realistic 
2 
surgical setup, the novel pipeline shown in Fig.  1 was used which 
combines marker-based pose estimation with deep learning-based im-
age inpainting. A keydot marker is used to get ground truth 6DoF 
pose data, which is then removed using a deep-learning inpainting 
model (Suvorov et al., 2021) to avoid generating any shortcut visual 
cues which could bias the pose estimation. Finally, 3D models are used 
to generate segmentation masks of the surgical instruments.

The dataset includes video sequences to be used for two tasks, 
namely, pose estimation without occlusion and with occlusion as shown 
in Figs.  2 and 3, respectively. The six challenge participants pro-
posed different markerless surgical instrument pose estimation methods 
which were validated on the SurgRIPE dataset. The datasets, the bench-
marking tool and the labeling tool are publicly available online and can 
be found at: https://www.synapse.org/#!Synapse:syn51471789/wiki/.

2. Datasets and annotation

2.1. Data

All SurgRIPE video data was captured using a da Vinci™Si en-
doscopic stereo camera, ensuring the acquisition of high-quality and 
clinically relevant images. All the data was acquired in the Hamlyn 
Centre, Imperial College London. Only images from the left camera 
were preserved and used for processing. Two different da Vinci surgical 
instruments were used, namely, the Large Needle Driver (LND) and 
the Maryland Bipolar Forceps (MBF). The collected videos include 
sequences without and with instrument occlusions. The sequences with-
out occlusion included variations in lighting conditions and background 
scenes to diversify the dataset and to simulate endoscopic environments 
such as when the light source is closer and farther from the tissue. The 
sequences with occlusion feature additional surgical tools, simulating 
scenarios with multiple instruments used by the surgeon.

The dataset is split into the LND and MBF subsets, with each 
subset containing only its respective instrument. Each subset contains 
the 3D model of the instrument, the pinhole camera intrinsic matrix, 
RGB images capturing the instrument moving over a surgical scene, 
segmentation masks of both the background and the instrument, and 
ground truth instrument poses. These poses correspond to the 6DoF 
movement of the wrist joint of the instruments.

The dataset information is illustrated in Table  2. The LND dataset 
was extracted from 17 video clips containing 16747 raw frames and 
the MBF dataset was extracted from 15 video clips containing 11527 
raw frames. All raw frames were captured at a framerate of 25 Hz. 
Finally, the LND subset consists of 1147 video frames without occlusion 
which are used for training, 373 frames without occlusion for testing, 
and 238 frames with occlusion for testing. The MBF subset contains 
1069 video frames without occlusion which are used for training, 209 
frames without occlusion for testing, and 387 frames with occlusion 
for testing. In both cases, the occlusions were created using surgical 
instruments such as scissors and forceps.

To enable the participating teams to evaluate their algorithms be-
fore submitting the final results, sample images from the test sets were 
provided before the final submission deadline. The sample LND test sets 
include 5 frames without occlusion and 3 frames with occlusion. The 
sample MBF test sets also include 5 frames without occlusion and 3 
frames with occlusion.

https://www.synapse.org/#!Synapse:syn51471789/wiki/
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Fig. 1. SurgRIPE data collection pipeline. The GT pose was captured with a keydot marker which was removed using image inpainting. The 3D model of the tool was used to 
generate the segmentation mask.
Fig. 2. Non-occlusion image sample.

Fig. 3. Occlusion image sample.

Both LND and MBF subsets contain the following data:
Instrument Model The instrument 3D model is acquired from the 

da Vinci Research Kit (dVRK) wiki page (Kazanzides et al., 2014) which 
contains 3D models of multiple Endowrist instruments. This challenge 
focuses on the joint part in the 3D model, as shown in Fig.  5.

RGB Image The collected data includes frames with and without in-
strument occlusions. In the former category, the instrument is partially 
3 
Table 2
Description of the generated dataset.
 Instrument type LND (Large 

Needle Driver)
MBF (Maryland 
Bipolar Forcep)

 

 Frame rate 25

 Num of raw video clips 17 15  
 Num of raw frames 16 747 11527  
 Resolution 960 × 540
 Training frames 1147 1069  
 Test w/o occlusion frames 373 209  
 Test w occlusion frames 238 387  

occluded due to the presence of different Endowrist™instruments and 
surgical scissors, which have been used as occlusion objects, which is 
common in surgical scenarios. Fig.  3 illustrates the occlusion caused by 
scissors in the presence of tweezers. As shown in Fig.  2, in frames with-
out occlusion, the instrument is fully visible under different lighting 
conditions and backgrounds.

Segmentation Mask The segmentation mask of the instrument is 
generated by projecting the 3D model of the instrument onto the 2D 
image given the camera’s intrinsic parameters and the tool pose. In 
our case, only the joint part of each instrument is considered. Fig.  4 
illustrates how the segmentation map is generated from the pose and 
3D model.

Instrument Pose The ground truth instrument pose consists of a 
rotation matrix (3 × 3) and a translation matrix (3 × 1). This pose 
corresponds to the 6DoF movement of the joint of the instrument, as 
shown in Fig.  5. A special keydot pattern was used to obtain the ground 
truth pose of the surgical instruments. The pattern was then removed 
by applying inpainting to recreate a real surgical scenario where the 
keydot marker was not present.

Camera Parameters We provide the camera intrinsic matrix as a 
3 × 3 matrix. All the images have been undistorted, so the distortion 
parameters are set as None.

2.2. Data annotation

To estimate the ground truth of the 6DoF pose of a surgical in-
strument, we designed a holder with a keydot marker (Bradski, 2000) 
which is attached to the joint of the instrument as shown in the raw 
image in Fig.  1. The pose of the keydot marker 𝑇 𝐶

𝑀  is estimated via a 
PnP solver (Lepetit et al., 2009). To recover the instrument pose 𝑃 𝐼 , 
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Fig. 4. (Left) The raw RGB image. (Middle) Projection of the 3D model onto the raw image given the estimated 6DoF pose. (Right) The final segmentation result.
Fig. 5. Projection of the 3D model onto the 2D image.
Fig. 6. GUI for 3D pose alignment.
the transformation from the keydot marker to the tip of the instrument 
𝑇𝑀
𝐼  needs to be estimated via the 3D pose alignment script as shown 
in Fig.  6.

Given the estimated marker pose and the camera intrinsic matrix, 
the 3D model of the instrument is projected onto the 2D image. Since 
the marker pose does not coincide with the instrument pose, the pro-
jection of the 3D model will not align with the target instrument area. 
To refine this 3D-to −2D projection, the Graphical User Interface (GUI) 
shown in Fig.  6 has been implemented in OpenCV to manually adjust 
the transformation from the marker to the instrument tip 𝑇𝑀

𝐼  until the 
instrument model projection perfectly aligns with the target area. The 
adjustment of the parameters of the marker-instrument transformation 
is repeated until the 3D model projection overlays the instrument on 
4 
every frame of the dataset. This results in a precise transformation 
between the marker and the instrument, and therefore in accurate 
and consistent GT instrument pose estimation. Compared with some 
previous work (Allan et al., 2018) that acquired manual annotation 
for every frame, our pipeline can achieve abundant high-precision and 
consistent ground truth annotations with minimal risk of human error.

2.2.1. Image inpainting
Since in a real surgical scenario, the keydot marker would not be 

present, we used image inpainting (Suvorov et al., 2021) to remove the 
keydot marker from the images used to train and test the compared 
models, as shown in Fig.  1. When inpainting was applied, we used 
random size masks to ensure that the method could not generate any 
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consistent visual features that can be learnt by any computer vision 
method. To our knowledge, our proposed method is the first work that 
can generate a large surgical instrument 6DoF pose dataset of realistic 
images with high-accuracy ground truth annotations which can be used 
for training and testing of deep learning models.

3. Benchmarking metrics

The Python benchmarking toolkit developed as part of this chal-
lenge is open source and available online at: https://github.com/CVRS-
Hamlyn/SurgRIPETest.

3.1. Performance evaluation protocol

Our benchmarking metrics include standard performance evaluation 
metrics (translation and rotation error) as well as the Benchmark for 
6D Object Pose Estimation (BOP) metrics (Brachmann et al., 2014), 
which define a protocol to evaluate the pose estimation accuracy. 
BOP metrics provide comprehensive evaluation metrics and have been 
widely applied in pose estimation tasks. The Average Accuracy metric is 
also proposed here. We have split the performance evaluation metrics 
into primary and secondary. The former category is used to rank the 
compared methods.

3.2. Primary metrics

ADD (Average 3D Distance) The Average 3D Distance of the model 
points (ADD) is defined as the mean 3D Euclidean distance between the 
ground truth and the predicted point cloud after applying the respective 
transformations. Let 𝐱 represent the set of 3D model points. The trans-
formation is applied using both the ground truth pose, (𝐑𝑔𝑡, 𝐭𝑔𝑡), and the 
predicted pose, (𝐑𝑝𝑟𝑒𝑑 , 𝐭𝑝𝑟𝑒𝑑 ), where 𝐑 denotes a rotation matrix and 𝐭
a translation vector. Formally, the transformed model points using the 
ground truth and predicted poses are expressed as: 
𝐱𝑔𝑡 = 𝐑𝑔𝑡𝐱 + 𝐭𝑔𝑡, 𝐱𝑝𝑟𝑒𝑑 = 𝐑𝑝𝑟𝑒𝑑𝐱 + 𝐭𝑝𝑟𝑒𝑑 . (1)

The ADD metric is then computed as the mean Euclidean distance 
between the two transformed point clouds: 

ADD = 1
𝑚

𝑚
∑

𝑖=1
‖𝐱𝑔𝑡,𝑖 − 𝐱𝑝𝑟𝑒𝑑,𝑖‖2, (2)

where 𝑚 represents the number of points in the 3D model point cloud.
Accuracy–ADD threshold Curve: The Accuracy–ADD threshold 

Curve represents the accuracy for ADD thresholds varying from 0 
to 10 mm. This metric evaluates pose estimation performance across 
varying levels of precision by assessing how accurately the pose is 
estimated at different distance thresholds.

Average Accuracy (Avg Acc) (0–5 mm): In BOP, the original 
accuracy of ADD is defined as the percentage of prediction error for 
a certain threshold equal to 10% of the model diameter of the object. 
Most surgical instruments have long cylindrical shapes with model 
diameters roughly equal to 40 cm. Therefore, setting the ADD threshold 
to 10% of the surgical tool’s model diameter would result in high 
error tolerance and provide a misleading representation of the model’s 
performance. To deal with this issue prevalent in surgical applications, 
we define the average accuracy metric which is calculated by averaging 
the ADD errors for threshold values ranging from 0 mm to 5 mm.

3.3. Secondary metrics

Translation & Rotation Error: The 3D translation error (Euclidean 
mm) and rotation error (Euler degree) between the ground truth and 
the predicted poses are mathematically defined as:

Rotation Error = 1
√

‖ log(𝐑⊤
𝑔𝑡𝐑𝑒𝑠𝑡)‖𝐹 (3)
2

5 
Table 3
Timetable for the SurgRIPE challenge.
 Dates Events  
 2023 May, 15th Release of training data (LND, MBF)  
 2023 June, 1st Release of sample test data  
 2023 September, 15th Start of evaluation  
 2023 October, 5th Submission deadline  
 2023 October, 8th Challenge and representation day  
 2024 December, 31th Acceptance of post-challenge submissions 

Translation Error = ‖𝐭𝑔𝑡 − 𝐭𝑒𝑠𝑡‖ (4)

2D projection metric (proj2d): This metric evaluates how well the 
3D points of an object match their ground truth 2D projections. The 3D 
points are projected onto the 2D image plane using the predicted pose 
and camera intrinsic parameters. The aim is to measure the average dis-
tance between the corresponding projected points from the estimated 
pose and the ground truth pose. Given the camera intrinsic matrix 𝐊, 
the ground truth pose (𝐑𝑔𝑡, 𝐭𝑔𝑡), and the predicted pose, (𝐑𝑝𝑟𝑒𝑑 , 𝐭𝑝𝑟𝑒𝑑 ), 
the point cloud 𝐗 can be projected to the 2D point sets 𝐩gt and 𝐩pred, 
respectively. The proj2d error is computed as 

proj2D error = 1
𝑁

𝑁
∑

𝑖=1
‖𝐩gt𝑖 − 𝐩pred𝑖 ‖ (5)

where, 𝑁 is the total number of points in the point cloud. The 2D 
projection metric is calculated as the percentage of frames in which 
the proj2d error is less than 5 pixels.

5 mm 5-degree metric (mmd5): This metric is calculated as the 
percentage of frames where the Translation Error is below 5 mm and 
the Rotation Error is below 5 degrees.

3.4. Winner identification protocol

The teams were ranked according to their ADD and Avg Acc. The 
challenge winners are the submissions with the highest ADD and Avg 
Acc scores on the test dataset comprehensively.

4. Challenge organization

All submissions were uploaded to the Synapse platform using
Docker containers. Participants’ code can be made available via email-
ing the corresponding team authors. The participants could submit 
multiple times before the submission deadline.

All supervised and semi-supervised methods were allowed in this 
challenge. Considering there were abundant surgical instrument
datasets proposed before, the participants were encouraged to use 
existing datasets along with SurgRIPE training data during the training 
phase.

Data presented in the challenge can be used for publication purposes 
only after the first version of the joint publication summarizing chal-
lenge results is submitted. All the team participants could be qualified 
as authors. The participants can publish their own method after the first 
version of the joint publication. The dataset is available to participating 
teams and other interested parties under CC BY 4.0 (Attribution).

The timetable for the challenge is shown in Table  3. The train-
ing data (LND, MBF) was released on 2023 May 15th, followed by 
the sample test data on June 1st, allowing participants to familiarize 
themselves with the dataset and benchmark their solutions. The evalu-
ation phase started on September 15th, during which participants were 
required to submit their solutions in the form of Docker containers. 
The final submission deadline was October 5th at 11:59 PM GMT. The 
challenge was hosted during the Endoscopic Vision Challenge workshop 
as part of MICCAI 2023 on October 8th, where results and insights were 
presented.

The first-place award was £1000 and the second-place award was 
£500. The awards and rankings were announced at the EndoVis 2023 

https://github.com/CVRS-Hamlyn/SurgRIPETest
https://github.com/CVRS-Hamlyn/SurgRIPETest
https://github.com/CVRS-Hamlyn/SurgRIPETest
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challenge workshop. Late submissions are included in this report, how-
ever, not eligible for awards. Members of the organizers’ institutes 
could participate but were not eligible for awards.

The work presented in this paper follows the Biomedical Image 
Analysis Challenges (BIAS) Reporting Guideline (Maier-Hein et al., 
2020) as required by MedIA.

5. Challenge submissions

5.1. [IGTUM] Imfusion GmbH and Technical University of Munich, Mu-
nich, Germany

The small size and the implicit symmetries existent within the tar-
geted surgical tools make the task challenging. ImFusion’s architecture 
decouples detection and pose estimation into two separate subtasks.

For object detection, You Only Look Once (YOLO) v5 (Ultralytics, 
2023) was used, which provides an effective solution for detecting 2D 
bounding boxes of object instances. Given the small number of training 
images, the training is based on a model pre-trained on the Common 
Objects in Context (COCO) dataset (Lin et al., 2014). More specifi-
cally, their medium-size model trained on higher resolution images, 
YOLOv5m6, was selected. For training, we extract the bounding boxes 
of the ground truth masks to provide labels. For validation, we ran-
domly sample 20% from the training set. Empirically decided, we train 
this model for 300 epochs with a batch size of 8. For data augmenta-
tion and other hyper-parameters, we follow the default, recommended 
settings of the original implementation of YOLOv5.

For 6D object pose estimation, we employ SurfEmb (Haugaard and 
Buch, 2022). Unlike direct pose regression methods that require a high 
number of training samples capturing a large variation of poses of the 
object, SurfEmb uses surface coordinates of the object as the training 
target. This enables an efficient training scheme for the relatively low 
number of provided training samples. Furthermore, SurfEmb employs 
metric learning across a learned implicit representation of the object 
surface and their projections on the 2D images enabling an effec-
tive capture of the unknown and complex symmetries of the target 
objects. For training SurfEmb, the default settings proposed by the 
authors were followed. One single Residual Network (ResNet) 18 (He 
et al., 2016) encoder was employed, for both surgical instruments (LND 
and MBF), coupled with separate decoders for each instrument. For 
the implicit representations of the object surfaces, we use a SIREN-
based (Sitzmann et al., 2020) multiple-layer perceptron (MLP) for each 
instrument. Given the low number of training samples, we separate 
only 20 samples for each instrument from the training set for vali-
dation. We train our model for 10 epochs with a batch size of 16 
and employ the intensity and geometric data augmentations utilized 
in the original implementation. We use the default values of the other 
hyper-parameters.

Our approach is implemented using PyTorch and is trained on a 
single NVIDIA RTX 2080 GPU.

During inference, first YOLOv5 (Ultralytics, 2023) detects an in-
stance of the targeted surgical tool on the input image of size 960 
× 540. This predicted bounding box is then used to crop a square 
patch around its center and resize it to 224 × 224. The convolutional 
neural network (CNN) part of our SurfEmb model takes in the cropped 
image along with the predicted class label and estimates 2D dense 
descriptors and the binary object mask. In addition, its MLP component 
predicts 3D descriptors on the densely sampled surface points of the 
targeted object 3D model. The 2D-3D matches are recovered through 
cosine similarity between the descriptors of the two domains. Since 
the surgical instruments have certain symmetries that can cause spatial 
ambiguities, we follow SurfEmb’s proposed multiple-hypothesis-based 
pose estimation strategy that creates numerous 2D-3D correspondence 
subsets and employs them within AP3P (Ke and Roumeliotis, 2017) and 
select the maximum scoring pose considering the object segmentation 
mask, correspondence distribution and the probability of the visible 
6 
surface coordinates. Finally, the predicted pose is refined through a 
render and compare strategy using Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) optimizing for the maximization of the 2D-3D correspondence 
score.

5.2. [ICL] Imperial College London, United Kingdom

This method improves Pixel-wise Voting Network (PVNet) (Peng 
et al., 2019) by retaining its core pose estimation mechanism while 
introducing targeted data augmentation strategies and a de-glare algo-
rithm.

To generate data augmentations, the authors simulated common 
occlusions in surgical environments by randomly generating holes in 
the training images, effectively enhancing the network’s robustness 
in identifying and dealing with occlusions. This approach directly 
addresses the issue of visual obstruction caused by other tools or tissues 
in endoscopic surgery. To tackle the issue of image information loss or 
distortion caused by the reflection of surgical instruments, the authors 
applied a de-glare algorithm. This algorithm reduces glare effects, 
ensuring the integrity and continuity of image information, crucial for 
accurately identifying and locating surgical instruments with reflective 
surfaces.

The improved method showed significant performance improve-
ment in simulated endoscopic surgery settings, especially with obscured 
and reflective surfaces. However, when dealing with obstructions by 
other similar surgical tools, the algorithm’s performance still fluctuated, 
highlighting the inherent challenges of pose estimation in surgical 
environments.

Therefore, the author suggests that future work should explore mod-
ular approaches that handle mask segmentation and pose estimation 
separately, to ensure the accuracy of pose estimation is not affected 
by the accuracy of segmentation. This suggestion aims to provide a 
new direction for achieving more accurate and reliable pose estimation 
results in complex surgical scenarios.

5.3. [TUDU] department of engineering physics, Tsinghua University, Bei-
jing, China and, National University of Singapore, Singapore

Since the challenge provides 3D instrument models without RGB 
information, methods focusing on the geometric features of the instru-
ment are prioritized. As the instrument size is relatively small compared 
to the background, a segmentation step is utilized to extract the object 
patch. However, cropping would cause the loss of global location infor-
mation, so we adopted Scale Invariant Translation Estimation (SITE) 
to restore the global location. The whole framework is illustrated in 
Fig.  7. As shown in the figure, this framework can be generally divided 
into (1) the segmentation step and (2) the pose prediction step. The 
bounding box of the instrument is derived from the segmentation result 
for further cropping and restoring global location. The depth map is 
predicted since such multi-tasking would enhance the performance of 
pose prediction.

We notice that the dataset contains images from diverse different 
scenes which would influence the prediction robustness without pro-
cessing. So we adopt the copy-paste method to enlarge the dataset and 
reduce the influence of domain shift.

5.3.1. The transformation of local and global coordinates
The segmentation step produces masks with the 2D bounding box 

of an image region [top, left, bottom, right]. Our model’s direct output is 
a Batchsize × 7 tensor. The first 4 elements correspond to a quaternion 
representation of the rotation. The last 3 elements [𝑜𝑥, 𝑜𝑦, 𝑜𝑧] are cam-
era coordinates. They can be transformed into the global translation 
[𝑥, 𝑦, 𝑧] according to the following relations:
𝑥 = 𝑜𝑥 ×𝑤 + 𝑐𝑥

𝑦 = 𝑜𝑦 × ℎ + 𝑐𝑦
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Fig. 7. TUDU architecture diagram. The method includes (1) The segmentation branch which segments and crops the instrument. (2) The pose prediction branch where the 
backbone network predicts the tool pose based on the cropped regions.
𝑧 = 𝑜𝑧 × 𝑟𝑎𝑡𝑖𝑜

where

𝑤 = right − left
ℎ = bottom − top
𝑐𝑥 = (right + left)∕2
𝑐𝑦 = (top + bottom)∕2

𝑟𝑎𝑡𝑖𝑜 = 960 × 540∕(𝑤 × ℎ)

960 × 540 is the original resolution of the image.

5.3.2. Segmentation and regression models
DeepLabV3+ (Chen et al., 2018) is used for the segmentation step. 

We adopt ConvNeXT (Liu et al., 2022) as the regression backbone. 
With the feature produced by the backbone, a pose vector and a depth 
map are predicted. This set of multi-tasking can enhance the pose 
estimation. The ground truth depth for the instrument region can be 
generated using the ground truth pose and the instrument model. The 
upper head is adopted as the head for depth map generation. The depth 
map is not used for refinement in post-processing step.

5.3.3. Data pre-process
As mentioned above, a copy-paste method is adopted. We use the 

segmentation mask to extract only instrument pixels and superimpose 
them onto images of different scenes. A background picture and a 
foreground picture are paired only if their bounding boxes do not 
overlap.

Besides copy-paste, brightness randomization is also used to further 
reduce the impact of domain shift.

5.4. [MVL_3S] Seoul National University Hospital, South Korea

This challenge focuses on estimating the 6 Degrees of Freedom 
(6DoF) pose of a target object using RGB images exclusively. The 
distinctive aspect of this task lies in enabling the model to grasp the 
relationship between the camera and the object (Translation, Rotation). 
Drawing from our experience in a previous robot grasping challenge 
within the smart factory domain, we leveraged the problem-solving 
approach used back then to address this current challenge. For this 
task, we utilized the specialized EfficientPose architecture, tailor-made 
for estimating the 6DoF pose of a target object using RGB images only, 
without the need for depth information.
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The EfficientPose (Bukschat and Vetter, 2020) architecture extends 
the capabilities of the EfficientNet model by incorporating two ad-
ditional sub-networks for precise pose estimation. EfficientPose uti-
lizes the EfficientNet as the backbone network and includes the Bi-
directional Feature Pyramid Network (BiFPN) structure. This extension 
is tailored to perform efficient and accurate detection, achieving pose 
estimation performance using RGB images only.

EfficientPose integrates two distinct sub-networks, each designed 
for a specific task: 1. A sub-network dedicated to predicting coordinates 
and rotation, which is crucial for precise pose estimation. 2. A sub-
network responsible for predicting the 2D bounding box of the object. 
By integrating these components, EfficientPose excels in providing 
accurate pose estimations.

5.5. [EUT] Eindhoven University of technology, the Netherlands

This framework’s network architecture follows an encoder–decoder 
structure, a design commonly employed for pose estimation tasks that 
consistently yields favorable outcomes. In the encoding phase, we adopt 
a modified version of ResNet-18 and incorporate a transformer encoder 
proposed by Shaker et al. (2023). The Swift-Former, bolstered by its 
efficient additive attention mechanism, empowers the model to discern 
contextual relationships across distant image regions. It can enhance 
our model’s ability to extract global context information by effectively 
integrating contextual cues from different regions. We believe this 
characteristic is valuable in this surgical tool pose estimation scenario, 
given the elongated and intricate nature of surgical tools.

Similar to PVNet (Peng et al., 2019), we train the network in a 
supervised manner to learn a semantic mask and a vertex map, which 
is a pixel-wise representation of the keypoints. The vertex map is stored 
as two channels: one for the 𝑑𝑥 values and another for the 𝑑𝑦 values 
across the entire image. Each keypoint has its corresponding vertex map 
with 𝑑𝑥 and 𝑑𝑦 values, resulting in a total of 2×𝑘 channels in the vertex 
branch of the network, with dimensions 𝐻 × 𝑊 . Using the estimated 
semantic mask and unit vectors as inputs, we employ a RANSAC-
based voting approach to generate potential keypoint hypotheses. After 
obtaining the estimated 2D keypoints that correspond to the sampled 
3D keypoints, along with the camera intrinsics from the dataset, we use 
the solvePnP function in OpenCV to solve for the pose.
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5.6. Baseline for comparison

5.6.1. PVNet
PVNet (Peng et al., 2019) is a state-of-the-art object pose estimation 

method which utilizes pixel-wise unit vectors to estimate keypoints for 
keypoint detection. Then the detected keypoints can be used to solve 
a Perspective-n-Point (PnP) problem for pose estimation. A Pixel-wise 
Voting Network is introduced to localize pixel-wise unit vectors, then 
uses these vectors for keypoint voting using differentiable RANSAC 
method. This unit-vector representation is flexible for localizing oc-
clusion and truncated parts of objects, which is common in surgical 
scenes.

6. Post-challenge submission

6.1. [UOL] University of Leeds, Leeds

This approach used a pretrained ResNet-50 backbone for feature 
extraction with additional fully connected layers for translation and 
rotation regression. The network was trained using a multi-task loss 
function, which in addition to minimizing rotation and translation 
errors, aimed to align the transformed points of the 3D joint model and 
enforce consistency in the 3D space.

6.1.1. Methods
Preprocessing: RGB images were converted to tensor form and 

resized from (540, 960) to (224, 224) to fit with the ResNet image 
size requirements. The 3D translation vectors were converted from 
camera frame coordinates to image frame coordinates using the camera 
intrinsics and a 2D projection equation. These coordinates were scaled; 
𝑥 and 𝑦 coordinates were scaled by the size of the image 224 and z 
coordinates by 20. This was so that all values predicted by the model 
lay in the same range. To allow a more generalizable model on a test 
dataset with unseen images, some augmentations were also applied 
to the data, in the form of random 90-degree rotations, in both the 
clockwise and anti-clockwise directions, each with a 10% probability. 
As well as the images, these rotations were also applied to the ground 
truth rotation and translations.

Implementation: We used a ResNet-50 encoder backbone for fea-
ture extraction, pretrained with the default ImageNet weights. We 
added a shared additional linear layer (in features = 1000, out features 
= 400), a linear rotation layer (in features = 400, out features = 4) 
and a linear translation layer (in features = 400, out features = 3). We 
used a 90:10 train-validation random split for training. A model was 
jointly trained on the Large Needle Driver (LND) and Maryland Bipolar 
Forceps (MBF) surgical tool datasets, with a batch size of 8 and 4 for 
the training and validation sets, respectively. Each model was trained 
for 125 epochs, using an Adam optimizer and a learning rate of 0.0001.

Loss Function: We used a multi-task loss function that included 
points, projection, translation and contrastive loss terms. For the trans-
lation loss, the root mean square error (RMSE) was calculated between 
predicted and ground truth translation parameters and minimized. For 
the points loss, the 3D model of the tool joint was transformed by both 
the predicted and ground truth pose, and then the average L1 distance 
between corresponding points was calculated. This loss enforced con-
sistency in 3D space and is shown in Fig.  8(b). The projection loss 
term enforces consistency between the 3D and 2D spaces, as seen in 
Fig.  8(a). The 3D tool is transformed according to the ground truth 
and predicted poses, then projected into the 2D image plane using 
the camera intrinsics. The concave hull of the 2D points was then 
used to obtain a projected binary segmentation mask of the tool head 
and the dice loss was minimized between this and the ground truth 
segmentation mask.

The model performed better in both unoccluded tool datasets which 
is to be expected. In order to more robustly train the network to deal 
with occlusions, further augmentations to the data could be made, 
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Table 4
Evaluation on LND Test Without Occlusion subset. Best 2 methods are in bold.
 Team ADD Avg Acc Translation Rotation  
 (10% diameter) ↑ (0–5 MM) ↑ Error (mm) ↓ Error (degree) ↓ 
 TUDU 0.1314 0.2336 6.3837 21.3342  
 IGTUM 0.4182 0.5669 2.5618 5.1829  
 ICL 0.1823 0.2657 63.3185 57.1676  
 EUT 0.1796 0.2665 44.5217 51.3492  
 MVL_3S 0.1156 0.2392 5.9092 27.2148  
 UOLa 0.0161 0.0640 8.1701 15.3407  
 PVNetb 0.1930 0.2866 46.7894 52.4488  
Avg Acc: Average Accuracy.
a Post-challenge submission.
b Baseline method.

Table 5
Evaluation on MBF Test Without Occlusion subset. Best 2 methods are in bold.
 Team ADD Avg Acc Translation Rotation  
 (10% diameter) ↑ (0–5 MM) ↑ Error (mm) ↓ Error (degree) ↓ 
 TUDU 0.1244 0.2145 5.8918 17.5108  
 IGTUM 0.3876 0.4441 3.0045 3.3593  
 ICL 0.3684 0.4223 5.3014 19.6242  
 EUT 0.1483 0.1907 82.8653 65.6012  
 MVL_3S 0.3541 0.4324 3.4532 10.3932  
 UOLa 0.0239 0.0966 6.8555 10.4184  
 PVNetb 0.3589 0.4198 3.5265 25.8501  
Avg Acc: Average Accuracy.
a Post-challenge submission.
b Baseline method.

where parts of the image are at random covered with a mask. This 
would force the network to make more robust inferences. Furthermore, 
the model performed badly on images where 2 surgical tools appeared 
in the frame, specifically in the MBF TEST occ dataset. During training, 
the model seemed to perform much better when evaluated on the 
validation set compared to the test sets, specifically when predicting 
rotation. This shows that the model failed to generalize beyond the 
training set. To address this in the future, additional augmentations 
could be performed on the training images to ensure the model is 
learning from a wider range of tool rotation depictions. Increasing 
the amount of training data by supplementing with synthetic images 
generated using tool renderings and artificial backgrounds could also 
improve the performance.

7. Challenge results

There were 44 registered teams by the submission deadline. Five 
teams provided valid submissions before the deadline, and one team 
provided a valid submission after the deadline. All the submitted chal-
lenge results for each subset are presented in Tables  4–7. We noticed 
that if the pose estimation fails in one frame, it will cause an outlier 
with a large translation and rotation error. This makes the average 
translation and rotation error of several methods heavily affected by 
these extreme error values. Therefore, to rank the competing methods, 
we mainly focus on the ADD, Accuracy–ADD threshold Curve and the 
Avg Acc as defined in Section 3.2. IGTUM was awarded first place, and 
ICL was awarded second place. In the results, late submissions have 
been denoted using an asterisk.

7.1. Instrument pose estimation without occlusion

The instrument pose estimation performance without occlusion was 
evaluated across two test subsets namely, LND Test Without Occlusion 
and MBF Test Without Occlusion using the ADD (10% diameter), Avg 
Acc (0–5 MM), Translation Error, and Rotation Error as shown in Tables 
4 and 5.

Figs.  9(a) and 9(b) illustrate the Accuracy curve with respect to 
different ADD thresholds for the examined subsets. It can be noticed 
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Fig. 8. Visualization of multi losses in UOL method.
Fig. 9. Accuracy–ADD threshold curves for test data in testsets without occlusion.
that the accuracy of IGTUM has a significant gap from the other 
compared methods for the subset LND Test Without Occlusion while 
IGTUM, ICL, MVL_3S and PVNet have comparable accuracy for the MBF 
Test Without Occlusion subset.

7.2. Instrument tracking with occlusion

Considering that pose estimation with occlusion is quite challeng-
ing, the performance of all methods under occlusion shows a significant 
drop as shown in Tables  6 and 7. Across the LND Test With Oc-
clusion and MBF Test With Occlusion subsets, IGTUM consistently 
outperformed the other methods with the highest ADD and Avg Acc 
scores and the lowest translation and rotation errors. This confirms 
its robustness and reliability under challenging conditions, such as 
occlusions. ICL, EUT and PVNet also showed promising performance 
in terms of ADD and Avg Acc scores, but with higher translation and 
rotation errors than IGTUM, indicating their limited effectiveness in 
challenging scenarios. TUDU and MVL_3S had lower ADD and Avg Acc 
scores across both subsets, coupled with moderate to high translation 
and rotation error rates, suggesting that these methods are less reliable 
under occlusion. The above performance trends are verified by the 
Accuracy-ADD threshold curves shown in Figs.  10(a) and 10(b).

Overall, for both cases with and without occlusion, IGTUM outper-
formed the other methods, consistently achieving the highest accuracy 
(ADD and Avg Acc) and the lowest errors (Translation and Rotation) 
across all four subsets, indicating its robustness and effectiveness. It 
achieved 36.06% ADD on average and 45.48% Avg Acc for all subsets. 
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MVL_3S demonstrated good performance in the MBF Test Without 
Occlusion subset (Table  5), with competitive ADD and Avg Acc scores 
and overall lower translation and rotation errors. It achieved 17.19% 
ADD on average and 26.38% Avg Acc for all four subsets. TUDU 
exhibited moderate accuracy overall with 10.09% ADD on average and 
20.15% Avg Acc for all subsets. UOL achieved 4.04% ADD on average 
and 14.63% Avg Acc for all four subsets. To be noticed, MVL_3S and 
TUDU achieved low translation errors but higher rotation errors. ICL, 
EUT and PVNet demonstrated strong performance in terms of ADD 
and Avg Acc scores but higher errors in translation and rotation error. 
EUT achieved 17.94% ADD on average and 24.06% Avg Acc while ICL 
obtained 22.92% ADD on average and 29.52% Avg Acc for all subsets.

The performance of the compared methods has also been evaluated 
on the secondary validation metrics, namely proj2d in Table  8 and 
mmd5 in Table  9 on all four subsets. IGTUM still outperformed the 
other methods with the best proj2d and mmd5 scores. ICL, EUT and 
PVNet demonstrated the second-best performance in the group since 
they followed a similar pipeline. UOL, TUDU and MVL_3S had lower 
proj2d and mmd5 scores across both subsets.

8. Analysis of the results

The results of this challenge highlight the ability of deep learning 
techniques to deal with the task of surgical instrument pose estimation 
even under challenging scenarios such as the presence of occlusion. 
According to the architecture employed, these submitted methods can 
be broadly categorized into direct prediction methods (MVL_3S, TUDU, 
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Fig. 10. Accuracy–ADD threshold curves for test data in testsets with occlusion.
Table 6
Evaluation on LND Test With Occlusion. Best 2 methods are in bold.
 Team ADD Avg Acc Translation Rotation  
 (10% diameter) ↑ (0–5 MM) ↑ Error (mm) ↓ Error (degree) ↓ 
 TUDU 0.1092 0.2930 5.8365 21.4826  
 IGTUM 0.3655 0.5044 5.4047 10.7144  
 ICL 0.2059 0.2899 66.5271 28.4566  
 EUT 0.2605 0.3379 91.9081 40.8184  
 MVL_3S 0.1092 0.2497 7.5748 24.5983  
 UOLa 0.0378 0.1894 8.3454 17.7254  
 PVNetb 0.2731 0.3901 28.0907 17.5543  
Avg Acc: Average Accuracy.
a Post-challenge submission.
b Baseline method.

Table 7
Evaluation on MBF Test With Occlusion. Best 2 methods are in bold.
 Team ADD Avg Acc Translation Rotation  
 (10% diameter) ↑ (0–5 MM) ↑ Error (mm) ↓ Error (degree) ↓ 
 TUDU 0.0388 0.0650 21.5032 37.9335  
 IGTUM 0.2713 0.3039 12.4446 18.4362  
 ICL 0.1602 0.2027 80.0850 39.2832  
 EUT 0.1292 0.1675 62.7601 59.8497  
 MVL_3S 0.1088 0.1341 17.5545 34.1299  
 UOLa 0.0078 0.0346 15.9003 21.9342  
 PVNetb 0.1731 0.1826 44.6732 31.0920  
Avg Acc: Average Accuracy.
a Post-challenge submission.
b Baseline method.

Table 8
Evaluation on proj2d. Best 2 methods are in bold.
 Team LND Test MBF Test LND Test MBF Test  
 w/o Occlusion w/o Occlusion w Occlusion w Occlusion 
 TUDU 0.1126 0.0861 0.0252 0.0026  
 IGTUM 0.6944 0.9234 0.5294 0.7778  
 ICL 0.4718 0.8086 0.4202 0.5814  
 EUT 0.3753 0.7847 0.1596 0.5065  
 MVL_3S 0.1075 0.4067 0.0175 0.1698  
 UOLa 0.0080 0.0042 0.0143 0.0129  
 PVNetb 0.5308 0.8182 0.3487 0.5607  
a Post-challenge submission.
b Baseline method.

UOL), two-stage methods with intermediate steps (ICL, EUT, PVNet), 
and the method that uses candidate hypotheses generation (IGTUM). 
To provide an intuitive understanding of the 6DoF poses estimated for 
a video sequence, we visualize the corresponding translations and rota-
tions in the 3D space in Figs.  11–14. To ensure clarity and readability 
in visualizing the data, only three representative methods were plotted 
namely, IGTUM, ICL, MVL_3S.
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Table 9
Evaluation on mmd5. Best 2 methods are in bold.
 Team LND Test MBF Test LND Test MBF Test  
 w/o Occlusion w/o Occlusion w Occlusion w Occlusion 
 TUDU 0.0134 0.0 0.0191 0.0052  
 IGTUM 0.6273 0.3235 0.7608 0.4729  
 ICL 0.19303 0.0210 0.5598 0.2842  
 EUT 0.0884 0.0504 0.2297 0.2145  
 MVL_3S 0.0108 0.0 0.0813 0.0318  
 UOLa 0.0134 0.0126 0.0718 0.0103  
 PVNetb 0.1903 0.0504 0.4928 0.1757  
a Post-challenge submission.
b Baseline method.

In the first category, TUDU and MVL_3S aim to estimate the 3D 
translation and rotation of the target object directly from image fea-
tures in a single forward pass. They use segmentation to generate a 2D 
bounding box for 2D localization. The direct estimation pipeline offers 
simplicity but often struggles with ambiguities, complex rotations, and 
occlusions due to the absence of intermediate geometric reasoning. 
These limitations cause the higher rotation error and performance drop 
under occlusion, which is reflected by the low ADD and Avg Acc metrics 
demonstrated in results of the previous section. As shown in the 6DoF 
trajectories in Figs.  11–14, MVL_3S achieved a larger average rotation 
error than IGTUM and ICL.

Two-stage methods, like ICL, EUT and PVNet, involve extracting 
intermediate representations, such as keypoints or segmentation masks, 
before the final pose estimation. Instead of using a deep learning 
model to estimate the pose directly, these models use intermediate 
results and the PnP solver (Lepetit et al., 2009) to compute 2D-3D 
keypoint correspondences which are processed further for 6DoF pose 
estimation. The two-stage architecture makes these methods more ro-
bust to occlusions and complex geometries. However, errors in the 
intermediate results like incorrect localization of a single keypoint in 
the first stage, can propagate to the second stage in the PnP solver, 
resulting in a significant overall error. This property is also reflected 
in their high Average Accuracy and high translation and rotation error 
in the results section. According to the estimated trajectories shown for 
the 𝑍-axis translation estimation in Figs.  11–14, two-stage methods like 
ICL generate more frequent outliers instead of consistent trajectories 
compared to the direct prediction methods.

The last category which includes the IGTUM method, uses candidate 
hypotheses. This method generates multiple possible poses for an object 
and refines them using scoring mechanisms or geometric consistency 
checks. For example, IGTUM utilizes segmentation to localize the in-
strument area on the image plane, then uses a feature detector to 
extract visual features, and finally selects the most likely rotation-
translation candidates from the potential tool pose space. These meth-
ods are highly accurate and robust, especially in handling ambiguities, 
occlusions, and cluttered environments. As a result, IGTUM outper-
formed other methods in the results section.
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Fig. 11. Trajectory comparison in LND test without occlusion.
Fig. 12. Trajectory comparison in MBF test without occlusion.
9. Discussion

9.1. Role of vision-based deep learning in surgical instrument pose estima-
tion

The participants’ results demonstrate the promising potential of 
applying advanced deep learning technology in surgical instrument 
11 
pose estimation, especially in the occluded scenarios which are com-
mon but challenging in real surgery. Compared with the traditional 
tracking methods relying on extra hardware and markers, the vision-
based methods provide more flexibility and cost-efficiency. However, 
there is still clear scope for improvement in further application. Al-
though some two-stage methods could provide intermediate results, 
deep learning methods still lack interpretability and uncertainty esti-
mation. In addition, all the participants’ methods require retraining for 
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Fig. 13. Trajectory comparison in LND test with occlusion.
Fig. 14. Trajectory comparison in MBF test with occlusion.
every new instrument, while the ground truth 6DoF pose annotation 
is quite time-consuming and limited by the instrument size. In the 
future, generalizable pre-trained model could be implemented to solve 
the issue.

9.2. Ground truth data accuracy and error analysis

To evaluate the accuracy of our ground truth pose generation, we 
created simulated images with known instrument pose information. 
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More specifically, we used the VisionBlender simulation platform (Car-
tucho et al., 2020) to generate images of the instrument with a keydot 
marker, accompanied by their actual pose. As shown in Fig.  15, the 
keydot marker moved along with the tool 3D model. To guarantee 
consistency between the simulation images and real endoscopic images, 
the same camera intrinsic matrix was used as in the LND subset. To 
generate ground truth tool pose estimation for the simulated data, we 
estimated the pose of the keydot marker by analyzing the simulation 
images and followed the procedure explained in Section 2.2. Among 
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Fig. 15. Simulation sample images.
the 50 samples of simulated data, the translation error between the 
estimated and actual instrument pose is 0.253 mm and the rotation 
error is 0.302 degrees. This verifies the accuracy of our generated 
ground truth data.

9.3. Background scene simulation

The background scene was simulated with a realistic high-fidelity 
abdominal phantom in our experiments. To create diversity of the 
background conditions, video data was captured from different areas 
of the phantom corresponding to different organs, using the Da Vinci 
Si camera. Varying lighting conditions were generated by adjusting 
the light source intensity on the Da Vinci between 40% and 100% 
with a step of 10%. In addition, a ceiling light source was used to 
illuminate our scene. We adjusted the intensity and the wavelength of 
the light source, and we also moved it to different locations above our 
experimental set up to further increase the variability of the lighting 
conditions in our captured video data.

9.4. Monocular image capture

In this work, we chose to capture only the left camera images 
for data collection due to practical and methodological reasons. First, 
the physical marker used for 6DoF pose ground truth is only reliably 
detected within limited viewing angles, and requiring visibility in both 
stereo views would constrain pose diversity. Second, applying image 
inpainting to both stereo images could introduce inconsistencies that 
affect stereo matching and depth estimation. Finally, using stereo data 
increases the risk of calibration errors between cameras, which could 
degrade data quality. Focusing on the left images avoids these issues 
and improves dataset robustness.

9.5. Future prospects

Dataset Improvement: SurgRIPE dataset focuses on instrument 
pose estimation for monocular endoscopic images. Considering da 
Vinci®endoscope can capture stereo images, more stereo images could 
be collected in the future to utilize extra depth information from stereo 
images. In addition, the dataset can be improved by adding more 
realistic tissue as background to simulate real surgery. So far, the target 
for the pose estimation is the wrist joint between the shaft and the 
end effector of the tool. The tool pose is estimated with respect to the 
camera coordinate system, which is our reference coordinate system. 
Since the end effector can only rotate along the 𝑧-axis of the wrist joint, 
the pose of the tool tip can be easily recovered using the estimated wrist 
joint pose by detecting the 2D position of the tool tip and applying 
simple 3D geometry.
13 
10. Conclusions

This paper presents the SurgRIPE challenge, which is part of the En-
doscopic Vision Challenge, organized in conjunction with MICCAI2023. 
This work focuses on the markless 6DoF surgical instrument pose 
estimation with and without occlusion. We first introduce a 6DoF pose 
estimation dataset for surgical instrument pose estimation along with 
a benchmark framework to comprehensively evaluate pose estimation 
methods. Our validation framework is expected to be used as the 
standard benchmark framework for surgical instrument research.
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