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Abstract. The relative balance between physics and data within any physics-informed

machine learner is an important modelling consideration to ensure that the benefits of

both physics and data-based approaches are maximised. An over reliance on physical

knowledge can be detrimental, particularly when the physics-based component of a

model may not accurately represent the true modelled system. An under utilisation of

physical knowledge potentially wastes a valuable resource, along with benefits in model

interpretability and reduced demand for expensive data collection. Although adjusting

the relative levels of physics and data reliance within a model is possible through the

adaptation of the model structure, in practice, this can be challenging, with the rela-

tive balance produced by new model structures not always clear before they are imple-

mented. This paper presents a means of being able to tune the balance of physics and

data reliance within a model through the development of physically-informed change-

point kernels for Gaussian processes. These combine more structured physical kernels,

capable of enforcing physically derived behaviours, with flexible, general purpose ker-

nels, and provide means to dynamically change the relative levels of reliance on physics

and data within a model.

Keywords: Physics-informed kernel design · Change-point kernels · Gaussian process.

Introduction

Physics-Informed Machine Learning (PIML) aims to exploit the benefits of both physics and data-based modelling

approaches; insight, structure and enhanced ability to extrapolate are provided through physical knowledge, whilst a

data-based component increases flexibility and allows for the capture of complex relationships directly from data. In

many implementations within the literature [1–3], physics is used to represent an aspect of behaviour that is better

understood (e.g. a linear behaviours, general trends), whilst the data-based component tackles friction, turbulence,

non-linearities or other more challenging effects. When working effectively, PIML models often outperform the

individual physics and data-based models from which they are constructed.

Three of the major decisions within a PIML model are the type of physics to be included, the selection of a

data-based component, and how they are integrated together to create a single model. The latter of these decisions

is the focus of this paper and is key factor effecting the relative balance between physics and data within the model.

Earlier work of the authors [4] discusses the relationship between how the structure of Gaussian process models

affects this balance and how it may change across modelling tasks.

This work is licensed under CC BY 4.0 1 Media and Publishing Partner



This work looks toward how one might be able to tune the relative reliance on physics and data within physics-

informed Gaussian Process (GP) models. A GP is a flexible, non-parametric, Bayesian technique, adept within a

variety of engineering regression problems, including crack growth [5, 6], tool wear [7, 8] and modelling of wind

turbine power curves [9, 10]. For conciseness, an introduction to GP regression theory is not presented here, with

interested readers encouraged to consult [11]. The covariance function (kernel) of a Gaussian process is responsible

for the family of functions from which predictions may be drawn, with commonly used kernels enforcing properties

such as smoothly varying functions, periodicity and localised behaviours [11, 12]. Through careful design of the

kernel, it is possible to mimic physically desirable behaviours within drawn functions; such examples include the

representation of a physical process [13, 14] or the enforcement of axial and rotational symmetries [15–18]. Here, a

combination of physics-informed kernels and flexible, more general purpose, kernels are used in combination. The

constructed physics-informed change-point kernels aim to dynamically switch the relative reliance between kernel

components, allowing for variation of the physics-data balance within the model.

To highlight an engineering scenario with a changing reliance on a physical model, a case study is presented of

wind loading of the Tamar bridge. A section of a dataset measured on the structure is used to investigate lift forces

produced by high speed winds. Importantly, these lift forces only occur when winds blow across the bridge (perpen-

dicular to the bridge length), causing a dependency of this relationship on wind direction. The implementation of

physics-informed change-point kernels is used to capture the dynamic reliance on lift force, outperforming a purely

data-based approach, and providing insight in to how this relationship changes.

1 Change-point kernels

The selection of a kernel within a Gaussian process is an important modelling decision, determining the type of

functions used to make predictions and, as a result, the model’s performance. However, there are many instances

where the selection of a single ‘best’ kernel for a modelling task might be challenging, for example, a system under

changing conditions or the introduction of new behaviours over time. In these circumstances one might wish to

utilise the behaviour of multiple kernels, with an appropriate method of switching between them. Such a method

could borrow from the many existing kinds of switching model, including Mixtures of Experts (MOEs) [19, 20],

Markov-switching models [21], Treed Gaussian Processes (TGPs) [22] and Regime-switching cointegration models

[23]. In this work, we build upon the change-point kernel [24,25], which controls the switching between two kernels

K1(X,X ′) and K2(X,X ′) through the use of the sigmoid function:

σ(x) =
1

1 + e−a(x−x0)
(1)

where a is a gradient term, responsible for how quickly the function switches from 0 to 1, and x0 is the switching

location. The use of a sigmoid function allows the gradual transition between multiple kernels without the introduc-

tion of a discontinuity. A useful property of sigmoid functions is that σ(x)+σ(−x) = 1 allowing a pair of opposing

sigmoids to phase between the use of two kernels. A sigmoid with a negative gradient term may be used to phase

out the use of a particular kernel, whilst a sigmoid with the equivalent positive gradient may be used to phase in the

use of a new kernel. The covariance function for a sigmoid is expressed:

Kσ(X,X ′) = σ(X)σ(X ′)T (2)

Given that products and sums of kernels are also valid kernels, a pair of opposing sigmoid kernels may be

used to switch between the use of two kernels K1(X,X ′) and K2(X,X ′). This is referred to as the change-point

kernel [24]:

K(X,X ′) = Kσ(X,X ′)K1(X,X ′) +Kσ(−X,−X ′)K2(X,X ′) (3)

where additionally to the hyperparameters of the kernels K1(X,X ′) and K2(X,X ′), a gradient term, a is

introduced to control the direction and speed of the switch and the location, x0 determines where the switch happens.

To highlight the operation of a change-point kernel, consider a case where one may wish to transition from a

process that varies quickly, to one varying more slowly. This can be achieved through a combination of short and

long lengthscale Squared Exponential (SE) kernels. Draws from a SE change-point kernel are shown in Figure 1 for

illustration.
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Fig. 1. Construction of a change-point kernel with a = 2 and x0 = 4, transitioning between Squared Exponential kernels with

short and long lengthscales. The sigmoid functions, σ(X) and σ(−X), draws from each component kernel, K1(X,X ′) and

K2(X,X ′), along with draws from the combined kernel K(X,X ′) = Kσ(X,X ′)K1(X,X ′) + Kσ(−X,−X ′)K2(X,X ′)
are shown. The colour gradient of the plot reflects the relative weighting of each kernel; blue for K1(X,X ′), and red for

K2(X,X ′).

1.1 Physics-informed change-point kernels

The framework of change-point kernels provides an effective means to vary the reliance between multiple kernels

within a GP. To exploit this within a PIML setting, the integration of physics-informed kernels and flexible ‘data-

based’ kernels is proposed alongside the option to switch on an input variable seperate from those used in the main

GP. Here, a pair of sigmoid kernels Kσ(Z,Z
′) and Kσ(−Z,−Z ′) are used to control the explanatory power of the

physics-informed kernel within the model. This leads to a kernel structure of:

K(Z,Z ′, X,X ′) = Kσ(Z,Z
′)KPhy(X,X ′)

︸ ︷︷ ︸

Physics-informed kernel

+Kσ(−Z,−Z ′)KData(X,X ′)
︸ ︷︷ ︸

Flexible kernel

(4)

where the newly introduced Z is the input to the sigmoid kernel, used to control the switching between kernels

KPhy(X,X ′) and KData(X,X ′). An effective choice of Z relates closely to how a physical relationship might

change with a variable. For example, temperature, humidity, excitation level, or measures of turbulence can all

effect the extent to which one might want to rely on a given piece of physical knowledge.

There are many reasons why one might want to change the relative reliance on physical knowledge within a

model, an important one of which is the changing validity of a physics-based model. With any physical model, and

particularly so with simple ones, assumptions must be made in order to represent the system of interest. The extent

to which these assumptions hold effects the performance of the constructed model and care should be taken not to

trust the results of models constructed upon invalid assumptions. Assigning a fixed degree of trust within a physical

model component may be challenging when a model is required to operate over a range of conditions and allowing

this to vary is therefore highly desirable.
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The presence of regime-switching and localised behaviours provide alternative motivation to vary the reliance

on physical knowledge. If a phenomena is known to occur in specific conditions, for example the dependency of

vortex shedding on flow speed [26], one might wish to phase its occurrence in and out of a model. To investigate a

use-case of this form, a case study of wind loading on the Tamar bridge will now be presented.

Fig. 2. Construction of a physics-informed change-point kernel, where the switching between a physics-informed kernel KPhy

and a flexible kernel KData is controlled by an external variable Z. Here KPhy(X,X ′) is a linear kernel, acting on an input

space of X = [x1,x2], representing knowledge of a linear process. This linear relationship is assumed not to hold for lower

values of Z. The colour gradient of the plot reflects the relative weighting of each kernel; blue for KPhy(X,X ′), and red for

KData(X,X ′).

2 Directional wind loading of the Tamar bridge

The Tamar Suspension Bridge is located in the south west of the UK and was the feature of a monitoring campaign

led by the Vibration Engineering Section (VES) at the University of Sheffield. The bridge is 643m long, with two

towers, each 73m in height; it also forms part of a major connection to the city of Plymouth. For additional details

on both the bridge and monitoring campaign, the reader is directed towards [27] and [28].

Available data from the bridge spans a three year period from 2007 to 2011, with access to measurements

from accelerometers, strain gauges, annemometers, temperatures, humidity and traffic levels. Here, only a small

section of this dataset (2500 points) is used from the summer of 2008, focussing on measurements of wind speed,

wind direction and vertical deck acceleration. The aim of this case study is to investigate the presence of changing

physical behaviours from a full scale engineering structure. The example chosen here is the dependency of response

to wind load on wind direction.

Orientated in the east-west direction, the bridge is subject to higher deck accelerations when winds blow per-

pendicular to this at high speeds [27]. This is shown in plots of wind speed vs deck acceleration, seperated by wind
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direction in Figure 3. The cause of this relationship is may be explained as lift force, incited by a pressure difference

as wind flows over the bridge deck [29]. The expression for lift force is:

L =
1

2
ρCLAU2 (5)

Fig. 3. Wind speed vs vertical deck acceleration for a section of the Tamar bridge dataset. Winds are separated by direction,

into northerly winds (0 ± 20◦), easterly winds (90 ± 20◦), southerly winds (180 ± 20◦) and westerly winds (270 ± 20◦). The

northerly and southerly winds blow sideways across the bridge and induce much higher deck accelerations, particulaly at high

wind speeds.

where ρ is fluid density, CL is lift coefficient, A is projected area and U is wind speed. The quadratic term in this

expression aligns with the observations in Figure 3, particularly for southerly winds. To incorporate this knowledge

within our model, a second order polynomial kernel is used to represent lift force:

KLift(U,U
′) = σ2

L(UUT + c)2 (6)

where σ2
L scales the variance and c allows the introduction of lower order terms (linears and constants). Draws

from this kernel will be quadratic, enforcing desirable structure within the predictions of the model. Using this

kernel alone would not be sensible as this quadratic behaviour is clearly not visible for easterly and westerly winds.

Instead, it is integrated within a larger change-point kernel structure:

K(θ, θ′, U, U ′) = Kσ(cos(2θ), cos(2θ
′))Kσ(U,U

′)KLift(U,U
′)

︸ ︷︷ ︸

Introduce lift force at high N/S winds...

+Kσ(− cos(2θ),− cos(2θ′))Kσ(−U,−U ′)KSE(U,U
′)

︸ ︷︷ ︸

... otherwise, use a Squared Exponential kernel

(7)

where θ is wind angle, U is wind speed, Kσ(cos(2θ), cos(2θ
′)) is a sigmoid kernel for wind direction, Kσ(U,U

′) is a

sigmoid kernel for wind speed, KLift(U,U
′) is the polynomial lift kernel and KSE(U,U

′) is a Squared Exponential

(SE) kernel. The aim of this structure is to allow the knowledge of lift force to be utilised only for higher speed

northerly and southerly winds. The term cos(2θ) is used a measure of how well a wind direction aligns with north

or south.
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2.1 Results

To test the performance of models, a training set of 500 randomly selected points were used from the 2500 datapoint

section of the dataset. The remaining unseen data was used as the test set. Models were optimised inline with

standard GP practice [11], using the Negative Log Marginal Likelihood (NLML) as a cost function.

To allow the comparison of the proposed physics-informed change-points model with a benchmark case, a

purely data-based model was also investigated. This took the form of a GP with a SE kernel, KSE(U,U
′, θ, θ′),

given access to the same model inputs of wind speed and wind direction. Predictions for this model are shown in

Figure 4, with predictions from the change-point model shown in Figure 5.

Fig. 4. Predictions of vertical deck acceleration on the Tamar bridge, separated by wind direction, using a Gaussian process with

a Squared Exponential kernel KSE(U,U
′, θ, θ′). The model was shown a random scatter of 500 datapoints from a 2500 point

dataset during training.

Fig. 5. Predictions of vertical deck acceleration on the Tamar bridge, separated by wind direction, using a Gaussian process with

a physics-informed change-point kernel. The model was shown the same random scatter of 500 datapoints from a 2500 point

dataset during training as the SE kernel in Figure 4.
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The first observation from the results is that the change-point model was better able to cope with the changing be-

haviours present within the dataset than the purely data-based approach. Across the full time series, the change-point

kernel achieved an NMSE of 24.25%, compared with the SE kernels’ 29.74%. The introduction of the quadratic lift

force for higher speed northerly and southery winds can be seen, whilst importantly, it is not introduced in to the

easterly or westerly winds. For the SE kernel however, some difficulty can been seen in distinguishing between

behaviours. For example, the prediction of deck acceleration for westery winds was pulled upwards by the presence

of high speed southerly training data. Although these points do occupy different places in the input space [U, θ], the

SE kernel could not effectively seperate these relationships. A suspected reason for this is an over estimation for the

lengthscale acting on wind angle, preventing predictions varying quickly enough w.r.t this variable.

An advantage of many PIML methods, also seen here, is an ability to use physical knowledge to assist with

extrapolation. Beyond the highest northerly and southerly wind speeds observed, the change-point model is able to

rely on the non-stationary lift kernel to predict further from observed data. For the SE kernel however, predictions

tended back towards the prior mean of zero. For the section of the dataset used for this work, there was a lack of high

speed northerly wind data, making predictions in this region challenging. In the UK, the prevalling wind direction

is typically south-westerly, causing an increased likelihood to encouter higher wind speeds in this direction [30].

This is further exagerated near the south-west coast, where the Tamar bridge is located. The rarity of higher speed

northery winds does not make a models performance during their occurence any less important and an effective

model should be able to cope with reduced data in this region. There are many reasons why data for particular event

may be rarer to measure and the use of physical knowledge is one way to try alleviate this.

A point of discussion relevant to kernel design is the number of hyperparameters within the model. Typically,

the construction of more complex kernels comes at the expense of the introduction of additional hyperparameters,

therfore increasing computational demands for optimisation. Here, the number of hyperparameters grows from three

for the SE kernel, to eleven for the physics-informed change-point kernel leading to an increase in computation time

by a factor of 1.7. To alleviate this, several of the introduced hyperparameters were bounded during the optimisation.

For example, the switching location of the wind speed sigmoid xw0 was bounded between 5 and 30 mph. The use

of physical knowledge to reduce optimiser search space is one of the advantages of hyperparameters with physical

meaning.

Another common motivation for PIML methods is an ability to provide additional interpretability within results.

This is achieved here through the physically informative hyperparameters of the sigmoid kernels. Plots displaying

the sigmoids learned from the data, constructed using these hyperparameters, are shown in Figure 6. These plots

are able to intuitively display, in terms of where and how quickly, how the relationships modelled within the data

change. Here, the model was able to learn from the data that changing direction of wind rapidly introduced lift force

as wind approached northerly and southerly directions (cos(2θ) → 1). The dependency of the relationship on wind

speed was more gradual, seen within the shallower gradient of the learned wind speed sigmoid. The yellow region

of the 2d sigmoid surface highlights a region of high speed northerly and southerly winds in which the lift force

kernel has the highest explanatory power within the model. Here, we had a known regime change in mind that we

were trying to capture, however similar plots could be of particular help where one might be less sure about how

behaviours within a dataset change.

3 Conclusions

The first development of a newly proposed kernel structure was presented in the form of the physics-informed

change-point kernel. This kernel provides a means to incorporate physical knowledge within the kernel of a Gaussian

process whilst being able to vary the extent to which the model relies upon this knowledge.

A dataset of directional wind loading of the Tamar bridge was used to highlight a case where physical knowledge

of a phenomena may only apply in particular regimes. The lift force induced by high wind speed, represented here

with a polynomial kernel, only acted when wind hit the bridge side-on. The change-point kernel was able to learn

this and present results of the changing regimes in an inerpretable manner. Performance was also improved over a

purely data-based approach.
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Fig. 6. Learned sigmoid functions for the wind direction (top left) and wind speed (bottom left) from the physics-informed

change-point kernel. The 2D sigmoid surface (right) across both wind direction and speed highlights the region in yellow in

which the physics-based kernel becomes active. This represents a region of northely/southerly winds at high speeds.
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