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Reverse thiophosphorylase activity of a glycoside
phosphorylase in the synthesis of an unnatural
Manb1,4GlcNAc library†

Tessa Keenan, ‡a Natasha E. Hatton,‡a Jack Porter,b Jean-Baptiste Vendeville, c

David E. Wheatley, c Mattia Ghirardello,d Alice. J. C. Wahart, b

Sanaz Ahmadipour,b Julia Walton, a M. Carmen Galan, d Bruno Linclau,§ce

Gavin J. Miller *b and Martin A. Fascione *a

b-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably,

Manb1,4GlcNAc a constituent of the core N-glycan in eukaryotes was recently identified as an immune

activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the

synthesis of b-mannosidic linkages remains one of the major challenges in glycoscience. Here we

present a chemoenzymatic strategy that affords a series of novel unnatural Manb1,4GlcNAc analogues

using the b-1,4-D-mannosyl-N-acetyl-D-glucosamine phosphorylase, BT1033. We show that the

presence of fluorine in the GlcNAc acceptor facilitates the formation of longer b-mannan-like glycans.

We also pioneer a “reverse thiophosphorylase” enzymatic activity, favouring the synthesis of longer

glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that

may be generally applicable to other phosphorylases.

Glycoside phosphorylases (GPs) naturally catalyse the break-

down of glycosidic bonds between glycans (phosphorolysis).1

However, these useful biocatalysts can also be harnessed in

a synthetic “reverse phosphorolysis” direction (Fig. 1A)

requiring only simple sugar-1-phosphate donors for the

synthesis of diverse glycosides.2,3 Yet the inherent reversibility

of GPs can limit their utility in the synthetic direction. Herein

we explore the use of unnatural substrates to favour “reverse

phosphorolysis” using a GP active on b-mannosides and in the

process pioneer “reverse thiophosphorylase” enzymatic activity,

wherein formation of a phosphorolysis-stable thioglycoside

linkage (Fig. 1B) facilitates the synthesis of longer glycans.

b-Mannosides are highly prevalent in nature,4 with diverse

roles in biological processes including energy storage5 and cell

wall biosynthesis.6 Notably the ubiquitous ManGlcNAc2 motif

within eukaryotic N-glycans7 contains a Manb1,4GlcNAc disac-

charide, which was recently identied as a novel immune

modulator in autoimmune disease.8,9 Manb1,4GlcNAc has

shown potential as a new activator of STING (stimulator of

interferon genes pathway) triggering a broad immune response

in macrophages.8 STING is a component of the innate immune

system and a key mediator of inammation.10 Therefore small

molecule activators are emerging as a promising strategy in

cancer immunotherapy.11 Despite its striking biological signif-

icance and recent advances in the chemical synthesis of such

linkages,12 the efficient assembly of b-mannosides still remains

one of the major challenges in glycoscience.

Herein we utilize a GP-mediated chemoenzymatic

approach13 for the synthesis of b-mannosides in the form of an

unnatural library of Manb1,4GlcNAc-based glycans, including

a number of extended glycans. We incorporate unnatural

functionality into the enzymatic building blocks through

chemical synthesis and show that when a 4-SH nucleophile or

6F group are present in the GlcNAc acceptor, this facilitates the

extension of Manb1,4GlcNAc producing longer b-mannan like

glycans. This approach not only affords access to a series of

novel, unnatural Manb1,4-GlcNAcs which may have potential in

immunotherapy, but also represents a benchmark for the utility

of GPs for thioglycoside synthesis. With more than 190 GPs that
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have been characterized to date, if this “reverse thiophosphor-

ylase” activity was observed more broadly in other GPs, it could

provide straightforward access to a wide range of

thioglycosides.14

For the synthesis of our Manb1,4GlcNAc analogues we

investigated the inverting b-1,4-D-mannosyl-N-acetyl-D-glucos-

amine phosphorylase from Bacteroides thetaiotaomicron

(BT1033).13 BT1033 is a GH130 family phosphorylase, previously

shown to catalyse the transfer of Man from a-D-mannose-1-

phosphate (Man1-P) onto N-acetyl-D-glucosamine (GlcNAc) to

produce Manb1,4GlcNAc by reverse phosphorolysis. To inves-

tigate the substrate promiscuity of BT1033, we screened a series

of chemically synthesised Man1-P donors (3–10) and GlcNAc

acceptors (11–14) (Fig. 2). The GlcNAc acceptors were designed

with an azido-propyl handle to provide an accessible point for

bioconjugation and this was exploited in our glycan detection

methodology (Fig. 2A). Imidazolium-based ionic liquid tags

(ITags) are highly sensitive mass spectrometry (MS) probes that

enable low detection limits, due to their dominant ionizability

by MS.16 To facilitate the semi-quantitative detection of the

Manb1,4GlcNAc products in our reactions, as well as any

unreacted acceptor, the reaction products were labelled with an

alkyne-functionalised ITag 1 using a copper-catalysed alkyne–

azide cycloaddition (CuAAC) reaction and analysed by liquid-

Fig. 1 The reversible GP catalyzed reaction (A). Proposed irreversible “reverse thiophosphorylase” activity with a 4SH-thiol acceptor (B).

Fig. 2 (A) ITag screening methodology for BT1033 reactions. Reaction mechanism depicted in reverse phosphorolysis direction. (B) BT1033

activity towards unnatural donors and acceptors.3,15

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 11638–11646 | 11639
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chromatography coupled to mass spectrometry (LC-MS). The

relative conversion of starting material to product was deter-

mined by comparing the ionisation intensities of the unreacted

azido-propyl linked GlcNAc (GlcNAc-N3) acceptor to the azido-

propyl linked Manb1,4GlcNAc products (Fig. 1B and ESI

Section 5†). First, we assessed the suitability of GlcNAc-N3 11 as

an acceptor mimic for BT1033, with Man1-P 2 as a donor. In

preliminary studies (data not shown) we observed some

enzyme-mediated hydrolysis of Man1-P 2. Therefore, in reac-

tions containing Man1-P 2, the donor was supplied in excess (5–

10 eq.) relative to the acceptor. Additionally, the donor was

supplied in signicant excess (5 × 104–1 × 105 eq.) relative to

the enzyme to drive the reaction in favour of the synthetic

“reverse phosphorolysis” reaction. LC-MS analysis showed an

ion consistent with the mass of the Manb1,4GlcNAc-ITag

disaccharide (m/z 764) as expected (Fig. S11†). Additionally,

we observed an ion consistent with the mass of the Man-

b1,4GlcNAc-ITag disaccharide + 162 Da (m/z 926). BT1033 was

previously shown to have weak synthetic activity with D-

mannose as an acceptor when using Man-1P as a donor13 whilst

able to use chitobiose as an acceptor, demonstrating that it is

capable of producing longer-glycans. Therefore, we proposed

that the product at m/z 926 was a Man2b1,4GlcNAc-ITag trisac-

charide. Overall, we observed 74% conversion to disaccharide

15 and 4% to trisaccharide 16 (Fig. 2B). Next, we screened

BT1033 for activity towards eight unnatural Man-1P analogues

(3–10) with acceptor 11 (Fig. 2B and S3–S10†). C6-Chloro Man-

1P 4 was best tolerated by BT1033, with 61% conversion to

disaccharide observed aer 24 h (Fig. S3†). Moderate conver-

sions of C5-methyl Man-1P 3 and C6-methyl Man-1P 5 to

disaccharide were also observed at 51% and 44%, respectively

(Fig. S4 and S5†). Conversion of C6-uoro Man-1P 6 and C6-

azido Man-1P 7 to disaccharide were lower at 16% and 11%

respectively (Fig. S6 and S8†), suggesting that these were poor

substrates for the enzyme. No conversion of C6-gem-diuoro

Man-1P 8 was observed, which was not surprising considering

the poor turnover of 6. Additionally, no turnover of C6-

hydroxamic acid Man-1P 9 or C6-amine Man-1P 10 were

observed (Fig. S7, S9 and S10†). There was no evidence of longer

glycan chain formation when using any of the unnatural Man-

1Ps. In summary, the results of the unnatural Man-1P

substrate screen suggest that BT1033 has little or no activity

towards C6-modied analogues with groups larger than the

native CH2OH. Whilst poor turnover of C6-azido 7 and C6-

amine 10 Man-1Ps was observed, the chlorine in disaccharide

18 could allow for further derivatization at the C6-position to an

azide or amine.

Next, we screened for activity towards uorinated GlcNAc-N3

acceptors 12–14, with Man-1P 2 (Fig. 2B). Fluorination, whilst

having little effect on the overall conformation of a glycan,17 is

known to affect stereo-electronic properties and can therefore

modulate biological function.18 6F-GlcNAc-N3 12 and 6F-

GlcNTFA-N3 14 were tolerated by the enzyme, producing 83%

and 52% total conversion to product respectively. For both

acceptors, not only were the anticipated disaccharide products

observed at conversions of 41% (12) and 22% (14) respectively,

but also masses consistent with the production of longer

Mannan-type glycans. For example, with 12 we observed prod-

ucts consistent with disaccharide (m/z 766, Manb1,4-6F-GlcNAc-

ITag, 41%), trisaccharide (m/z 928, Man2b1,4-6F-GlcNAc-ITag,

41%) and tetrasaccharide (m/z 1090, Man3b1,4-6F-GlcNAc-

ITag, 1%) formation (Fig. S12†). With 14, in addition to the

expected disaccharide (m/z 820, Manb1,4-6F-GlcNTFA-ITag,

22%) we observed trisaccharide (m/z 982, Man2b1,4-6F-

GlcNTFA-ITag, 19%), tetrasaccharide (m/z 1144, Man3b1,4-6F-

GlcNTFA-ITag, 9%) and pentasaccharide (m/z 1306, Man4b1,4-

6F-GlcNTFA-ITag, 2%, Fig. S14†). In contrast, only low levels of

conversion of 6,6-diF-GlcNTFA 13 to disaccharide (2%) was

observed (Fig. S13†). Taken together, this data indicates BT1033

can tolerate acceptors with uorination at C6 position and

within the NAc substituent. Increasing the number of uorines

at C6 in the acceptor resulted in poorer turnover by BT1033,

with such presence in carbohydrate substrates previously

shown to reduce the catalytic efficiency of some enzymes.19

However, the presence of a single uorine in the acceptor

interestingly appeared to facilitate the formation of longer

glycans by BT1033, when compared to GlcNAc-N3 11. We

hypothesized that uorination in the acceptors may reduce the

rate of the competing phosphorolysis reaction, altering the

reaction equilibrium and resulting in an accumulation of the

reverse phosphorolysis disaccharide product, which could

subsequently serve as an acceptor for further mannosylation

using 2. To investigate this further, we tested BT1033 for activity

with a 4-SH-GlcNAc-N3 analogue 33 and compared this to its

activity towards 11 under the same conditions (Fig. 3). We

anticipated that the reaction would yield a Manb1,4-S-GlcNAc-

N3 34 thioglycoside (Fig. 3A). Thioglycosides are carbohydrate

mimetics that are oen resistant to hydrolysis and have elicited

signicant interest in recent years as probes for structural and

biological studies, and as enzyme inhibitors.20,21 We hypothe-

sized that if BT1033 was able to use a thiol as an acceptor with 2

(in the synthetic direction) the reactionmay become irreversible

due to the stability of the resultant thioglycoside to phospho-

rolysis. Following LC-MS analysis of reactions with 33 under

disulde reducing conditions, we observed masses consistent

with the expected disaccharide (m/z 780, Manb1,4-S-GlcNAc-

ITag), as well as trisaccharide (m/z 942, Man2b1,4-S-GlcNAc-

ITag) and tetrasaccharide (m/z 1104, Man3b1,4-S-GlcNAc-ITag)

formation (Fig. 3B). Overall, there was a greater proportion of

reverse phosphorolysis product at the end of the reaction using

33, compared with 11 (Fig. 3C).

Using 11, we observed mostly acceptor (61%), some disac-

charide (26%) and trisaccharide (11%), and low-level tetra-

saccharide (1%). Comparatively, for 33 the majority of the

product observed was disaccharide (61%), with some trisac-

charide (25%) and tetrasaccharide (1%). These ndings are

consistent with the accumulation of phosphorolysis resistant

Manb1,4-S-GlcNAc-N3 34. Although the specic activity of

BT1033 towards GlcNAc-N3 11 (3.20 mmol min−1 mg−1) was ∼2-

fold higher than towards SH-GlcNAc-N3 33 (1.59 mmol min−1

mg−1), enzyme titration curves with the respective acceptors

highlight the benecial effect that the thiol has on the nal

conversion to product in the competing phosphorolysis reac-

tion, with near full conversion of SH-GlcNAc-N3 33 achieved in

11640 | Chem. Sci., 2023, 14, 11638–11646 © 2023 The Author(s). Published by the Royal Society of Chemistry
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30 min, with only a 3-fold excess of Man-1P donor relative to

acceptor and 0.33 mg mL−1 of enzyme (Fig. S35A†). In contrast,

under the same conditions only ∼20% conversion of GlcNAc-N3

11 was observed, while ∼ 40% was observed with 0.04 mg mL−1

of enzyme (Fig. S35B†).

To further showcase the utility of BT1033 for chemo-

enzymatic b-mannosylation we assembled a library of unnatural

azidopropyl-linked Manb1,4-GlcNAc glycans on a semi-

preparative scale, including thioglycoside di, tri and tetra-

saccharides (34–36) and uorinated di, tri, tetra and penta-

saccharides (25–27, 37), in isolated yields ranging from 5% to

68%, (Table 1, ESI Section 8†). The structures of synthesised

glycans were validated by 1D and 2D NMR and HRMS (ESI

Sections 8 and 9†), with b-glycosidic linkages conrmed using

IPAP HSQC, which measures each anomeric carbons 1JCH
coupling constant (Tables S3 and S4†).22 Although similar

trends were observed the isolated product yields differed from

the relative conversions measured by MS, which is likely

a reection of the change in scale and challenges associated

with purication of longer oligosaccharides. To validate BT1033

was able to operate irreversibly as a “reverse thiophosphorylase”

we investigated the stability of our puried glycan library to

BT1033 catalysed phosphorolysis (Fig. 4). As expected Manb1,4-

GlcNAc 15 underwent rapid phosphorolysis, with ∼50%

breakdown to acceptor 11 observed aer 2 min and ∼65% aer

24 h. Intriguingly, although Manb1,4-6F-GlcNAc 25 showed

a greater proportion of phosphorolysis over 24 h compared to 15

(78% vs. 70% breakdown to acceptor respectively), a lower

amount of phosphorolysis was observed at 2 min (15% vs. 50%

breakdown to acceptor respectively). This slower rate of phos-

phorolysis may therefore account for the observed formation of

C6-uorinated tri-, tetra-, and pentasaccharide by reverse

phosphorolysis. The presence of the 6F-GlcNAc moiety

appeared to have minimal effect on breakdown of uorinated

trisaccharide 26 to disaccharide 25, when compared to trisac-

charide 16, which contains the natural GlcNAc moiety. Notably,

6Cl-Man b1,4-GlcNAc 18 also showed a much lower proportion

(∼20%) of phosphorolysis-mediated product aer 24 h

compared to 15 (∼65%). Again, potentially accounting for the

accumulation of 18 in the reverse phosphorolysis reaction when

Fig. 3 (A) BT1033 turnover of thio-GlcNAc-N3 33 to produce the Manb1,4-S-GlcNAc-N3 34 thioglycoside. Reaction mechanism depicted in the

reverse phosphorolysis direction. (B) LC-MS analysis showing di-, tri- and tetrasaccharide thioglycoside formation. (C) Comparative product

distribution in BT1033 reactions with 11 and 33.

Table 1 Manb1,4-GlcNAc-N3 analogues produced on scale

Donor Acceptor Product Yield (%) Amount (mg)

4 11 6Cl-Manb1,4-GlcNAc 18 68 2.6

2 11 Manb1,4-GlcNAc-N3 15 56 6.5

Manb1,4-Manb1,4-GlcNAc-N3 16 15 2.4
2 12 Manb1,4-6F-GlcNAc-N3 25 12 1.4

Manb1,4-Manb1,4-6F-GlcNAc-N3 26 13 2.1

Manb1,4-Manb1,4-Manb1,4-6F-GlcNAc-N3 27 7 1.4

Manb1,4-Manb1,4-Manb1,4-Manb1,4-6F-GlcNAc-N3 37 5 1.3
2 33 Manb1,4-S-GlcNAc-N3 34 20 3.8

Manb1,4-Manb1,4-S-GlcNAc-N3 35 23 5.9

Manb1,4-Manb1,4-Manb1,4-S-GlcNAc-N3 36 11 3.4

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 11638–11646 | 11641
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using 4. As hypothesised Manb1,4-S-GlcNAc 34 proved resistant

to phosphorolysis, with no cleavage of the thioglycoside

observed aer 24 h indicating that the replacement of the

alcohol nucleophile with a thiol in the acceptor does enable the

phosphorolase to operate irreversibly in the synthetic direction.

However, the presence of the Manb1,4-S-GlcNAc thioglycoside

linkage appears to have no effect on the extent of phosphorol-

ysis of trisaccharide 35 to thioglycoside 34, compared to the

natural trisaccharide 16, similar to observations for 26. Tetra-

saccharides containing the 6F functionality 27 and the thio-

glycoside linkage 36 respectively, were subjected to

phosphorolysis and showed the expected breakdown to trisac-

charide aer 24 h. Whilst the phosphorolysis of 27 afforded

a distribution of products (from acceptor to even longer glycans,

indicating reverse phosphorolysis was occurring), the reaction

with 36 halted as disaccharide accumulated due to the stability

of the thioglycoside linkage. Finally, the 6F pentasaccharide 37,

similarly to 27, afforded a distribution of products from

acceptor to hexasaccharide, indicative of reverse phosphorolysis

having occurred.

BT1033 belongs to the GH130 enzyme family, which includes

b-mannoside phosphorylases MGP (4-O-b-D-mannosyl-D-glucose

phosphorylase) and Uhgb_MP (b-1,4-mannosyl-N-glycan phos-

phorylase) from Bacteroides sp.13,23,24 Guided by structural

studies of MGP and Uhgb_MP, GH130 catalysis is proposed to

proceed through a “proton shuttle” mechanism (Fig. 5A). For

the synthetic reaction, it is hypothesised that mannose in the

−1 subsite, existing in an unstable B2,5 boat conformation, is

deprotonated by a catalytic Asp residue (Asp131 in MGP or

Asp104 in Uhgb_MP) at the 3-OH which subsequently deprot-

onates the incoming GlcNAc acceptor via its 3-OH group.23,25

Amino acid sequence alignment of BT1033 and Uhgb_MP,

identied Asp101 as the putative catalytic residue in BT1033

(Fig. S36†). Superimposition of a BT1033 alphafold model with

the structure of Uhgb_MP in complex with b-D-mannose and

phosphate, showed that BT1033 Asp101 overlayed with

Uhgb_MP Asp104, supporting this hypothesis (Fig. 5B). To

reinforce this proposed role of Asp101 in BT1033 catalysis, we

also produced a BT1033 D101A mutant and investigated the

synthetic activity of the enzyme with both GlcNAc-N3 11 and SH-

Fig. 4 Phosphorolysis of Manb1,4-GlcNAc-N3 analogues, with relative conversions determined by ITag LC-MS analysis. NE denotes: no enzyme

control.

Fig. 5 (A) Proposed mechanism of BT1033. (B) Crystal structure of

Uhgb_MP (4UDJ, grey) superimposed with a BT1033 alphafold model

(turquoise), showing that BT1033 Asp101 overlays with Uhgb_MP

Asp104 (orange box). Uhgb_MP structure shown in complex with b-D-

mannose and phosphate.
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GlcNAc-N3 33, using the natural Man-1P 2 donor (Fig. S23†). As

anticipated, BT1033 D101A displayed no activity towards

GlcNAc-N3 11, conrming that this residue is required for

catalysis. Interestingly, no activity towards SH-GlcNAc-N3 33was

observed either implying that despite the lower pKa of the thiol

acceptor, deprotonation of the incoming nucleophile within the

active site is still required. Previously the enzymatic synthesis of

diverse thioglycosides using “thioglycoligases”, glycosidase

mutants with their catalytic acid/base residues mutated to an

alanine or glycine, have been achieved and extensively explored

by the Withers group26 and others.20,27 In contrast to thio-

glycoligases, we demonstrate here that the reverse thio-

phosphorylase activity of BT1033 is abolished in in the absence

of the catalytic base, thus suggesting that a deeper under-

standing of the proposed GH130 ‘proton shuttle’ mechanism

may be required to aid the design of more efficient reverse

thiophosphorylases.

In summary, we have demonstrated that BT1033 can be

exploited to access diverse Manb1,4-GlcNAc analogues, and

longer b-mannan like glycans. We also establish novel reverse

thiophosphorylase activity favouring the synthesis of longer

glycans by initially catalysing the formation of a stable thio-

glycoside linkage. Following incorporation of unnatural func-

tionality into the enzymatic building blocks through chemical

synthesis, we systematically screened BT1033 for activity

towards these unnatural donors and acceptors in a MS-based

strategy using a “clickable” ITag to facilitate product ionisa-

tion and detection. BT1033 displayed activity towards C6-

modied donors, most notably 6Cl-Man-1P 4. Fluorinated

acceptors were also turned over by the enzyme, and interest-

ingly the presence of the uorine appears to also facilitate

extension of Manb1,4-GlcNAc with Man to produce longer b-

mannan like glycans, likely through slowing the rate of phos-

phorolysis. Whilst enzymatic strategies for the synthesis of

thioglycosides to date have focused on the exploitation of “thi-

oglycoligases”,20,26,27 to our knowledge the use of a wildtype GP

to synthesise thioglycosides has not been explored. If this

“reverse thiophosphorylase” activity was generally applicable to

other GH130 phosphorylases, it could provide simple yet

dynamic access to a diverse range of thioglycosides. As Man-

b1,4GlcNAc has shown potential as a immune activator,10 the

thioglycoside products of the reverse thiophosphorylase activity

of BT1033 could have potential as non-hydrolysable b-mannose

containing activators for immunotherapy. Furthermore, exten-

sion of the reverse thiophosphorylase approach to thiol

substituted sugar-1P donors, could have potential utility in the

construction of thiooligosaccharide homopolymers.
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