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Impact of intensity standardisation and
ComBat batch size on clinical-radiomic
prognostic models performance in a multi-
centre study of patients with glioblastoma
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Andrew F. Scarsbrook1,2 and Stuart Currie1,2

Abstract

Purpose To assess the effect of different intensity standardisation techniques (ISTs) and ComBat batch sizes on radiomics
survival model performance and stability in a heterogenous, multi-centre cohort of patients with glioblastoma (GBM).

Methods Multi-centre pre-operative MRI acquired between 2014 and 2020 in patients with IDH-wildtype unifocal WHO
grade 4 GBM were retrospectively evaluated. WhiteStripe (WS), Nyul histogram matching (HM), and Z-score (ZS) ISTs were
applied before radiomic feature (RF) extraction. RFs were realigned using ComBat and minimum batch size (MBS) of 5, 10, or
15 patients. Cox proportional hazards models for overall survival (OS) prediction were produced using five different selection
strategies and the impact of IST and MBS was evaluated using bootstrapping. Calibration, discrimination, relative explained
variation, and model fit were assessed. Instability was evaluated using 95% confidence intervals (95% CIs), feature selection
frequency and calibration curves across the bootstrap resamples.

Results One hundred ninety-five patients were included. Median OS= 13 (95% CI: 12–14) months. Twelve to fourteen
unique MRI protocols were used per MRI sequence. HM and WS produced the highest relative increase in model
discrimination, explained variation and model fit but IST choice did not greatly impact on stability, nor calibration. Larger
ComBat batches improved discrimination, model fit, and explained variation but higher MBS (reduced sample size) reduced
stability (across all performance metrics) and reduced calibration accuracy.

Conclusion Heterogenous, real-world GBM data poses a challenge to the reproducibility of radiomics. ComBat generally
improved model performance as MBS increased but reduced stability and calibration. HM and WS tended to improve model
performance.

Key Points
Question ComBat harmonisation of RFs and intensity standardisation of MRI have not been thoroughly evaluated in multicentre,
heterogeneous GBM data.
Findings The addition of ComBat and ISTs can improve discrimination, relative model fit, and explained variance but degrades
the calibration and stability of survival models.
Clinical relevance Radiomics risk prediction models in real-world, multicentre contexts could be improved by ComBat and ISTs,
however, this degrades calibration and prediction stability and this must be thoroughly investigated before patients can be
accurately separated into different risk groups.
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Introduction
Glioblastoma (GBM) is the most common primary brain
malignancy in adults, with a median overall survival (OS)
of 12–15 months despite maximal oncological treatment
(maximum safe surgical resection followed by adjuvant
radiotherapy with concurrent temozolomide and further 6
cycles of adjuvant temozolomide—the Stupp protocol)
[1, 2]. Many published models aim to improve risk stra-
tification and help move towards developing ‘personalised
medicine’ in GBM [3].
Extraction and analysis of large quantities of radiomic

features (RFs) from medical imaging [4], have been used
in prognostic models with promising results [5, 6].
However, clinical translation has been hampered by a lack
of reproducibility linked to variability in multi-centre
imaging protocols [7–9]. Intensity standardisation (IS)
conforms to the scale and distribution of magnetic reso-
nance imaging (MRI) signal intensity, which is affected by
imaging protocol [10], however, there is no consensus on
the best intensity standardisation technique (IST) [11, 12].
Statistical realignment of RFs using ComBat can also

reduce the effect of different imaging acquisition para-
meters [13, 14]. ComBat requires sufficient data to esti-
mate these ‘batch’ effects, and the minimum ComBat
batch size (MBS) must be chosen to ensure accurate
results [13, 14]. MBS choice not only affects ComBat
performance, but also discards some of the data within
heterogenous, real-world images.
Inconsistent statistical modelling, which in GBM has

tended to focus on prognostic separation (‘discrimina-
tion’) [11, 12], may also play a role in the lack of repro-
ducibility. Model calibration and stability are important
but less well-evaluated [15]. Calibration compares pre-
dictions to observed survival and stability and examines
the consistency of model performance [16]. To date, the
effect of ISTs and ComBat MBS choice has not been
thoroughly assessed on model calibration and stability in a
multi-centre setting [11, 17]. The aim of this study was to
assess the effect of ISTs and ComBat MBS choice on
calibration, discrimination, relative model fit, explained
variation, and stability of prognostic models in a hetero-
genous, multi-centre cohort of patients with GBM, rather
than producing the most accurate prognostic model for
OS prediction in GBM.

Materials and methods
Ethical approval
This was a retrospective study and therefore informed
patient consent was not feasible. Ethical approval and
institutional data access were approved via the local

ethical review committee (REC ref: 19/YH/0300, IRAS
project ID: 255585). A completed Checklist for Artificial
Intelligence in Medical Imaging (CLAIM) [18] is provided
in Supplementary Materials.

Patient selection and characteristics
A description of the patient cohort, selection criteria,
data collection, and image preparation has been pre-
viously published [19]. Inclusion criteria: adults (> 16-
years-old) with histologically proven GBM according to
the 2021 World Health Organisation classification of
central nervous system tumours treated between 2014
and 2020; MRI performed prior to surgery; unifocal
tumour; and all four of: T1-weighted (T1W), T2-
weighted (T2W), fluid-attenuated inversion recovery
(FLAIR) and gadolinium contrast-enhanced T1W
(T1CE) MRI. Exclusions: absence of pre-operative MRI;
significant degradation of imaging due to artefact; mul-
tifocal tumour; and isocitrate dehydrogenase (IDH)
mutation. Clinical predictors have been defined pre-
viously [19] (Supplementary Materials).

Image preparation and tumour segmentation
A graphical illustration of the methodological pipeline is
provided (Fig. 1). MRI studies were pre-processed and
segmented using previously detailed methods [19] (Sup-
plementary Materials). Key steps in the preparation and
segmentation of imaging data are outlined, with further
detail provided in the prior publication [19]. As a tertiary
referral centre in the UK, it is standard practice for our
institution to manage patients with GBM from the sur-
rounding region (with a catchment of approximately four
million people), which includes general hospitals (‘hub-
and-spoke’ model).
The whole tumour and core volume (WV and CV,

respectively) were segmented (Supplementary Materials)
using a publicly available deep-learning model. CV was
defined as enhancing and necrotic regions, and whole
tumour volume (WTV) was defined as CV plus peritu-
moural high T2 signal (Fig. 1). Segmentations were checked
manually and corrected by a board-certified neuroradiology
fellow (5 years of radiology experience). Independently,
50 segmentations were also checked by a consultant neu-
roradiologist (> 10 years of consultant neuroradiology
experience), and the inter-rater concordance was assessed
using the dice similarity coefficient (DSC) [20].

IS
Three ISTs that are commonly used in patients with GBM
[12] are WhiteStripe (WS) [21], Nyul histogram matching
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(HM) [22, 23] and Z-score (ZS). ZS and WS standardise
intensities by subtracting the mean and dividing by the
standard deviation of the whole brain or normal-
appearing white matter intensity, respectively. HM pro-
duces a standardised intensity histogram by averaging the
signal in a few scans, and this histogram is used to map
the voxel intensities in images linearly onto the new scale
(Supplementary Materials). Each IST was applied inde-
pendently of the other, resulting in four separate images
per sequence per patient (Fig. 2)—one per IST, plus the
non-standardised images that served as control (‘RAW’
images).

Radiomics feature extraction and ComBat feature
realignment
PyRadiomics (v3.0.1) [24] was used to extract RFs from
the WTV (Fig. 1). Three hundred eighty-four features
were extracted from each image set (four sets, one per
IST), including 18 first-order, 24 grey-level co-occurrence
matrices, 16 grey-level run length matrices, 16 grey-level
size zone matrices, 14 grey-level dependence matrices and
5 neighbouring grey-tone difference matrix features from
each MR sequence, and 12 shape features extracted from
the T1CE sequence. Features were extracted in 3
dimensions (3D), using a voxel size of 1 mm3. Four bin
numbers (8, 32, 64, and 128) were used to extract four
unique sets of RF per image to determine if ISTs were
dependent on the bin number. Fixed bin numbers were
used as they have a normalising effect [10]. After RF
extraction, RFs with lower reproducibility between two
independent WTV segmentations were removed if the
intra-class correlation coefficient was below 0.8 (Supple-
mentary Materials).
ComBat realignment was performed per MRI sequence,

defining each batch not only on geographical location but
also by the homogeneity of scan acquisition within sites
(batch definition and acquisition parameters provided in
Supplementary Table 1a–d). Age was entered as co-
variate because this was found to vary significantly
(p < 0.05) across batches (Supplementary Materials).
Selecting the MBS represents a trade-off between
increased performance of ComBat realignment against
discarding too much data. A minimum of five patients has
been previously identified as the lower limit for MBS

[13, 25]. We chose three MBS values: 5, 10, or 15. Patients
in smaller batches were excluded (Fig. 2) so 15 was the
maximum to avoid excessive data loss. RFs without
ComBat realignment were also included as a baseline
assessment of IST alone.

Statistical analysis and experimental settings
All statistical analysis was performed in R version 4.2.2
(2022-10-31) and overseen by a highly experienced sta-
tistician—a summary of the analysis is shown in Fig. 2.
Cox proportional hazards (CPH) models for OS predic-
tion (time from surgery to death, censor date 10/10/22)
were built. 96 different combinations of ‘experimental
settings’ (Fig. 2) were investigated; with and without
ComBat, four ISTs, each with four bin counts and
three MBS.

Model building
Five feature selection (FS) methods were used to reduce
dimensionality; four RFs were considered for entry into
the radiomics model based on sample size calculations
(Supplementary Materials). Each FS method was applied
within each of the 1000 bootstraps resamples (Fig. 2) so
that five sets of RFs were selected per bootstrap (Sup-
plementary Table 2).
Unsupervised hierarchical clustering of patients was

performed using principal component analysis (PCA) [26]
of results. The four RFs explaining the most variation
between clusters were retained. Prior to supervised FS,
highly co-linear features were removed using a Spearman
rank correlation range between 0.7 and − 0.7. Four
supervised methods included CPH models with (1)
backwards, (2) forward stepwise FS, and (3) with the
LASSO. (4) Random survival forests (RSF) were trained,
and the four most important RFs were selected with in-
built functions (Supplementary Materials) [27].
In all, three models were produced. Each set of RFs was

used to train a radiomics-only model. A clinical-only
model was also trained as a baseline for results compar-
ison using age, gender, O6-methylguanine-DNA methyl-
transferase (MGMT) promoter methylation, extent of
surgical resection, oncological adjuvant treatment,
tumour diameter and log-transformed WTV (prior ana-
lysis indicated log-transformation was the most effective

(see figure on previous page)
Fig. 1 Methodological pipeline overview. Panels 1–6 outline the main steps of the experiment: (1) MRI scans acquired at multiple sites regionally pre-
processed including registration, skull stripping, field inhomogeneity correction and tumour segmentation; (2) standardisation of MRI signal intensities;
(3) RF extraction, including calculation of shape, intensity and higher-level features; (4) post-extraction realignment of multi-centre radiomics using
ComBat; (5) application of feature reduction techniques to diminish data dimensionality; and (6) calculation of results and data analysis. FLAIR, fluid-
attenuated inversion recovery; GLCM, grey-level co-occurrence matrix; GLDM, grey-level dependence matrix; GLRLM, grey-level run length matrix;
GLSZM, grey-level size zone matrix; LASSO, least absolute shrinkage and selection operator; NGTDM, neighbouring grey tone difference matrix; T1, T1-
weighted; T1CE, T1-weighted contrast-enhanced; T2, T2-weighted
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Fig. 2 Flowchart of the statistical analysis. Note that because this study uses multi-centre data, but for some centres, the number of available patients is
lower than the MBS, it results in a different number of patients in the samples (data on the number of patients per study site is contained in
Supplementary Table 1a–d). FLAIR, fluid-attenuated inversion recovery; GBM, glioblastoma; HM, histogram matching; IDH, isocitrate dehydrogenase;
LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; RAW, no IS applied to images (control); T1, T1-weighted; T1CE,
T1-weighted contrast-enhanced; T2, T2-weighted; WS, WhiteStripe; ZS, Z-score
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non-linear transformation of WTV [19]). Clinical and
radiomics features were then combined to produce a
clinical-radiomics model.

Model performance
Evaluating proposed prognostic models should include (at
least) four domains: discrimination, calibration, relative
model fit and relative explained variance (for more detail
see Supplementary Materials). Calibration was assessed
using the mean calibration slope and discrimination
measured with Harrell’s C-index (C), and Royston and
Sauerbrei’s D-statistic (D). Relative model fit was mea-
sured with Akaike’s information criterion (AIC) and
relative explained variation with Royston and Sauerbrei’s
R2 (R2

D) and Nagelkerke’s R2 (R2
N ). Mean and 95% con-

fidence intervals (95% CIs) were calculated across all 1000
bootstrap resamples (Fig. 2 and Supplementary Table 2).
Bootstrapping, rather than a random train-test split, was
used for optimism adjustment as it is recommended in
statistical modelling literature [16].
Heatmaps were created to graphically illustrate the

impact of ISTs and MBS. The heatmaps of discrimination,
fit and explained variation were centred on the clinical-
only model and scaled to the standard deviation of models
for each experimental setting to highlight the change in
model performance relative to the clinical-only model and

allow comparison across settings [28]. For example,
results for WS standardised images, bin count of 64 and
MBS= 10 can be compared fairly to ZS images, bin count
32 and MBS= 15.
The impact of IST and MBS on model stability was

assessed based on the size of 95% CIs for model perfor-
mance measures the percentage of times that the same
four features were selected together (feature co-occur-
rence), and the 1-year event prediction calibration plots
across the 1000 bootstrap resamples.

Results
Study population
Cohort demographics are shown in Table 1 and are
comparable to those in the scientific literature [29, 30].
Median survival was 13 months (95% CI: 12–14 months)
following surgery, with 167 deaths (86%) occurring before
the censor date.
Figure 3 and Supplementary Fig. 1a–c show the number

of unique batches per MRI sequence in this heterogenous,
multi-centre data. Depending on the sequence, there were
12–14 unique batches. 76% of eligible data was retained
when MBS= 5 compared to 50% when MBS= 15.

Model performance—effect of ISTs and ComBat batch size
A summary of the model performance for all experi-
mental settings is shown in Fig. 4 and in Supplementary
Table 4a–h).

Model calibration and discrimination
Figure 4 shows that as MBS increased, the average cali-
bration slope range decreased successively from 1 and
there was little influence of ComBat, vs no ComBat. The
heatmaps also demonstrated that the results for the
average calibration slope for all ISTs compared to no
standardisation (labelled ‘RAW’) were similar.
Both IST, MBS and the addition of ComBat affected

discrimination. MBS 10 and 15 increased the range of
scores compared to MBS 5, regardless of the use of
ComBat. However, at MBS 15 the range of scores (0–0.36)
with ComBat increased compared to without ComBat
(0–0.34). The greatest relative improvement in dis-
crimination was seen with LASSO or forward stepwise
feature reduction, HM standardisation, eight bins and
MBS ten patients regardless of the use of ComBat (0.41).
Although not strictly observed, overall, HM and WS
standardised images tended to produce the highest rela-
tive increase in discrimination compared to other ISTs.

Relative explained variance and model fit
The additional benefit of ComBat was best seen with MBS
10 or 15 (at MBS 10, max scaled increase 0.29 with and
0.19 without and at MBS 15, 0.33 with and 0.28 without).

Table 1 Summary of the main clinical, oncological and
radiological features of the patient cohort (n= 195)

Demographic Value

Age, years—median (IQR) 61 (55–68)

Gender—no. female (%) 72 (37%)

Surgical treatment—no. (%)

Biopsy 44 (23%)

100% resecteda 42 (22%)

≥ 90% resecteda 62 (32%)

< 90% resecteda 47 (24%)

Adjuvant oncology treatment—no. (%)

No Stupp 102 (52%)

Full Stuppb 44 (23%)

Partial Stuppc 49 (25%)

MGMT methylation—no. (%) 70 (36%)

OS, months—median (95% CI) 13 (12–14)

Maximum tumour diameter, cm—median (IQR) 4.4 (3.35–5.35)

CV, cm3—median (IQR) 28.8 (13.4–50.9)

WTV, cm3—median (IQR) 107 (56.1–167)

IQR interquartile range, MGMT O6-methylguanine-DNA methyltransferase, CI
confidence interval
a Percentage of contrast-enhancing and necrotic tumour cores removed
b Completed 60 Gy in 30 fractions radiotherapy with concomitant temozolomide
and six cycles adjuvant temozolomide
c Completed 60 Gy in 30 fractions radiotherapy with concomitant temozolomide
and began adjuvant temozolomide
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For MBS 5 the addition of ComBat degraded the scores.
The most increased scores were seen for HM (range
− 0.03 to 0.26) or WS (− 0.01 to 0.22) standardised
images and eight bins.
Model fit showed similar findings; the greatest

improvements relative to the clinical model using ComBat
compared to without was observed with MBS 15 (max
scaled decrease − 0.36 and − 0.34, respectively). A lower
score indicates improved relative model fit. At other
MBSs, there was less benefit from ComBat realignment.
RFs extracted with 8 bins, LASSO or forwards FS and HM
standardisation produced the largest improvements in
model fit (lowest AIC) and explained variation (highest
R2). WS standardisation also performed well across most
bin counts. As noted for discrimination, this was not a
strictly observed finding and the result also depended
upon which FS strategy was selected.

Model stability
The size of 95% CIs for model performance measures (Sup-
plementary Table 4a–h), the frequency with which the same
RFs were selected (Table 2) and the 1-year event prediction
calibration plots (Fig. 5), all showed a trend towards reduced
stability with increased MBS. All ISTs produced similar find-
ings, as did models with and without ComBat realignment.

The stability of calibration plots for 1-year event pre-
diction using PCA FS and a bin count of 32 across all ISTs
and ComBat batch sizes is illustrated in Fig. 5 (other FS
calibration plots are shown in Supplementary Fig. 2a–d for
bin count 32—other bin counts not included but illustrated
similar findings). As the MBS increased, the stability of
predictions decreased, as evidenced by greater spread from
the null line of the bootstrapped results (shown in the paler
colour). This was observed for all models and ISTs, with no
IST clearly outperforming any other.
Similarly, the 95% CIs for model results (Supplementary

Table 4a–h) showed a trend towards increased CI size,
and hence lower stability, as the MBS was increased.
Feature co-occurrence (Table 2) also showed the same
trend, with fewer selection methods picking the same four
RFs with increased MBS. As per the calibration plot
results, the choice of IST did not show any trend with
respect to model stability.

Discussion
The aim of this project was to assess the effect of MRI IS
technique and ComBat MBS on prognostic model per-
formance including calibration and stability in a real-
world, multi-centre GBM patient cohort. Results
demonstrated worse calibration and model stability as

Fig. 3 Bar charts demonstrating the proportion of eligible data used in the modelling process using three different ComBat MBSs. Three sets of stacked
bar charts illustrate imaging data heterogeneity. Each bar represents one MRI sequence (x-axis), and the different colours/segments within each bar
indicate a unique batch label for ComBat harmonisation. For example, this could indicate a different geographic location or a different set of acquisition
parameters within the same location (see Supplementary Fig. 1a–c for a more in-depth key including each unique batch label, and Supplementary
Table 1a–d for acquisition parameters per batch). The shaded regions indicate the proportion of imaging data that had to be excluded to meet the MBS.
FLAIR, fluid-attenuated inversion recovery; T1, T1-weighted; T1CE, T1-weighted contrast-enhanced; T2, T2-weighted
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Fig. 4 (See legend on next page)
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MBS increased, and hence sample size decreased, however
discrimination, explained variation, and model fit
improved. HM and WS ISTs, overall, improved dis-
crimination, and explained variation and model fit, which
tended to occur at higher MBS, whereas choice of IST did
not impact upon calibration or stability. The relative

improvement of ComBat was mostly demonstrated at
MBS 10 and 15, whereas there was little difference or even
deterioration at lower MBS in some domains. By com-
paring across multiple domains of performance a more
thorough assessment of ISTs and ComBat MBS was
produced.

(see figure on previous page)
Fig. 4 Heatmaps of model performance statistics per domain—calibration, discrimination, relative variance, and model fit. Heatmaps show the mean
result per model performance statistic (averaged across the 1000 bootstrap resamples) for the clinical and the combined radiomic and clinical models
across different selection procedures for all the experimental settings. The data for discrimination, relative explained variance and model fit statistics have
been centred on the mean clinical value and scaled to the standard deviation across all models for that particular experimental setting (i.e. for each
choice of minimum ComBat batch size, bin count and IS) so that it represents change relative to the clinical only model and allows more meaningful
comparisons between different experiment settings. For each minimum ComBat batch size, there are two columns of results (indicated by the green/
orange colour bars)—one indicating results with ComBat and one without ComBat realignment of RFs prior to modelling. CmB, ComBat; HM, histogram
matching; LASSO, least absolute shrinkage and selection operator; PCA, hierarchical clustering of principle component results; RAW, no IS applied to
images (control); RSF, random survival forests; WS, WhiteStripe; ZS, Z-score

Table 2 Percentage of bootstrap resamples in which the same four RFs were selected for entry into the final model

Bin count Feat selectb Percentage of resamples in which the same four radiomics features were selected

MBS for ComBat Realignmenta

Minimum= 5 Minimum= 10 Minimum= 15

ZS WS HM RAW ZS WS HM RAW ZS WS HM RAW

8 Backwards < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Forwards 2 1 1 < 1 1 1 1 < 1 < 1 1 1 < 1

LASSO 1 1 1 < 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1

RSF 77 78 16 24 75 72 14 21 72 46 63 27

PCA 7 7 6 6 5 5 8 5 6 7 6 7

32 Backwards < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Forwards 1 1 < 1 1 1 1 < 1 1 < 1 < 1 < 1 1

LASSO 1 1 < 1 1 < 1 1 < 1 < 1 < 1 < 1 < 1 < 1

RSF 27 78 16 20 25 73 16 19 83 47 67 25

PCA 7 10 6 12 6 8 6 10 5 8 4 6

64 Backwards < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Forwards 1 1 1 1 < 1 1 < 1 1 < 1 < 1 1 < 1

LASSO 1 1 1 1 1 1 < 1 1 < 1 1 < 1 < 1

RSF 33 80 18 26 30 77 61 22 27 50 61 25

PCA 10 14 8 14 8 10 7 8 8 11 5 7

128 Backwards < 1 < 1 1 1 < 1 < 1 1 1 < 1 < 1 < 1 1

Forwards 1 1 1 1 1 1 1 1 1 1 1 2

LASSO 1 1 1 1 1 2 1 1 1 1 1 1

RSF 86 79 66 22 80 74 61 18 81 46 63 22

PCA 7 10 16 12 7 9 10 9 9 12 6 9

Results are shown for RFs with ComBat realignment, at all minimum ComBat batch sizes, bin counts and IS techniques and all five FS techniques. If one IS technique
performed better than others, the result for that experimental setting is highlighted in bold
HM histogram matching, LASSO least absolute shrinkage and selection operator, PCA principal component analysis, RAW no IS prior to radiomic extraction, WS
WhiteStripe standardisation, ZS Z-score IS
a Minimum number of patients in the batch for ComBat realignment of RFs
b Maximum of four RFs selected with the chosen method
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Fig. 5 (See legend on next page)
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Previous studies that have compared the effect of ISTs
on radiomics models [12] often show improved OS pre-
diction [11, 17] or accuracy in differentiating grades of
diffuse glioma [10, 31, 32]. Based on discrimination,
relative fit or explained variation, performance improved
through the choice of IST and, consistent with other
studies [11, 12, 33], the current results show that HM and
WS produced the highest relative improvements. How-
ever, for model calibration accuracy and model stability,
IST did not affect results.
Adding ComBat slightly improved performance only at

MBS 15 for discrimination and model fit, and at 10 and 15
for explained variation. This is explained by the likely
increased accuracy of ComBat model coefficients estimation
at higherMBS [14]. The application of ComBat to real-world
datasets, however, poses a challenge due to the wide range of
acquisitions and locations [13]. Previous studies have sug-
gested that the MBS for ComBat could be as low as five
[13, 25], however, others have suggested 20–30 minimum
[14]. We opted for a compromise, which minimised data
loss. A MBS 10 or 15 improved performance but this also
made our models less stable, regardless of the addition of
ComBat realignment. To our knowledge, no other studies
have examined this impact. For real-world datasets, where
scanner protocols are difficult to standardise across a broad
geographical range and many centres, restricting the sample
size for ComBat may not be a feasible option as it ignores the
heterogeneity of imaging data, and more importantly, pre-
diction models developed in this manner may not then be
generalizable to sites with fewer patients. In our study,
results without ComBat were similar to those with realign-
ment, and a more practical solution may be to use fixed bin
number discretisation and ISTwithout ComBat in such data.
Unsupervised clustering has been used to increase batch
sizes [13, 34], grouping patients with similar RFs into clusters
for ComBat realignment batches. However, the clustering
results were not validated, and this approach would be dif-
ficult to validate with our sample size therefore we avoided
this approach.
This study demonstrated a mixed picture regarding the

effects of ISTs and ComBat batch sizes when we

considered multiple domains of model performance and
model stability. A systematic review of prognostic models
in patients with GBM reported that 10 of 11 time-to-event
models reported just the C-index [35]. A recent com-
parison of multiple ISTs in radiomics models in patients
with ‘primary’ and recurrent high-grade glioma reported
discrimination, using C-index, and relative model fit
(AIC), but did not comment on calibration or ComBat
MBS [11]. Our study also included a more in-depth
assessment of model stability using bootstrapping,
including calibration instability plots [16], which was a
useful way to identify the consistency of model predic-
tions. Stability is important as it provides information on
how well a model performs following variations in input
data, and not just how it performs on average [16].
The study has several limitations. Acquisition para-

meters were heterogeneous, including several centres with
relatively few patients scanned, which impacted our ability
to test larger batch sizes for ComBat. This is a real-world
dataset, and the restriction of larger batches would have
meant too few patients were included. The comparison of
the relative impact of different ISTs could still be assessed,
and this represents a case where good IS is required.
Public data could have been used to supplement institu-
tional data, however, the aim was to assess the perfor-
mance of combined clinical-radiomic models, and hence
well-curated data on clinical predictors were necessary.
Future work could build on these results with additional
public data. Only three out of many ISTs available were
chosen for evaluation, however, these had previously been
identified as the most popular choices in prior studies
[19]. The supervised FS strategies considered far more
than the four RFs suggested as the maximum by event per
predictor calculation, however, they are popular within
the literature and the decision will not have impacted
upon our assessment of relative model performance due
to IST and ComBat batch size. Finally, the measurement
of IST impact on feature repeatability was not assessed,
however, to the best of our knowledge, a preoperative
GBM dataset with test–retest data is not available
publicly.

(see figure on previous page)
Fig. 5 Calibration instability plots showing PCA FS clinical-radiomic combined models using 32 bins, different IS techniques, with and without
ComBat realignment and showing the effects of different ComBat batch sizes (5 and 15). Calibration instability plots show, for the application of
(columns 1 and 3), and without, ComBat (columns 2 and 4) using different MBSs (5 and 15) and IS techniques (rows), the results of individual survival
predictions at 1 year, across the bootstrap resamples. x-Axes represent predicted and y-axes the observed survival at 1 year. The thin curves
represent the predictions from one bootstrap sample and the thicker curve, predictions based on the original, non-bootstrapped data. Only 200,
randomly selected, results are shown in each calibration plot. The grey dashed line represents a perfect calibration line, with greater deviation from
this indicating worse calibration. Increased spread of the thinner curves indicates lower stability of that model building process. The calibration plots
resulting from combined clinical and radiomics models, with features selected using hierarchical clustering of PCA results (rows 2, 3, and 4) are
compared against the clinical-only models (grey, top row). CmB, ComBat; HM, histogram matching; PCA, hierarchical clustering of principle
component results; RAW, no IS applied to images (control); WS, WhiteStripe; ZS, Z-score
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Conclusions
ISTs and ComBat MBS affected survival model perfor-
mance in a heterogenous multi-centre GBM cohort. HM
and WS, overall, improved discrimination, relative
explained variation, and model fit, as did ComBat at
higher MBS. However, calibration and model stability
deteriorated as MBS increased, resulting in more data
being discarded from modelling. This has clinical impli-
cations as referral systems such as the hub-and-spoke
model in this study are hampered by varied image
acquisitions, and therefore require robust methods for
harmonising heterogenous datasets without compromis-
ing the model performance. Future work to demonstrate
methods of improving radiomic model performance in
real-world datasets that also preserve model stability is
warranted.
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