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ABSTRACT  
The recommendation of Sustainable Development Pathways (SDPs) 
is crucial for achieving the United Nations Sustainable 
Development Goals (SDGs) at regional level. However, traditional 
recommendation algorithms struggle with two key challenges: 
spatial heterogeneity and sparse historical interaction records 
between regions and SDPs. To address these issues, we introduce 
the Regional Graph-Based Explainable Recommendation (RGB-ER) 
method. RGB-ER leverages a pruned Regional Graph (RG) to capture 
regional spatial heterogeneity, incorporating environmental, 
economic, and social factors into the recommendations. In addition, 
an Intent Graph models regional preferences across various 
attributes, bridging historical interactions with the RG and 
mitigating data sparsity. This dual approach significantly improves 
recommendation accuracy and interpretability. Extensive 
experiments show that RGB-ER outperforms state-of-the-art graph- 
based models, with a maximum improvement of 9.61% in Top-3 
recommendation accuracy. A case study in Fujian Province – a 
region characterized by its mountainous terrain, complex socio- 
economic landscape, and significant sustainability challenges – 
illustrates RGB-ER’s practical applicability, aligning well with local 
government strategies for sustainable development. Furthermore, 
we assess SDPs at the county level across China, highlighting the 
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method’s potential for guiding region-specific sustainable 
development planning. In conclusion, RGB-ER provides a robust, 
explainable framework for data-driven decision-making in 
sustainable development.

1. Introduction

Sustainable Development Pathways (SDPs) are strategic frameworks adopted by regions 
to achieve the United Nations Sustainable Development Goals (SDGs) (Arora-Jonsson 
2023; Norman 2018). In China, these pathways are often referred to as Ecological 
Civilization Models, which aim to balance economic growth with environmental preser-
vation and enhancement (Hansen, Li, and Svarverud 2018; Wang et al. 2021; Zhang et al. 
2022).

A prominent example of such a model is the national park system. In Pengzhou, 
Sichuan Province, for instance, the establishment of the Giant Panda National Park 
has spurred the development of a panda-themed tourism industry. This initiative has sig-
nificantly boosted local incomes, stimulated the growth of tourism and hospitality 
sectors, and contributed to regional economic development, all while maintaining the 
ecological integrity of the region. These examples underscore the critical role of 
region-specific SDPs in achieving SDGs, emphasizing the integration of economic devel-
opment with environmental sustainability and offering replicable models for other 
regions to follow (Norman 2018; Nyangchak 2024; Yang, Yang, and Wang 2020).

Recognizing the value of these replicable models, researchers have explored various 
approaches to identify and recommend suitable SDPs tailored to regional contexts. 
Early efforts have primarily relied on expert-driven, geography-based assessments, 
including literature reviews, field investigations, data collection, and SWOT (Strengths, 
Weaknesses, Opportunities, and Threats) analyses (Ghorbani et al. 2015; Kaymaz, 
Birinci, and Kızılkan 2022; Palomares et al. 2021; Wan, Wang, and Wu 2024). While 
these qualitative methods capture valuable domain knowledge, they often rely heavily 
on expert judgment, which limits their objectivity, reproducibility, and applicability to 
large-scale comparative analyses.

Inspired by advancements in fields such as personalized product recommendation, 
researchers have increasingly explored data-driven computational techniques to 
enhance SDP recommendation (Guo 2019). These methods leverage historical data, 
regional attributes, and relational similarity to structure the recommendation process 
more systematically (Bachmann et al. 2022; Porciello et al. 2020; Sarker et al. 2019; 
Zeng et al. 2022). Although these approaches are promising in other domains, they 
remain at a preliminary stage within the context of SDP recommendation. Many of 
the algorithms adapted from commercial systems – such as collaborative filtering, 
matrix factorization, or deep learning models – have not yet been directly deployed in 
sustainable development planning. Nevertheless, their underlying principles offer valu-
able insights for developing scalable and objective recommendation frameworks.

Despite their potential, existing computational methods still face critical limitations 
when applied to the complexities of SDP recommendation. First, the ability to identify 
meaningful similarities across regions is constrained by spatial heterogeneity and 
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diverse development contexts. Second, a lack of causal transparency in the recommen-
dation process hinders their usefulness in policy settings, where explainability and stake-
holder interpretability are essential. Third, these models often fail to capture the full 
complexity of regional development due to the absence of mechanisms for integrating 
heterogeneous and context-specific knowledge sources, which particularly limits their 
effectiveness with sparse historical interaction records.

Effective SDP recommendation thus requires more than algorithmic optimization; it 
demands the meaningful synthesis of diverse information types to support evidence- 
based and transparent decisions (Fotopoulou et al. 2022; Vinuesa and Sirmacek 2021; 
Yao and Li 2023). As illustrated in Figure 1, this entails integrating three interrelated 
forms of knowledge: case expertise knowledge, which draws on past regional successes; 
regional factor knowledge, which accounts for current socio-economic and environ-
mental conditions; and causal intent knowledge, which grounds the recommendations 
in scientifically interpretable development rationales. Without this multi-dimensional 
integration, SDP recommendations risk becoming either overly generic or misaligned 
with regional realities.

To bridge these gaps, this study proposes an automated, knowledge graph-based 
framework – Regional Graph-Based Explainable Recommendation (RGB-ER) – tailored 
specifically for sustainable development planning. By integrating graph pruning 

Figure 1. Types of knowledge essential for sustainable development pathways recommendation.
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strategies, intent modeling, and attention mechanisms, RGB-ER connects spatially and 
semantically similar regions, enhances causal interpretability, and synthesizes diverse 
knowledge sources to improve recommendation quality and transparency.

This research offers three primary contributions. First, it introduces a new automated 
framework for SDP recommendation that integrates case-based, regional, and explana-
tory knowledge. Second, it presents a regional graph pruning strategy that categorizes 
and ranks attribute nodes to reduce spatial heterogeneity during graph convolution. 
Third, it introduces an intent graph mechanism that uncovers interpretable development 
pathways, enabling more robust, actionable, and scientifically grounded recommen-
dations for regional sustainability strategies.

2. Related works

2.1. Traditional approaches to SDP recommendation

The field of SDP recommendation has traditionally relied on qualitative, expert-driven 
approaches. Among these, SWOT analysis has been widely used to assess regional devel-
opment strategies based on the subjective judgment of domain experts (Ghorbani et al. 
2015; Kaymaz, Birinci, and Kızılkan 2022; Palomares et al. 2021; Wan, Wang, and Wu 
2024). While these approaches provide context-sensitive insights, they are inherently 
limited in scalability, consistency, and reproducibility.

To overcome these limitations, there has been growing interest in adapting compu-
tational techniques from fields such as e-commerce and personalized recommendation. 
Recommender system methods – such as collaborative filtering and content-based 
filtering – model user-item interactions and have demonstrated strong performance in 
commercial domains (Koren, Rendle, and Bell 2022; Thorat, Goudar, and Barve 2015). 
Although not yet directly applied to SDP recommendation, these mechanisms offer con-
ceptual inspiration for developing models that account for historical patterns and contex-
tual similarity.

Subsequent developments in machine learning, including ensemble methods (e.g. 
random forests) and deep neural networks, have further enhanced predictive capability 
in recommendation tasks (Wu et al. 2018; Zhang and Min 2016). However, the applica-
bility of such black-box models to sustainability planning remains limited. Their lack of 
transparency and reliance on post-hoc explanations constrain their utility in policy 
environments, where explainability, stakeholder trust, and integration of domain knowl-
edge are crucial.

2.2. Knowledge graph-based recommendation systems

Recognizing the need for both accuracy and interpretability, knowledge graph-based methods 
have emerged as a promising direction for complex decision-making tasks such as SDP rec-
ommendation. Unlike traditional recommender systems, knowledge graphs explicitly rep-
resent semantic relationships among entities – such as regions, environmental conditions, 
and development pathways – enabling structured reasoning, contextual understanding, and 
visual traceability (Cao et al. 2019). This approach is particularly well-suited to sustainable 
development scenarios, as it accommodates multidimensional interdependencies across 
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economic, ecological, and social factors. By modeling these as interconnected entities, knowl-
edge graphs allow for richer and more explainable recommendation processes.

Recent advances in graph neural networks (GNNs), such as Knowledge Graph Con-
volutional Networks (KGCN), Knowledge Graph Attention Networks (KGAT), and 
Knowledge Graph-based Intent Networks (KGIN), have demonstrated how relational 
learning on knowledge graphs can improve recommendation performance, even with 
relatively sparse training data (Wang et al. 2019; Wang et al. 2019; Wang et al. 2021; 
Zhou et al. 2020). Although these models have been primarily developed for consu-
mer-oriented applications, they offer valuable design principles for sustainability- 
related tasks. However, existing implementations – originally developed within computer 
science for product recommendation – are often not directly applicable to SDP rec-
ommendation tasks and tend to inadequately address spatial heterogeneity.

The RGB-ER framework builds upon these foundations while addressing their limit-
ations through several key innovations. By incorporating a domain-specific graph 
pruning mechanism and enhancing intent modeling specifically for sustainability con-
texts, our approach achieves superior performance while maintaining the interpretability 
advantages of knowledge graph methods. This combination of capabilities positions 
knowledge graph-based recommendation as uniquely suited to the complex, multidi-
mensional challenges of sustainable development planning, where both accuracy and 
transparency are essential for practical implementation.

3. Methodology

3.1. Basic idea and problem formulation

The primary objective of this research is to identify optimal SDPs for target regions by 
integrating historical development experiences with local contextual conditions. We 
frame this as a recommendation problem, where the task is to uncover historical inter-
actions – representing past development experiences – between target regions and SDPs. 
The key challenge lies in generalizing these interactions to uncover potential preferences 
among similar regions or SDPs, thereby enabling the generation of meaningful and 
actionable recommendations.

To measure the inherent similarities among regions, we utilize a knowledge graph, 
which facilitates the representation of interconnections between regions and SDPs. His-
torical interaction records from successful case studies and their corresponding SDPs 
offer valuable insights into the underlying intentions driving the adoption of these devel-
opment models. Based on this, we propose a recommendation method that integrates an 
Intent Network with a Regional Graph (RG). This method effectively leverages prior 
knowledge, enabling us to generate reasonable and interpretable recommendations 
even when training data is limited.

In our framework, let T represent the set of target regions and P denote the set of 
SDPs. As shown in Figure 2, the interaction matrix Y [ R|T|×|P| captures the historical 
interactions between regions and SDPs. If yt,p = 1, it indicates that target region t [ T 
has previously adopted SDP p [ P; conversely, yt,p = 0 signifies no historical interaction 
between target region t and SDP p. Furthermore, the RG serves as the knowledge graph 
for the regions, comprising a set of entities V and relationships R (for specific examples, 
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please refer to Section 3.3.1). The Intent Graph (IG), derived from historical interaction 
records, connects regions to the SDPs they have previously adopted, allowing us to 
explore the deeper intentions behind these interactions.

Our goal is to learn a function F that predicts the score ŷt,p for a region t and an SDP 
p, based on the provided RG, IG, and interaction matrix Y . The prediction is expressed as 
follows:

ŷt,p = F(t, p|RG, IG, Y) (1) 

By comparing these predicted scores, the top-K SDPs for each target region can be 
derived, forming a robust recommendation system tailored to the region’s unique 
characteristics.

3.2. Regional graph-based explainable recommendation method

Building on the problem formulation outlined in Section 3.1, we propose the RGB-ER 
method. The technical workflow of RGB-ER, depicted in Figure 3, consists of three 
main stages: 

. Data Preparation and Collection: This stage involves collecting comprehensive 
county-level geographic attribute data, encompassing spatial locations, economic indi-
cators, natural resource distributions, environmental characteristics, and socio-cul-
tural variables. Concurrently, a set of mature SDPs is collected from official 
directories and web-based data mining.

. Construction of Regional and Intent Knowledge Graphs: The collected data is pre-
processed to construct the RG and IG, which serve as the foundation for subsequent 

Figure 2. The conceptual framework and key components of the Sustainable Development Pathway 
(SDP) recommendation system.

6 Q. WANG ET AL.



model operations. The detailed construction process and methodologies for these 
graphs will be discussed in Section 3.3.1.

. Vector Representation and Recommendation Scoring: The Graph Aggregation 
method using GNNs is employed to obtain vector representations of regions and 
SDGs. The recommendation score is then calculated through the dot product of 
these vectors. Comparing the model-generated scores allows for identifying the 
optimal SDP recommendations for each region.

Figure 3. Technical workflow of the Regional Graph-Based Explainable Recommendation Method.
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The following provides a detailed explanation of the logic behind the calculation of 
recommendation scores.

The regional SDP recommendation task focuses on identifying optimal matches 
between regions and SDPs. This is accomplished by calculating the inner product of 
the region’s embedding vector and the SDP’s embedding vector, which serves as a 
scoring function to assess their similarity. The mathematical formulation for this 
scoring function is given by:

ŷt,p = eT
t ep (2) 

Here, ŷt,p represents the recommendation score between target region t and SDP p, while 
et and ep denote the embedding vectors for region t and SDP p, respectively.

To derive the embedding representations of et and ep, we adopt a methodology 
inspired by the KGIN algorithm (Wang et al. 2021). We construct both the RG and 
IG to capture the intrinsic characteristics of regional development and the historical 
interaction patterns between regions and SDPs. The embeddings eRG

t and eIG
t are obtained 

through graph convolution techniques.
It is important to note that while our approach draws from the KGIN framework in 

capturing intent pathways, our method differs in the construction of the knowledge 
graph. As illustrated in Figure 4a, the original KGIN algorithm constructs its knowledge 
graph around items (which correspond to SDPs in this study), with embeddings aggre-
gated sequentially from the knowledge graph and intent pathways. In contrast, our 
method constructs the knowledge graph around regions (analogous to users in KGIN), 
as illustrated in Figure 4b. Thus, the embedding for region et is computed by aggregating 
information from both the RG and IG, yielding eRG

t and eIG
t . These embeddings are then 

combined using an attention mechanism, as shown in Equation 3 (the specifics of this 

Figure 4. Comparison of vector aggregation processes between KGIN and the proposed RGB-ER 
method. (a) Illustration of vector aggregation in the KGIN method, and (b) illustration of vector aggre-
gation in the RGB-ER method proposed in this study. In these illustrations, p represents SDPs, i denotes 
intents, t represents regions, v stands for feature nodes in the RG, and r indicates relationships within 
the RG.
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process will be detailed in Section 3.3.2):

et = Attention(eRG
t , eIG

t ) (3) 

Once the embedding et is obtained, the embedding ep can be directly utilized since it is 
already established during IG aggregation. By substituting et and ep into Equation 2, we 
can compute the scores for different regions against various SDPs. The dominant intent 
vectors derived from this process can help explain the rationale behind the recommended 
SDPs, offering interpretability to the model’s outputs. In the subsequent sections, we will 
evaluate the model’s performance using standard metrics such as Precision, Recall, and 
F1 Score. Additionally, we will validate the model’s practical SDP recommendation effec-
tiveness using the development planning of counties in Fujian Province as a case study.

Notably, our experiments revealed that the large number of discrete numerical attri-
bute nodes in the RG, which often lack direct interconnections, results in a sparse graph 
structure that limits the model’s learning capacity and its ability to mitigate the effects of 
spatial heterogeneity. To address this issue, we introduce a pruning strategy that categor-
izes and ranks these discrete numerical attributes. This approach not only enhances the 
density of the RG and the model’s ability to capture geographical heterogeneity but also 
improves overall computational efficiency. Details of this pruning strategy are discussed 
in Section 3.3.3.

Table 1. Data information in regional graph (RG).

Category Attributes
Type of  

Attribute Relation in RG

Geographic Information Annual Precipitation numerical Has.AnnualPrecipitation
Soil Type categorical Has.SoilType
Climatic Zone categorical Has.ClimaticZone
Elevation numerical Has.Elevation
Landform Type categorical Has.LandformType
Province categorical LocatedIn.Province
City categorical LocatedIn.City
Region categorical LocatedIn.Region

Resource Abundance Agricultural Land Area numerical Contains.AgriculturalLandArea
Vegetation Coverage numerical Has.VegetationCoverage
Water Resources per Capita numerical Has.WaterResourcesPerCapita
Forest Area Coverage numerical Has.ForestAreaCoverage

Economic Indicators Total GDP numerical Has.TotalGDP
GDP per Capita numerical Has.GDPPerCapita
Urban Residents’ Savings per Capita numerical Has.UrbanSavingsPerCapita
Share of Secondary Sector numerical Has.SecondarySectorShare
Share of Tertiary Sector numerical Has.TertiarySectorShare

Environmental Quality Surface Water Quality Index numerical Monitors.SurfaceWaterQuality
Soil Erosion Rate numerical Measures.SoilErosionRate
Number of Biodiverse Habitats numerical Hosts.BiodiverseHabitats
Nature Reserve Area Proportion numerical Contains.NatureReserveProportion
Overall Natural Disaster Risk numerical Assesses.NaturalDisasterRisk

Infrastructure and 
Services

Transport Network Density numerical Has.TransportNetworkDensity
Medical Facility Bed Count numerical Has.MedicalFacilityBedCount
Number of Tourist Sites Rated AAA and 

Above
numerical Contains.HighRatedTouristSites

Cultural Attributes Ethnic Composition categorical Has.EthnicComposition
Dialect categorical Has.Dialect
Count of Intangible Cultural Assets numerical Has.IntangibleCulturalAssetsCount
Types of Intangible Cultural Heritage categorical Lists.TypesOfIntangibleHeritage
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3.3. Key algorithms in the RGB-ER method

3.3.1. Construction of the regional graph and intent graph
Regional Graph Construction: The RG is constructed at the county level in China by 
aggregating publicly available official statistical data. The RG functions as a semantic 
network composed of region-attribute-region pairs, wherein regional nodes are intercon-
nected via shared attribute nodes. This network structure effectively captures spatial het-
erogeneity among regions.

To build the RG, we define 6 categories of indicators that represent the geographical attri-
butes of the target regions, using a total of 29 specific indicators as outlined in Table 1. 
For each region, we collect various geographical attributes, such as meteorological data, 
hydrological information, and soil characteristics. These attributes are used to link each 
regional node with corresponding attribute nodes, following the relationships defined in 
Table 1. By establishing diverse paths between regions – each enriched with unique 
semantic information – we aggregate attribute data from related nodes to the regional 
node. This aggregation process helps to establish spatial correlations, improving our 
understanding of the interrelationships between regions.

Intent Graph Construction: The IG is constructed based on historical interaction 
records between regions and SDPs. To identify representative SDPs, we consult develop-
ment planning documents issued by Chinese government departments, such as the 
‘National Nature Reserve Directory’, ‘National Forest Park Directory’, and ‘National 
Characteristic Town Directory’. Additionally, we employ web scraping and text analysis 
techniques to collect information on typical development models across county-level 

Figure 5. Schematic representation of the composition of the Intent Graph. In the figure, t represents 
regions, i denotes intents, p represents SDPs, and r indicates relationships within the RG.
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regions in China (Wang et al. 2022). Through this process, we identify a total of 94 dis-
tinct SDPs (detailed in Appendix A), categorized into three levels, and compile 7,830 his-
torical interaction records between regions and SDPs.

As illustrated in Figure 5, the IG consists of region nodes t, corresponding SDP nodes 
p, and a set of intent nodes i. These intent nodes are derived using attention-based oper-
ations applied to the relationships within the RG, forming triplets of the form <t, i, p>. 
The introduction of intent nodes mitigates the sparsity of interactions between regions 
and SDPs, enhancing the interaction density and providing greater interpretability to 
the model. The inclusion of multiple intent nodes facilitates richer intent representations.

The embedding representation of the intent vector i is denoted as ei, which is com-
puted as follows:

ei =


r[R

a(r, p)er (4) 

Here, R represents the set of all relationships in RG, a(r, p) indicates the importance of 
relationship r to intent vector i, and er is the embedding of relationship r within the RG. 
Further details on the construction of the IG can be found in Wang et al. (2021).

3.3.2. Attention-based regional embedding vector generation
As described in Section 3.2, the regional embedding vector et is derived by applying an 
attention mechanism to both eRG

t and eIG
t . Figure 6 illustrates this process in detail.

The vector eRG
t is generated through multi-hop aggregation of the neighboring nodes 

of region t in the RG. We employ a graph convolution approach similar to RippleNet to 
aggregate information from the attribute nodes surrounding region t, thus enhancing its 
expressive power (Wang et al. 2018). This results in the intermediate vector eRG(l)

t , which 
captures information from progressively distant nodes. The final regional embedding eRG

t 
is computed as:

eRG
t =



l[L
eRG(l)

t , eRG(l)
t =

1
|NRG

t |



(r,v)[NRG
t

er ⊙ e(l)
v (5) 

Here, NRG
t denotes the set of relation-entity pairs (r, v) directly connected to region t in 

Figure 6. Structural diagram of the RGB-ER model proposed in this study. The upper and lower parts 
illustrate the process of vector aggregation over the RG and IG, respectively.
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the RG, with er representing the embedding of relationship r, and e(l)
v the embedding of 

the neighbor node v during the l-th aggregation phase. The symbol ⊙ indicates element- 
wise multiplication between two vectors.

The vector eIG
t is derived by aggregating the SDPs p that have historically interacted 

with region t, along with a set of intent vectors i that link the two, as shown in the follow-
ing equation:

eIG
t =



l[L
eIG(l)

t , eIG(l)
t =

1
|NIG

t |



(i,p)[NIG
t

b(t, i)(l)ei ⊙ ep (6) 

Here, NIG
t represents the set of SDPs p and intent vectors i associated with target region t 

based on past interactions. The term ei is the embedding of intent vector i, and ep denotes 
the embedding of the SDP p. The weight b(t, i) indicates the importance of intent vector i 
for region t, with further computational details available in the KGIN paper (Wang et al. 
2021).

After obtaining eRG
t and eIG

t , the final regional embedding vector et is computed using 
an attention-based mechanism for weighted summation:

et =


n[(RG,IG)
g(n)en

t (7) 

Here, g(n) represents the importance of en
t in contributing to the final embedding vector 

et . The weight g(n) is computed as:

g(n) = ReLU
exp (Wen

t )


n[(RG,IG) exp (Wen
t )

 

(8) 

In this equation, the weight matrix W is a trainable parameter of the model that maps eRG
t 

and eIG
t into a shared semantic space, enabling the integration of the two semantic net-

works. The ReLU function is adopted as the activation function due to its widespread 
effectiveness in neural network training. It is important to note that the use of graph con-
volution and attention mechanisms increases the model’s complexity, which in turn 
raises the training cost. However, as demonstrated in the subsequent experimental 
section, the attention mechanism significantly enhances the recommendation perform-
ance of the model, making this additional computational cost justifiable.

3.3.3. Pruning method for enhancing the regional graph
Although the initial construction of the RG has proven effective, we observe a limitation 
in the spatial correlation between regions. Specifically, around 69% (20 out of 29) of the 
regional attributes are numerical. Numerical attributes generally only connect to their 
corresponding target regions within the RG, which limits the overall spatial correlation 
across regions.

To address this issue, we propose a pruning method that removes numerical entity 
nodes from the RG and reintroduces them through a categorization process. This 
approach, illustrated in Figure 7, uses the attribute ‘Number of Tourist Sites Rated 
AAA and Above’ for Hexi and Xiaonan Districts as a case study. The pruning process 
consists of three stages: 
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(1) Pruning Stage: Identify and remove numerical nodes from the graph. This step 
helps to reduce the influence of sparse numerical values that do not contribute sig-
nificantly to spatial relationships.

(2) Categorization Stage: Categorization is a straightforward method, but the process 
can be cumbersome. First, we gather widely recognized classification criteria for 
specific attributes and use these standards to categorize numerical attributes. For 
example, China’s annual precipitation is classified into four categories: 
. Arid regions: Annual precipitation < 200mm
. Semi-arid regions: Annual precipitation between 200 mm and 400mm
. Semi-humid regions: Annual precipitation between 400 mm and 800mm
. Humid regions: Annual precipitation > 800mm

Figure 7. Pruning process in the Regional Graph.
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For attributes without clear classification standards, we apply the natural breaks 
method to manually define categories (Chen et al. 2013). Once the categorization criteria 
are established, we check if the corresponding categorical node for each numerical attri-
bute already exists. If it does, no new node is created; otherwise, a new categorical node is 
introduced. For instance, the categorical node ‘Moderate’ for both Hexi and Xiaonan 
Districts helps avoid redundancy. 

(3) Connection Stage: After categorization, we establish connections between the categ-
orical nodes and their respective regions. In Figure 7, after pruning and categorizing, 
both regions are connected via the ‘Moderate’ node. This process is consistently 
applied to all numerical nodes, thereby enhancing spatial correlation and improving 
the representation of spatial heterogeneity across the regions.

Detailed steps of the pruning algorithm are illustrated in the flowchart in Figure 8. The 
algorithm begins by extracting all edges of the form t, v〈 〉 from the RG. For each pair con-
sisting of a region node t and its associated attribute node v, the algorithm first checks if v 
is numerical. If so, the corresponding edge t, v〈 〉 is pruned by removing v from the graph. 
If v is non-numerical, the algorithm checks whether a corresponding categorical node 
vcat = Categorical(v) exists. If present, a direct connection is established between 
region t and the categorical node. If not, the algorithm invokes the function 

Figure 8. Flowchart of the pruning method for enhancing the Regional Graph.
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CreateCategoricalNode(v), which discretizes the numerical data into predefined intervals, 
assigns categorical labels, and creates the corresponding categorical node. Once all edges 
and nodes are processed, the pruned RG is output, ensuring that all attribute nodes are 
either categorized or removed.

4. Experiments and results

4.1. Dataset

SDPs represent development strategies that integrate economic growth with ecological 
conservation tailored to local conditions. As shown in Figure 9, to provide a comprehen-
sive basis for recommending SDPs, we collected a dataset across 2596 counties in China, 
consisting of development indicators in 6 categories: Geographic Information, Resource 
Abundance, Economic Indicators, Environmental Quality, Infrastructure and Services, 
and Cultural Attributes (as aforementioned in Table 1). These data served as the basis 
for constructing the RG, as detailed in Section 3.3.1. In addition, we compiled a directory 
of 94 SDPs (detailed in Appendix A), categorized into three levels, and gathered 7830 his-
torical interaction records between regions and SDPs from publicly available directories 
and web scraping (Wang et al. 2022). These interactions were used to construct the IG, 
which captures the relationships between regions and the SDPs they have previously 
adopted.

4.2. Experimental setup and evaluation criteria

4.2.1. Dataset preparation and training parameters
Following the construction procedures for the RG and IG described in Section 3.2, we 
generate the dataset as outlined in Section 4.1. For the experimental split, we use 80% 
of the historical interactions from the target regions as the training set and the remaining 
20% as the test set. Within the training set, 20% of the data was further sampled as a vali-
dation set for hyperparameter tuning.

Figure 9. Illustration of development condition indicators, SDPs, and the corresponding Regional 
Graph (RG) and Intent Graph (IG) at the county level in China.
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The embedding dimension was set to 64, the batch size to 128, and the initial learning 
rate to 1e-3. Additional hyperparameters – such as the number of intent vectors and the 
number of aggregation layers in the RG – were optimized through grid search over pre-
defined ranges. For example, the number of layers was searched within {2, 3, 4, 5}, and the 
number of intents within {3, 4, 5}. Early stopping was applied based on validation loss 
with a patience of 10 epochs. Details of the selected configurations and their performance 
impact are discussed in Section 4.3.3.

4.2.2. Evaluation metrics and baseline models
To evaluate the Top-K SDP recommendations for each target region, we adopt an all- 
ranking strategy (Krichene and Rendle 2020), as opposed to the user subset extraction 
approach used in previous studies (Wang et al. 2019; Wang et al. 2019). Specifically, 
we recommend SDPs that have not been previously interacted with for each target 
region, and select the Top-K SDPs that best align with the region’s development 
needs. The following metrics are used to evaluate recommendation accuracy.

Precision@K quantifies the proportion of recommended SDPs in the Top-K list that 
are actually relevant to the target region:

Precision@K =
|RK(t) > T(t)|

K
(9) 

Recall@K measures the proportion of the true relevant SDPs (from the test set) that are 
captured within the Top-K recommendations:

Recall@K =
|RK(t) > T(t)|
|T(t)|

(10) 

F1@K provides a harmonic mean of Precision@K and Recall@K, serving as an overall 
performance measure:

F1@K =
2× Precision@K × Recall@K

Precision@K + Recall@K
(11) 

To evaluate the effectiveness of the proposed method, RGB-ER is compared with three 
state-of-the-art knowledge graph-based recommendation models – KGCN, KGAT, 
and KGIN – that serve as baselines.

4.3. Results

4.3.1. SDP recommendation results
After training and fine-tuning the RGB-ER model, we computed recommendation scores 
for each region across the 94 SDPs, ranking them to generate tailored lists of rec-
ommended SDPs. These recommendations consider the unique development conditions 
of each region while incorporating insights from development experiences in similar 
regions. This approach provides valuable guidance for policymakers aiming to balance 
economic growth with environmental sustainability. The model’s interpretability, facili-
tated by intent vectors, further enhances understanding of the factors influencing rec-
ommendation outcomes.
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The RGB-ER model identifies key attributes for each SDP by considering a broad spec-
trum of ecological, cultural, geographical, and economic factors. As illustrated in Figure 
5, each intent vector i within the intent vector group I assigns varying weights to the 
relationships within the RG. Table 2 presents the top five relationships with the 
highest weights for each intent vector after model training.

An analysis of Table 2 reveals that the first intent vector (i1) places significant weight 
on relationships related to resource abundance, with a marked preference for factors such 
as agricultural land area and forest coverage. The second intent vector (i2) emphasizes 
geographical factors, such as climatic zones and city-level attributes. The third intent 
vector (i3) reflects a more balanced approach, incorporating environmental quality, geo-
graphic information, economic indicators, and cultural aspects. Conversely, the fourth 
intent vector (i4) is predominantly focused on environmental quality, with relationships 
highlighting nature reserve area proportion and biodiversity. These diverse weights 
reflect the complex nature of SDPs, which involve a multifaceted interplay of ecological, 
economic, and cultural factors. The RGB-ER model underscores the need for region- 
specific SDPs tailored to each area’s unique characteristics.

To illustrate the recommendation process, we present a case study of Pengzhou City in 
Sichuan Province. Pengzhou is a mountainous, rainy region with a mild climate. As 
shown in Figure 10, the city has already implemented several SDPs, including the 
National Parks Pattern, Nature Reserves Pattern, and Agricultural Innovation Parks 
Pattern. After excluding these existing models, the RGB-ER model recommends the fol-
lowing top three SDPs for Pengzhou: Ecotourism Pattern, Beautiful Countryside Pattern, 
and Orchard Livestock Pattern. These recommendations aim to leverage the region’s rich 
natural resources to boost economic development through tourism and rural revitaliza-
tion. The Ecotourism Pattern and Beautiful Countryside Pattern emphasize sustainable 
tourism and rural development, which align with Pengzhou’s goal of promoting environ-
mental protection and economic growth through the establishment of the Giant Panda 
National Park. This alignment suggests that the model effectively identifies suitable 

Figure 10. SDP recommendation results for Pengzhou based on the RGB-ER method.
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SDPs by learning from historical development experiences in similar regions, thereby 
providing valuable insights for policymaking.

After obtaining the recommended SDPs, we analyzed the importance scores of the 
intent vectors in Pengzhou. As shown in Figure 10, the importance scores for the four 
intent vectors in Pengzhou are 0.35, 0.15, 0.21, and 0.28, respectively, with the highest 
scores assigned to i1 and i4, reflecting the model’s focus on resource abundance and 
environmental quality. This result aligns with prior findings, confirming that the rec-
ommended SDPs for Pengzhou are predominantly influenced by environmental con-
siderations. Although i1 holds the highest weight, the recommendations for Pengzhou 
also illustrate the cumulative impact of all four intent vectors. This finding suggests 
that the RGB-ER model adopts a holistic approach to SDP recommendations by integrat-
ing multiple factors to produce comprehensive, region-specific recommendations. Thus, 
the RGB-ER model is capable of identifying SDPs that are in line with the overarching 
development goals of the target region, incorporating both environmental and economic 
dimensions.

4.3.2. Comparison of recommendation performance
To assess the recommendation performance of RGB-ER, we compared it with KGCN, 
KGAT, and KGIN across Precision@K, Recall@K, and F1@K metrics for both Top-3 
and Top-5 recommendations. The experimental results, as shown in Figure 11, demon-
strate that RGB-ER consistently outperforms the baseline models.

For F1@K and Recall@K, the RGB-ER method exhibited a substantial improvement. 
Since the average number of historical interactions for each region in the IG is three, we 
first evaluated the model with K = 3. In the Top-3 recommendations, RGB-ER achieved 
an F1@3 improvement of 9.61% over KGCN, 7.02% over KGAT, and 3.47% over the best 
baseline model, KGIN. Additionally, RGB-ER showed the largest improvement in 
Recall@3, with an increase of 15.14%, surpassing KGIN by 8.86%.

Figure 11. Performance comparison of Top-3 and Top-5 recommendations between RGB-ER and 
baseline models.
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For a broader set of recommendations, we also evaluated Top-5 recommendations by 
setting K = 5. Here, RGB-ER outperformed KGCN, KGAT, and KGIN with an F1@5 
improvement of 8.53%, 7.23%, and 2.16%, respectively. Notably, the improvement in 
Recall@5 was even more pronounced, with RGB-ER achieving a 19.06% improvement, 
surpassing KGIN by 7.14%. These results underscore the superior performance of 
RGB-ER, regardless of the number of recommendations.

4.3.3. Impact of model parameters
In this section, we examine how various hyperparameters affect the performance of RGB- 
ER. For consistency, we focus on F1@3 for Top-3 recommendations and evaluate the 
impact of each parameter in isolation. In addition, we report the corresponding training 
time, inference speed, and memory consumption under each configuration.

Impact of Neighbor Aggregation Size: The number of aggregation layers L in the RG 
was varied to investigate its effect on recommendation performance. As shown in 

Table 3. Impact of neighbor aggregation size.
L 2 3 4 5

F1@3 0.1393 0.1375 0.1439 0.1403
Training Time (S) 175.8857 253.9536 297.6985 349.2970
Memory (GB) 0.3022 0.2838 0.3124 0.3225
Inference Speed (S) 0.0305 0.0640 0.0637 0.0699

Table 4. Impact of number of intent vectors.
|P| 3 4 5

F1@3 0.1337 0.1439 0.1405
Training Time (S) 253.7963 297.6985 358.2998
Memory (GB) 0.2651 0.3124 0.3462
Inference Speed (S) 0.0538 0.0637 0.0720

Table 5. Statistics of the RG with/ without pruning.
Regions Attributes Relationship types Density

RG 2596 39,744 29 0.009%
RG after Prune 2596 1669 29 0.863%

Table 6. Impact of graph pruning.
RGB − ERw/o GP RGB-ER

F1@3 0.1312 0.1439
Training Time (S) 404.1434 297.6985
Memory (GB) 0.2889 0.3124
Inference Speed (S) 0.0596 0.0637

Table 7. Impact of attention block.
RGB − ERw/o Att RGB-ER

F1@3 0.1277 0.1439
Training Time (S) 308.0988 297.6985
Memory (GB) 0.3733 0.3124
Inference Speed (S) 0.0543 0.0637
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Table 3, an aggregation size of 4 layers maximizes spatial correlation among regions, 
improving the model’s ability to account for spatial heterogeneity.

Impact of Number of Intent Vectors: Increasing the number of intent vectors 
beyond 4 resulted in diminishing returns. Table 4 shows that the performance begins 
to degrade when |P| exceeds 4, likely due to the granularity becoming too fine and dilut-
ing useful information.

Impact of Graph Pruning: Table 5 shows statistics of the RG with and without 
pruning. Graph pruning improved the model’s recommendation performance by remov-
ing redundant geographic attribute nodes, leading to higher graph density and more 
efficient path calculations. Table 5 and Table 6 show that pruning increased the graph 
density by 0.854%, resulting in a 1.27% improvement in F1@3.

Impact of Attention Block: We also evaluated the role of the attention block used to 
fuze features from the IG and RG. As shown in Table 7, the inclusion of the attention 
block facilitated a more effective integration of the two semantic spaces, resulting in a 
1.61% improvement in F1@3.

5. Discussion

5.1. Regional sustainable development pathways in Fujian province

To further explore the practical applications of the RGB-ER model, we analyze the align-
ment between the Top-5 recommendations for regions in Fujian Province, China, and 
the governmental plans of SDPs in the region. The accuracy of the Top-5 recommen-
dations is calculated as follows:

Accuracy =


d[D |Top(d) > Gov(d)|
5∗|D|

(12) 

Here, D represents the set of 78 counties in Fujian Province, Top(d) is the set of Top-5 
recommendations for county d, and Gov(d) is the set of SDPs included in the govern-
ment’s plans for that county.

The resulting accuracy of 79% demonstrates that the RGB-ER model aligns well with 
government priorities for sustainable development, suggesting its potential to support 
policy decision-making and enhance the efficiency of regional resource allocation. A 
selection of representative examples comparing the model’s recommendations with gov-
ernment planning documents is provided in Appendix B.

To further assess the rationality of the current development directions across counties 
in Fujian Province, we analyze the alignment between the Top-5 recommended SDPs 
(excluding those already implemented) and the historical implementation of SDPs in 
the region. As described in Section 4.1, the 94 third-level SDPs can be grouped into 
six second-level categories. We evaluate the consistency between the current 
implemented SDPs in the region and the model-recommended SDPs by comparing 
their match in these second-level categories. The match was classified into four categories 
based on the degree of coincidence: 

. Clearly Oriented (100% match)
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. Unhurriedly Adjustable (> =  50% match)

. Expectantly Transitional (< 50% match)

. Urgently Transitional (0% match)

The degree of match was quantified as:

coincidence degree =
|E(t) > R(t)|
|E(t)|

(13) 

Here, E(t) is the set of historical SDPs for region t, and R(t) is the set of recommended 
SDPs for the same region. Figure 12 shows that out of the 78 counties with historical SDP 
data, 56% were classified as ‘Clearly Oriented’ or ‘Unhurriedly Adjustable’, indicating 

Figure 12. Sustainable development direction assessment for counties in Fujian province.
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that most regions follow established development principles and account for local geo-
graphic factors.

However, discrepancies were evident in northern Fujian, where the geography pre-
sents significant challenges, such as mountainous and rain-prone regions prone to 
natural disasters and ecological degradation. For instance, 56% of counties in Nanping 
were classified as ‘Transitional’, and 30% of counties in Sanming were in the ‘Urgently 
Transitional’ category. These findings indicate that although many regions align with his-
torical development principles, notable gaps remain in ecological resilience and policy 
adaptation, particularly in vulnerable areas.

In the ‘Transitional’ regions, the most frequently recommended SDPs were the 
Natural Park Pattern and Eco-Park Complex Pattern. The Natural Park Pattern 
focuses on ecological protection and sustainable utilization through the management 
of natural parks, while the Eco-Park Complex Pattern integrates ecological protection 
with economic development by creating multifunctional parks that foster resource recy-
cling, ecological conservation, and industrial growth. These SDPs are particularly appro-
priate for ecologically sensitive areas, effectively balancing environmental protection with 
economic growth, and in alignment with the growing recognition of innovation’s crucial 
role in enabling progress towards the SDGs (Dzhunushalieva and Teuber 2024).

Figure 13. Assessment of sustainable development directions for counties in China.
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5.2. Assessing county-level sustainable development pathways in China

After confirming the model’s reliability in Fujian, we expanded the analysis to counties 
across China, as shown in Figure 13. The results revealed that 66% of regions fell into the 
‘Clearly Oriented’ and ‘Unhurriedly Adjustable’ categories, a 10% improvement over 
Fujian. This increase can be attributed to the diverse geographical and environmental 
challenges across regions, such as the coastal mountainous areas in Fujian and the 
high-altitude, arid regions of Tibet and Xinjiang. These areas face more severe obstacles 
to sustainable ecological development, leading to a higher proportion of regions in the 
‘Transitional’ categories. Additionally, regions marked as ‘No Data’ were primarily 
located in the western part of China, likely due to sparse population density and 
limited resources for collecting relevant SDP data in these areas.

In analyzing the SDPs recommended for the ‘Transitional’ regions across China, we 
found notable differences compared to Fujian. The most frequently recommended 
SDPs were the Agro-Pastoral Integrated Pattern and Ecotourism Pattern. The Agro-Pas-
toral Integrated Pattern merges crop farming with livestock breeding, creating a sustain-
able agricultural system where each sector supports the other. The Ecotourism Pattern 
encourages interactions between visitors and the natural environment while delivering 
economic and social benefits to local communities. These recommendations underscore 
the necessity of tailoring SDPs to the specific ecological, economic, and cultural contexts 
of each region, especially those with favorable natural resources.

Moreover, some regions in the ‘Transitional’ categories had limited historical SDP 
data (1-2 SDPs), which may have contributed to a lower match between the model’s rec-
ommendations and past implementations. This limited data could result in an overesti-
mation of the proportion of regions in the ‘Transitional’ category. Nevertheless, the 
model effectively captures the underlying relationships between SDPs and regional devel-
opment contexts, offering valuable insights for policymaking. This represents an innova-
tive application of knowledge, utilizing computational model recommendations to 
potentially advance progress towards the SDGs (Li et al. 2023).

5.3. Limitations and future directions

While the RGB-ER framework advances SDP recommendations by integrating spatial 
heterogeneity and interpretable intent modeling, its real-world applicability faces three 
fundamental challenges that warrant further investigation.

First, the current framework implicitly treats policy-making as a purely objective, 
data-driven process, thereby overlooking complex human and institutional dimensions 
such as stakeholder preferences, political constraints, and inter-regional governance 
dynamics – all of which critically shape the adoption and effectiveness of SDPs 
(Lafont-Torio et al. 2024; Lyulyov et al. 2024). Future extensions should aim to 
develop hybrid recommendation models that couple data-centric inference with mech-
anisms to capture policy-maker preferences and institutional coordination. This could 
be achieved through preference learning algorithms, multi-agent modeling, or collabora-
tive network analysis, thereby improving the alignment between algorithmic outputs and 
actual governance priorities without sacrificing scientific rigor.

24 Q. WANG ET AL.



Second, the model’s static design limits its capacity to reflect the dynamic feedback 
loops that characterize sustainable development interventions. In practice, policy 
decisions trigger evolving social, environmental, and economic responses that recursively 
influence the suitability of future strategies (Majumder et al. 2023; Roy et al. 2024). To 
address this, future research should explore dynamic graph representation learning 
and reinforcement learning-based sequential decision models, enabling adaptive rec-
ommendations that evolve in response to simulated impacts and changing regional con-
texts. Such capabilities would transform RGB-ER from a one-time recommender into a 
forward-looking policy planning engine capable of supporting long-term strategic scen-
ario development.

Third, while the RGB-ER model incorporates interpretable intent vectors, the trans-
lation of these technical outputs into actionable policy insights remains limited. 
Enhanced causal inference frameworks are needed to better understand how regional 
characteristics interact to produce sustainable outcomes. This could be complemented 
by user-facing decision-support interfaces, integrating visual scenario exploration, 
policy impact simulation, and trade-off visualization to facilitate policy adoption (Her-
nandez 2017). In parallel, the model’s feature space should be expanded to include under-
represented yet critical factors such as disaster resilience, social equity, climate 
vulnerability, and corporate sustainability performance, informed by systematic 
reviews of interdisciplinary sustainability literature (Gallego-Nicholls et al. 2025; Roy 
et al. 2021; Roy et al. 2023; Roy et al. 2024; Roy et al. 2024; Suárez Giri and Chaparro 
2023).

6. Conclusion

This study introduces RGB-ER, a novel graph-based framework for SDP recommen-
dation that integrates regional characteristics via interpretable knowledge structures. 
By incorporating graph pruning and attention mechanisms, RGB-ER captures spatial, 
cultural, and historical heterogeneity, achieving superior performance over existing base-
line models. The model demonstrates strong practical value as a data-driven decision- 
support tool, facilitating the design of regionally adaptive strategies aligned with global 
SDGs and local policy priorities. In the case study of Fujian Province, RGB-ER achieved 
a 79% alignment with government planning documents, underscoring its potential to 
inform resource allocation and guide sustainable regional transformation.

Looking ahead, further research should aim to enhance RGB-ER’s capacity to reflect 
policy dynamics and real-world complexity. Key directions involve incorporating stake-
holder preferences and institutional dimensions, extending to dynamic and adaptive 
planning through reinforcement learning, and enhancing interpretability via causal 
analysis and scenario-based decision support. By integrating technical innovation with 
governance awareness, RGB-ER contributes to the advancement of intelligent, adaptive, 
and context-sensitive tools for sustainable development planning.
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