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ABSTRACT

In this work, the feasibility of a covariance-based parameter estimation approach util-

ising a physics-informed Gaussian process regression is considered and explored. There

are a number of ways of incorporating physical assumptions or knowledge into a Gaus-

sian process regression. One of the richest is through adapting the kernel to reflect some

known behaviour of the system of interest. In some cases, it is possible to derive such

covariance functions from stochastic differential equations, demonstrated for a single-

degree-of-freedom (SDoF) oscillator in [1], where the result is a very flexible kernel that

can be used in a variety of modelling situations. In this case, in aid of interpretability,

the covariance function has hyperparameters that are the natural frequency and damp-

ing ratio of the SDoF system from which the covariance is derived. The current paper

explores whether this model may feasibly be used for parameter estimation, and herein,

an investigation into the SDoF kernel’s parameter estimation behaviour is conducted.

This involves the visualisation of optimisation surfaces, exploration of what signal char-

acteristics affect the estimates found, and finally, the proposal of a method to efficiently

produce reliable parameter estimates. The estimates produced by this method show good

agreement with the known system parameters over the range of systems tested, as well

as good robustness to noise in the measured data.

INTRODUCTION

The process of system identification describes the development of mathematical

models from data. Many possible approaches can be taken for system identification,

broadly categorised into black-box, grey-box and white-box [2]. The black-to-white box

spectrum describes how much prior physical knowledge can be used in the construction

of the model form, where black-box models offer no insight into the physical system,

while white-box models are derived purely from physics-based models. Grey-box meth-

ods then offer a compromise where some of the model form is inferred from physical

understanding, while others are learned purely from data. Furthermore, the models de-

veloped through system identification are classified into two general forms: input-out

Nathan A. Hinchliffe, nahinchliffe1@sheffield.ac.uk. Dynamics Research Group, School of Mechanical,

Aerospace and Civil Engineering, University of Sheffield, Sheffield, UK



models and output-only models [2]. Selecting the model form is predominantly deter-

mined by what data is available during model development and in the context in which

it will be used. Input-output models are generally preferred when possible due to their

increased predictive ability; however, the inputs to operational systems are often impos-

sible or impractical to measure. In their absence, assumptions need to be made before

any useful analysis can be conducted. Regardless of the approach taken, the resulting

model will contain parameters which must be tuned using data in a process called pa-

rameter estimation.

In engineering contexts, it is desirable to use as much system knowledge as is avail-

able when developing models, but it is rare for any system to be fully characterised. This

leads to the development of models based on assumptions and partial knowledge, con-

taining both physical and tuning parameters. When modelling systems in this way, the

discrepancies between the model and underlying physics introduce bias into parameter

estimates and errors into any predictions [3]. One of the proposed methods of accounting

for this is introducing a secondary black-box model to estimate and correct these discrep-

ancies. While this can be a powerful tool for improving the accuracy of the predictions, it

also introduces other problems. These include increased model complexity, non-unique

solutions, and heavy reliance on priors provided about the system parameters [3].

In this work, a covariance-based grey-box method is proposed and assessed for pa-

rameter estimation of a single-degree-of-freedom (SDoF) oscillator using a physics-

informed Gaussian process. Through the use of an auto-covariance function derived

from the SDoF equation of motion, instead of the equation of motion directly, greater

flexibility is granted to the model in that it describes a distribution of functions rather

than a single one, while still being parametrised by the interpretable system parameters,

allowing for insight into the physical system. The aim of this work is to assess the fea-

sibility of parameter estimation via a covariance function under conditions where the

system follows the assumptions made in the model’s development. Should this prove

successful, then the flexibility and sensitivity of the model can be assessed in future

works, where less may be known about the system structure in advance.

PHYSICS-INFORMED GAUSSIAN PROCESSES AND THE SDOF KERNEL

Physics-informed machine learning is a modelling framework that combines the flex-

ibility of machine learning methods with the interpretability of physics-based models.

Many methods have been explored for combining prior physical knowledge with most

of the widely used machine learning algorithms [4]. This study will use a physics-

informed Gaussian process regression to identify the parameters of the stochastic differ-

ential equation (SDE) defining an SDoF oscillator under white noise loading. Gaussian

process regression is a powerful, Bayesian regression method that operates in the func-

tion space. The models are defined by kernels containing mean and covariance functions,

which form a prior to be conditioned on data, resulting in a posterior distribution of the

latent function. For further details, the reader is directed to the highly-cited textbook by

Rasmussen [5]. While there are many ways to embed physical knowledge into a Gaus-

sian process [6], in this work, a covariance function derived from the equation of motion

of an underdamped SDoF oscillator under white noise forcing is used. This is achieved



through manipulating the SDE into its power spectral density and auto-covariance func-

tion, outlined by Cross and Rogers in [1]. In order to aid in the implementation and

optimisation of this as a Gaussian process kernel, the derived auto-covariance function

is simplified and normalised, resulting in the form given below.

k(τ) = σ2

f e−ζωn|τ |

[

cos (ωn

√

1− ζ2 τ) +
ζ

√

1− ζ2
sin (ωn

√

1− ζ2 |τ |)

]

(1)

In this form, the covariance is fully characterised by the hyperparameters σ2

f , ωn and

ζ , which are directly interpretable as the signal variance, system natural frequency and

system damping ratio, respectively. This, in combination with a zero mean function,

forms a prior for Gaussian process regression. In order to use this for parameter iden-

tification, a method of training the kernel hyperparameters is required. In this context,

training refers to the maximisation of the marginal likelihood of the posterior prediction

given a set of training data, achieved through tuning of the hyperparameter values. Prac-

tically, this is achieved through a minimisation of the negative log marginal likelihood

(NLML) with respect to the hyperparameters, as outlined in [5].

PARAMETER IDENTIFICATION

In this section, the methodology for assessing the feasibility of parameter estimation

with the SDoF kernel is outlined, and corresponding results are presented. First, the op-

timisation surfaces of the hyperparameters were explored to qualitatively understand the

expected behaviour during training. Following this, the source of variance in the esti-

mates was investigated, exploring how features of the training signal affect the parameter

estimates. Finally, a method following a multi-task learning approach is proposed and

tested for robustness.

Throughout these trials, the data used was generated from the simulation of an SDoF

system, with a natural frequency at approximately 316.2 rad/s (50.3 Hz) and a damping

ratio of 0.158. The simulations were generated from a state-space model (zero-order

hold), with the input force generated as realisations of white noise. The simulation was

run at 4096 Hz, and the resulting signal was then downsampled to 512 Hz for use.

Likelihood Surfaces

In order to explore the optimisation space, examples of both the NLML (acting as

training loss) and marginal likelihood surfaces were generated by drawing natural fre-

quency and damping ratio hyperparameter values from uniform distributions covering

the ranges of 0-1256 rad/s (0-200 Hz) and 0-1, respectively. An example of these sur-

faces is shown in Figure 1. From these surfaces, it can be seen that a clear single opti-

mum exists, indicated by the single peak in the likelihood surface, and that this optimum

lies close to the values of the true parameters. Additionally, the NLML surface exhibits

curvature that could be easily navigated by an optimisation algorithm, giving confidence

that a gradient descent optimisation is suitable to employ in this case.

Although this was encouraging to see, when generating multiple instances of these

surfaces using different realisations of data from the same system, the location of this



Figure 1. Negative log marginal likelihood surface (Left) and marginalised likelihood

surface (Right), allowing for visualisation of the training optimisation surface and opti-

mum location in the hyperparameter space

optimum was seen to shift relative to the true parameter values. This suggests that some

stochastic nature of the signal propagates through to the optimum parameter location.

In order to reliably extract an accurate estimate of the system parameters, this variance

must first be understood.

Parameter Distribution

In order to investigate the source of the variance seen in the parameter estimates, the

SDoF kernel’s hyperparameters were trained on a large number of signals to produce an

approximation of the parameter marginal distributions. This was repeated for training

signals of different durations, the results shown in Figure 2. It is worth noting here that

one of the primary limitations of Gaussian processes is their cubic order in computational

time and cost as the number of data points increases, caused by an inversion of the

covariance matrix. This imposes a practical limit on the duration of the signals that can

be used for this training without employing a sparse scheme [7], which is considered as

future work.

The results in Figure 2 show an apparent and expected reduction in variance ob-

served in the parameter estimates as the training signal duration increases. Following

this, approximations of marginal distribution were extracted by forming histograms of

the parameter estimates generated with 0.5s training signals, selected as a representa-

tive signal duration compromising between reducing the variance in the distribution and

training time. The resulting histograms are shown in Figure 3. From this, it can be seen

that both parameter distributions are centred around the true parameter values, indicat-

ing that an accurate estimate would be reliably achieved with a long-duration signal to

reduce the variance sufficiently.

Figure 3 also shows that the shape of the distributions differ. This suggests that the

parameter estimates may be affected differently by components of the training signal. In

order to investigate how signal components affect the training result in the case of shorter

training durations, an example training signal was sectioned into short-duration signals

that were labelled as: ‘regions dominated by response close to resonance’, ‘regions dom-



Figure 2. Trained parameter scatter plot (Left) and computed variance (Right) comparing

training sets with signals of different durations, where tTrain indicates the duration of

the training signal employed in seconds

Figure 3. Histograms estimation of the marginal parameter distributions showing the dis-

tribution natural frequency (Left) and damping ratio (Right), where the red line indicates

the system’s true parameter values

inated by the high-frequency content’, or ‘regions containing some high-frequency con-

tent’ where the natural frequency is still prominent. Training optimisations were then

run on each of these sections, and the results plotted. Examples of the labelled signal

regions and the resulting parameter estimates are shown in Figure 4.

From these results, it can be seen that the parameter estimates generated from signal

sections dominated by the natural frequency exhibit the lowest variance in both param-

eters of interest and tend to underestimate the damping ratio. As the amount of high-

frequency content in the signal increases, these variances both increase, and the damp-

ing ratio estimates trend upward. This further emphasises the importance of capturing

a representative range of behaviours in the training signal to obtain accurate parameter

estimates. This could be achieved through careful selection of the training signal, but

also occurs naturally as the signal duration increases, as was seen previously.



Figure 4. (Top) Example signal segmented for use in training, colour coded to loosely

indicate frequency content of the signal section and (Bottom) the corresponding param-

eters that result from training on those signal sections

Parameter Estimation

In order to train using an amount of data representative enough to reliably provide ac-

curate parameter estimates without increasing the signal duration or considering sparse

approximations, a training method adapted from the multi-task learning approach, as

described by Rasmussen on pages 115-116 of [5], was adopted. Therein, a typical ap-

plication of multi-task learning allows a model to learn hyperparameters shared between

multiple datasets by summing the NLML calculated on each, and optimising on the re-

sulting surface. Expanding on this idea, by splitting a long signal into many short signal

segments, each can be thought of as an individual dataset, all of which have been gen-

erated by the same system, and thus share parameters. In separating the signal in this

way and training on all the signals concurrently, the size of the required matrix inversion

is significantly reduced. This allows for efficient training using a previously infeasible

quantity of training data.

Applying this methodology, parameter estimates were obtained from signals gener-

ated by a range of example systems which share a natural frequency but vary in damping

ratio. These signals were separated into 1000 0.5s signals, totalling 500s of training sig-

nal duration. The system parameters and parameter estimate results are shown in Figure

5. From these results, it can be seen that accurate parameter estimates were achieved

across all systems tested, with almost all estimates having a very low percentage error.

The exception to this was System 1, the very low-damping case. However, this still cor-

responds to a low error in the estimate due to the low magnitude of the damping ratio

itself. The results also show that the accuracy of the estimates of natural frequency de-

creases as the damping ratio increases. This is likely a result of these signals containing

more of the high-frequency content discussed previously, making identification of the

natural frequency more difficult.

Finally, white noise was added to the signal and parameter estimates were extracted

using the same method as above. The results can be seen in Figure 6. This shows that

the parameter distribution and accuracy of the estimates did not significantly change as

noise was added to the training signals. This was tested with various levels of signal

noise, up to 25% (3:1 signal-to-noise ratio), showing an encouraging level of robustness

to significant noise in the signal.



Figure 5. Error in parameter estimates for systems with varying damping ratios, trained

over 1000 signals, 0.5s in duration

Figure 6. Histogram estimates of parameter distributions for the, where the true parameter

values are marked by the dashed line (Left), and the error in parameter estimates (Right)

arising from signals corrupted by various levels of noise

CONCLUDING REMARKS

Physics-informed machine learning provides an interpretable yet flexible method of

modelling systems from data. In most cases, this interpretability provides confidence in

the model output, helping ensure the desired behaviour is learned. However, in the case



of the physically-derived SDoF kernel, the hyperparameters themselves can be directly

interpreted as parameters of an SDoF oscillator. This leads to the question of whether

the values these hyperparameters take during training can be reliably interpreted for

parameter identification.

In this work, the behaviour of the SDoF kernel’s hyperparameters during training is

explored. It was found that the likelihood surface of the interpretable hyperparameters

has a single optimum, but the location of this optimum is highly dependent on the rep-

resentativeness of the training data, which can be improved by increasing the amount of

training data. However, this is problematic for Gaussian processes unless a sparse ap-

proach is considered due to the high computational cost. Therefore, a training method-

ology following a multi-task learning approach is proposed; by separating the training

signal into multiple datasets and training over them concurrently, a large amount of data

can be used in the training while maintaining computational efficiency. Following the

proposed approach, the hyperparameter values identified closely agree with the true un-

derlying system parameters and show good robustness to high levels of signal noise.

This provides confidence that a Gaussian process covariance-based approach to parame-

ter estimation is feasible and can be explored further. As such, future works will explore

parameter estimation performance in more challenging situations, where information is

more limited. This will include various unknown elements of the system structure, as

well as data sparsity and downsampling.
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