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 A B S T R A C T

Over the past decade, online navigation services have been adopted increasingly as a source of ‘ground 
truth’ in estimating choice alternatives during travel behaviour. These services, including Google Maps, Bing 
Map, and Waze, which are designed to provide real time traffic information and navigation guidance to the 
users, are believed to offer comprehensive and precise information regarding travel attributes. Nevertheless, 
discrepancies between the travel attributes collected from those services and the travel data that is reported 
by the travellers may introduce a systematic bias into travel behaviour analysis and modelling. This paper 
attempts to explore this challenge by investigating the discrepancy between the reported travel times and 
costs and the corresponding values derived from the Google Maps API. The comparison is conducted in the 
context of a developing country, through the use of travel diary survey data from Greater Jakarta, where 
there is a greater variety of transport modes and individuals may have varying capacities to gauge travel 
attributes due to the unpredictability of traffic conditions. Results show that even minor adjustments to which 
observations are included and which specific attribute treatments are used can completely change values of 
travel time savings (VTTS) estimates. Further, the characteristics of the observations excluded in the process 
of pre-processing are investigated to provide insight into preventing loss of data in future mobility surveys. 
Recommendations to address both of these issues are discussed along with policy implications.
1. Introduction

Over the last decade, the use of online navigation planning tools 
within mobility and geographic analysis has grown considerably (Auld 
et al., 2016; Qi et al., 2019; Wagner et al., 2020). These functions, 
provided by companies including Google, Bing, and Esri, provide users 
with travel times, costs, and distances for given origins, destinations, 
and departure times. Most services operate without providing public 
information on the specific nature of their data sources and algorithm, 
however, broadly these services produce a set of near-optimal or cost-
minimal paths under the constraints given. The accessibility of these 
services, available through APIs (Application Programming Interfaces), 
mean they are a popular option for rapidly producing cost estimates in 
a range of contexts.

Models of travel behaviour are an important instance where we 
require knowledge of attributes of the alternatives to predict their 

∗ Corresponding author at: Choice Modelling Centre, Institute for Transport Studies, University of Leeds, Leeds, United Kingdom.
E-mail address: faza.fawzan@ugm.ac.id (F.F. Bastarianto).

mobility decisions. These models are typically built using data ob-
tained through revealed preference (RP) and/or stated preference (SP) 
surveys. SP surveys focus on the stated behaviour of individuals in a 
hypothetical setting to determine potential sensitivity to each attribute 
in given scenarios. In contrast, RP surveys focus on the choices that 
individuals have made in the real world. The strength of this kind 
of survey is that it reveals the actual decisions made by individu-
als in a real world context and considers situational and individual 
constraints (dell’Olio et al., 2018).

Whilst RP data reduces hypothetical bias, a key challenge in using 
such data for travel behaviour modelling is inferring the attributes of 
the unchosen alternatives. In the past, studies using RP data addressed 
this issue by imputing mean attribute values for each unchosen al-
ternative (Train, 1986; Train and Winston, 2007). Later, researchers 
relied on a variety of methods to collect data on the travel attributes 
of unchosen alternatives for RP surveys. In mode choice analysis, for 
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instance, the travel mode attributes, including travel time and travel 
cost for unchosen alternatives, are often obtained using theoretical and 
empirical approaches involving a number of assumptions for estimating 
the travel time and cost of each transport mode (Enam and Choudhury, 
2011; Fox et al., 2014; Bastarianto et al., 2019).

Over the last decade, researchers have used navigation map
providers services to complete travel attributes in datasets of RP sur-
veys. Malokin et al. (2019) utilised Google Maps Application Program-
ming Interface (API) to estimate travel time and travel cost according 
to the fastest routes as suggested by Google Maps, which requires a 
number of assumptions for each mode of transport. Auld et al. (2016) 
applied Google Maps API to analyse the behaviour of travellers in 
Illinois.  Fu et al. (2023) employed various navigation map providers, 
including Google Maps API, Bing Maps API, Esri Routing Web Service, 
and OpenStreetMap NetworkX to generate time estimation of 10,000 
origin–destination pairs in the USA.

It has been claimed that publicly available traffic information from 
navigation map providers such as Google Maps and Bing Maps will 
provide comprehensive and more accurate details for all traffic par-
ticipants, thus enabling data-driven decisions (Wagner et al., 2020). 
However, to date there has been a lack of focus on the validation 
of travel attributes obtained via the Google Maps API. Discrepan-
cies between travel attributes generated from Google Maps API and 
those reported by travellers may introduce systematic biases in travel 
behaviour analysis and modelling. For instance, systematic overestima-
tion or underestimation of certain travel attributes for public transport 
leads to biases that can have significant implications for policy deci-
sions and infrastructure planning. Policy measures such as congestion 
pricing and public transport subsidies rely on accurate travel behaviour 
insights (Guzman and Oviedo, 2018; Wu et al., 2017). If travel at-
tributes are inaccurately represented, policies may be ineffective or 
even counterproductive. Moreover, transport infrastructure planning 
depends on reliable estimates of travel demand, time, and cost (Zhang 
and Cheng, 2023). Biases in these estimates could lead to inefficient 
allocation of resources for transport infrastructure investments, such as 
road expansions or investment in public transport networks.

In particular, there have been few comparisons of travel attributes of 
known trips obtained from Google Maps API compared to other sources 
of travel data, including GPS-tracked and recorded travel data. Wu 
(2018) found that travel times from Google Maps API are systemati-
cally higher than those from Uber Movement, which is based on GPS 
timestamps. Additionally, Wagner et al. (2020) validated Google Maps 
API travel time estimates by comparing them to GPS-tracked data from 
real test drives, finding that the deviation was less than 6%, indicating 
a reasonably high level of accuracy between the two. Similarly, one 
study in London found disparities showing systematic variations based 
on various modes and purposes of travel Hillel et al. (2016). The 
systematic characteristics of the discrepancies indicate that modelled 
trip duration from navigation map providers still require significant 
adjustment in order to closely represent observed travel patterns from 
the London Transport Demand Survey (LTDS).

The context of developing countries raises further challenges, such 
as unreliable public transport services (Muñoz et al., 2020), which 
can affect the accuracy of API-generated travel times. Moreover, the 
wider range of transport mode options (Ilahi et al., 2021), including 
both formal and informal transport modes, may not be accurately 
captured by Google Maps API. Additionally, traffic conditions are often 
more uncertain (Martinez and Masron, 2020), which might lead to 
greater discrepancies between Google Maps API and reported travel 
data. Mobile device penetration is also often varied, which reduces 
the likelihood of route navigation guidance (e.g. Google Maps) being 
available to travellers. The high variability of travel time may make it 
difficult for people to predict traffic conditions. All these factors make 
the applicability of the Google Maps API in the context of developing 
countries questionable (Zannat et al., 2021) and warrant the need for 
a detailed investigation.
2 
In addition, when analysing discrepancies between Google Maps API 
and reported travel data, it is also essential to consider the potential 
sources of error generated in the Google Maps API itself (Google De-
velopers, 2023c). These include the prediction of travel time in traffic 
based on historical data, which may not always capture current traffic 
conditions accurately. Specifically, Google Maps assumes average con-
gestion levels based on historical data, which might not reflect sudden 
changes in traffic flow, particularly in areas with high variability such 
as Jakarta. Jakarta experiences severe traffic congestion that varies 
depending on the time of day, along with a wide range of vehicles 
and unpredictable weather conditions that can cause delays and change 
travel times unexpectedly. Moreover, the coverage of transport modes 
in the Google Map API is primarily limited to certain formal transport 
options and may not adequately consider for informal transport modes, 
such as bikes, motorcycles and minibuses, which are prevalent in the 
context of developing countries. This lack of representation of informal 
transport further contributes to discrepancies in travel time and cost 
estimates.

Despite the growing use of travel attributes retrieved from Google 
Maps API, existing research has primarily focused on developed coun-
tries (Hillel et al., 2016; Malokin et al., 2019). However, in the context 
of developing countries, several critical gaps remain unaddressed. First, 
there is a lack of studies systematically comparing API-derived mode-
specific attributes (such as travel time and cost) with recorded values 
from the RP dataset. Prior research has additionally primarily focused 
on the reliability of API-based travel times, often neglecting travel 
costs. Given the importance of both travel attributes in understand-
ing travel behaviour and formulating transport policies, a study that 
investigates both attributes is needed. Second, researchers typically 
remove irrelevant observations from the dataset. It is unclear, however, 
how a researcher should best implement a procedure for excluding 
observations where there are large discrepancies, nor is there an un-
derstanding of the characteristics of such excluded data, which could 
help prevent data loss in future surveys. Third, it remains unclear how 
these discrepancies influence key transport modelling outputs, such as 
the Value of Travel Time Savings (VTTS), which plays a crucial role in 
economic appraisal and policy making. This paper aims to address the 
research gap by investigating the following research questions:

1. How does the discrepancy between mode-specific attributes 
(travel time and cost in particular) from the RP dataset and 
Google Maps API data vary in the context of the Greater Jakarta?

2. Should observations with large discrepancies between the RP 
and Google Maps API travel data be excluded, and what are 
the key characteristics of the excluded observations that indicate 
significant discrepancies?

3. What is the relative impact of pre-processing travel data and at-
tribute treatment on model outputs, specifically Value of Travel 
Time Savings?

The remainder of this paper is organised as follows. Section 2 
introduces the study scope and data used in this study. Section 3 
outlines the methods for retrieving travel attributes provided by nav-
igation map providers, pre-processing the data, and validation of the 
results. Section 4 presents the results and discussion. Lastly, Section 5 
concludes the study and presents suggestions for future work.

2. Case study and data

2.1. The city and transportation system

The Greater Jakarta area is known as a megacity, having an ex-
tensive population of over 30 million inhabitants. This population 
size places it as the second largest metropolitan area worldwide after 
Tokyo (Martinez and Masron, 2020). Commute-related travel accounts 
for the largest proportion of daily trips in this megacity. According 
to the Greater Jakarta Commuter Survey in 2019 (Indonesia, 2019), 
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Fig. 1. Map of the mass transit network in Greater Jakarta.
Source: BPTJ (2023).
approximately 11% of the total population, or 3.2 million individuals, 
commute to Jakarta from outer districts for a variety of work-related 
activities in the capital. Fig.  1 shows the mass transit network in Greater 
Jakarta, including rail-based public transport (MRT, LRT, Commuter 
rail, etc.) and road-based transport (BRT Transjakarta and non-BRT).

The Jakarta Transport Agency has continually improved the rid-
ership of public transport in the region by expanding the catchment 
services area of the TransJakarta Bus Rapid Transit (BRT) system, serv-
ing satellite areas and incorporating a network of busways. In addition, 
this region is served by new forms of public transport, including Mass 
Rapid Transit (MRT) and Light Rapid Transit (LRT), which connect the 
suburbs to the capital.

To better understand the demand for different travel modes in 
Jakarta, stated preference (Belgiawan et al., 2019) and revealed prefer-
ence (Benita, 2023) data can be used to estimate preferences. However, 
the travel behaviour in Greater Jakarta differs substantially from de-
veloped countries in terms of socioeconomic structure (e.g., income, 
household size, family structure, age, gender roles), culture of work 
(e.g., working hours), advancements in technology (e.g., reliable in-
ternet access), and transportation landscape (e.g., public transport ser-
vices, vehicle ownership, para-transit). These make Greater Jakarta an 
ideal location for investigating the discrepancies between the travel 
attributes obtained from surveys and the Google Maps API.

2.2. Mobility jakarta data

This study utilised a travel diary survey data namely Mobility 
Jakarta, described in detail in Ilahi et al. (2020). This data covers 
socio-demographic, stated preference (SP) and revealed preference (RP) 
data collected in Greater Jakarta. The survey on Mobility Jakarta was 
conducted between April and May of 2019. This study utilised the RP 
dataset of Mobility Jakarta data, primarily focusing on work-related 
travel purposes. The dataset consists of 2617 individuals and a total 
of 8770 observations of trips.
3 
3. Methodology

3.1. Research design

This study employed a quantitative research approach, which allows 
for a systematic analysis of the discrepancies between the Google 
Maps API and reported travel data. The Google Maps Distance Matrix 
API service was used to extract travel data related to each origin–
destination pair from Google Maps during different times of the day. 
The collected information included distance and travel time by different 
modes. Since in the context of Jakarta, travel data from Google Maps is 
limited only to cars, public transport, and walking, deriving travel times 
for the other modes (on-demand motorcycle, taxi motorcycle, bike, and 
motorcycle) required further data augmentation. The augmented data 
was subsequently cleaned to remove any trips that did not meet the 
study criteria, focusing only on first-leg work-related trips to the office 
and trips where both the origin and destination were within the Greater 
Jakarta area.

An analysis of the discrepancies between the Google Maps API 
and reported travel data was performed by examining the scatter plot 
of these datasets and the interquartile range (IQR) diagram of the 
discrepancies, which subsequently serve as the starting point for a 
threshold-based cutoff when filtering out observations for which the 
discrepancies are too large to be considered reliable.

This study utilised a multiple regression model to enable the iden-
tification of the variables that influence the exclusion as a result of the 
discrepancy between the two travel data. We then apply multinomial 
logit models to different combinations of datasets (with different data 
exclusion criteria) and different attribute treatments (use of reported or 
Google Maps API travel times/costs) to test the relative impact of these 
criteria and treatments on model outputs, specifically the estimated 
value of travel time savings (VTTS). Furthermore, a flowchart showing 
the methodological steps above can be seen in Fig.  2 below.
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Fig. 2. Research method flowchart.
3.2. Google maps API

Google Maps API is a service that Google Inc. made available 
to the public in 2005,1 allowing users to use the technology in a 
variety of applications. In this study, an effort is made to specifically 
use Google Maps Distance Matrix API (Google Developers, 2023c) to 
gather information of travel distance and time for a matrix of the 
full set of origins and destinations observed in the cleaned Mobility 
Jakarta RP dataset. This enables a comprehensive comparison of trip 
characteristics generated by the Google API and those reported by the 
respondent.

The Google Maps Distance Matrix API offers identical features to 
the Google Maps graphical end-user interface in a web browser, pro-
viding the distance and time required for a specific transport mode 
from a predefined origin to a predefined destination. The API allows 
the automated querying of multiple routing or travel requests, thus 
enabling the acquisition of a large number of travel distance and 
time data for a particular set of origin and destination matrices. In 
particular, the Distance Matrix API, unlike the Google Maps Directions 
API (Google Developers, 2023a), allows for the simultaneous structure 
of multiple origins and destinations and returns results for all possible 
combinations of travel time and distance.

The input for origin and destination matrix for this study has been 
converted from address format to latitude and longitude coordinates 
format using Geocoding API (Google Developers, 2023b). In addition, 
the optimistic traffic model was retrieved in this study. The proce-
dures for utilising the aforementioned and other parameters can be 
discovered in Google Developers (2023c).

1 https://cloud.google.com/blog/products/maps-platform/whats-next-
google-maps-platform
4 
3.3. Data augmentation

There are twelve modes of transport recorded from Mobility Jakarta 
Data: car, motorcycle, on demand transport (ODT) car, ODT motor-
cycle, car taxi, motorcycle taxi, minibus, conventional bus, bus rapid 
transit (BRT), commuter rail, bicycle, and walk. However, Google 
Distance Matrix API cannot calculate the travel duration and distance 
for some modes. The API, for instance, does not provide travel time and 
distance information for motorcycles and bicycles in some countries, 
including Indonesia. Only the travel time and distance for the chosen 
car-based, bus-based, rail, and walking modes can be retrieved via 
Google Distance Matrix API requests.

Thus, data augmentation was implemented to complete the travel 
time and travel cost for other modes for which Google Maps API 
services are not available. This meant that some assumptions were 
instead needed to calculate those travel time and cost. Table  1 below 
displays the functions used to determine the travel time and cost for 
different modes in this study.

The assumptions included, for instance, that the APICarDistanceNo-
Tolls value above is the car’s travel distance when the route avoided 
tolls. This value was used as an approach to determine the travel 
time for modes that cannot make use of tolls, such as bicycle, taxi 
motorcycle, and ODT motorcycle. The travel time is then calculated 
by dividing APICarDistanceNoTolls by the speed that corresponds to 
each mode. In addition, another assumption is that a motorbike travels 
three kilometres per hour faster than a car (Walton and Buchanan, 
2012). The speed of the bicycle was assumed to be 15.3 kilometres per 
hour (Schleinitz et al., 2017). The calculation for BRT and Train were 
based on regulation established by Jakarta Province (2016) and Min-
istry of Transportation (2016), respectively. Assumptions to calculate 
the remaining modes were based on then-current travel costs in Greater 
Jakarta (Ilahi et al., 2021).

https://cloud.google.com/blog/products/maps-platform/whats-next-google-maps-platform
https://cloud.google.com/blog/products/maps-platform/whats-next-google-maps-platform
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Table 1
Assumptions to calculate travel attributes of the unchosen mode.
 Mode Travel time (min) Travel cost (x1000 IDR.km) Availability 
 Walk API Walking – <500 m  
 Bike 𝐴𝑃𝐼𝐶𝑎𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑇 𝑜𝑙𝑙𝑠

𝐵𝑖𝑘𝑒𝑆𝑝𝑒𝑒𝑑
– <1400 m  

 Car API Driving 2.95 per km Has car  
 Motorcycle (mc) 𝐴𝑃𝐼𝐶𝑎𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑇 𝑜𝑙𝑙𝑠

𝐴𝑃𝐼𝐶𝑎𝑟𝑆𝑝𝑒𝑒𝑑+3𝑘𝑚∕ℎ
0.59 per km Has mc  

 Bus API Transit: Bus 10 per 10 km >250 m  
 BRT API Transit: Bus 3.5 >250 m  
 Train API Transit: Rail 3(25km) + 1 per 10 km >1400 m  
 Microbus API Driving 5 per 10 km Always  
 Taxi car API Driving 6(base) + 4.5 per km Always  
 ODT car API Driving 10(base) + 10 per km Always  
 Taxi mc 𝐴𝑃𝐼𝐶𝑎𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑇 𝑜𝑙𝑙𝑠

𝐴𝑃𝐼𝐶𝑎𝑟𝑆𝑝𝑒𝑒𝑑+3𝑘𝑚∕ℎ
10(base) + 3 per km Always  

 ODT mc 𝐴𝑃𝐼𝐶𝑎𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑁𝑜𝑇 𝑜𝑙𝑙𝑠
𝐴𝑃𝐼𝐶𝑎𝑟𝑆𝑝𝑒𝑒𝑑+3𝑘𝑚∕ℎ

10(4 km) + 2.5 per km Always  
3.4. Data cleaning

Since this study focuses on commuting behaviour, data preprocess-
ing and cleaning were performed to obtain the relevant datasets. This 
includes filtering the data for first-leg trips involving work-related trips 
to the office which accounts for 8770 observations. The first-leg trips 
were then classified to single trip and multimodal trip (i.e. access trip, 
primary trip, and egress trip) in order to get more comprehensive 
understanding of the correlation between reported and Google Maps 
API data in trip-level. Furthermore, irrelevant trips were removed, such 
as trips made by respondents whose origin and destination resided 
outside the case study area. Subsequently, 8169 observations remained, 
forming the base dataset for this study.

Given that large discrepancies between Google Map API and re-
ported travel data may exist (e.g. if there were human errors in report-
ing the travel time), data cleaning is required to remove outliers for 
which these discrepancies are implausibly large. A possible approach 
is to use the interquartile range (IQR) to identify trips for which the 
difference between Google Maps API and reported travel data is too 
large (Dash et al., 2023), with observations beyond a certain threshold 
omitted in further stages of analysis. An IQR threshold-based cutoff 
was employed in order to obtain different dataset with a higher cor-
relation of travel time and travel cost between Google Maps API and 
respondent-reported data. Upper- and lower-whisker, as well as first 
quartile and third quartile, are the two thresholds used as the removal 
limit. Therefore, any observations that exceed this threshold will be 
excluded from the analysis. In addition, there is a dataset containing 
the intersection of all observations within the upper and lower whiskers 
of the filtered travel time and travel cost dataset from the prior cutoff 
procedure in order to gain more observations in the dataset. This results 
in four datasets in total: the full dataset, a dataset with a travel time 
cutoff based on first and third quartile, a dataset with a travel cost 
cutoff based on first and third quartile, and an intersection dataset.

3.5. Attribute treatment

The datasets were analysed by applying different attribute treatment 
approaches in regard to travel time and travel costs. In this context, 
attribute treatment was used to determine which source of travel time 
and travel cost data to be incorporated into the model. This stage was 
used to evaluate the output of the model and the performance of data 
treatments. There are three travel attributes used in this study, which 
are reported, Google Maps API, and adjusted travel data.

The use of adjusted API data can result in increased correlation with 
reported travel data. This can be done by updating the travel attribute 
values retrieved from Google Maps API. A previous study by Zannat 
et al. (2021) developed a sub-model to generate more reliable travel 
time estimates throughout the day by establishing relationships among 
the three traffic models provided by Google Maps API: best guess, 
pessimistic, and optimistic. Their study found that applying such an 
5 
adjustment improved the correlation between reported and adjusted 
API travel times. In this study, the adjusted API data is updated based 
on power regression equation of the chosen mode for a specific trip 
made by individual who reported their travel time and cost (Eq.  (1)). 
Power regression is used to update the travel attributes of the chosen 
mode, given that the relationship between travel data generated by 
Google Maps API and reported by the respondents can exhibit nonlinear 
relationships (Hillel et al., 2016). In the case that mode is not chosen for 
that specific trip, the unchosen mode is used as the dependent variable, 
while the Google Maps API travel data of the unchosen mode in that 
particular trip type, acts as the independent variable (Eq.  (2)).

𝑥𝑛,𝑡,𝑗∗ = 𝛼𝑗∗ ⋅ 𝑥
𝑅
𝑛,𝑡,𝑗∗

𝛽𝑗∗ (1)

ln (𝑥𝑛,𝑡,𝑗∗ ) = ln (𝛼𝑗∗ ⋅ 𝑥𝑅𝑛,𝑡,𝑗∗
𝛽𝑗∗ )

ln (𝑥𝑛,𝑡,𝑗∗ ) = ln (𝛼𝑗∗ ) + 𝛽𝑗∗ ⋅ ln (𝑥𝑅𝑛,𝑡,𝑗∗ )

𝛽𝑗∗ ⋅ ln (𝑥𝑅𝑛,𝑡,𝑗∗ ) = ln (𝑥𝑛,𝑡,𝑗∗ ) − ln (𝛼𝑗∗ )

ln (𝑥𝑅𝑛,𝑡,𝑗∗ ) =
ln (𝑥𝑛,𝑡,𝑗∗ ) − ln (𝛼𝑗∗ )

𝛽𝑗∗

𝑥𝑅𝑛,𝑡,𝑗∗ = exp
ln (𝑥𝑛,𝑡,𝑗∗ ) − ln (𝛼𝑗∗ )

𝛽𝑗∗

𝑥𝑛,𝑡,𝑗 = exp
ln (𝑥𝐴𝑃𝐼𝑛,𝑡,𝑗 ) − ln (𝛼𝑗 )

𝛽𝑗
(2)

where,

𝑥𝑛,𝑡,𝑗∗ =  The adjusted travel time or cost of the chosen mode 𝑗∗ for specific
trip 𝑡 made by individual 𝑛;

𝑥𝑛,𝑡,𝑗 =  The adjusted travel time or cost of the unchosen mode 𝑗 for specific
trip 𝑡 made by individual 𝑛;

𝛼𝑗∗ =  constant for chosen mode 𝑗∗;
𝛽𝑗∗ =  exponent representing the rate of change for chosen mode 𝑗∗;
𝛼𝑗 =  constant for unchosen mode 𝑗;
𝛽𝑗 =  exponent representing the rate of change for unchosen mode 𝑗;

𝑥𝑅𝑛,𝑡,𝑗∗ =  (reported) travel time or cost of the chosen mode 𝑗∗ for specific
trip 𝑡 made by individual 𝑛;

𝑥𝐴𝑃𝐼𝑛,𝑡,𝑗 =  (Google Maps API) travel time or cost of the unchosen mode 𝑗 for
specific trip 𝑡 made by individual 𝑛.

3.6. Combinations of data filtering and attribute treatment

Considering that there are four datasets, three attribute options for 
chosen travel cost and time, and two attribute options for unchosen 
travel cost and time, Table  2 presents all 24 possible dataset and 
attribute treatment combinations used in this study.
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Table 2
Attribute treatments.
 Attribute treatments Chosen mode Unchosen mode Dataset  
 A Reported data Google Maps API Full  
 B Reported data Adjusted API Full  
 C Google Maps API Adjusted API Full  
 D Google Maps API Google Maps API Full  
 E Adjusted API Google Maps API Full  
 F Adjusted API Adjusted API Full  
 G Reported data Google Maps API TT Cutoff  
 H Reported data Adjusted API TT Cutoff  
 I Google Maps API Adjusted API TT Cutoff  
 J Google Maps API Google Maps API TT Cutoff  
 K Adjusted API Google Maps API TT Cutoff  
 L Adjusted API Adjusted API TT Cutoff  
 M Reported data Google Maps API TC Cutoff  
 N Reported data Adjusted API TC Cutoff  
 O Google Maps API Adjusted API TC Cutoff  
 P Google Maps API Google Maps API TC Cutoff  
 Q Adjusted API Google Maps API TC Cutoff  
 R Adjusted API Adjusted API TC Cutoff  
 S Reported data Google Maps API Intersection 
 T Reported data Adjusted API Intersection 
 U Google Maps API Adjusted API Intersection 
 V Google Maps API Google Maps API Intersection 
 W Adjusted API Google Maps API Intersection 
 X Adjusted API Adjusted API Intersection 
TT Cutoff: travel time cutoff; TC Cutoff: travel cost cutoff.
3.7. Modelling framework

A multinomial logit model (MNL) (McFadden, 1972) was employed 
to establish the relative importance of travel time and cost variables in 
influencing choice of commuting mode. This model was also used to 
examine the relative performance after some improvements conducted 
using attribute treatments approaches. In this case, the random utility 
of mode (𝑗) in multimodal trips (𝑡) for an individual commuter (𝑛) is 
shown by the following Eq.  (3).
𝑉𝑛,𝑡,𝑗 = 𝛼𝑗 + 𝛽𝑐𝑜𝑠𝑡 ⋅ 𝐶𝑜𝑠𝑡𝑛,𝑡,𝑗 + 𝛽𝑡𝑖𝑚𝑒 ⋅ 𝑇 𝑖𝑚𝑒𝑛,𝑡,𝑗

𝑈𝑛,𝑡,𝑗 = 𝑉𝑛,𝑡,𝑗 + 𝜖𝑛,𝑡,𝑗 (3)

where,

𝑉𝑛,𝑡,𝑗 = deterministic utility of mode 𝑗 made by individual 𝑛 during trip 𝑡;
𝛼𝑗 = alternative specific constant for mode 𝑗;

𝐶𝑜𝑠𝑡𝑛,𝑡,𝑗 = travel cost of mode 𝑗 for trip 𝑡 made by individual 𝑛;
𝑇 𝑖𝑚𝑒𝑛,𝑡,𝑗 = travel time of mode 𝑗 for trip 𝑡 made by individual 𝑛;

𝛽 = estimated coefficients;
𝜖𝑛,𝑡,𝑗 = error term specific to individual 𝑛,  trip 𝑡,  and mode 𝑗.

This study also measured the value of travel time savings (VTTS) of 
a commuter in the Indonesian Rupiah (IDR) by dividing travel time 
parameter and travel cost parameter (Ben-Akiva et al., 1985). VTTS 
evaluates an individual’s willingness to pay for a decrease in travel 
duration.

4. Results and discussion

4.1. Discrepancy between RP and google maps API data

There are 8169 observations as the base dataset after the initial 
data cleaning process. Fig.  3 shows a scatter plot of travel time and 
travel cost values from Google Maps API against reported travel data. 
The regression line is clearly below the line 𝑦 = 𝑥. This indicates that 
the recorded travel time and cost tend to be significantly higher than 
the travel attributes data obtained from the Google Distance Matrix 
API. Moreover, the R-squared values for travel time and travel cost are 
0.374 and 0.177, respectively. This indicates a low correlation between 
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the travel time and cost generated by the Google Maps API and those 
reported by the respondents.

Following this, the cutoff based on interquartile range approach 
was applied in order to improve the correlation between travel data 
reported by respondents and that of the Google Maps API. Interquartile 
range diagram is illustrated in Fig.  4 showing that there is a wide 
variation of both travel time and travel cost for each mode. For exam-
ple, it can be seen that for some road-based public transport, such as 
buses and BRT, reported times are substantially less than Google Maps 
API times. The Google Maps API, in contrast, underestimates private 
vehicles including cars and motorcycles. In regards to travel cost, the 
diagram displays that reported travel cost are slightly higher than those 
measured by Google Maps API (except for bus). Meanwhile, travel cost 
of taxi and on-demand transport are reported to be less than values 
obtained by Google Maps API.

All observations beyond the determined threshold were removed, 
for both travel time and travel cost. Table  3 shows the number of 
observations as well as the R-squared values for each dataset.

The utilisation of a cutoff approach based on the first and third 
quartiles produced a second and third dataset in which the responses of 
respondents showed a strong correlation with travel time and cost data 
obtained from the Google Maps API. Nevertheless, this approach sig-
nificantly reduces the number of observations. In contrast, the dataset 
constructed utilising the intersection of all observations within the area 
defined by the limit of the upper and lower whisker produced a larger 
number of observations than the earlier method.

4.2. Characteristics of excluded observations

A total of 729; 3692; and 4053 observations were excluded when 
the initial dataset was segmented into intersection, travel cost cutoff, 
and travel time cutoff datasets, respectively. It is essential to carry out 
an investigation into the excluded observations so that the characteris-
tics of the removed observations can be evaluated. This includes using a 
multiple regression model to examine the causal relationship between 
excluded variables to identify the most influential factors that led to 
their exclusion. The analysis is performed with respect to the spatial 
dimension of the respondents, in addition to their sociodemographic 
characteristics and travel patterns. Table  4 presents the total number of 
variables excluded at each steps of obtaining the final dataset, together 
with their proportion. Meanwhile, Table  5 shows the output of the 
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Fig. 3. Scatter plot of all modes. The closer the regression line (solid red) is to the x=y line (dashed), the smaller the average discrepancy.
Table 3
No. of observations and R-squared value for each dataset. 
 No Datasets No. of observations R-squared

 Travel time Travel cost 
 1 Base Dataset 8169 0.374 0.177  
 2 Cutoff based on first- and 

third-quartile in travel time
4116 0.815 0.059  

 3 Cutoff based on first- and 
third-quartile in travel cost

4477 0.399 0.761  

 4 Intersection of all observations 
within upper- and 
lower-whisker of filtered 
travel time and cost dataset

7449 0.581 0.313  
multiple regression model to provide a more informative understanding 
of the factors influencing the exclusion of observations.

The proportions of males and females that were excluded are essen-
tially similar for all three datasets. Therefore, there are no gender-based 
differences in travel time and travel cost estimation. Meanwhile, the 
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finding suggests that younger respondents have a tendency to provide 
more accurate estimations of travel time in comparison to older re-
spondents. It may simply reflect that younger people use mobile phone 
navigation devices more often than older individuals. These results are 
supported by previous findings that older people have lower levels 
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Fig. 4. Interquartile range of difference between Google Maps API and Reported by respondents.
of mobility than younger individuals (Deka, 2022; Luiu et al., 2016; 
Nordbakke and Schwanen, 2014), raising the possibility of inaccurate 
trip duration estimation.

Individuals who conduct multimodal trips are more likely to be 
excluded in the travel time cutoff and intersection datasets, possibly as 
a result of there being a greater chance of misreporting (e.g. not accu-
rately reporting the travel time of all parts of the trip). The distribution 
with respect to distance reveals that higher number of observations 
removed for medium and long travel distance in comparison to short 
travel distance. This is likely a result of the fact that for a longer travel 
distance, there is going to be more discrepancy in terms of traffic in 
real life and that is going to be disproportionately impacts the travel 
time estimation (Christensen, 2024).

When considering the spatial dimension, residents of Jakarta and 
its neighbouring cities tend to have a high correlation between the 
travel time and cost reported by respondents and those obtained from 
the Google Maps API. It is reasonable that individuals of Jakarta and 
surrounding areas possess a better ability for forecasting travel time as 
a result of their higher exposure to reliable transport infrastructure, as 
well as excellent public transport systems that able to provide travel 
time estimation due to current or historical traffic conditions (Jenelius, 
2018).

With respect to the mode chosen by the respondents, the result of re-
gression model reveals that public transport users tend to provide more 
accurate estimates of travel time compared to other modes. This might 
due to public transport users heightened awareness of the reliability 
of public transport services (Benezech and Coulombel, 2013; Daganzo, 
2009). However, their ability to provide more accurate estimates of 
transit fares is lower, as evidenced by the travel cost cutoff.

4.3. MNL model and VTTS

The MNL model is implemented to examine the influence of travel 
time and cost on mode choices. Table  6 shows the performance of 
the different models, the estimates for the travel time and travel cost 
parameters, as well as VTTS for each combination of dataset and 
attribute treatment.

In the table above, attribute treatments with significant estimates 
and meaningful VTTS results are denoted by colour coding. A red 
cell indicates an unreasonable or insignificant result for the parameter 
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in travel time and cost estimates, whereas it suggests an unreason-
able result for VTTS. The green cell in VTTS, meanwhile, represents 
realistic VTTS in the context of Greater Jakarta. It is clear that a 
variety of outputs can be observed depending on the attribute inter-
ventions implemented. Only attribute treatments G, M, P, Q, and V 
produce a significant and reasonable sign for travel attribute param-
eters and VTTS, while all other attribute treatments produce some 
counterintuitive results. Nevertheless, despite the better results, the 
implementation of attribute treatments G, M, P, and Q leads to a 
significant reduction in the number of observations, accounting for 
almost 50% of the entire dataset. As a contrast, attribute treatment V 
has the number of observations closest to the original dataset, whilst 
still producing favourable results for VTTS.

We also study the outputs from more complex models with mode-
specific travel time coefficients (replacing 𝛽𝑡𝑖𝑚𝑒 with 𝛽𝑡𝑖𝑚𝑒,𝑗 in Eq.  (3)). 
The mode-specific VTTS differ depending on the specific attribute 
treatments. Mode-specific VTTS is observed for taxi and on-demand 
transportation (ODT), public transport, car, and motorcycle. Table  7 
reveals that the results of attribute treatments P and V for VTTS, travel 
time and cost parameters show meaningful results, as evidenced by 
the non-negative values. In contrast, the other attribute treatments 
generate non-intuitive sign of VTTS parameters for a particular mode. 
Finally, the best performing attribute treatments (P and V) are com-
pared to prior research conducted in the Greater Jakarta context in 
order to validate the findings, as illustrated in Table  8 and Fig.  5.

The mode-specific VTTS for attribute treatment P is slightly higher 
than previous findings by Belgiawan et al. (2019) and Ilahi et al. (2021) 
and significantly higher than project report of the JABODETABEK 
Urban Transportation Policy Integration Project Phase 2 (JUPTI 2) con-
ducted by Coordinating Ministry of Economic Affairs of the Republic of 
Indonesia (JICA, 2019). In contrast, mode-specific VTTS for attribute 
treatment V is lower in comparison to prior research that utilised the SP 
dataset (Belgiawan et al., 2019) and pooled SP-RP dataset (Ilahi et al., 
2021). However, the outcome is similar to the results of JUTPI 2 (JICA, 
2019), a project that also applied the RP dataset.

The current work found that VTTS for car is lower than for public 
transport; meanwhile, VTTS for Taxi & ODT is the highest. Further-
more, the mode-specific results of VTTS for attribute treatment V in 
this study are notably similar to those of VTTS in the JUTPI 2 report, 
which uses data from the most recent and extensive cross-sectional 
activity-travel diary survey conducted in Greater Jakarta.
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Table 4
The number of each variables in each dataset.
 No Variables Base data TT cutoff TC cutoff Intersection  
 %(n) %(n) %(n) %(n)  
 1 Gender

 Male 70.71 (5776) 71.53 (2899) 71.07 (2624) 74.49 (543) 
 Female 29.29 (2393) 28.47 (1154) 28.93 (1068) 25.51 (186) 
 2 Age

 <15 0.51 (42) 0.57 (23) 0.43 (16) 0.41 (3)  
 15–20 4.60 (376) 4.79 (194) 5.12 (189) 3.16 (23)  
 21–25 16.67 (1362) 18.38 (745) 16.74 (618) 19.34 (141) 
 26–30 21.19 (1731) 20.82 (844) 19.28 (712) 18.79 (137) 
 31–35 11.05 (903) 9.55 (387) 10.24 (378) 10.70 (78)  
 36–40 9.50 (776) 10.49 (425) 8.94 (330) 10.56 (77)  
 41–45 9.28 (758) 9.77 (396) 10.51 (388) 9.74 (71)  
 46–50 12.85 (1050) 12.39 (502) 12.76 (471) 13.17 (96)  
 51–55 8.61 (703) 8.39 (340) 9.43 (348) 8.50 (62)  
 56–60 3.75 (306) 3.08 (125) 4.50 (166) 3.43 (25)  
 >60 1.98 (162) 1.78 (72) 2.06 (76) 2.19 (16)  
 3 Trip type
 Single trip 87.91 (7181) 87.69 (3554) 94.93 (3505) 87.65 (639) 
 Multimodal trip 12.09 (988) 12.31 (499) 5.07 (187) 12.35 (90)  
 4 Distance (km)
 0–4 25 (2073) 22.80 (924) 16.79 (620) 17.97 (131) 
 5–9 24 (1951) 19.37 (785) 22.37 (826) 16.46 (120) 
 10–17 26 (2087) 27.41 (1111) 29.55 (1091) 26.61 (194) 
 18–36 20 (1660) 25.41 (1030) 25.08 (926) 28.81 (210) 
 >36 2 (190) 2.99 (121) 3.39 (125) 7.54 (55)  
 5 Home city
 Central Jakarta 14.20 (1160) 12.02 (487) 10.08 (372) 12.07 (88)  
 North Jakarta 6.41 (524) 6.39 (259) 6.31 (233) 7.58 (56)  
 West Jakarta 8.47 (692) 6.88 (279) 9.29 (343) 6.86 (50)  
 South Jakarta 10.06 (822) 8.31 (337) 10.21 (377) 5.49 (88)  
 East Jakarta 14.64 (1196) 13.64 (553) 18.17 (671) 11.25 (82)  
 Depok City 4.43 (362) 5.77 (234) 3.06 (113) 4.94 (36)  
 Bekasi City 8.61 (703) 9.43 (382) 10.37 (383) 12.89 (94)  
 Bekasi Regency 1.38 (113) 2.10 (85) 1.46 (54) 1.51 (11)  
 Karawang Regency 0.18 (15) 0.37 (15) 0.41 (15) 1.78 (13)  
 Tangerang City 5.55 (453) 5.67 (230) 6.85 (253) 5.76 (42)  
 South Tangerang City 1.57 (128) 1.95 (79) 1.54 (57) 1.78 (13)  
 Tangerang Regency 1.2 (98) 1.6 (65) 1.76 (65) 1.78 (13)  
 Bogor City 7.11 (581) 7.01 (284) 5.04 (186) 9.74 (71)  
 Bogor Regency 15.89 (1298) 18.33 (743) 14.92 (551) 14.54 (106) 
 Sukabumi 0.18 (15) 0.37 (15) 0.41 (15) 1.51 (11)  
 6 Mode choice
 Walk 6.00 (490) 5.82 (236) 0.08 (3) 5.21 (38)  
 Bike 0.15 (12) 0.10 (4) 0.76 (28) 0 (0)  
 Bus 0.75 (61) 0.72 (29) 0.76 (28) 0.55 (4)  
 BRT 0.91 (74) 0.81 (33) 0.73 (27) 1.10 (8)  
 Train 4.47 (365) 4.32 (175) 1.90 (70) 5.76 (42)  
 Microbus 2.17 (177) 2.15 (87) 2.09 (77) 4.39 (32)  
 Car 19.88 (1624) 20.01 (811) 21.97 (811) 18.93 (138) 
 Motorcycle 57.38 (4687) 57.78 (2342) 63.41 (2341) 58.16 (424) 
 Car Taxi 0.15 (12) 0.15 (6) 0.16 (6) 0.69 (5)  
 Car ODT 0.29 (24) 0.27 (11) 0.33 (12) 0.27 (2)  
 Motorcycle Taxi 0.69 (56) 0.62 (25) 0.68 (25) 0.55 (4)  
 Motorcycle ODT 7.19 (587) 7.25 (294) 7.91 (292) 4.39 (32)  
VTTS of motorcycles is higher than car; this might be because 
motorcycles are generally more fuel-efficient than cars, and this can 
contribute to cost savings as well as time savings. The lower operating 
costs may lead to a higher perceived value of time for motorcycle 
users. Further, in certain situations, motorcycles may be able to take 
advantage of shortcuts or access routes that are not available to cars. 
This can result in reduced commute times, contributing to a higher 
VTTS for motorcycle users.

Compared to VTTS revealed by Belgiawan et al. (2019) and Ilahi 
et al. (2021), therefore, it makes sense that the VTTS of attribute treat-
ment V derived from this study is lower, considering that individuals 
tend to express higher values for time savings when asked directly in 
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an SP survey. In hypothetical scenarios, people may assign a higher 
monetary value to their time than what is revealed through their actual 
behaviour in the RP datasets. This is also consistent with a recent study 
by Li et al. (2018), in which they found that the SP/RP ratio for cars 
is 0.9 and the SP/RP ratio for public transport is 2.44. Additionally, 
this work contributes to the current body of knowledge by employing 
RP data in calculating VTTS, particularly in the context of the Global 
South, while other studies commonly utilised SP data (Batley et al., 
2017; Belgiawan et al., 2019) or RP data with a focus on developed 
countries (Li et al., 2018; Calastri et al., 2019). Conversely, a little 
discrepancy in VTTS is present between the results of JUTPI 2 and 
this study; this could be related to distinct survey methodologies, as 
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Table 5
Multiple regression coefficients of excluded observations..
 Excluded observations of: Estimate Std. Error t-value p-value  

Travel time cutoff
 (Intercept) 0.493 0.020 24.020 0.000*** 
 Male 0.019 0.012 1.536 0.124  
 Young individuals −0.041 0.014 −2.755 0.006**  
 Multimodal trip 0.061 0.027 2.239 0.025*  
 Long distance 0.161 0.037 4.293 0.000*** 
 Outskirts city 0.082 0.019 4.447 0.000*** 
 Public transport −0.083 0.032 −2.578 0.009**  

Travel cost cutoff
 (Intercept) 0.386 0.020 19.375 0.000*** 
 Male −0.003 0.012 −0.286 0.774  
 Young individuals −0.004 0.014 −0.289 0.772  
 Multimodal trip −0.274 0.026 −10.542 0.000*** 
 Long distance 0.275 0.036 7.568 0.000*** 
 Outskirts city 0.113 0.018 6.246 0.000*** 
 Public transport 0.096 0.169 6.135 0.000*** 

Intersection
 (Intercept) 0.121 0.014 8.778 0.000*** 
 Male 0.011 0.008 1.309 0.190  
 Young individuals −0.031 0.009 −3.164 0.002**  
 Multimodal trip 0.261 0.018 14.463 0.000*** 
 Long distance 0.245 0.025 9.757 0.000*** 
 Outskirts city 0.089 0.012 7.114 0.000*** 
 Public transport −0.120 0.022 −5.550 0.000*** 
*** p <0.001.
** 0.001 <p <0.01.
* 0.01 <p <0.05.
Table 6
Multinomial logit model results. Attribute 
treatments

Dataset Chosen 
mode

Unchosen 
mode

𝐿𝐿(0) 𝐿𝐿 (𝜌2) 𝛽 travel time 
(t.rat)

𝛽 travel cost 
(t.rat)

VTTS 
(IDR/h)

 A Full Rep. API −18,636.09 −7098.99 (0.62) −0.00003 (−0.03) −0.010 (−12.379)  235  
 B Full Rep. Adj. −18,636.09 −4050.5 (0.78)  0.174 (49.737)  0.014 (6.636) 766,035  
 C Full API Adj. −18,636.09 −2,462.16 (0.87)  0.408 (43.74)  0.160 (32.69) 153,133  
 D Full API API −18,636.09 −6664.58 (0.64) −0.043 (−29.506)  0.014 (18.097) −189,396  
 E Full Adj. API −18,636.09 −6874.07 (0.63) −0.035 (−22.983)  0.005 (5.379) −391,879  
 F Full Adj. Adj. −18,636.09 −4186.58 (0.77)  0.157 (48.953)  0.047 (30.363) 198,787  
 G TT Cutoff Rep. API −9434.69 −3583.76 (0.62) −0.013 (−5.576) −0.008 (−7.150)  90,413  
 H TT Cutoff Rep. Adj. −9434.69 −2576.25 (0.72) −0.100 (−30.624)  0.014 (6.000) −442,417  
 I TT Cutoff API Adj. −9,434.69 −2096.36 (0.78) −0.106 (−27.683)  0.055 (14.460) −115,636  
 J TT Cutoff API API −9434.69 −3180.46 (0.66) −0.080 (−23.165)  0.021 (13.968) −227,163  
 K TT Cutoff Adj. API −9434.69 −3417.48 (0.64) −0.053 (−18.931)  0.006 (4.157) −490,226  
 L TT Cutoff Adj. Adj. −9434.69 −2309.5 (0.75) −0.077 (−28.645)  0.052 (19.557) −89,158  
 M TC Cutoff Rep. API −10,243.09 −4389.22 (0.57) −0.016 (−10.733) −0.009 (−4.278)  110,379  
 N TC Cutoff Rep. Adj. −10,243.09 −2549.23 (0.75)  0.205 (34.664) −0.041 (−11.602) −298,314  
 O TC Cutoff API Adj. −10,243.09 −2868.1 (0.72)  0.255 (32.913) −0.017 (−6.717) −903,294  
 P TC Cutoff API API −10,243.09 −3989.37 (0.61) −0.062 (−25.440) −0.011 (−5.092)  332,426  
 Q TC Cutoff Adj. API −10,243.09 −4213.67 (0.59) −0.036 (−19.317) −0.015 (−7.246)  140,970  
 R TC Cutoff Adj. Adj. −10,243.09 −2572.2 (0.75)  0.199 (36.96) −0.036 (−15.65) −329,602  
 S Intersection Rep. API −17,033.54 −6494.95 (0.62) −0.0082 (−6.080) −0.0018 (−1.409) 277,039  
 T Intersection Rep. Adj. −17,033.54 −5037 (0.70)  0.093 (38.081)  0.06 (22.768) 92,496  
 U Intersection API Adj. −17,033.54 −5330.18 (0.69)  0.084 (29.412)  0.100 (35.249) 50,067  
 V Intersection API API −17,033.54 −5902.23 (0.65) −0.063 (−29.737) −0.008 (−5.131)  474,486  
 W Intersection Adj. API −17,033.54 −6081.17 (0.64) −0.047 (−26.556) −0.001 (−0.472)  3710,718 
 X Intersection Adj. Adj. −17,033.54 −5684.53 (0.66)  0.034 (17.970)  0.078 (32.700) 26,623  
Table 7
VTTS of attribute treatments G, M, P, Q, and V.
Mode

Attribute treatments
G M P Q V

(IDR/hour) (IDR/hour) (IDR/hour) (IDR/hour) (IDR/hour)
Public transport −13,503  14,174  139,472  45,549  23,214
Car −468,582 −103,983  87,476 −91,061  17,979
Motorcycle −144,134 −3645  231,787  56,959  42,260
Taxi & ODT −200,591 −65,465  238,507  12,315 52,287
Table 8
Comparing mode-specific VTTS with previous studies in Greater Jakarta.
 Mode Current worka Belgiawan et al. (2019)b Ilahi et al. (2021)c JUTPI 2 (2019)a 
 Attribute 

treatments P
Attribute 
treatments V

 

 (IDR/h) (IDR/h) (IDR/h) (IDR/h)d (IDR/h)  
 Public transport 139,472 23,214 91,180 – 35,292  
 Car 87,476 17,979 82,704 14,186–56,744 52,478  
 Motorcycle 231,787 42,260 – 70,930–212,790 31,692  
 Taxi & ODT 238,507 52,287 – 141,860–567,440 –  
a RP dataset.
b SP dataset.
c Pooled SP and RP.
d VTTS related to income and distance.
10 
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Fig. 5. Mode-specific VTTS by different studies.
a smartphone application called ADS MEILI (Prelipcean et al., 2018) 
was specifically used in JUTPI 2 to capture RP travel attributes, which 
may have reduced bias.

Furthermore, the estimation of travel time savings (VTTS) using 
a percentage of the average wage rate as the basis for the VTTS 
remains a prevalent practice. Some circulating estimates, including 
those used in the evaluation criteria, placed the VTTS of private travel 
at approximately 40% of the average wage rate (Douglas, 2018), while 
this number is estimated around 50 percent of after-tax wages in low- 
and middle-income countries (Whittington D, 2019). The current VTTS 
estimates of attribute treatment V is then compared with the average 
wage rate in the sample. Average gross income of sample is 5,629,682 
IDR per month, or 35,185 IDR/hour, based on common assumption of 
40 working hours per week. The percentage of VTTS to sample average 
wage rate for public transport, car, motorcycle, and taxi & ODT are 
66%, 51%, 120%, and 148%, respectively. The results indicate that 
the average savings in travel time vary depending on the mode and 
does not align closely to the 40 or 50% rule. The varied VTTS to 
average wage is in line with recent findings by Hensher (2019), who 
examined the implications of travel time heterogeneity under different 
travel conditions.

5. Conclusions and policy implications

This study investigated the discrepancy between mode-specific at-
tribute values observed in an RP dataset and their corresponding ob-
tained values from Google Maps API data, in the context of developing 
countries. The discrepancy between reported travel data and API-
based travel data can introduce biases that affect travel behaviour 
analysis and modelling. Furthermore, inaccurate estimates may lead 
to ineffective transport policies and inefficient transport infrastructure 
planning. After pre-processing travel data and creating the required 
base dataset of 8169 observations, the relative impact of data sorting 
and attribute treatment on model outputs was examined using multi-
nomial logit model. This research provides important theoretical and 
practical contributions by addressing key gaps in the limited studies 
on discrepancies between self-reported travel attributes and those from 
online navigation map providers in developing countries.

5.1. Key insights

The findings indicate that there are clear discrepancies between 
Google Maps API travel times and costs and the respondents’ reported 
travel times and costs in the context of Greater Jakarta. The disparities 
between travel time and cost of travel vary systematically across travel 
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modes. Reported times were significantly less than those provided by 
the Google Maps API for certain road-based public transportation. The 
Google Maps API, however, underestimated times for private vehicles. 
Concerning travel costs, reported costs were somewhat greater than 
those estimated by Google Maps API. Therefore, transport planning 
tools that use Google Maps API data in any form should acknowledge 
that such systematic variations can lead to inaccuracies in predictions, 
potentially introducing bias into policy decisions based on the forecasts.

This results in an important follow-up issue: which observations 
should be treated as outliers and thus be categorised as ‘unreliable’, and 
which should be kept for modelling work. Notably, our results show 
that preprocessing the data and attribute treatments can completely 
change the VTTS estimates. Since VTTS reflects how much individuals 
value time savings, this coefficient plays a crucial role in assessing 
the economic viability of transportation projects. Accurate VTTS esti-
mates are essential for making informed decisions about which projects 
should receive funding and the design of policies aimed at improving 
travel efficiency. Inaccurate VTTS estimates could lead to misallocation 
of resources, resulting in the underfunding of high-impact projects or 
the overemphasis on projects with lower economic returns. This shows 
how important it is to carefully choose which data to include and how 
to combine travel data attributes, especially when doing research on 
transport in a developing country. In this case, the VTTS only makes 
sense for the model with attribute treatment V, which utilised Google 
Maps API travel data for both chosen and unchosen alternatives and 
applied less strict criteria for retaining observations for modelling work.

A further analysis was performed on the excluded observations 
to investigate the respondent characteristics that may contribute to 
discrepancies between their reported travel data and the ones from the 
Google Maps API. The results revealed that older individuals and com-
muters who needed to make multimodal or medium and long distance 
trips were more likely to report values that have larger deviations from 
the API values.

5.2. Practical implications

As the first to examine discrepancies in mode-specific travel time 
and cost between the RP dataset and Google Maps API, this research 
highlights the importance of systematic data cleaning to ensure robust 
models for planning and policy analyses while minimising data loss. 
The consequences of these findings are that, where possible, Global 
Positioning System (GPS) surveys in a smartphone app for completion 
of Activity Travel Diary Surveys (ADS) should be used to minimise 
human perception and memory errors in estimating travel time. Where 
it is not possible, it is highly recommended that open-ended questions 
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are used in place of static responses for paper-based surveys in order to 
prevent rounding effects when collecting travel data from respondents.

An additional recommendation is to implement specific sampling 
techniques, such as stratified or weighted sampling. Stratified sampling 
is a method to adjust for known biases in particular sub-populations of 
variables that lead to exclusion (Keramat and Kielbasa, 1998; Kaymaz 
et al., 2019). This will help provide better accuracy for different sub-
populations within the variable. Meanwhile, weighted sampling allows 
the likelihood function for each observation to be determined using the 
weighted sampling method, which represents the relative real-world 
characteristics. Weights that were suitable for the sub-samples utilised 
in the different models were determined specifically (Manski and Ler-
man, 1977; Hess and Polak, 2005). These methods may help alleviate 
issues generated by biases generated through data cleaning exercises, 
such as those shown in this work where e.g. older respondents’ data is 
more likely to be excluded.

5.3. Future research directions

Despite the valuable insights obtained from this study, several 
limitations must be acknowledged. First, it is expected that similar 
discrepancies might exist within the context of other datasets from 
other cities that have characteristics comparable to the Greater Jakarta 
context, such as diverse transport modes, complex urban forms, limited 
access to reliable public transport, and extensive urban agglomeration. 
Therefore, to assess the reliability of the findings of this work, it is 
necessary to carry out this research in other regions or countries. 
Second, given that this study focused solely on work-related travel, 
future studies may also wish to address other trip purposes (e.g., leisure, 
social activities, shopping, study, and eating out) and types of trips 
(e.g., multimodal trips, first/last-mile connectivity, and variations in 
time-of-day effects). The findings can contribute to providing informa-
tion to model reliable travel behaviour in the context of utilising the 
RP dataset, particularly in developing countries. Consequently, they 
can lead to better planning and policy analyses tools. Third, while this 
study provided an analysis of the key characteristics influencing the 
discrepancies, future research could apply the Geographically Weighted 
Regression (Fotheringham et al., 2002) to gain deeper insights into 
the spatial heterogeneity that contributes to differences between the 
Google Maps API and reported travel data. This approach would help 
identify relationships that may vary depending on geographic location. 
Lastly, while this study compares the API-based travel attributes with 
reported travel data, future research could explore alternative vali-
dation techniques or data sources, such as direct comparisons with 
GPS-tracked trips, transport modelling outputs, and big data sources 
from mobility data apps (e.g., Uber, Lyft, or bike-sharing systems). This 
would help further enhance the accuracy and reliability of API-derived 
travel attributes for travel behaviour studies.
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