
This is a repository copy of Predicting indoor environmental conditions using correlation 
models for behaviour change suggestions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/228355/

Version: Published Version

Article:

Zune, M. orcid.org/0000-0003-0282-2633, Tun, T.P. orcid.org/0000-0002-4950-271X, de 
Kerchove d’Exaerde, T. et al. (1 more author) (2025) Predicting indoor environmental 
conditions using correlation models for behaviour change suggestions. Building Services 
Engineering Research & Technology. ISSN 0143-6244 

https://doi.org/10.1177/01436244251349636

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Research Paper

Building Serv. Eng. Res. Technol.

2025, Vol. 0(0) 1–22

© The Author(s) 2025

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/01436244251349636

journals.sagepub.com/home/bse

Predicting indoor environmental
conditions using correlation models
for behaviour change suggestions

May Zune1, Thet Paing Tun2, Tristan de Kerchove d’Exaerde3 and

Maria Kolokotroni4

Abstract

Background: Behaviour changes by end-users have been seen as an effective action to tackle the global climate

crisis and improve indoor and outdoor environmental quality, while energy and carbon savings and promoting

health and well-being are notably observed. However, indoor environmental quality predictive modelling for

participatory research has not been developed yet due to the lack of a user-friendly method.

Purpose: We present a framework to predict indoor air temperature, air change for ventilation efficacy and

indoor illuminance for daylight by correlating indoor and outdoor climates.
Research Design: The method integrates indoor-outdoor climate correlation models, bioclimatic design, and

occupant-centric control decision-making processes. The predictive modelling was developed from a series of pre-

defined boundary conditions, and the case studies were demonstrated using an occupied multi-family apartment

building in Switzerland.

Result: The presented method uses real-time and forecasted outdoor weather to predict indoor environmental

conditions and provides results for different building operation actions.

Conclusions: Recommendations for practical applications are discussed according to Fogg’s behaviour model in

developing the participatory research for the eco-feedback approach to applying the framework to behaviour
interventions, considering increasing the ability, opportunities and motivation of end-users in predicting indoor

environmental quality.
Practical application: The method facilitates occupant-centric control decision-making processes. A

dynamic thermal simulation model of the building is created, and correlations are derived between external

and internal conditions by a person familiar with thermal modelling. The correlations are used to derive

instructions for the occupants on using their space. The instructions can be automatic in graphical form if

weather forecast input is continuously provided, requiring a subscription to a weather forecast online

provider. The approach follows bioclimatic principles and Fogg’s Behaviour Change Model to encourage the

“ability” of end-users to predict their homes’ IEQ with no in-depth building physics knowledge.
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Introduction

In recent years, the implications of behavioural

science have been seen as an effective action to tackle

global emergencies - the climate crisis, energy crisis

and fuel poverty.1 Despite having a design to

maintain acceptable indoor environmental quality

(IEQ) using natural cooling and passive heating,

without careful operation by the end users, the

mechanical-assisted heating, ventilation and air-

conditioning (HVAC) systems will be required and

associated energy costs and carbon emissions will be

increased. Studies which focus on post-occupancy

evaluation showed that building performance gaps

cause higher energy consumption than predicted

design, and this is often driven by the way the end-

users operate the building inappropriately and due to

a lack of understanding of maintaining the IEQ in

passive design measures.2 Changes in household

behaviour can lead to 5-15% savings in energy use.3

If the building occupants are informed of predicted

indoor environmental conditions for the next 1-

2 days according to the real-time outdoor weather, an

occupant-centric control approach could be a part of

energy-efficient building operations to adjust indoor

environmental conditions by integrating passive

design strategies.4 To promote pro-environmental

behaviours for the end-users, simple, effective and

easy-to-understand feedback systems are required5;

however, even less is known about how indoor

condition predictions can be incorporated into be-

haviour change suggestions to develop behaviour

change interventions.

Behaviour interventions are often developed from

three components - ability (psychological and

physical abilities), opportunities (physical and social

factors) and motivation (attitudes, habits, etc.).6 A

behaviour model for persuasive design can be de-

veloped when these three elements occur at the same

moment, as found in Fogg’s Behaviour Model.7 The

eco-feedback approach to behaviour change in the

housing sector is one of the most needed and feasible

options to reduce operational carbon emissions and

meet net-zero targets.8 Eco-feedback is a method

which delivers feedback to occupants to encourage

energy conservation and reduce environmental

impacts.5,9,10 Making health behaviour changes to

improve indoor environmental quality can be chal-

lenging in some cases; for example, personal ex-

posure monitoring to improve asthma-related health

requires additional support from healthcare profes-

sionals.11 A simple, effective and user-friendly

method, which can inform occupants about their

understanding of, and interaction with, both me-

chanical systems and passive strategies opportuni-

ties, can increase the “ability” of end-users to predict

the IEQ of their homes with no in-depth building

physics knowledge.12

The physics-based dynamic models are capable of

building energy and thermal models according to the

physical component of a system, whereas a data-

driven model is capable of uncovering other hidden

dynamics.13 Physics-informed ensemble models for

joint prediction are another promising approach of

physics-informed machine learning (PIML).14

Combining indoor environmental data with

weather forecasts using a hybrid physics-based ar-

tificial neural network model could be implemented

widely to provide location-specific indoor condition

predictions to improve health warning systems.15

The significances of contextual factors in the pre-

diction models are required to evaluate advanced

deep learning architectures that demand extensive

historical databases for machine learning to train

data, while using local indoor measurements could

be time-demanding.16 However, the biggest chal-

lenge of PIML is that it requires the effective inte-

gration of prior physical knowledge in modelling and

the evaluation of developed PIML methods to in-

crease model generalizability and ensure the physical

plausibility of results.17
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A simple method, in contrast to a deep learning

indoor prediction model, which informs occupants to

correlate outdoor climate conditions to their time–

microenvironment–activity by predicting indoor air

temperatures, could be beneficial to alter their indoor

environments appropriately without a significant

reliance on building physics knowledge.18 A

correlation-based prediction is, however, context-

dependent, and the results of IEQ prediction rely

on the time-dependent nature of the buildings, oc-

cupants and weather-related boundary conditions of

a room. Furthermore, utilising a bioclimatic ap-

proach with passive design opportunities can reduce

energy consumption and improve the indoor

environment.19–22 As discussed in 13, handcrafted

selection of physics knowledge and a lack of

benchmarks and evaluations are some of the chal-

lenges in developing machine learning prediction

models. In addition, using those machine learning

prediction models in participatory research requires

further simplification to communicate with building

users who might have limited knowledge of com-

plicated prediction models. However, the simple IEQ

predictions framework from a correlation study to

incorporate into behaviour change suggestions has

not been developed yet. This study aims to fill this

research gap.

Indoor environmental predictions for a room are

built on condition-based feedback, which heavily

relies on several scenarios through the end-user’s

actions in operating the room according to future

weather. In this regard, predictive modelling can be

developed from statistical techniques that use his-

torical data to predict future outcomes by using a

correlation study.23,24 Predicting the IEQ of a room

could be varied by a number of factors, including

location context, building envelope design, building

operation modes and occupant-related factors, which

altogether influence the boundary conditions of the

building.25–27 For an existing building, if its orien-

tation, built form, size of windows, and fabric energy

efficiency are known and unchanged, the IEQ per-

formance could be mainly altered by three factors: (i)

the external climate, (ii) building operation modes

(e.g., natural, and mechanical mechanisms for ven-

tilation or the use of shading) and (iii) occupancy

presence and their behaviours. Occupants at the

centre of building operation have more benefits in

maintaining comfort and indoor air quality (IAQ), as

can be seen in an active house design approach.28

However, a challenging question for an occupant-

centric approach is how to simplify predicting indoor

environmental conditions for the next 24 hours or a

few days, according to real-time weather outdoors

and appropriate building operation modes. This

engagement needs to be aligned with occupants’

understanding of building operations and their pre-

ferred decision-making for the IEQ needs in their

building.

An empirical study based on a hot-summer humid

continental climate of Massachusetts found that the

relationship between indoor and outdoor tempera-

tures is non-linear in 16 homes, revealing that there is

a strong temperature correlation at warmer outdoor

temperatures and a weak temperature correlation at

cooler outdoor temperatures.29 A sensitivity analysis

based on the temperate climate of Switzerland found

that wind speed variation did not significantly impact

IAQ throughout the year, while the still air had a high

sensitivity to temperature and humidity level dif-

ferences.30 A mobile app study based on the Danish

climate found that a simple correlation method can

provide indoor air temperature predictions, while the

accuracy of the IEQ predictions heavily relies on the

context-dependent boundary conditions of a room

and time-dependent weather.31 Researchers often use

indoor-outdoor climate correlations as non-

experimental research to predict IEQ; however, a

framework that can inform the participatory research

by designers to use the indoor-outdoor climate

correlations for IEQ predictions, particularly to

promote pro-environmental behaviours for the end-

users, has not yet been developed.

This work developed a framework to promote

pro-environmental behaviours from the correlation

between indoor condition parameters and outdoor

climatic parameters to predict indoor air tempera-

tures, ventilation and indoor illuminance of an ex-

isting room, considering suggestions for different

passive measures. A comparison of different

boundary conditions for the correlation study pro-

vides inferences from different evidence that help to

make fair judgements about using IEQ predictions

for further behaviour interventions. The

Zune et al. 3



methodology was evaluated to set the control setting

of a room and establish the reference case. The focus

of the work, in addition to the statistical correlation,

is to demonstrate how the correlation model can be

applied to behaviour change suggestions. Recom-

mendations for practical implications are thus dis-

cussed from the findings of this work and other

statistical tests; the latter primarily worked to un-

derstand the impacts of boundary conditions on the

prediction frameworks. Therefore, this work will

contribute to participatory design researchers and

PIML-based indoor environmental prediction model

developers.

Methodology

The proposed frameworkwas designed to promote pro-

environmental behaviours through the results of the

IEQ predictions using the indoor-outdoor climate

correlation model and predictive modelling. This work

was tested using an occupied multi-family apartment

building in Switzerland as a case study. The base-case

simulation model was validated with measured indoor

environmental data. This calibration was aimed at

evaluating the control setting of the apartment to es-

tablish a reference case for further statistical regression

studies. The framework consists of four stages

(Figure 1). Using the base-case model, in the first stage,

the predictive modelling approach was considered to

use the indoor-outdoor correlation models in IEQ

prediction. In the second stage, the modelling processes

were developed to understand the impacts of boundary

conditions on statistical regression by comparing the

correlation results of statistical tests. In the third stage,

the prediction benchmarks were defined to predict

optimal adaptive thermal comfort, optimal indoor

daylight illuminance and required indoor air quality. In

the final stage, behaviour change suggestions were

discussed by comparing the prediction results; there-

fore, the occupant would be able to alter the operation

of the rooms to maintain the necessary IEQ. In practical

terms, the framework can be applied as follows in two

stages, which include four steps:

Stage 1: Preliminary work carried out once per

building:

(1) Create a dynamic thermal, ventilation and

daylighting model of the specific building.

(2) Carry out simulations and derive daylight,

thermal and ventilation correlations.

Stage 2: Prediction work carried out for the

specific time needed for the building operation:

Figure 1. A schematic representation of the proposed indoor-outdoor correlation model and predictive modelling
approach for behaviour change suggestions.
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(3) Have access to forecasted hourly external

conditions.

(4) Use the correlation equations to calculate

hourly indoor temperature, air flow rate, and

daylight illuminance. Use the air flow rate to

calculate contaminant concentration.

Step 1 requires preliminary works carried out for

the specific building. It involves the creation of

thermal, ventilation and daylighting models for

the building, considering the impacts of

physics-driven, occupants-driven and sensi-

tivity data-driven results on the boundary

conditions.

Step 2 carries out dynamic hourly simulations for

one whole year using a typical weather file for

the location to calculate its hourly indoor

condition values. Parameters of interest are

internal operative temperatures, air flow rates

and illuminance levels. This step also requires

the generation of correlation equations for the

specific buildings and uses the simulated hourly

indoor condition values to be correlated with

the external weather data used in the simula-

tions to generate the correlation equations,

which consist of independent variables (out-

door weather data) and dependent variables

(indoor condition data).

Steps 1 and 2 are carried out once for the specific

building and require knowledge of dynamic thermal

modelling (DTM) and access to a DTM and day-

lighting tool, as well as a good command of Excel for

deriving correlations.

Step 3 requires access to the “forecasted” hourly

weather data for the period that the prediction

of internal conditions will be worked on;

usually, 1 day up to 1 week. Weather

forecasts are more accurate for shorter periods,

as one or two days will give better predic-

tions. Weather forecasts can be obtained from

open access information; external tempera-

tures, wind speeds and wind directions are

forecasted for a large number of locations,

usually by meteorological services in the region

of interest. The forecasted hourly weather data

are used as independent variables in the cor-

relation equations created in Step 2.

Step 4 requires the use of the programmed Excel

spreadsheet to investigate the optimum opening

of windows and shading to create the most

comfortable internal environment. Occupants

also need some indication of why these are the

optimum conditions. We used the evaluation

methods as described in Section Prediction

benchmarks to predict air temperature, CO2

concentration and illuminance levels in the

space.

Modelling framework

Boundary conditions. For the correlation study, the

predictability and accuracy are limited by the

boundary conditions. The boundary condition of a

room can be varied by different attributes such as

building geometry, building operations through ac-

tive and passive mechanisms, and the fabric energy

efficiency of construction. By defining a specific

boundary condition using historical weather, a base

case could be set as a control group and produce a

statistical regression for relevant prediction equa-

tions. As the IEQ of a room could be varied by time-

dependent functions and several factors involved in

the boundary condition of the room, random sam-

pling techniques for correlation could be challenging

to identify the relationship that exists between two

variables. To enable the correlation patterns, context-

based or boundary-based samples are essential, while

this approach in itself consists of challenges to match

the correlation samples and prediction scenarios to

obtain more trustworthiness of the correlation pre-

dictions. Therefore, the statistical tests were per-

formed in this work using pre-defined scenarios.

Case study apartment. The selected building was

built in 1962 and renovated in 2020, located in

Geneva’s urban district. Geneva is located in the

eastern part of Switzerland and is characterised by a

continental climate (Köppen climate classification:

Cfb) with mild temperatures, fully humid and warm

summer. July and August are the months with the

highest outdoor dry bulb temperatures. We selected a

one-bedroom apartment on the 8th floor of the
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building, shown in Figure 1, which is a multifamily

housing with 56 apartments. The apartment has a

total area of 65 m2, and there is cross-ventilation for

the living room and single-sided ventilation for the

bedroom. The construction details of the apartmentwere

obtained from the PRELUDEH2020 project, indicating

highly insulated external envelopes due to the given

climate.32 For validation purposes, the indoor air tem-

peratures and outdoor air temperatures were measured

in April-June 2023. The EnergyPlus simulation pro-

gram33 was used to perform base-case modelling.

Indoor-outdoor correlations

Correlation is a systematic pattern that determines

whether a relationship exists between two variables.

The correlation patterns can be analysed from lon-

gitudinal and cross-sectional views of correlations.

For the building performance review, longitudinal

studies are useful to identify the seasonal correlation

and change over time in the building performance,

while a cross-sectional study is beneficial to compare

multiple variables and outcomes by taking “a

snapshot” of selected samples at a single moment in

time.34 Therefore, in this work, one whole year that

yielded 8760 samples was used to consider seasonal

variations, whereas the 24-h profile was used to

predict the IEQ conditions for a day.

Temperature correlation. The statistical regression

studies and previous studies29,31 showed that a good

coefficient of determination can be expected by

correlating internal operative temperatures and ex-

ternal air temperatures. If the room was modelled

using heat-balance mode by applying the heating set

point temperatures, the response of fabric efficiency

of the building envelopes to the external climates

caused a smaller amount of variability in correlation

plots while a strong positive linear temperature

correlation can be observed. If the room was mod-

elled using free-running mode by applying natural

ventilation through the windows but the window

opening time was controlled consistently for the

whole year, the strength of temperature correlation

was stronger in window opening scenarios against

heat-balance scenarios. In this work, the prediction

equations for indoor temperatures were generated by

correlating internal operative temperatures and ex-

ternal air temperatures for different window-opening

scenarios.

Ventilation estimations. In line with wind or buoyancy

forces calculation equations from natural ventila-

tion,35 previous statistical regression studies showed

a strong correlation between the airflow rate of a

room, dry bulb temperatures, wind speed and the

inverse of internal/external temperature.36 In this

case study, the ventilation correlations were weak

and therefore estimations of natural ventilation were

used based on the range indicated by the simulations

varying between 2 ACH (Air Change Rate) and 5

ACH (to include infiltration).

Daylight correlation. Indoor illuminance is influenced

by time-dependent direct, diffuse and global radia-

tions. The Perez model uses the transition from an

overcast sky to a low turbidity clear sky based on

solar irradiance values to estimate daylight illumi-

nation.37 This work referred to the Perez luminous

efficacy model and calculated daylight from time

step calculation with specified daylighting reference

points to provide a single lux value of a room based

on its associated weather file. The results of the

single-node analysis of daylight simulation are useful

to correlate with outdoor solar radiation; however,

the results of daylight illuminance are within the limit

of boundary conditions as the illuminance of a room

could be significantly changed by the room and

window designs such as orientation, building form,

room size, fenestration design, glazing properties,

shading obstructions and reflections on site and in-

side the room. It was found that a strong daylight

illuminance correlation can be obtained by grouping

samples from the same hours, this gives 24 daylight

prediction equations for 24 hours and each equation

consists of 365 samples for the whole year.38

Predictive analytics. For the statistical regressions for

tested scenarios, historical outdoor weather data from

Meteonorm39 which contained hourly data for one

whole year was used to generate the prediction

equations for the location of Geneva. For the model

calibration, external dry bulb temperatures, humidity

and solar radiation data were obtained from April to
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June 2023, from the nearby weather station which is

1.1 km away from the case study building.

These data were replaced with the historical

outdoor weather file. When we plotted the correlation

using scatter plots, it was noted that polynomial

linear regressions fit a wide range of curvatures by

minimising squared error and maximising the co-

efficient of determination (R2). That also showed a

non-linear relationship between the outdoor weather

data and the indoor environmental data. In a pre-

dictive modelling approach, the forecasted outdoor

weather can be applied to the statistical regression

equations, as suggested in Refs. 23,24.

Prediction benchmarks

The correlation equations generated from this work

were expected to predict indoor temperatures, indoor

illuminances and air change rate. Therefore, three

post-data processing approaches were applied to this

work to evaluate the IEQ predictions by the algorithms

produced from the indoor-outdoor correlation models.

Adaptive thermal comfort bands. In a free-running

condition of spaces, whether the predicted indoor

operative temperatures are acceptable in that hour can

be evaluated using the adaptive thermal comfort

equations which suggest bands of thermal comfort

indoors related to external ambient temperatures. For

European and North American buildings, these have

been integrated into current standards BS EN 16798-

140 using equations (1) and (2). In this work, the

acceptable indoor operative temperature was calcu-

lated from upper and lower limits using running mean

outdoor temperatures considering free-running modes

when the windows were expected to be opened.

Ɵc ¼ 0:33Ɵrm þ 18:8 (1)

where,

Ɵc = Optimal operative temperature for adaptive

thermal comfort

Ɵrm = The exponentially weighted running mean

of the daily mean outdoor air temperature

Ɵ(ed-1) = External outdoor air temperature of the

day before.

Indoor illuminances. The illuminance value for a room

is usually considered as the daylight quality of a

room; for instance, it is recommended as 100 lux for

bedrooms and 50 to 300 lux for living rooms in a

dwelling.41 Particularly in the UK context, BS EN

17037 recommends that the room overheating in a

dwelling should be checked if a daylight illuminance

of 500 lux is exceeded on 50% of the grid points for

more than half of the daylight hours.42 In this study, a

500-lux maximum threshold was considered to re-

view the overheating of the rooms. However, this

threshold alone is not directly applicable for the cut-

off point to shade the room as detailed investigations

should be performed to meet both indoor visual and

thermal comfort requirements, considering seasonal

and daily variations of multiple environmental fac-

tors to balance the daylight and overheating, as

suggested in Refs. 40–43.

Indoor pollutant concentration. For a building occupier

who may not be aware of the airflow rate, the nar-

rative to communicate with them is important in

providing feedback on the indoor condition predic-

tion results. In every occupied space, carbon dioxide

(CO2) is affected by occupancy; therefore,

metabolic-based indoor CO2 is often used to review

whether there are sufficient air change rates and

whether the indoor air quality of a room is ac-

ceptable. In this work, the maximum acceptable

indoor CO2 concentration was considered as

900 ppm.40 For the calculation of internal con-

taminant concentration, a single-zone mass balance

model was used44,45 as described in equations (3)

and (4). For the evaluation of IAQ, the limits of

Ɵrm ¼
Ɵed�1 þ 0:8Ɵed�2 þ 0:6Ɵid�3 þ 0:5Ɵed�4 þ 0:4Ɵed�5 þ 0:3Ɵed�6 þ 0:2Ɵed�7

3:8
(2)
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concentration of internal pollutants are needed so a

decision can be made. Similarly, other contaminants

apart from CO2 can be calculated if the emission

rate indoors is known.

CðtÞ ¼ Cð0Þ e
�
qv
V r

 t
þ Css

�

1� e 
�
qv
V r

 t
�

(3)

Css ¼ Cout þ
G

qv
(4)

C(t) = the concentration in the room at time t in mg

m�3

C(0) = the indoor concentration at time 0 in mg

m�3

C(out) = Outdoor concentration

Css = The steady-state CO2 concentration

qv = the volume flow rate of supply air in m3 s�1

G = the mass flow rate of emission in the room in

mg s�1

t = the time in s

Vr = the volume of air in the room in m3

Scenarios for behaviour change suggestions

For the simulation and prediction experiments, as-

sumptions were made to calculate the internal con-

dition of the apartment. Heating operations scenarios

and potential time for window operations were

proposed to investigate their effect on the correlation

models, considering how the occupants could react to

the weather outdoors. This mechanism and back-

ground ventilation through trickle ventilators in the

windows were considered in the correlation models

to achieve fresh air with minimum heat loss. The

internal heat load (occupancy and equipment) and

heat gain profiles were assumed as one-bedroom

apartments with living room and kitchen occu-

pancy, as suggested in TM59.46 The metabolic CO2

emission rate of 13 L/h was considered as the average

metabolic CO2 emission rate is 11.0 ± 1.4 L/h per

person while sleeping and about 8% higher for males

than for females.47 The outdoor ambient CO2 levels

are assumed to be 400 ppm. In Table 1, three thermal

and ventilation scenarios were defined to propose

future behaviour change suggestions. A daylighting

scenario was then added to Scenario Awithout using

shading. For the passive measures, window modes

(open and close) were considered for the boundary

conditions of the room; therefore, their impacts on

thermal and ventilation performances were calcu-

lated as a control setting. In the control groups, the

statistical regression equations were produced from

annual simulation results therefore the impacts of

seasonal variations were included in the longitudinal

correlation format based on the fixed boundary

conditions. Using those statistical regression equa-

tions, behaviour change suggestions were expected

to be made by presenting 24-h prediction profiles

where the end-users could alter daily heating hours,

windows opened hours and shading application time.

Results

Validating the base case simulation model

The measured indoor temperatures of the living room

and bedroom were obtained from April to June 2023.

This period can be considered representative of the

intermediate and warm season in Switzerland in

terms of external temperature and solar radiation.

Figure 2 presents external air temperature and solar

radiation from a typical weather year obtained from

Meteonorm36; it can be seen that during June, external

temperatures approach typical values of summer

monthswhile solar radiation is at its peak. DuringApril,

typical spring temperatures prevail when heating is not

needed for some periods; it also has temperatures very

close to the annual average temperature of 11.2°C.

Therefore, calibrating the model April-June (for which

internal measurements were available), periods of the

year susceptible to overheating are included as well as

periods requiring intermediate heating.

The outdoor weather data for the simulation model

were obtained from the nearby weather station, which

is 1.1 km away from the case study building. The inter-

building effect was not applied in the simulation.

Therefore, some discrepancies between the simulation

model and the actual microclimate data around the

building could be expected. The model was run and

the accuracy was checked by comparing it with

measured air temperature data on an hourly and

monthly basis for 3 months (April 2023 -June 2023)
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by calculating MAE, NMBE, RMSE and CvRMSE

values, as suggested in ASHRAE Guideline 1448 and

CIBSE TM63:2020.49 Figure 3 presents the com-

parison of measured and simulated temperatures.

MAE (mean absolute error) is the arithmetic av-

erage of the absolute errors between the simulated and

measured values. NMBE (normalisedmean bias error)

is the average error between the simulated and mea-

sured values, which is normalised by the mean of the

measured values. RMSE (root mean square error)

represents the sample standard deviation of the dif-

ferences between measured and simulated values.

Table 1. Scenarios for statistical regression models and behaviour change suggestions.

Scenarios Heating hours Cooling Windows opened hours Shading

Case - A 05:00 – 23:00 n/a Closed For thermal simulation, during the
winter, shading is on at night-time
and off during daytime; during the
summer, shading is on when the
solar radiation incident on the
window exceeds the solar set point
of 120 W/m2

Case - B 05:00 – 23:00;
turned it off when
windows were
open

n/a Oct - Apr (2 hours): 08:00 - 09:
00 and 17:00 - 18:00; May - Sep
(6 hours): 8:00 - 11:00 and 17:00
- 20:00

Case - C 05:00 – 23:00;
turned it off when
windows were
open

n/a Oct - Apr (2 hours): 08:00 - 09:
00 and 17:00 - 18:00; May – Sep
(night): 00:00 - 08:00 and 20:00 -
24:00

Figure 2. Geneva, Switzerland – Daily outdoor dry bulb temperature and solar horizontal radiation.
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Cv(RMSE) (coefficient of variation of the root mean

square error) is derived by normalising the RMSEwith

the mean of the measured values. ASHRAEGuideline

14 recommends an MBE of less than 10% and a

CVRMSE of less than 30% relative to hourly cali-

bration data48 which was achieved in this study (see

Figure 2). It can be seen that the error was minimum in

April and increased in May and June for all statistical

values. This was due to the constraints in tracking

window operations at the apartment at that time, when

the increased summertime temperatures caused the

extended time of using passive cooling.

Statistical regressions for tested scenarios

Using the base model, the statistical regression corre-

lations were generated for the proposed scenarios

(Table 1); therefore, the whole-year simulation results

that yielded 8760 samples as hourly resolution data for

indoor temperature, air change rate and indoor illumi-

nance can be obtained. The longitudinal correlations

between outdoor (independent) and indoor (dependent)

temperature and ventilation variables were grouped from

window-opened andwindow-closedmodes, as shown in

Figure 4.When the windows were closed in Scenario A,

the correlations between outdoor dry bulb temperatures

and infiltration rate can be obtained; however, the in-

filtration rate is almost constant at around 0.7 ACH to

include the trickle ventilators. When the windows were

opened in Scenarios B and C, the correlations of air flow

rate with external conditions were not forthcoming due

to the location of the apartment at the corner of the

building. The simulations demonstrated that airflow

rates of up to 5 ACH are established in the space.

The range was between 2 ACH and 5 ACH to in-

clude infiltration. In this case, these values will be

used to guide the occupants.

The daylight correlations were generated con-

sidering there was no shading in the apartment.When

the illuminance values were grouped for each hour,

as shown in Figure 5, it was noted that strong cor-

relations between global solar radiation and indoor

illuminance occurred in the early morning and late

evening, while diffuse radiation was more

Figure 3. Simulation model validation by comparing simulated and measured temperatures.
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Figure 4. Example of thermal and ventilation correlations for the living room and bedroom.
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appropriate to correlate for mid-day hours. The

equations which were used to predict indoor illu-

minance are shown in Figure 5. According to the

correlation scatter plots, the outdoor temperature of

33°C and radiation of 1400 Wh/m2 were set as the

maximum limits (x-values in the polynomial equa-

tions) for further prediction exercises using the

correlation equations generated for scenarios A, B

and C.

Indoor temperatures and

illuminance predictions

The internal temperatures of the living room and

bedroom were predicted for 3 days in April and June

using the equations generated from the statistical re-

gressions for scenarios A, B and C. The internal tem-

peratures were to be predicted using the relevant

window opening modes over 24 hours. Adaptive

Time

Living room Bedroom

Polynomial equation R2 value Polynomial equation R2 value

10:00 y = �0.0081x2 + 5.3193x + 54.19 0.7816 y = �0.004x2 + 2.6992x + 42.545 0.8093

11:00 y = �0.0057x2 + 4.4504x + 97.83 0.7915 y = �0.0033x2 + 2.4317x + 73.522 0.7270

12:00 y = �0.0044x2 + 3.931x + 137.4 0.8099 y = �0.0025x2 + 2.1703x + 102.59 0.7200

13:00 y = �0.0032x2 + 3.5782x + 169.57 0.8455 y = �0.0016x2 + 1.9339x + 126.06 0.7647

14:00 y = �0.0024x2 + 3.7092x + 167.27 0.8942 y = �0.0013x2 + 2.0484x + 119.62 0.8423

15:00 y = �0.0016x2 + 4.3609x + 114.89 0.9156 y = �0.001x2 + 2.4896x + 80.705 0.8762

16:00 y = �0.0037x2 + 6.5262x + 30.03 0.8711 y = �0.0033x2 + 4.1317x + 26.196 0.7636

Figure 5. Example of daylighting hourly correlations for the living room and bedroom using no-shading and internal
shading conditions.
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comfort temperatures for lower and upper limits were

also calculated to understand whether the indoor tem-

peratureswerewithin acceptable limits. It was noted that

the external temperatures were below the maximum

limits of 33°C, which was noted in the regression plots.

In Figure 6, when the external temperatures reached

the upper limits of adaptive comfort temperatures in

April, the internal temperatures were above acceptable

adaptive temperatures. When the windows were closed

in Scenario A, higher indoor temperatures reached

above the upper limits of adaptive temperatures. When

the windows were opened in Scenario B, the indoor

temperatures could drop. These results showed evidence

to suggest a behavioural change scenario for the oc-

cupants to operate the rooms according to scenario B to

maintain necessary thermal comfort in April. In contrast

to April, the external temperatures were significantly

higher in June, and this also affected the internal

temperatures at that time. In this regard, the behaviour

change suggestions can be provided by informing the

results of Scenarios B and C. Night purge ventilation

used in Scenario C could provide a lower internal

temperature in the daytime; however, this could be

subject to the decision made by the occupants.

The area charts in Figure 7 demonstrate the indoor

illuminance predictions for 10:00 to 16:00 using diffuse

solar radiation values at that time. To understand the

relationship between indoor illuminance and other en-

vironmental parameters, external dry bulb temperatures,

global solar radiation values and predicted indoor tem-

peratures were superimposed on these charts. The out-

door climate data showed that the peak values of dry bulb

temperatures and diffuse solar radiations were found at

different hours, and there were no correlations between

Figure 6. Indoor operative temperature predictions with behaviour change suggestions, examples of 3-day comparisons
for April and June.
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each other. In scenario A, similar temperature profiles for

the internal and external conditions were observed as the

internal temperatures increased when the external tem-

peratures increased. Higher indoor illuminances were

found when the diffuse solar radiation dropped on the

13th and 15th of April, and a significant rise in indoor

illuminancewas found in the evening of the 14th ofApril,

as the orientations of the room (driven by solar altitude

and azimuth) had influenced the indoor illuminances. As

the living room has larger glazing areas for windows

compared to the bedroom, the indoor illuminance values

of the living room were higher than the bedroom.Whilst

hourly indoor illuminances were able to be predicted by

correlating diffuse solar radiation at the hour, this work

showed that the boundary conditions of the rooms had a

significant impact on the prediction results of indoor

conditions. While indoor illuminance values were

predicted above 500 lux on the 13th and 15th of April,

the prediction results for indoor temperatures showed

that the indoor temperatures at that time were below

the upper limit of adaptive comfort temperature. It was

noted that there were limitations and uncertainty in

using daylight correlations to predict acceptable

thermal comfort by indicating 500 lux limits as po-

tential overheating risks in the study climate.

Air change rate and indoor CO2

concentration predictions

The air change rates from the infiltration mecha-

nism were predicted for 3 days in April and June

using the equations generated from the statistical

regressions for scenario A; the variation of infil-

tration was limited between 0.69 and 0.78 ACH.

Negative correlation plots in Figure 4 showed that

the infiltration rate decreased when the outdoor

dry bulb temperature increased. As indoor CO2

concentrations were generated from the occu-

pancy profiles, the highest indoor CO2 concen-

trations were found in the early morning hours in

both predicted and measured data, as shown in

Figure 8.

Due to the uncertainty in the CO2 emission rate of

the occupant, which could vary subjectively, the

discrepancies between measured and predicted

Figure 7. Indoor illuminance predictions for 10:00 to 16:00 using diffuse solar radiation (external dry bulb temperatures,
global solar radiation values and predicted indoor temperatures are superimposed).
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indoor CO2 concentrations can be observed. The

concentrations in the room decayed exponentially

after the occupant left during the daytime. If similar

prediction exercises were performed for full occu-

pancy for Scenario A, higher indoor CO2 concen-

trations were observed throughout the days as

infiltration alone was not able to increase the rate of

decay. Besides the air change from infiltration, when

the room had ventilation, the indoor CO2 concen-

trations were above the 900-ppm benchmark due to

the occupancy of the room.

Behaviour changes suggestions for thermal

comfort and indoor air quality

The results of the predicted indoor temperatures are

shown in Figure 6 and this can be applied to evaluate

whether the tested scenarios can ensure the thermal

environment meets comfortable conditions. Figure 9

shows the box charts of the measured and predicted

indoor temperatures; the lower and upper adaptive

temperature limits are also indicated. Note that the

operation settings of measured data and scenario B

were the same; however, the discrepancies were

found due to the strength of correlation obtained in

Figure 4. In addition to Figure 6, the combined re-

sults of this comparison give different options for the

occupant to consider desirable behaviour change to

maintain the necessary thermal environment. For

instance, the application of night purge ventilation

could provide lower indoor temperatures than other

scenarios; however, some people may prefer daytime

ventilation.

Simulations showed achievable ventilation rates

between two and 5 ACH when the windows were

opened, and an average infiltration rate of about

0.7 ACH when the windows were closed. To

simplify the predictions for indoor air CO2 con-

centrations, air change rates of 2 ACH and 5 ACH

were considered for the window-opened scenario,

and 0.7 ACH for the infiltration rate was considered

for the window-closed scenario for the tests per-

formed (Figure 10).

The predicted indoor CO2 concentrations for the

window-closed scenarios (infiltration only) were

above the 900-ppm limit. For Suggestion 1, the

window was open for 3 hours in the morning and

Figure 8. Indoor CO2 concentration predictions using ventilation correlation equations and single-zone mass balance
model.
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3 hours in the evening. The indoor CO2 concentra-

tions are lower but still above the 900-ppm limit (but

less than 1000 ppm) before the window was opened

for 3 hours in the morning, as the metabolic CO2 built

up during sleeping hours. The difference between the

prediction values of scenario 1A and 1B was the air

change rate, and a higher air change could remove

the indoor CO2 concentration to the outdoor CO2

concentration level of 400 ppm after the window

opened for 3 hours in the evening before the room

was occupied. For Suggestion 2, the bedroom was

open for 3 hours after midnight. It was found that

metabolic CO2 was reduced during the night com-

pared to suggestion 1, but CO2 levels stay high

during the day because of the closed windows, and a

combination of suggestions one and two should be

proposed. Finally, similar to the behaviour change

suggestion for indoor thermal comfort, some occu-

pants may find it a challenge to use night purge

ventilation to maintain necessary indoor air quality,

although the presented work was able to demonstrate

different options.

Discussion

This work demonstrates how the indoor-outdoor

environmental variables correlation model can be

applied to predict the indoor environmental data for

Figure 9. Comparison of measured indoor temperatures and predicted indoor temperatures for Scenarios A, B and C
for the bedroom.

Figure 10. Comparison of indoor CO2 predictions using different window opening times.
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the next 24 hours. The base simulation model was

created by validating measured and simulated indoor

temperatures. The statistical regression models were

generated for three scenarios that allowed obtaining

correlation equations for prediction exercises. The

comparisons of predicted indoor temperatures, in-

door illuminances and indoor CO2 concentrations

were evaluated using comfort and indoor air quality

benchmarks; therefore, the potential use of indoor-

outdoor climate correlation models for further be-

haviour change intervention can be presented. This

section discusses how the findings of this work can

be translated into practical applications, which will

contribute to indoor environmental predictive mod-

elling and participatory design research.

Recommendation for predictive modelling

The presented method integrates indoor-outdoor

climate correlation models, bioclimatic design, and

occupant-centric control decision-making processes.

A framework for predicting indoor environments by

correlating the internal environmental and external

climatic variables is crucial for the daily operation of

low-technology buildings to improve indoor condi-

tions. Since correlation methods based on physics-

based modelling and data-driven approaches have

achieved great success in predicting indoor envi-

ronmental conditions, the following observations

from the studied apartment and recommendations on

practical applications could be of interest for future

physics-informed machine learning predictions for

different buildings and other scenarios.

Boundary condition. As presented in Figure 1, the

boundary conditions were defined by a physics-

driven model (to take into account the physics

rules, such as heat transfer and thermodynamics) and

an occupant-driven model (to take into account the

decision rules, such as the use of active heating and

passive cooling). As the prediction equations for

behaviour change suggestions are generated from the

pre-defined models and scenarios, they are typically

unreliable in out-of-boundary predictions (extrapo-

lation). For instance, active heating (Table 1) was

provided in the presented example; therefore, the

prediction equations were influenced by the heating

temperature setpoint values of 20°C, pre-defined

window scenarios and fabric energy efficiency of

the model. The results presented in this work agree

with the previous study31 that has shown that the

accuracy of the IEQ predictions heavily relies on the

context-dependent boundary conditions of a room and

time-dependent weather. Therefore, we recommend

observing the sensitivity of boundary conditions for

different building operation scenarios to provide a

wide range of options for behaviour change sugges-

tions. By doing this, the judgment can be made by the

participants for the behaviour change options.

Indoor condition prediction. The correlation equations

presented in this work were generated from the re-

sults of one-whole year of simulated model.

Therefore, it achieved good generalisation across the

whole year, and the correlation equations were able

to be applied to predict the indoor conditions at any

time of the year if the boundary condition which is

planned to be predicted is compatible with the ref-

erence samples used in the climate correlation model.

In the correlation study, a trend which moves in the

same direction does not mean there is a direct cor-

relation between them. Due to the strengths and

limitations of polynomial correlation equations, a

gap between predictions and measured data was

observed. Such correlation models have limitations

which simply rely on their monotonic association

between two variables. It does not inform the driver

of causation, and the results could be varied by the

confounding variables. Due to the limitations of a

polynomial correlation, despite providing good fits

within the range of data, it is expected that the

equations have poor extrapolatory properties, and

this could cause deterioration outside the range of the

data. Therefore, we recommend that the correlation

models require defining the maximum and minimum

acceptable limits for benchmarks to provide rea-

sonably acceptable predictions. Moreover, we must

stress that the validation work presented in this work

was based on 3 months of database. We therefore

recommend that further study be conducted to

compare and validate whether the prediction equa-

tions generated from monthly-based correlation

equations differ from annual-based correlation
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equations. Furthermore, developing the correlation

models for purely free-running stages without any

forms of active systems could be of interest to

compare their differences in the presented examples.

Prediction benchmark. In this work, the upper and

lower limits of adaptive thermal comfort were re-

ferred to BS EN 16798, considering the location of

Switzerland in Europe.40 The results of this work

showed that overheating was not observed while the

predicted indoor illuminance values reached above

500 lux in the studied climate. Therefore, providing

relevant benchmarks for the participants is essential for

the context-dependent IEQ predictions. For instance,

human subjects in tropical and European climates have

significant differences and thermal perception. Neces-

sary information for scenario selection and IEQ

benchmarks is thus required to provide for the par-

ticipants to use the correlation model effectively in

future participatory designs. Despite those limitations,

as the framework of the presented method can be

tailored to meet different contexts, it can conclude with

a call for more rigorous and pilot studies to evaluate the

impacts of correlation models in developing behav-

ioural change interventions.

Contribution towards participatory

design development

According to Fogg’s Behaviour Change Model, the

three components - ability, opportunities and

motivation – contribute to altering the actions of the

participants. Increasing these components, the par-

ticipants find it easy to change their behaviours.

Besides the process of applying the framework to the

indoor-outdoor correlation model to predict indoor

conditions, the recommendations from this experi-

mental work would be beneficial for future im-

plementation of behaviour change interventions.

Ability. In this work, the IEQ predictions were calcu-

lated using Excel, where the statistical regressions

were manually assigned for different scenarios by

using the forecasted weather and a series of correlation

equations. The judgments of the results were made by

the researchers, considering the benchmark discussed.

The convenience and user-friendly format are essential

for the end-users to predict the IEQ of their homes by

selecting a scenario from various possible occupants’

activities. Understandably, the end-users would not be

interested or able to select appropriate correlation

equations by themselves. Rather, they would prefer to

see how the indoor temperatures could change by

opening windows for one or 2 hours, and when the

indoor illuminance could reach more than 500 lux.

Therefore, the narrative of this method needs to be

translated into a user-friendly mobile app or desktop-

based software to increase the end-user’s “ability” to

select different options and be involved in future

participatory designs.

Opportunity. Forecasting indoor temperatures is of-

ten used in smart buildings to reduce energy use,50

whereas the use of sensors can provide real-time

prediction and historical measures of the IEQ data.

Besides energy savings, the end-users will also be

interested in knowing the predicted IEQ of their

rooms for different scenarios. The presented method

can help to encourage the end-user’s opportunity to

interact with their rooms without any privacy-related

concerns, by adding numerical values of the fore-

casted weather for the next day to the designed

mobile apps or desktop applications. This work

presents a correlation model to predict indoor en-

vironmental conditions by using three scenarios for

comparisons. In real-world scenarios, the occupants’

interaction with building operations could be dif-

ferent and different subjects could have different

operation modes for meeting their requirements.

Therefore, parametric simulation databases such as

scenarios for various windows and shading func-

tions, different heating and cooling hours, and fabric

energy efficiency variations could be added to in-

crease the opportunity for the occupants to select

necessary behaviour changes.

Motivation and triggers. In future participatory de-

signs, the information to “motivate” the interests of

end-users is essential for behaviour change. Pro-

viding feedback on their behaviours in terms of

energy cost increment, carbon emissions, and risks

associated with poor IEQ results is essential in the

development of participatory designs. For instance, a

18 Building Services Engineering Research & Technology 0(0)



small temperature decrement by extending the

window opening could reduce cooling and ventila-

tion loads. Further information for rewards, such as

energy loads and cost-saving results by integrating

post-data results, can attract the participant’s moti-

vation to be involved in the behaviour change in-

terventions. Furthermore, this presented method can

be applied to the eco-feedback design to enhance the

implementation of the indoor condition prediction

model for occupant-centric innovation in building

control systems to promote sustainable behaviours.9

Research has shown that statistical visualisation

techniques, which often rely on mathematical data as

a communication medium, are essential in any en-

ergy eco-feedback system,10 as well as prediction

results to engage with the end-users. Using the

framework presented in this study, a further study

would consider incorporating textual information,

colour coding, and statistical visualisation techniques

with eco-feedback visualisation to enhance its ef-

fectiveness to motivate further behaviour change

suggestions.

Conclusion

This work aims to contribute towards participatory

research for IEQ predictions to promote pro-

environmental behaviours by the end-users to main-

tain acceptable IEQ with passive measures. The

framework of indoor-outdoor correlation models

consists of a narrative in translating the sophisticated

scientific principles underpinning the way buildings

and their systems are designed and operated as a

simplified correlation process for the end-users to alter

the building operation based on their knowledge. The

examples of IEQ predictions were presented for three

pre-defined scenarios, and the limitations of the

method were acknowledged. This presented method

can be used to design occupant-centric design strate-

gies in predicting thermal comfort and indoor air

quality of the existing building to improve the quality

of microclimates. The results of the presented methods

can produce easy-to-understand feedback systems, and

it will help to encourage the user’s ability to interact

with their rooms without any privacy-related concerns,

by adding numerical values of the forecasted weather

for the next day to the application developed for

participatory designs to predict the IEQ of their rooms

in different scenarios. To do so, recommendations for

future research and to refine the effectiveness of the

method are discussed. Therefore, the presented indoor

condition predictions framework can be integrated into

the eco-feedback participatory design and occupant-

centric control of indoor environments to enhance

behaviour-based efficiency measures through end-user

actions in the existing buildings.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of

this article.

Funding

The authors disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This study has been funded by the European

Union’s Horizon 2020 research and innovation programme

under Grant Agreement N° 958345 for the PRELUDE

project (https://prelude-project.eu).

ORCID iDs

May Zune  https://orcid.org/0000-0003-0282-2633

Thet Paing Tun https://orcid.org/0000-0002-4950-271X

Maria Kolokotroni  https://orcid.org/0000-0003-4478-

1868

References

1. Mitev K, Player L, Verfuerth C, et al. The implications of

behavioural science for effective climate policy. Uni-

versity of Bath, UK: Committee on Climate Change,

2023. https://www.theccc.org.uk/wp-content/uploads/

2023/09/The-Implications-of-Behavioural-Science-for-

Effective-Climate-Policy-Literature-Review-and-

Background-Report-CAST.pdf.

2. Stevenson F. Housing fit for purpose: performance,

feedback and learning. London, UK: RIBA Pub-

lishing, 2019.

3. Andor MA and Fels KM. Behavioral economics and

energy conservation – a systematic review of non-price

interventions and their causal effects. Ecol Econ 2018;

148: 178–210. DOI: 10.1016/j.ecolecon.2018.01.018.

Zune et al. 19



4. Berger C, Mahdavi A, Ampatzi E, et al. The role of

user controls with respect to indoor environmental

quality: from evidence to standards. J Build Eng

2023; 76: 107196. DOI: 10.1016/j.jobe.2023.

107196.

5. Chalal ML, Medjdoub B, Bull R, et al. From dis-

covering to delivering: a critical reflection on eco-

feedback, application design, and participatory

research in the United Kingdom. Energy Res Social

Sci 2020; 68: 101535. DOI: 10.1016/j.erss.2020.

101535.

6. Michie S, van Stralen MM and West R. The be-

haviour change wheel: a new method for charac-

terising and designing behaviour change

interventions. Implement Sci 2011; 6: 42. DOI: 10.

1186/1748-5908-6-42.

7. Fogg BJ. A behavior model for persuasive design. In:

Chatterjee S (ed). Proceedings of the 4th International

Conference on Persuasive Technology. New York:

ACM Press, 2009.

8. Carmichael R. Behaviour change, public engagement

and Net Zero. Imperial College London, UK: Com-

mittee on Climate Change, 2019. https://www.theccc.

org.uk/wp-content/uploads/2019/10/Behaviour-

change-public-engagement-and-Net-Zero-Imperial-

College-London.pdf.

9. Sanguinetti A, Dombrovski K and Sikand S. Infor-

mation, timing, and display: a design-behavior

framework for improving the effectiveness of eco-

feedback. Energy Res Social Sci 2018; 39: 201855.

DOI: 10.1016/j.erss.2017.10.001.

10. Chalal ML, Medjdoub B, Bezai N, et al. Visualisation

in energy eco-feedback systems: a systematic review

of good practice. Renew Sustain Energy Rev 2022;

162: 112447. DOI: 10.1016/j.rser.2022.112447.

11. McCarron A, Semple S, Swanson V, et al. Piloting co-

developed behaviour change interventions to reduce

exposure to air pollution and improve self-reported

asthma-related health. J Expo Sci Environ Epidemiol

2025; 35(2): 242–253. DOI: 10.1038/s41370-024-

00661-2 (Advance online publication).

12. Sharpe T,McGill G,MenonR, et al. Building performance

and end-user interaction in passive solar and low energy

housing developments in Scotland. Archit Sci Rev 2018;

61: 280–291. DOI: 10.1080/00038628.2018.1502150.

13. Meng C, Griesemer S, Cao D, et al. When physics

meets machine learning: a survey of physics-informed

machine learning.Mach Learn Comput Sci Eng 2025;

1: 20. DOI: 10.1007/s44379-025-00016-0.

14. Ma Z, Jiang G and Chen J. Physics-informed en-

semble learning with residual modeling for enhanced

building energy prediction. Energy Build 2024; 323:

114853. DOI: 10.1016/j.enbuild.2024.114853.

15. Sulzer M, Christen A and Matzarakis A. Predicting

indoor air temperature and thermal comfort in occupa-

tional settings using weather forecasts, indoor sensors,

and artificial neural networks. Build Environ 2023; 234:

110077. DOI: 10.1016/j.buildenv.2023.110077.

16. Kalidindi SSV, Banaee H, Karlsson H, et al. Indoor

temperature prediction with context-aware models in

residential buildings. Build Environ 2023; 244:

110772. DOI: 10.1016/j.buildenv.2023.110772.

17. Ma Z, Jiang G, Hu Y, et al. A review of physics-

informed machine learning for building energy

modeling. Appl Energy 2025; 381: 125169. DOI: 10.

1016/j.apenergy.2024.125169.

18. Schweizer C, Edwards RD, Bayer-Oglesby L, et al.

Indoor time–microenvironment–activity patterns in

seven regions of Europe. J Expo Sci Environ Epi-

demiol 2007; 17: 170. DOI: 10.1038/sj.jes.7500490.

19. Givoni B. Passive and low energy cooling of build-

ings. New York: Van Nostrand Reinhold, 1994.

20. Manzano-Agugliaro F, Montoya FG, Sabio-Ortega A,

et al. Review of bioclimatic architecture strategies for

achieving thermal comfort. Renew Sustain Energy

Rev 2015; 49: 736. DOI: 10.1016/j.rser.2015.04.095.

21. Ozarisoy B and Altan H. Systematic literature review

of bioclimatic design elements: theories, methodol-

ogies and cases in the South-eastern Mediterranean

climate. Energy Build 2021; 250: 111281. DOI: 10.

1016/j.enbuild.2021.111281.

22. Elaouzy Y and El Fadar A. Energy, economic and en-

vironmental benefits of integrating passive design strat-

egies into buildings: a review. Renew Sustain Energy Rev

2022; 167: 112828. DOI: 10.1016/j.rser.2022.112828.

23. Jung K, Kashyap S, Avati A, et al. A framework for

making predictive models useful in practice. J Am

Med Inf Assoc 2020; 28(6): 1149.

24. Li J. Assessing the accuracy of predictive models for

numerical data: not r nor r2, why not? Then what?

PLoS One 2017; 12(8): e0183250.

25. Smargiassi A, Fournier M, Griot C, et al. Prediction of

the indoor temperatures of an urban area with an in-

time regression mapping approach. J Expo Sci

20 Building Services Engineering Research & Technology 0(0)



Environ Epidemiol 2007; 18: 282–288. DOI: 10.1038/

sj.jes.7500588.

26. Hopfe C and McLeod R. The Passivhaus Designer’s

Manual: a technical guide to low and zero energy

buildings. London: Routledge, 2015.

27. Azar E, O’BrienW, Carlucci S, et al. Simulation-aided

occupant-centric building design: a critical review of

tools, methods, and applications. Energy Build 2020;

224: 110292. DOI: 10.1016/j.enbuild.2020.110292.

28. Feifer L, Imperadori M, Salvalai G, et al. Active

house: smart nearly zero energy buildings United

Kingdom. New York, NY: SpringerLink, 2018.

29. Nguyen JL, Schwartz J and Dockery DW. The

relationship between indoor and outdoor tem-

perature, apparent temperature, relative humidity,

and absolute humidity. Indoor Air 2014; 24(1):

103. DOI: 10.1111/ina.12052.

30. Kim MK, Cremers B, Liu J, et al. Prediction and

correlation analysis of ventilation performance in a

residential building using artificial neural network

models based on data-driven analysis. Sustain

Cities Soc 2022; 83: 103981. DOI: 10.1016/j.scs.

2022.103981.

31. Aguilera JJ, Andersen RK and Toftum J. Prediction of

indoor air temperature using weather data and simple

building descriptors. Int J Environ Res Publ Health

2019; 16(22): 4349.

32. PRELUDE. Prescient building Operation utilizing

Real-Time data for Energy Dynamic Optimization.

Available at: https://prelude-project.eu/ (accessed 1

July 2024).

33. DesignBuilder.DesignBuilder: EnergyPlus engine for

building performance simulation 2024. Available at:

https://designbuilder.co.uk (accessed 1 July 2024).

34. Lau F. Chapter 12 methods for correlational studies.

In: Lau F and Kuziemsky C (eds). Handbook of

eHealth Evaluation: An Evidence-based Approach.

Victoria, BC: University of Victoria, 2017. https://

www.ncbi.nlm.nih.gov/books/NBK481614/

35. CIBSE. AM10 Natural ventilation in non-domestic

buildings. London: The Chartered Institution of

Building Services Engineers (CIBSE), 2005. https://

www.cibse.org/knowledge-research/knowledge-

portal/applications-manual-10-natural-ventilation-in-

non-domestic-buildings-2005

36. Zune M and Kolokotroni M. Correlation model to

evaluate climate effect on indoor air quality and

thermal comfort in houses. In: CATE2022, Comfort at

the Extremes – Resilient Comfort: Climate Change,

COVID and Ventilation, Edinburgh, UK, 5th-6th

September 2022.

37. Kandilli C and Ulgen K. Solar illumination and

estimating daylight availability of global solar ir-

radiance. Energy Sources, Part A Recovery, Util

Environ Eff 2008; 30: 1127. DOI: 10.1080/

15567030601100688.

38. Zune M and Kolokotroni M. D3.4: indoor-outdoor

correlation module. UK: Brunel University London,

2022. https://prelude-project.eu/results/deliverables/

39. Meteonorm. Meteonorm software. Available at:

https://meteonorm.com/en/ (accessed 1 July

2024).

40. BSI. BS EN 16798-1 Energy performance of

buildings Ventilation for buildings Indoor envi-

ronmental input parameters for design and as-

sessment of energy performance of buildings

addressing indoor air quality, thermal environ-

ment, lighting and acoustics Module M1-6. UK:

The British Standards Institution, 2019.

41. CIBSE. Guide A environmental design. London: The

Chartered Institution of Building Services Engineers

(CIBSE), 2021. https://www.cibse.org/knowledge-

research/knowledge-portal/guide-a-environmental-

design-2015

42. BSI. BS EN 17037. Daylighting of buildings. UK:

British Standards Institution, 2018.

43. Brembilla E and Mardaljevic J. Climate-Based

Daylight Modelling for compliance verification:

benchmarking multiple state-of-the-art methods.

Build Environ 2019; 158: 151. DOI: 10.1016/j.

buildenv.2019.04.051.

44. Persily AK and Polidoro BJ, Residential appli-

cation of an indoor carbon dioxide metric. In:

Conference 40th AIVC 8th Tight Vent & Venticool

Conference, Ghent, Belgium; 15-16 October

2019.

45. Persily AK and Polidoro B. Indoor carbon dioxide

metric analysis tool, technical note (NIST TN) - 2213.

Gaithersburg, ML: National Institute of Standards and

Technology, 2022. https://www.nist.gov/publications/

indoor-carbon-dioxide-metric-analysis-tool

46. CIBSE. TM59 Design methodology for the assess-

ment of overheating risk in homes. UK: The Chartered

Institution of Building Services Engineers, 2017.

Zune et al. 21



47. Fan X, Sakamoto M, Shao H, et al. Emission rate of

carbon dioxide while sleeping. Indoor Air 2021;

31(6): 2142. DOI: 10.1111/ina.12911.

48. ASHRAE Guideline 14-2023. Measurement of En-

ergy, Demand and Water Savings.

49. CIBSE. TM63 Operational performance:

building performance modelling and calibration

for evaluation of energy in-use. UK: The Char-

tered Institution of Building Services Engineers,

2020.

50. Alawadi S, Mera D, Fernández-Delgado M, et al. A

comparison of machine learning algorithms for fore-

casting indoor temperature in smart buildings.Energy Syst

2022; 13: 689–705. DOI: 10.1007/s12667-020-00376-x.

22 Building Services Engineering Research & Technology 0(0)


	Predicting indoor environmental conditions using correlation models for behaviour change suggestions
	Introduction
	Methodology
	Modelling framework
	Boundary conditions
	Case study apartment

	Indoor-outdoor correlations
	Temperature correlation
	Ventilation estimations
	Daylight correlation
	Predictive analytics

	Prediction benchmarks
	Adaptive thermal comfort bands
	Indoor illuminances
	Indoor pollutant concentration

	Scenarios for behaviour change suggestions

	Results
	Validating the base case simulation model
	Statistical regressions for tested scenarios
	Indoor temperatures and illuminance predictions
	Air change rate and indoor CO2 concentration predictions
	Behaviour changes suggestions for thermal comfort and indoor air quality

	Discussion
	Recommendation for predictive modelling
	Boundary condition
	Indoor condition prediction
	Prediction benchmark

	Contribution towards participatory design development
	Ability
	Opportunity
	Motivation and triggers


	Conclusion
	Declaration of conflicting interests
	Funding
	ORCID iDs
	References


