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Behavioral/Cognitive

The Emergence of Tuning to Global Shape Properties of
Radial Frequency Patterns in the Ventral Visual Pathway

Samuel J. D. Lawrence,1 Elisa Zamboni,1,2 Richard J. W. Vernon,1,2 André D. Gouws,2 Alex R. Wade,1,2,3 and
Antony B. Morland1,2,3

1Department of Psychology, University of York, York, UK, YO10 5DD, 2York Neuroimaging Centre, University of York, York, UK, YO10 5NY,

and 3 York Biomedical Research Institute, University of York, York, UK, YO10 5DD

Radial frequency (RF) patterns, created by sinusoidal modulations of a circle’s radius, are processed globally when RF is low.

These closed shapes therefore offer a useful way to interrogate the human visual system for global processing of curvature.

RF patterns elicit greater responses than those to radial gratings in V4 and more anterior face-selective regions of the ventral

visual pathway. This is largely consistent with work on nonhuman primates showing curvature processing emerges in V4, but

is evident also higher up the ventral visual stream. Rather than contrasting RF patterns with other stimuli, we presented

them at varied frequencies in a regimen that allowed tunings to RF to be derived from 8 human participants (3 female). We

found tuning to low RF in lateral occipital areas and to some extent in V4. In a control experiment, we added a high-fre-

quency ripple to the stimuli disrupting the local contour. Low-frequency tuning to these stimuli remained in the ventral vis-

ual stream, underscoring its role in global processing of shape curvature. We then used representational similarity analysis to

show that, in lateral occipital areas, the neural representation was related to stimulus similarity, when it was computed with

a model that captured how stimuli are perceived. We therefore show that global processing of shape curvature emerges in

the ventral visual stream as early as V4, but is found more strongly in lateral occipital regions, which exhibit responses and

representations that relate well to perception.

Key words: global processing; lateral occipital cortex; radial frequency; shape processing; V4; visual cortex

Significance Statement

We show that tuning to low radial frequencies, known to engage global shape processing mechanisms, was localized to lateral

occipital regions. When low-level stimulus properties were accounted for such tuning emerged in V4 and LO2 in addition to

the object-selective region LO. We also documented representations of global shape properties in lateral occipital regions, and

these representations were predicted well by a proxy of the perceptual difference between the stimuli.

Introduction
Processing of increasingly complex spatial features occurs up the
hierarchy of the ventral visual pathway. At the start of the path-
way, V1 processes orientation (Hubel and Wiesel, 1968), while
areas high up the pathway respond selectively to real-world
objects (Tanaka, 1996; Grill-Spector et al., 2001) or faces
(Desimone et al., 1984; Kanwisher et al., 1996; Tsao et al., 2006).

The intermediate levels of the pathway process spatial features,
such as curvature (Kourtzi and Connor, 2011), which has long
been seen as part of pattern vision (Riggs, 1973) and is the focus
of the present paper.

Pioneering work assessed responses in the intermediate area
V4, where many cells had response preferences to polar and
hyperbolic stimuli, which exhibited curvature, over the straight
lines of cartesian stimuli (Gallant et al., 1993, 1996). Others have
shown in experiments using angles and curves (Pasupathy and
Connor, 1999) and simple curved shapes (Pasupathy and
Connor, 2001) how V4 neurons are selective to boundary con-
formations (Pasupathy et al., 2020). V4 neurons also respond to
other information (Zeki, 1973) with domains specific to curva-
ture, orientation, and color being evident (Conway et al., 2007;
Roe et al., 2012; Hu et al., 2020; Tang et al., 2020). Experiments
using naturalistic visual stimuli, from which curvature was quan-
tified, have shown that curvature processing is not limited to V4
and that two regions more anterior in the ventral visual pathway
also respond to curvature in macaque (Yue et al., 2014). V4 has
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therefore been referred to as “curvature emergent” as areas ante-
cedent to it do not appear to process curvature (Hu et al., 2020).

In humans, a role for V4 and other extrastriate areas in proc-
essing curvature has also been found. Wilkinson et al., found
greater responses in V4 to concentric than parallel patterns, sug-
gesting that there was a preference for curvature in V4 (Wilson
et al., 1997). However, it was only in the more anterior fusiform
face area (FFA) that responses to the concentric, curved patterns
were greater than the straight lined radial patterns. A preference
for concentric curvature (defined in arrays of Gabors) was found
in V4, but also earlier in V3 (Dumoulin and Hess, 2007). We
have found that shape curvature representations emerge in areas
LO1 and LO2, which could be considered as one step further up
the object processing pathway than V4 (Vernon et al., 2016). Yue
et al. (2020) found preferences to curvature in V4 and also to
some extent in V3 and also in regions that were more anterior in
the ventral visual pathway, where more complex aspects of cur-
vature were processed (Yue et al., 2014). The lateral occipital
complex (LOC) (Malach et al., 1995; Grill-Spector et al., 2001)
has also been found to have a shape representation based on
shape features (Haushofer et al., 2008; Op de Beeck et al., 2008;
Drucker and Aguirre, 2009). There is, therefore, reasonably
broad agreement between there being an emergence of curvature
processing in the human and macaque brain in V4 and that cur-
vature information is processed further in regions higher up the
ventral pathway.

The stimuli used to investigate curvature have been justifiably
varied with configurations spanning highly controlled, narrow
band stimuli (Dumoulin and Hess, 2007) to more naturally real-
istic images (Yue et al., 2020). Here, we use radial frequency (RF)
patterns, which have been presented in studies of processing of
shape curvature in humans (Wilkinson et al., 2000) and nonhu-
man primates (Tang et al., 2020). RF patterns have also been a
mainstay of psychophysical literature that has shown exquisite
sensitivity to (Wilkinson et al., 1998) and global processing of
low RF stimuli (Hess et al., 1999; Jeffrey et al., 2002; Loffler et al.,
2003; Bell et al., 2007b; Lawrence et al., 2016). We predicted
therefore that response preferences to, and representations of,
low RFs will emerge in the ventral visual pathway.

Materials and Methods
Rationale
The aim of the study was to understand the tuning to RF in the following
ROIs; V1-V4, LO1, LO2, and LO. While these regions together do not

correspond to the complete ventral visual pathway, we predicted that
global processing of shape would emerge in at least one of these regions.
We followed a paradigm developed by Harvey et al. (2013) to allow tun-
ing to a visual parameter, in their case numerosity and in our case RF, to
be extracted from brain responses to a specific and effective stimulus
regimen. The approach lends itself to in-depth assessment of relatively
few individual participants, in our case eight, like the study by Harvey et
al. (2013), by acquiring a large amount of data (;5 h) from each individ-
ual. The paradigm is also well suited to establishing whether there are
topographic mappings of the parameter under investigation. In our
study, however, we found no strong evidence of a topographic mapping
of RF. Our investigation therefore followed the general approach of eval-
uating univariate and multivariate responses within the ROIs that were
identified in individuals from retinotopic mapping and functional local-
izer experiments to establish what RF tuning properties those regions
exhibited (Fig. 1). In the sections that follow, the participants we tested
are described followed by the MRI details, and then the procedures for
retinotopic mapping, LOC localizer, and RF tuning experiments are
given.

Participants
Eight participants (mean age 28.00 years, SD 4.75 years; 5 males) were
recruited from the University of York Psychology Department. All par-
ticipants had normal or corrected-to-normal visual acuity, were naive to
the aim of the study, and gave written informed consent. All participants
completed 5.25 h of scanning in total, including a structural session, a
retinotopic mapping session, an LOC localizer session, and two main RF
tuning sessions. The study was approved by the York Neuroimaging
Center Ethics Committee in accordance with the Declaration of
Helsinki.

MRI
fMRI data acquisition. All imaging data were acquired on a GE 3-

Tesla Sigma HD Excite scanner using a 16-channel half-head coil to
improve signal-to-noise in the occipital lobe. Acquisition parameters
and analysis procedures for each session are described below. Across all
experiments, stimuli presentation were controlled using MATLAB and
Psychophysics toolbox (Brainard, 1997). Stimuli were presented using a
projector and mirror setup (Dukane Image Pro 8942 LCD projector,
pixel resolution 1280� 1024, 60Hz frame rate) at a viewing distance of
57 cm.

Structural scans. We acquired three, 16-channel, T1-weighted
anatomic images (TR = 7.8ms, TE = 3.0 ms, TI = 600 ms, voxel
size = 1� 1� 1 mm3, flip angle = 12°, matrix size 256� 256� 176,
FOV= 25.6 cm), one 8-channel T1-weighted anatomic image to aid
alignments (TR = 7.8ms, TE = 2.9 ms, TI = 450 ms, voxel size = 1.13 -
� 1.13� 1 mm3, flip angle = 20°, matrix size 256� 256� 176,
FOV= 29 cm), and one T2*-weighted fast gradient recalled echo

Figure 1. Typical data for an individual participant from the retinotopic mapping, LOC localizer, and stimulus localizer experiments for a single subject. A, Retinotopic mapping was used to

identify ROIs V1, V2, V3, LO1, LO2, V4, VO1, and VO2. B, An objects versus scrambled objects localizer was used to identify LOC as a cluster of object-selective voxels in lateral occipital cortex.

We analyzed only the posterior aspect of LOC, which we refer to as LO. C, A stimulus localizer experiment was used to identify voxels in visual cortex that responded to the stimuli. All ROIs

were constrained to only include these voxels to ensure that all analyses only considered voxels within the stimulus representation.
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scan (TR = 400 ms, TE = 4.3 ms, voxel size = 1� 1� 2 mm3, flip
angle = 25°, matrix size 128� 128, FOV = 26 cm).

T1-weighted anatomic data were used for coregistration and gray-
white matter segmentation. To this end, the three 16-channel T1 scans
were aligned and averaged together. We then divided this average by the
T2*-weighted data to improve gray-white matter contrast and partially
correct for the signal drop-off caused by use of a half-head coil. The
resulting average T1 was then automatically segmented into gray and
white matter using FreeSurfer (Fischl, 2012) and, where necessary, man-
ually improved after visual inspection using ITKGray (https://web.
stanford.edu/group/vista/cgi-bin/wiki/index.php/ItkGray).

Retinotopic mapping
Each participant completed 6 wedge scans (size: 90°, rotating
counterclockwise) and 2 expanding ring scans for this session
(TR = 3000 ms, TE = 30 ms, voxel size = 2� 2� 2 mm3, flip
angle = 90°, matrix size 96� 96� 39, FOV = 19.2 cm). Each scan
contained 8 cycles of wedges/rings, with 36 s per cycle, traversing
a circular region of radius 14.34 deg. Both wedges and rings were
high contrast (.98%, 400 cdm�2) checkerboard stimuli that flick-
ered at a rate of 6 Hz. Participants were instructed to attend to a
central red fixation cross throughout the scans.

We performed standard analysis on the retinotopy data (Wandell et
al., 2007), as specified previously (Baseler et al., 2011). For each partici-
pant, we identified V1-V3 as our early retinotopic regions, V4 for com-
parison with Macaque literature, and LO1/LO2 (Larsson and Heeger,
2006) as potential transitionary regions between retinotopic and object-
based representations (Silson et al., 2013; Vernon et al., 2016). All ROIs
were identified in both hemispheres for all participants; however, as we
had no a priori reason to suspect hemispheric differences, all ROIs were
collapsed across hemispheres.

LOC localizer
To identify the LOC, each participant performed three 8min localizer
scans (imaging parameters were identical to those used for retinotopy).
Each scan comprised 16 interleaved objects and scrambled objects blocks
in an ABAB design format. Each block lasted 15 s, with one stimulus
presented per second (0.8 s presentation, 0.2 s interstimulus interval). To
ensure participants attended to the stimuli throughout the session, they
performed a one back task in which there could be one, two, or no
repeated items within a given block, while maintaining fixation at a red
central cross. All stimuli were presented on a full screen mid-gray back-
ground (200 cdm�2), and there were no baseline/rest periods between
blocks.

Stimuli comprised 225 easily recognizable grayscale object images.
Background information was removed and image histogram was equal-
ized. All objects were set to subtend 4� 4 degrees visual angle on aver-
age. The scrambled object images were obtained by splitting the object
images into squares of 0.8� 0.8 degrees of visual angle in size. Any
squares lying within the convex hull of the object were then randomly
permuted and rotated. This removed any coherent form, while preserv-
ing both the coarse global shape profile and local details. Furthermore, a
Gaussian filter (SD 1px) was applied to both object and scrambled image
sets.

Localizer data were analyzed using FEAT (FMRI Expert
Analysis Tool; Worsley, 2001). At the first (individual) level, we
removed the first three volumes and used a high-pass filter cutoff
point of 60 s to correct for low-frequency drift. Spatial smoothing
was set to 4 mm and FILM prewhitening was used. Head move-
ments were corrected for (MCFLIRT), and the resultant six motion
parameters were entered as confound covariates in the GLM
model. To combine data within participant, we ran fixed-effects
analysis with cluster correction (Z. 5.0, p, 0.001).

Gray matter-restricted, cluster-corrected significant activity from the
LOC localizer was rendered on the individual surface of each participant.
LO was manually defined as the largest cluster in each hemisphere,
avoiding overlap with the retinotopically identified nearby LO2 region.
These clusters were then mapped back to gray matter, collapsed across
hemispheres.

Stimulus localizer
To restrict ROIs to the stimulus representation, participants performed a
localizer scan (imaging parameters were identical to those used in the
retinotopic mapping session). Each scan started with a 10 s fixation pe-
riod, followed by 5 blocks of standard and 5 blocks of control RF stimuli
(see RF stimuli), presented pseudo-randomly and interleaved with fixa-
tion blocks. In each block, the seven individual stimuli (RF2-RF7 and
RF10 patterns) were presented twice, resulting in a 14 s block (stimuli
were on screen for 0.8 s, followed by a 0.2 s interstimulus interval).
Patterns were presented centrally against a mid-gray background, and
participants were instructed to fixate on a black central cross while per-
forming an oddball task on the RF stimuli (1 in 10 were contrast
reversed).

Data analysis followed the description in the LOC localizer section,
with the exception that 5 dummy volumes were removed to allow the
scanner to reach a steady state, and the high-pass filter cutoff point was
set to 84 s. We used cluster correction (Z. 3.1, p, 0.05) to identify sig-
nificant voxels with which to restrict ROIs.

This localizer primarily affected V1-V3, keeping an average of 28.6%,
42.2%, and 52.2% of voxels, respectively. The V4 (89.1%), LO1 (96.3%),
LO2 (85.1%), and LO (88.6%) ROIs were largely preserved.

RF tuning
Each participant completed 2 sessions, each comprising eight, 294 s
scans. In each session, we presented a stimulus set that comprised either
a range of RF patterns, we term the “RF” stimulus set, or those same RF
patterns with the addition of a high (rf = 20) ripple added to them, a set
we term the “RF-ripple” stimulus set. The order of the sessions was
counterbalanced across participants. Imaging acquisition parameters
were identical to those from the retinotopic mapping session apart from
the TR now being set to 2 rather than 3 s.

RF stimuli. RF patterns (Wilkinson et al., 1998) are defined using the
following formula:

r uð Þ ¼ r0 11A sin vu 1 fð Þð Þð Þ

Theta (u ) represents the angles around a circle’s perimeter, allowing
the sinusoidal modulation of that perimeter by altering frequency (v )
and amplitude (A; set to 0.1), rotation can be set by altering phase (f ).
The mean radius (r0), governing the average size of the stimulus, was set
to 2.5° visual angle.

For the RF stimulus set, we used frequencies 2-7, 10, and 20. We also
introduced an additional sinusoidal modulation set to an RF of 20 to pat-
terns RF2-RF7 and RF10 (and RF20 was unchanged) to generate an al-
ternative stimulus set, RF-ripple. The RF-ripple stimuli allowed the
global shape of low RF patterns to be largely preserved but altered the
contrast energy of these stimuli, so they were better matched to those
with higher RF (see Stimulus properties).

To display the shapes, the contours were rendered against a mid-
gray background using the fourth derivative of a Gaussian (Wilkinson et
al., 1998) at 50% contrast, yielding a peak spatial frequency of 2 cycles
per degree.

Stimulus properties. Previous work has shown that spatial frequency
and contrast energy content of RF stimuli can vary with both RF and the
amplitude. Moreover, variations in these stimulus properties captured a
relatively large amount of the multivariate response in visual cortex
(Salmela et al., 2016). In the present study, therefore, we attempted to
account for and change the relationship between RF and contrast energy
and largely equate spatial frequency content of our stimuli.

Figure 2A shows the stimuli we presented: RF stimuli and RF-ripple
stimuli in the top and bottom rows, respectively. The contrast energy of
RF stimuli increases monotonically with RF; but for the RF-ripple stim-
uli, it varies less and is no longer monotonic (Fig. 2B). Because many
neurons respond to contrast and our stimuli exhibit variations in con-
trast, a consideration of how a contrast tuned response may register in
terms of RF tuning is needed. For the RF stimulus set, a contrast tuned
response would register tuning to high RF stimuli, while it would be
tuned to a lower RF (;10) for the RF-ripple stimuli. It is important to
note that these tunings are to RFs that are greater than those that are
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processed globally (,7); and therefore, tunings to shape curvature that
are behaviorally relevant can be disambiguated from tunings that are
driven by sensitivity to contrast.

We also took a precaution to largely equate our stimuli for spatial fre-
quency content. Spatial frequency content can change with amplitude
and RF when the contrast profile of the stimulus is computed from the
radial distance from the RF contour alone (Salmela et al., 2016). We
used the distance perpendicular from the RF contour as the input to the
fourth derivative function that defined the contrast profile of our stimuli.
Our approach has the effect of all but removing and variation in spatial
frequency content (Fig. 2C). The alternative rendering of the profile uses
only the radial distance from the contour to compute the fourth deriva-
tive, which is entirely appropriate at threshold, but does introduce
greater variability in spatial frequency content for suprathreshold stimuli
that we use (Fig. 2C).

The approaches we took to control for contrast and spatial frequency
content of stimuli allow us to investigate responses that are related to
low RFs that are known to be processed globally and differentiate them
from responses that are largely driven by variations in contrast energy
and spatial frequency (Salmela et al., 2016). It should also be noted that
orientation content of the stimuli scales with RF of the RF stimuli in
much the same way as contrast energy but will again be largely equated
in the RF-ripple stimuli, so we will refer to contrast energy and orienta-
tion content together when discussing the results.

Experimental design. Each RF tuning scan started with a 10 s fixation
period, followed by two cycles of stimulus blocks. Each block lasted 6 s,
during which each RF pattern was repeated 6 times (0.8 s presentation
and 0.2 s interstimulus interval; phase of each pattern was randomly
selected between the range of 0:60:300 degrees). The order in which the
stimuli were presented followed the design used by Harvey et al. (2013):
a ramp-up sequence, with RF2-RF7 and RF10, followed by 24 s of RF20
(baseline), and a ramp-down sequence (RF10, RF7-2) followed by
another 24 s of RF20. Each scan terminated with 20 s of fixation to cap-
ture the full hemodynamic response for the final stimulus. The same
procedure was used for both standard RF stimuli and RF-ripple stimuli.
Participants performed the same oddball (contrast reversal) task as
described for the stimulus localizer to ensure attention was maintained.

Modeling. The data were first preprocessed using FEAT: the first 5
volumes were removed to allow magnetization to reach a steady state,
followed by high-pass filtering (cutoff 100 s), slice timing correction, and
motion correction (MCFLIRT). No spatial smoothing was applied to the
data, and all runs were coregistered to each participant’s high-resolution
structural space. We then extracted and concatenated the time series of
all voxels from the restricted ROIs. Additionally, to create a null distribu-
tion for modeling, time series were extracted from 20,000 randomly
selected voxels that were located in the white matter underlying the gray
matter ROIs.

To model the data, we applied a Gaussian function to our experi-
mental design, parameterized by a mean preferred RF plus a tuning
width (SD). This was convolved with a standard double g hemodynamic

response function (hrf) to estimate the BOLD response we would
expect based on the respective tuning parameters. We did not limit
mean RF and its width to integers because each voxel will pool
responses over a population of neurons exhibiting different tunings.
We did also test logarithmic Gaussian models, but no improvements
were found.

This Gaussian predictor was concatenated for all runs; we also
included separate run-wise predictors for the temporal derivative (to
allow slight temporal deviations across runs), a constant, a predictor for
oddball events (again convolved with default hrf), and motion confound
covariates. All run-wise predictors were set to zero outside their respec-
tive runs, and all predictors were high-pass filtered to match the data.
After fitting these predictors to our data, we took the sum of squared
residuals as our estimate of model accuracy.

To perform the fitting, for each voxel, we first tested ;3500 initial
models, with means ranging �2.5:20 (increments of 0.25) and tuning
widths (SDs) ranging 0.5:20 (0.5 increments). The best fit for each voxel
was then further refined using nonlinear least squares optimization
(MATLAB’s lsqnonlin). The fitting limits were set to �5�mean� 30
and 0, SD� 30; constraining the mean preferred RF to be reasonably
close to our stimulus range to enforce plausible fits.

The white matter voxel fits were used to generate a null distribution
of fit accuracy; and from this, we calculated (two-tailed) significance for
our fitted ROI voxels. We only kept ROI voxels that remained significant
after correction for multiple comparisons (accounting for all included
ROI voxels using Benjamin and Hochberg FDR correction). We also
excluded voxels whose fitted parameters were within 0.1 units of our fit-
ting limits (i.e., mean � �4.9 or� 29.9; SD� 0.1 or� 29.9), as we may
not have found the best possible fit for such voxels; and even if we had,
the interpretability of fits so close to the limits would be questionable.

To assess the distribution of the fits across participants, we nonpara-
metrically estimated the probability density functions of each ROI using
kernel density estimation (ksdensity in MATLAB; normal kernel, default
bandwidth, 200� 200 equally spaced points encompassing fitting
limits). We then graphically inspected the resulting distributions for
each ROI via density plots. We preempt those results here to allow a
fuller description of the methods we used to assess them quantita-
tively (below): two clusters emerged (see Figs. 2, 3) tuned to low and
high RFs.

To further quantify and characterize the properties of the fits, we
applied a clustering analysis using density-based spatial clustering
(dbscan in MATLAB) to the model fit parameters derived from the
whole brain. Both preferred mean (RF tuning) and SD (tuning width)
were first standardized (z scores) to ensure neither dominated the clus-
tering, and we specified a minimum of 500 voxels to form a cluster. The
search radius (« ) was first estimated using a k-distance graph, then man-
ually adjusted to best segment the observed clusters, while including as
many voxels as possible. The preferred RF and corresponding tuning
widths were then extracted for each resulting cluster. To inform on the
distribution of RF tuning within each ROI, we calculated the proportion
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Figure 2. The RF stimuli and their contrast and spatial frequency properties. A, RF stimuli presented to participants (top row) and their RF-ripple counterparts (bottom row). Exemplars are

shown for a single orientation only. During the acquisition of BOLD responses, however, six orientations of each of the stimuli shown were presented. B, The root-mean-square (rms) contrast

of the stimuli computed as the mean over the annulus that capture all contrast variations of the six orientations presented. Filled circles represent RF stimuli. Open squares represent RF-ripple

stimuli. C, Top two panels represent different rendering approaches; the luminance profile is computed on the basis of the radial distance from the contour (left) or the perpendicular distance

from the contour (right). The rendering techniques result in different spatial frequency variations between our stimuli as shown in the correlation between the two-dimensional amplitude spec-

tra of stimuli at different RFs (bottom two panels). Moreover, radial rendering produces lower and more varied correlation between spatial frequency content of RF stimuli (bottom left) than

the rendering derived from the perpendicular distance that was used in the present study (bottom right).
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of each ROI’s voxels that fell into a given cluster obtained from the
whole-brain analysis approach.

Representational similarity analysis (RSA). Similarity of neural rep-
resentations between RF patterns in each ROI and across stimulus sets
was tested using multivoxel pattern activity analysis. Specifically, voxel-
wise patterns of activation for each session, ROI, and participant were
extracted by first concatenating all scans within one session, and then
building a corresponding GLM model. Here, each RF pattern, apart
from RF20, which was treated as “baseline” common to both sessions,
was entered as a regressor of interest. The relative temporal derivatives,
together with confound regressors modeling the oddball events in each
scan and the six FSL-generated motion regressors, were added to the
model. After extracting activity patterns, we ran RSA by correlating the
voxel-wise activity patterns for all pairwise combinations of RF patterns
for each ROI and stimulus set. We then established predicted similarity
matrices on the basis of RF differences between items in each stimulus
set. Two stimulus predictors were used: one based on the log ratio of
stimulus item pairs and the other on the difference in frequency of the
pairs. The former prediction is a better approximation to how RF is per-
ceived: unit differences between low RFs, such as 2 and 3, are perceived
as far greater than the same differences between high RFs, such as 19
and 20.

Because the stimulus regimen was optimized for pRF methods
(Harvey et al., 2013) and not for RSA, there was a potential for statistical
dependence between responses to stimuli that neighbored each other in
time, which in our case frequently meant neighboring RFs. We applied
prewhitening (as specified above) to reduce statistical dependencies of
this nature. However, separate to our RSA, we also used Leave One Out
(LOO) cross validation to gain an insight to the reliability of patterns for
identical stimuli, which are not as susceptible to statistical dependency
because stimuli are not neighbors in time. In addition, we also extracted
similarity matrices for white matter tissue (as specified above) to serve as
a measure of the latent structure of the similarity that arises from resid-
ual statistical dependence and not stimulus-related responses. This simi-
larity matrix was then used as a third predictor of the similarity matrices
extracted from gray matter ROIs.

Statistical analysis
The design of the study is repeated-measures with a relatively small
number of participants examined in detail. We implement inferential
statistical tests, most frequently ANOVAs, to examine effects of stimulus
set and ROI on outcome measures. In the cases where interactions were
observed, we followed up with appropriate post hoc F and t tests to
examine specific effects. Data met assumptions for the tests, although
sometimes only after appropriate transformation of the data to ensure
equal variance assumptions were met. The raw and transformed data are
presented in the manuscript. We also used correlation as a measure of
relationships between variables and subjected them to inferential tests

after appropriate Fisher transformation of the data to ensure normality.
With a relatively small number of participants, the statistical tests used
reached significance only when the vast majority, if not all, participants
exhibited an effect, consistent with Type I errors being appropriately
minimized.

Results
To evaluate the ventral pathway’s responses to, and representation
of, RF patterns, we conducted the following analyses and report
on them under different headings within Results. First, we exam-
ined the distribution of RF tuning and bandwidths across voxels
that fell within all the ROIs we identified, and then separately for
each ROI. Second, we performed a quantitative analysis of low
and high RF tuning clusters that were evident in the distributions.
This allowed us to examine the effects of two stimulus sets (RF
and RF-ripple) and ROI on the tuning to RF. Third, we examined
the representation of RF in the ventral pathway using RSA.

The distribution of RF tuning and bandwidths
Our first assessment of the RF tuning properties was to scatter
plot (Fig. 3) model parameters, the mean (m) and SD (s ) for
each participant collapsed over all ROIs. This serves two pur-
poses: (1) it captures what the model characteristics are and
whether they cluster; and (2) whether they vary across partici-
pants or between the stimulus sets (RF-stimuli and RF-ripple
stimuli). The scatter plots show that models that survive statisti-
cal thresholding fall into two clusters in each participant: one in
the bottom left of each plot (in red) corresponding to narrow
tuning to low RFs, which are globally processed, and the other
located more to the right in the plot (in blue) reflecting broad
tuning to higher RFs. The location of the clusters in the scatter
plots varies little across participants. Furthermore, the addition
of the ripple to the stimuli shifts the cluster centered on high RFs
to a lower RF, but the low RF tuned cluster appears largely
unchanged. Because we have assessed responses from a relatively
small number of participants in detail, it is important to demon-
strate that the general characteristics of the signals we record are
shared across all participants (as shown in Fig. 3). This feature
has a strong bearing on inferential statistics that we present later,
which are only likely to show significant effects if all participants
of a small group share very similar response characteristics.

The ellipses shown in the scatter plots capture 95% of the
models in each cluster, and we use the coordinates of center of

Figure 3. Model fits for each individual. Each panel plots the RF tuning center (m) and bandwidth (s ) for every model that exceeded statistical thresholding. Top and bottom rows represent

data for the RF and RF-ripple stimuli, respectively. The model parameters fall into two clusters shown in blue and red. Tuning to low RF, with small bandwidths (red), was evident in each par-

ticipant and was largely unchanged for the stimulus set. Tuning to higher RF was also common to all participants (blue) but differed for the different stimulus sets. Inset in each panel, The per-

centage of the voxels identified in localizer scans that survived thresholding (the mean across participants was 76% and 70% for the RF and RF-ripple stimuli, respectively).
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the ellipses as a measure of the cluster’s central tendency. We
also captured the proportion of voxels in the ROIs that survived
thresholding (Fig. 3, inset in each panel). The values are relatively
high (55%-86%) given that the ROIs were defined by high pow-
ered block design experiments that captured responses to the an-
nular region (compared with uniform gray) of the visual field
where stimuli were presented in contrast to the stimulus regimen
used to capture RF tuning in which the target stimuli were pre-
sented for the vast majority of the time.

The data shown in Figure 3 are aggregated in a two-dimen-
sional histogram of the RF tuning and bandwidths (Fig. 4A,C).
As expected from the individual data, two clusters are evident:
one in the bottom left of the histograms, which corresponds to a
narrowband tuning at low RFs; and the other more centrally

located in the histogram and corresponding to broadband tuning
to higher RFs. Superimposed on the histogram are the cluster
centers for each participant, which demonstrate narrow disper-
sion of this measure between participants.

Examples of the RF tuning functions and the way that they
model the BOLD time series are shown in Figure 4B, D. For the
RF stimuli, the representative tuning to the high RF (m = 15.1),
which is also relatively broadband (s = 11.7), exhibits a broadly
monotonic increase in response with increasing RF (Fig. 4B, left,
top), similar to the contrast energy of the stimuli that are shown
in Figure 2B. For the RF-ripple stimuli (Fig. 4D, left, top), the
representative tuning to high RF is centered on a lower RF (m =
10.6) and has a higher bandwidth (s = 13.9) than for the RF
stimuli. The tuning function (Fig. 4D, left, top) no longer has the

DC

BA

Figure 4. RF tuning properties of visual cortex. A, C, Grayscale renderings of a two-dimensional histogram of the modeled RF tuning of voxels in all ROIs (V1-V4, LO-1, LO-2, and LO) for the

RF and RF-ripple stimuli, respectively. Modeled tunings were retained only if significant, which was the case for 70% (RF) and 68% (RF-ripple) of voxels in the stimulus representation. Open

circles represent the central tendency of the individual plots (see Fig. 3). Tunings that are representative of the clusters found at low and high RF are shown in B, D for the RF and RF-ripple

stimuli, respectively. Left, The population neural response as a function of RF. Top and bottom graphs represent high- and low-frequency cluster tunings. Right, Examples of time series data

(black) and the best fitting model (thick gray) derived from the population neural responses shown in the adjacent graphs. B, D, Top rows represent responses that capture contrast and orien-

tation content of the stimuli as shown in Figure 2, with a largely monotonic increase in response as a function of RF for the RF stimuli, but not for the RF-ripple stimuli. B, D, Bottom rows rep-

resent tunings to different RFs, 2.2 and 6.9, to illustrate the range of tunings observed in the low-frequency cluster common to both the RF and RF-ripple stimuli.
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monotonic relationship between RF, and there are smaller var-
iations in response as a function of RF overall, again capturing
quite well the relationship between contrast energy and RF of
the RF-ripple stimuli shown in Figure 2B. The tunings to high
RF appear therefore to be common and are consistent with
responses driven by contrast and likely orientation rather than
global shape properties.

The tunings to low RFs (Fig. 4B,D, bottom left) do not exhibit
response profiles that fit variations in contrast energy or orienta-
tion content of the stimuli for either the standard RF of RF-ripple
stimuli. Moreover, the highest contrast stimuli are nonpreferred
stimuli for these tuning functions. As a result, the best fitting
models derived from the tunings to low RF differ markedly from
those derived from the high RF tunings (Fig. 4B,D, graphs to the
right in the top and bottom rows). The low-frequency tuning
clusters for both the RF and RF-ripple stimuli cover the range of
RFs that are processed globally;;2-7. We show selected time se-
ries and model fits for RFs near the limits of this range, namely,
2.2 in Figure 4B and 6.9 in Figure 4D, to capture how the time se-
ries reflect different (2.2 vs 6.9) low-frequency tunings.

The next step was to assess the tuning preferences of each
ROI (averaging across participants). We did this by computing
probability density functions using kernel density estimation.
This approach is broadly analogous to a smoothed 2D histogram
and makes no assumptions about the underlying distribution of
the data, allowing for further examination of the RF tuning dis-
tributions for different ROIs and for the RF and RF-ripple stim-
uli (Fig. 5). Predictably, this approach revealed the same two
general tuning clusters that were detected when data were col-
lapsed across ROIs (Figs. 3, 4). However, the high- and low-fre-
quency tuning clusters occurred to different extents in different
ROIs. The high-frequency tuning dominated in early visual cor-
tex (V1-V3), while the low-frequency tuning became increas-
ingly prominent up the visual hierarchy and dominated in LO.
There were also understandable differences between the stimulus
conditions. For the RF-ripple stimuli, the tuning to high frequen-
cies was less common overall and largely absent in LO-2 and LO.
In all regions exhibiting the high-frequency tuning, it was also
centered on lower frequency for the RF-ripple than the RF stim-
uli as previously noted. The tuning to low RFs appears less

affected by the change from RF to RF-ripple stimuli and is there-
fore more consistent with mechanisms processing global shape
properties.

Quantitative analysis of low and high RF tuning clusters
The visualization of the data above was for the mean data across
all participants. To isolate the two clusters for each individual,
we took all fitted voxels (initially agnostic of ROI) per stimulus
set and participant and clustered them. This was straightforward
for RF stimuli as the two clusters were well separated, while clus-
ters were separated less for the RF-ripple stimuli; nonetheless,
the clustering results showed notable consistency across partici-
pants (as demonstrated by 95% CIs below).

We found the “high-RF” cluster shifted and broadened
across stimulus conditions as can be seen in Figures 3 and
4. Specifically, the mean preferred RFs in the RF and RF-ripple
experiments were 14.50 and 9.90 (95% CIs: 13.92-15.09; 9.95-
10.26, respectively), and tuning widths were 11.41 and 14.94
(95% CIs: 10.68-12.15; 13.62-16.26, respectively). This cluster
appears to encompass voxels that have no specific preference to
RF, with a bias toward higher-frequency stimuli, likely because
of their greater contrast energy and orientation content. As
such, the leftward shift and broadened tunings for RF-ripple
versus standard RF stimuli make sense; the RF-ripple stimuli
had higher contrast energy and orientation content (introduced
by the RF 20 ripple) that varied less across the stimulus set, and
so voxels that previously preferred (e.g., RF20) would now be
expected to respond more equally across the stimulus range.

The second “low-RF” cluster was almost identical across stim-
ulus sets; the mean preferred RFs for the RF and RF-ripple
experiments were 4.80 and 4.76 (95% CIs: 4.46-5.13; 3.95-5.57,
respectively), and tuning widths were 2.03 and 2.08 (95% CIs:
1.68-2.37; 1.65-2.51, respectively). The comparable tunings
across both sessions suggest that there is a subset of voxels that
are sensitive to shape, defined by RF changes, in a more global
sense, rather than sensitivity to local contour information alone.
Given that this cluster analysis was performed over all ROIs, we
further mapped the clusters to the ROIs to determine where the
voxels that had a preference for the low and high RFs could be
found.

B

A

Figure 5. A, B, RF tuning for ROIs. The model fitted parameters, preferred RF tuning and tuning width, mapped onto two dimensions. The grayscale maps the relative number of model

fits. Darker colors represent more voxels. Two clusters of model fits emerged: one with broad tuning to high RF that dominated model fits in early visual areas and another narrowly tuned to

low RF that emerged in V4 and are prominent in lateral occipital areas.
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To map the two clusters (low-RF, high-RF) from each stimu-
lus set to individual ROIs, we calculated the proportion of each
ROI’s voxels that fell into a given cluster. We assessed propor-
tions for both clusters as voxels could be outside the two clusters
(i.e., classed as “noise”; see gray data points in the scatter plots
shown in Fig. 3); so if an ROI had more voxels in one cluster, it
did not necessarily imply a proportional decrease in the other.
The proportions of voxels falling into the low and high clusters
are bar charted in Figure 6A, B for the RF and RF-ripple stimuli,
respectively. In both charts, the proportion of voxels showing
tuning to low frequencies increases up the visual hierarchy and
in LO dominates for the RF-ripple stimuli.

The proportions were arcsine transformed (sin�1Hp) to
meet normality requirement for a 2 � 2 � 7 (Stimulus�
Cluster�ROI) repeated-measures ANOVA, which was applied to
the data. This resulted in a significant three-way interaction
(F(6,42)=5.51, p=2.8� 10�4), which we help illustrate in Figure
6C, where the difference between the transformed proportion of
voxels tuned to high and low frequencies is given for each individ-
ual for each ROI. Evident in each participant’s data in the plot is
the reduced difference between high- and low-frequency tuned
voxels up the visual hierarchy and even greater reduction in this
difference for the RF-ripple stimuli. Subsequent “Cluster�ROI”
ANOVAs also yielded significant interactions between the two
factors (for both stimulus sets, p, 0.001). To follow-up on the
interactions, we ran four one-way repeated-measures ANOVAs
exploring the main effects of ROI separately per stimulus condi-
tion and cluster.

ROI had a significant effect on the proportion of voxels
mapped onto each cluster tuned to high or low RF patterns for
both RF and RF-ripple stimuli (RF high/low: F(2.20,15.37)=24.12,
p=1.3� 10�5; F(2.25,15.77)=12.90, p= 3.5� 10�4, respectively;
RF-ripple high/low: F(2.44,17.11)=23.98, p=5.1� 10�6; F(1.80,12.59)=
13.54, p=0.001, respectively). While this was informative, suggest-
ing that it is possible to differentiate a preference in processing
local (high RF) versus global (low RF) shape information, it did
not allow us to identify where RF tuning preferences began to
diverge from low-level representations. To this end, we ran
planned comparisons, with V1 as “baseline” where, on average,
64.63% of voxels were in the high RF cluster, compared with
13.67% in the low RF cluster when the RF stimuli set was used.
Similarly, in the RF-ripple session, 57.83% and 19.85% of voxels
were mapped to the high and low RF clusters, respectively.

First, for the high radial cluster, in RF experiment, we found
that V2 and V3 had significantly more high RF tuned voxels
compared with V1 (V2: 73.35%, p= 3.8� 10�4; V3: 72.47%,
p= 0.005), whereas only LO had significantly fewer high RF
tuned voxels (46.61%, p= 2.9� 10�4). In the RF-ripple experi-
ment, both LO2 and LO had significantly fewer high RF tuned
voxels (LO2: 42.57%, p=0.012; LO: 47.11%, p= 0.001), and only
V2 had significantly more (65.58%, p=0.007). No other results
were significant (all p. 0.090).

For the low RF cluster, LO had significantly more low RF
tuned voxels compared with V1 across both experiments (RF
experiment: 34.36%, p= 0.001; RF-ripple experiment: 47.11%,
p= 1.4� 10�4). In addition, in the RF-ripple experiment, we also
found greater proportions of low RF tuned voxels in V4 and LO2
(V4: 27.57%, p= 0.019; LO2: 42.57%, p=0.024). No other results
were significant (all p. 0.062).

In summary, as highlighted earlier, tunings for high RFs dom-
inate in early visual cortex (V1-V3). Conversely, LO consistently
diverged from V1, by showing the greatest preference for low RF
patterns. However, V4 and LO2 did show differences from V1
for the RF-ripple experiment when variations in low-level con-
trast and orientation content in the stimuli were much reduced.

Representation of RF in the ventral pathway
One consequence of LO’s low RF tuning preference is that we
would expect its pattern of activity to show consistency across
the RF and RF-ripple stimuli, as both sets of stimuli share com-
parable global profiles. Conversely, for an ROI such as V1, which
is likely responding to the contrast energy and orientation of our
stimuli, we would expect different patterns of activation for the
two sets of stimuli.

To test this, we used multivoxel pattern activity to extract the
voxel-wise patterns of activation related to each stimulus pattern
for each stimulus set, ROI, and participant. RSA was then com-
puted by correlating the voxel-wise activity patterns for all pair-
wise combinations of RF patterns (for each ROI per stimulus
set). This generated similarity matrices, capturing neural similar-
ity across RF patterns, which are shown in Figure 7A for V1 and
lateral occipital ROIs. For the RF stimulus set, the similarity in
patterns of activation is relatively high across all regions. For the
RF-ripple stimulus set, large changes in similarity are observed
for V1 (and other ROIs, V1-V4). In lateral occipital ROIs, simi-
larity is better preserved from LO-1 through to LO. In LO, for
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Figure 6. The proportion of model fits that fell into high (light bars) and low (dark bars) RF clusters. A, Data are shown for the RF stimuli. B, Equivalent data for the RF-ripple stimuli.

Significant differences from V1 proportions: *p , 0.05, **p , 0.01, ***p , 0.001, as computed from planned contrasts. C, The data in A, B were submitted to a three-way ANOVA after

transforming the data to ensure they met the assumptions of equal variance. Transformed data are plotted to capture the difference between voxels tuned to high and low RFs for each partici-

pant across all ROIs and the two stimulus sets, which underpins the three-way interaction reported in the text.
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example, the similarity matrix for RF and RF-ripple stimuli is
largely unchanged (Fig. 7A). In addition, to assess how temporal
correlations could result in statistical dependencies, we also com-
puted similarity matrices for a white matter ROI, which show
low correlations overall; and although there is some structure to
the similarity matrices, it does not appear to follow the structure
found in gray matter ROIs (Fig. 7A).

To test statistically how well the similarity was preserved
across stimulus conditions, for each participant’s gray matter
ROI, we correlated that ROI’s similarity matrix for the RF stimuli
(Fig. 7A, top row) with its corresponding RF-ripple similarity
matrix (Fig. 7, bottom row) and ran one-sample t tests on the
(Fisher Z-transformed) results (Fig. 7B). We found that V1 had a
significant negative correlation (t(7) = �3.55, p=0.009), but only
LO1, LO2, and LO showed significant positive correlations
(t(7)= 2.61, 4.27, 5.98, p=0.035, 0.004, 0.001, respectively). No
other results were significant (all p. 0.305).

While it is reassuring to observe that our stimulus manipula-
tion (RF vs RF-ripple) changes the similarity matrices selectively
across ROIs, we also need to examine whether statistical depend-
encies that result from the stimulus regimen optimized for pRF
analyses might explain some of the structure in the similarity
matrices. Here, we present similarity matrices again, but now
computed with cross validation using the LOO approach (Fig.
8A). This yields matrices that capture correlations between iden-
tical stimuli (the diagonal elements) for which statistical depend-
ence is much less than for stimuli that are presented next to each
other in time. If statistical dependence were driving the similar-
ity, diagonal elements would exhibit low correlations relative to
those not on the diagonal. This does not appear to be the case,
however, in the matrices shown (Fig. 8A). To examine the diago-
nal elements still further, we computed their rank compared
with mean of correlations in the same row and column. These
are plotted in frequency histograms in Figure 8B, where it is
evident that, for the lateral occipital ROIs, the majority of the
correlations were highest (Rank 1) for the diagonal elements.
In V1, this is not the case. We show in Figure 8C the ranks for
all ROIs and this indicates that, although correlations for the
diagonals are often high (as shown by the high frequency of
Rank 1) for all ROIs, it is only for the lateral occipital regions
that they are consistently high across stimulus conditions. It is
possible, therefore, that, in early ROIs, statistical dependence
may play a role in the structure of the similarity matrices.
Therefore, we take this into account in our attempts to predict
what is driving the structure of the similarity matrices we orig-
inally computed.

Before embarking on predicting the similarity matrices on the
basis of stimulus properties below, we fist examine whether the
similarity matrices for white matter (as previously shown in Fig.
7A), which we refer to as the latent model, predict the similarity
matrices in gray matter ROIs. In short, the structure in the white
matter matrices is generally a poor predictor of the structure in
gray matter matrices, with uniformly low or negative correlations
for the RF stimuli and only significantly positive correlations for
V1 and V3 for the RF-ripple stimuli (Fig. 9A). Importantly, for
regions in lateral occipital cortex no significant positive correla-
tions were observed, meaning we can rule out statistical depend-
ence explaining the structure in their similarity matrices.

To test whether the relationships between patterns of
response to RF stimuli were related to differences in the RF of
the stimuli we presented, we created two predictor similarity
matrices. The first used the log ratio of the RF of pairs of RF pat-
terns (e.g., for RF2 and RF3; -abs(ln(2/3)) = �0.41). We used log
ratios as we reasoned that the jump from e.g., RF2 to RF3 per-
ceptibly much greater than the jump from e.g., RF20 to RF21,
and so the similarity matrix should capture this. The second pre-
dictor matrix simply computed the difference in RF of the stim-
uli. This predictor might better capture variations in contrast
and orientation, which were relatively large for the RF stimulus
set and scaled with RF. The predictor similarity matrices were
then correlated with all neural similarity matrices across ROI
and stimuli (Fig. 9B,C).

Data for the log model predictions are given in Figure 9B, and
the extent to which the model predicts the similarity of neural
responses was assessed by computing single-sample t tests. The
similarity of neural responses is predicted very well by the log
model for the RF stimulus set (p, 0.001 for all ROIs); but for
RF-ripple stimuli, the log model captures similarity of the neural
responses only in LO1, LO2, and LO (t(7)= 2.685, 3.10, 6.29,
p= 0.031, 0.017, ,0.001, respectively). No other results were sig-
nificant (all p. 0.077). Data for the linear model are presented
in Figure 9C and were assessed in the same way. Again, the simi-
larity of neural responses to RF stimuli was predicted well in all
ROIs (p, 0.001); while for the RF-ripple stimuli, the linear
model significantly captured the similarity of neural responses
only in LO2 and LO (t(7)= 2.42, 4.21, p=0.046, 0.004, respec-
tively). There was also a significant negative correlation between
the linear model’s predictions and the similarity of neural
responses in V1. No other results were significant (all p. 0.092).
While the alternative models appear to have similar predictive
power, it is noteworthy that the linear model has higher correla-
tion than the log model with similarity of neural response to the

BA

Figure 7. Similarity of responses to RF patterns across visual cortex. A, Matrices of correlation between responses to RF patterns displayed as heat maps. Data are shown for white matter

(WM) and ROIs V1, LO-1, LO-2, and LO. Top and bottom rows represent correlations for the RF and RF-ripple stimuli, respectively. B, The correlation between the similarity matrices obtained

from responses to RF (top row matrices) and RF-ripple (bottom row matrices) stimuli for each ROI. *p, 0.05. **p, 0.01.
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RF stimuli. In contrast, for the RF-ripple stimuli, it is the log
model that performs better, at least for some ROIs.

We assessed the two models’ predictive power as a func-
tion of stimulus set and ROI by performing a three-way
ANOVA of the Fisher-transformed correlation data. We
acknowledge that caution must be taken in interpreting such
an analysis, particularly for ROIs in which the models have
low correlations with the similarity of neural responses. The
three-way ANOVA showed a three-way interaction (F= 4.194,

p= 0.002, h 2 = 0.375), meaning that the extent to which the
models fitted the data varied with stimulus type in a differ-
ent way across ROIs. Also evident was the significant two-
way interaction between the model and the stimulus type
(F = 39.583, p, 0.001, h 2 = 0.850) likely driven by the ob-
servation that the linear model worked best for the RF stim-
uli while the log model accounted better for pattern of
responses to the RF-ripple stimuli.

In Table 1, we show the results of the follow-up analysis in
which we ran two-way ANOVAs in each ROI and paired t tests.
Two-way interactions were evident in V1 to V4 and LO. In V1
and V2, the interaction was driven by a better fit of the linear
than the log model for the RF stimuli and an absence of differen-
ces in model fit for the RF-ripple stimuli, where both models per-
formed very poorly. In V3 and V4, a similar advantage of the
linear model was evident for the RF stimuli, but now the log
model worked better than the linear model for the RF-ripple
stimuli. While it is tempting to take the latter at face value, the
correlations are low and straddle zero across participants; so
although statistically significant, this increase in model fit may
not be meaningful. In LO, the interaction was driven by signifi-
cantly better performance of the log model over the linear model
for RF-ripple stimuli and largely similar performance of the
models for RF stimuli. This pattern of model fits is the opposite
of that observed in V1. It is also important that, in LO, all model
fit correlations were significantly different from zero, allowing
the improved fit of one model over the other to be taken as
meaningful.

Overall, therefore, the multivoxel pattern activity results
largely mirror the univariate findings, highlighting a move
away from local toward more global or holistic processing
that becomes clear and likely dominant in the lateral occipi-
tal cortex. Global processing of shape also appears in retino-
topically defined LO1 and LO2. Together, the results reflect a
processing pathway of shapes that moves from a low-level
retinotopic representation toward a more abstract represen-
tation in anterior lateral occipital cortex.

Discussion
We found two characteristic tuning profiles to RF stimuli. The
tuning most commonly detected in the visual cortex was broad
band and centered at relatively high RFs for which there is no be-
havioral evidence of global processing. Our stimulus manipula-
tion that added a high RF component to the RF patterns shifted
the tuning’s center, indicating that low-level stimulus features
that include contrast and orientation content were driving this
aspect of the cortical response. The second tuning we detected
was centered on the low RFs, for which there is strong behavioral
evidence of global processing (Hess et al., 1999; Jeffrey et al.,
2002; Loffler et al., 2003), and had a narrow bandwidth. This tun-
ing remained, when the high RF ripple was added to our stimuli,
which we, in common with others (Bell et al., 2007a), take as an
indicator that the global properties of the shape were driving this
aspect of the cortical response. We found that the low RF tuned
responses were most evident in the extrastriate cortex, particu-
larly in LO, but the high-frequency ripple added to stimuli (to
render them less varied in orientation and contrast content)
highlighted that this tuning to global shape could also be revealed
in retinotopically defined areas LO1, LO2, and V4. Multivariate
approaches showed that all the subdivisions of visual cortex we
examined exhibited a relatively high level of similarity in the pat-
terns of response across RFs, but that this pattern was disrupted
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Figure 8. Cross validation of response similarity. A, LOO cross validation of response simi-

larities (as measured by correlation) for selected ROIs. Similarity matrices are shown for the

ROIs V1, LO1, LO2, and LO (top to bottom) in false color (hot) rendered images. The diagonal

elements largely exhibit the highest correlations. B, Ranks (1 highest and 7 lowest) of the

correlations for diagonal elements with respect to the mean of elements paired in the same

row and column of the diagonal element (a total of six pairings in addition to the diagonal

yielding ranks from 1 to 7). Frequency of the ranks (in %) was computed for each ROI and

each participant; and mean (across participants) frequencies of ranks (and standard errors)

are given in each panel. Data for the same ROIs (V1, LO1, LO2, LO) are given for the RF and

RF-ripple stimuli in the left and right columns, respectively. In general, the diagonal ele-

ments commonly had the highest correlations and were therefore ranked 1. This gives a

strong indication that statistical dependencies in the data are not a widespread contributor

to the response similarities we measured (as presented here and in Fig. 7). C, For complete-

ness, the frequency (in %) of ranks is given for the diagonal elements in all ROIs in a matrix

grid with false color (hot) background coding the percentages. Data are given for means

across participants.
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very much in primary visual cortex and other early retinotopic
areas, when the high RF ripple was added to stimuli. Indeed, the
only areas that maintained the similarity across RF representa-
tions once the ripple was added were LO1, LO2, and LO.
Finally, the similarity of the stimuli as quantified by the differ-
ence of the log RF provided a good prediction of how the pat-
tern of responses was similar, consistent with human sensitivity
to the global shape of RF stimuli.

Stimulus properties that drive responses in early visual
cortex
The responses of early visual cortex to RF stimuli revealed a
strong bias to stimuli that exhibited the greatest contrast and
orientation content. Given that contrast and orientation increased
systematically with increasing RF of the RF stimulus set, the bias
to contrast and orientation was expressed as a tuning of responses
to high RF. This tuning was prevalent and dominated in early vis-
ual cortex. Our findings are consistent with early visual cortex hav-
ing the most expansive contrast response function (Gouws et al.,
2014) and well-known orientation-selective neurons (Hubel and
Wiesel, 1968). Adding a high RF component that defined the RF-
ripple stimuli had largely predictable effects on the tuning we
measured from early visual areas. Because the addition of the rip-
ple reduced the contrast and orientation variations across the
stimuli and also changed the relationship of those variations with
RF, the high RF tunings in early visual cortex shifted to a lower,
although still remaining high, RF. The results fit well with the
idea that contrast and orientation content of the stimuli are
driving the responses in early visual cortex and that coding of

global properties of shape is unlikely to be found in the neural
responses within these regions (Wilkinson et al., 2000).

Stimulus properties that drive responses in object-selective
cortex
By contrast, tuning to low RFs, whether they occurred in the
RF or the RF-ripple stimuli, while rarer overall, were found
consistently in object-selective LO (Kourtzi and Kanwisher,
2000; Grill-Spector et al., 2001). The global properties of shape
to which humans are exquisitely sensitive (Wilkinson et al.,
1998) are therefore a feature of neural response in LO. LO
exhibits visual field biases (Silson et al., 2016) but is not rou-
tinely identified with retinotopic mapping techniques. Indeed,
in the present study, and in line with many others, LO was
identified on the basis of a preference to objects over their
scramble counterparts (Kourtzi and Kanwisher, 2000; Grill-
Spector et al., 2001). The tunings to global shape properties
are therefore consistent with the more abstract representa-
tions that have been associated with this region of the brain in
previous research (Haushofer et al., 2008; Op de Beeck et al.,
2008; Drucker and Aguirre, 2009). It is interesting, however,
that the two retinotopically identified regions LO-1 and LO-2
(Larsson and Heeger, 2006) also exhibit tunings to low RF,
which is consistent with our previous work that has shown a
transition from early local processing of shape profile to proc-
essing of the complexity of shape at the same stage of the vis-
ual hierarchy (Vernon et al., 2016). The selectivity to global
shape properties, which were largely maintained across our
two stimulus sets, was also underscored by the multivariate

CBA

Figure 9. Predictors of response similarity matrices. A, Bar plot of the correlations between the white matter ROI response similarity matrix and the response similarity in all gray matter

ROIs. The white matter similarity matrix gives a measure of the latent structure that could arise from statistical dependencies in the data. B, Correlations between stimulus similarity, as meas-

ured by the log difference between the RF of stimuli, and response similarity. C, Correlations between stimulus similarity, as measured by the linear difference between the RF of stimuli, and

response similarity. Data are given for the two stimulus sets, RF and RF-ripple, shown by gray and white bars, respectively. Distributions of the correlations are significantly different from zero:

*p, 0.05, **p, 0.01, ***p, 0.001. Error bars indicate SEM.

Table 1. Results of two-way ANOVA applied to each ROIa

ROI Model � stimulus (F, p, h 2) Model (F, p, h 2) Stimulus (F, p, h 2) RF: lin – log (T, p) RF-ripple: lin – log (T, p)

V1 13.906, 0.007, 0.665 56.539, ,0.001, 0.890 191.976, ,0.001, 0.965 4.932, 0.002 �1.870, 0.104

V2 13.877, 0.007, 0.665 10.338, 0.015, 0.596 100.267, ,0.001, 0.935 4.455, 0.003 �2.103, 0.084

V3 38.626. ,0.001, 0.847 3.098, 0.122, 0.307 88.049, ,0.001, 0.926 4.237, 0.004 �3.377, 0.012

V4 44.253, ,0.001, 0.863 10.414, 0.015, 0.598 31.541, 0.001, 0.818 5.838, 0.001 �2.894, 0.023

LO1 3.389, 0.108, 0.326 0.002, 0.965, 0.000 50.855, ,0.001, 0.879 0.602, 0.566 �0.901, 0.398

LO2 2.006, 0.200, 0.223 1.970, 0.203, 0.220 16.915, 0.005, 0.707 �0.828, 0.435 �2.062, 0.078

LO 8.540, 0.022, 0.550 0.066, 0.804, 0.009 8.552, 0.022, 0.550 1.459, 0.188 �3.445, 0.011
aROIs are given in each row. Columns show data for the interaction (model and stimulus), main effects of model (linear vs log), and stimulus (RF vs RF-ripple). Post hoc t tests are for differences in the models for each stimu-

lus type.
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patterns of response that were significantly correlated across
the stimulus sets only in LO-1, LO-2, and LO.

Is there a role for V4 in global shape processing?
V4 has been the focus of a body of research into properties that
contribute to the processing of shape (for review, see Pasupathy
et al., 2020). Work on nonhuman primates highlights the proc-
essing of curvature and more complex forms (Gallant et al.,
1993, 1996). Recent work has led to the compelling idea that V4
is “shape emergent” (Hu et al., 2020). However, studies also high-
light that the curvature selective domains in V4 intermingle with
domains selective to orientation and chromatic stimulus proper-
ties (Roe et al., 2012; Hu et al., 2020; Tang et al., 2020). With that
backdrop, it is clear that the stimuli we presented in the RF study
had orientation variations that could easily have driven orienta-
tion-selective responses in V4 and masked selectivity to curva-
ture and/or global shape. Consistent with this, the responses to
low RFs emerged in V4 when much of the variation in orienta-
tion content of the stimuli was removed in the RF-ripple stimuli.
The evidence we have gathered here therefore is consistent with
V4 being a shape-emergent (Hu et al., 2020) region of the brain,
albeit one that processes other stimulus properties as well. There
is also good evidence in human that V4 plays an important role
in shape processing (Wilkinson et al., 2000; Dumoulin and Hess,
2007). The stimuli used by Dumoulin and Hess (2007) are well
suited to disentangle the contributions of orientation of stimulus
elements and their arrangement into contours, and this could
have contributed to them showing curvature processing in V4.
They also reported curvature processing in a region that likely
coincided with LO-1 and LO-2.

Areas of the brain that represents global shape defined by RF
Previous work that was similar to ours has shown that RF is not
represented in the regions of the ventral visual pathway that we
have examined here (Salmela et al., 2016). Our study differed in
ways that control for variations in low-level properties of RF
stimuli that were present in the previous study (Salmela et al.,
2016) and as a result likely explains why our investigation found
processing and representations of RF in the regions that they did
not. Here, we show that RF is represented in LO on the basis of
differences in RF that approximate to how they are perceived:
log ratios predicted the pattern of response better than differ-
ences in RF. This points to LO being a region that not only
processes the global curvature found in RF patterns, but also
represents that information in a way that has a plausible rela-
tionship with behavior, as also demonstrated using different
shape stimuli (Haushofer et al., 2008; Op de Beeck et al., 2008;
Drucker and Aguirre, 2009). LO-1 and LO-2 also showed rep-
resentations that were related well to log ratios of the RF,
although not as strongly as in LO. This indicates that repre-
sentations of global shape emerge earlier than LO in the hier-
archy of the ventral pathway, consistent with our previous
work (Vernon et al., 2016).

In conclusion, our univariate results show clearly that two
different response profiles were present in visual cortex. One
showed a preference to high RF patterns, which we believe are
driven by neural responses to local features, while the second
showed preference to low RFs consistent with more global
shape processing. The extent to which these response profiles
were found in different regions of visual cortex varied mark-
edly. Indeed, tuning to low RFs was localized to area LO, and
this was unaffected by the addition of high RF contour modu-
lations in the control rippled stimuli, suggesting a critical role

in global shape processing. The multivariate analysis of the
data also pointed to there being a global shape representation
in lateral occipital regions that related well to a proxy of the
perceptual differences between the stimuli, underscoring the
role of lateral occipital regions in global shape processing.
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