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We report on a search for millicharged particles (mCPs) produced in cosmic ray atmospheric interactions

using data collected during the first science run of the LUX-ZEPLIN experiment. The mCPs produced by

two processes—meson decay and proton bremsstrahlung—are considered in this study. This search utilized

a novel signature unique to liquid xenon (LXe) time projection chambers, allowing sensitivity to mCPs

with masses ranging from 10 to 1000 MeV=c2 and fractional charges between 0.001 and 0.02 of the

electron charge (e). With an exposure of 60 live days and a 5.5 metric ton fiducial mass, we observed no

significant excess over background. This represents the first experimental search for atmospheric mCPs and

the first search for mCPs using an underground LXe experiment.

DOI: 10.1103/zhs9-65ds

Introduction—Millicharged particles (mCPs), denoted as

χ, are hypothetical particles carrying a small fractional

electric charge to that of an electron Qχ ¼ ϵe. The search

for mCPs is closely connected to the research of string

theory [1], grand unification theories (GUTs) [2,3], and the

principle of charge quantization [4,5], which is taken as an

observation in the standard model (SM) without firm

theoretical motivation. In their simplest theoretical form

without considering ultraviolet completeness, mCPs can be

incorporated into the SM as new particles carrying a small

charge under Uð1ÞY gauge symmetry. Other possible

origins include kinetic mixing between a dark photon field

and the SM hypercharge field [6–8], or extensions to the

SM involving mass mixing [9–11]. Consequently, exper-

imental searches for mCPs not only serve as a powerful test

of various dark sector models and charge quantization but

also represent an important frontier in the exploration of

physics beyond the SM.

Several studies [12–14] have proposed that mCPs could

constitute a small portion of the dark matter (DM) in the

universe, building upon the hypothesis that some fraction

of DM may exhibit small electromagnetic interactions with

photons [15–19]. This interest in mCPs was notably

revitalized following the anomalous findings from the

EDGES experiment in 21-cm cosmology [15,20,21], with

mCPs as a potential explanation [22–26]. Additionally,

experimental searches for the electromagnetic interaction

of galactic DM in the mass range of a few GeV=c2 to

TeV=c2 have been conducted to probe their interactions

with nuclei [27–29]. However, for nonrelativistic mCPs

*
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with smaller masses, the energy deposited during scattering

with nuclei becomes small, rendering such searches

challenging.

For mCPs with mass in the region 10 to 1500 MeV=c2,
the current experimental limits come from accelerator

experiments, including ArgoNeuT [30], milliQan [31],

SLACmq [32], and SENSEI [33]. Recent studies suggest

that in this mass range, a substantial flux of relativistic

mCPs may be produced through atmospheric cosmic ray

interactions, generating detectable energy deposits in ter-

restrial detectors [34–41]. References [34,37,42,43] show

that liquid xenon (LXe) detectors, albeit smaller than

neutrino detectors in size, can set competitive constraints

on relativistic atmospheric DM particles, including

mCPs [40,43]. The sensitivity of LXe detectors is due to

their comparably low energy threshold and background

rates [44]. In this Letter, we report on the first search for

atmospheric mCPs. This analysis used data collected

between December 23, 2021, and May 11, 2022, from

the LUX-ZEPLIN (LZ) dark matter experiment during

Science Run 1 (SR1), with a total exposure of 0.91 metric

ton × year [45].

The LZ experiment [46,47] is located 4850 ft under-

ground in the Davis Cavern at the Sanford Underground

Research Facility (SURF) in Lead, South Dakota. LZ has

leading sensitivity to weakly interacting massive particle

(WIMP) dark matter models [45,48]. At the core of the LZ

experiment is a dual-phase xenon time projection chamber

(TPC), a vertical cylinder approximately 1.5 m in diameter

and height, containing a 7-metric-ton active mass. The TPC

detects energy depositions in LXe, producing two types of

signals: vacuum ultraviolet (VUV) scintillation photons

(S1) and ionization electrons. The ionization electrons drift

under a near-uniform electric field toward the liquid-gas

surface, where they are extracted into the gas region and

produce an electroluminescence signal (S2). The S1 and S2

signals are detected by two arrays of 3-in. photomultiplier

tubes (PMTs), with 253 PMTs positioned at the top and 241

PMTs at the base of the TPC. The horizontal position ðx; yÞ
of an event is reconstructed using the S2 light incident on

the top PMTarray, and the z position is calculated from the

delay time between S1 and S2 signals. Spatial variations in

S1 and S2 signals are corrected using radioactive sources,

as in [45], yielding position-independent signals, S1c and

S2c. The ratio of S2c to S1c signals is critical for differ-

entiating between nuclear recoil (NR) and electron recoil

(ER) interactions. Encasing the TPC, a “skin” of instru-

mented LXe and a 17-metric-ton gadolinium-loaded liquid

scintillator outer detector (OD) serve as anticoincidence

detectors, providing shielding and background veto capa-

bilities. Additionally, a 238-metric-ton ultrapure water tank

surrounds the LZ setup, further enhancing protection

against ambient radioactive backgrounds.

mCP production and attenuation—As mCPs participate

in SM QED processes, the interaction between cosmic rays

and atoms in the atmosphere can produce a flux of mCPs

detectable by terrestrial detectors. Following Ref. [41], we

considered mCPs produced in two distinct atmospheric

production processes in this analysis: meson decay (MD)

and proton bremsstrahlung (PB). The Drell-Yan process

was not considered due to its negligible flux contribution.

In the MD channel, neutral mesons are produced during

cosmic ray hadronic interactions, leading to the generation

of mCP pairs through electromagnetic decays. The mCP

flux from MD can be calculated with a zenith angle

dependence using the cascade equation as in Ref. [49].

For this calculation, we employed the HeavenlyMCP package

[37] which estimates the mCP flux at the Earth’s surface

fromMD, incorporating the meson-mCP branching ratio as

detailed in Refs. [34,35,50]. The uncertainty on the mCP

flux in the MD channel, arising from cosmic ray and

hadronic interaction models, was evaluated to range from

26% to 71% depending on the mediating meson type [37].

In the PB channel, a cosmic ray proton collides with

atmospheric atoms and is stopped. The initial state proton

emits a bremsstrahlung photon, which subsequently radi-

ates a mCP pair [51–54]. The atmospheric mCP flux at the

surface from PB was adopted from the calculations

presented in Refs. [38,41]. The uncertainty on the mCP

flux produced in PB mainly arises from the proton off-shell

form factor, which leads to an average 46% flux uncertainty

in the mass range of interest, derived from the calculations

in Ref. [38]. The mCP flux at the surface of the Earth

produced from both processes is illustrated in the top panel

of Fig. 1.

Atmospheric mCPs lose energy through scattering and

ionization as they traverse the overburden on their way to

an underground detector. This attenuation effect will reduce

the flux reaching the LZ detector, and scales with the

charge fraction ϵ and distance traveled through the Earth.

To account for this, we employed the energy-loss-based

attenuation method outlined in Ref. [37] to calculate the

attenuated mCP flux reaching the LZ detector, starting from

the initial surface flux, with the SURF surface profile as in

Ref. [55] taken into consideration. For illustration, the mCP

flux produced in both channels reaching the LZ detector

from zenith angle cos θ ¼ 1.0 and 0.0 is shown in the

bottom panel of Fig. 1.

mCP signal modeling in LZ—We simulated mCP tracks

through the LZ geometry using the underground mCP flux

shown in Fig. 1 for different incoming angles, assuming no

deflection and instantaneous traversal due to their high

kinetic energy. The mCPs produced in cosmic ray inter-

actions are highly relativistic, typically crossing the LZ TPC

in a few nanoseconds. Energy depositions along these tracks

were sampled using the photon absorption ionization (PAI)

model [56] (see Appendix for details and an alternative

approach, the free electron model). The LZ simulation

framework [55], incorporating NEST 2.3.12 [57], was

employed to characterize the detector response, converting
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energy depositions into S1c, S2c, drift time, S2 width, and

other observables. SincemCPs interact with xenon similarly

to β particles, we adopted the NEST β-like ER yield model.

The low-energy ER yield model in NEST is constrained by

experimental data from Refs. [58,59] and further fine-tuned

using LZ in situ tritium β calibration data.

Simulations indicate that mCPs with ϵ > 0.001 undergo

multiple scatterings along their tracks, though only a small

fraction of these scatterings results in hard scatters with

energy depositions ≥ 1 keV, sufficient to produce a detect-

able S1-S2 pair [60]. For instance, in the PAI model, an

mCP withmχ ¼ 100 MeV=c2, βγ ¼ 4, and ϵ ¼ 0.003 has a

mean free path of 54 mm, much smaller than the dimen-

sions of the LZ TPC. However, most scatterings are soft

(< 1 keV) collisions, producing only small S2 pulses,

including single electrons (SEs). The mean free path for

a hard scatter of the same mCP is approximately 2.6 m,

comparable to the size of the LZ TPC. Hence, about 32% of

mCPs crossing the TPC produce a single hard scatter

(SHS), while 11% produce multiple hard scatters (MHSs).

As ϵ increases, the fraction of MHS also increases.

Consequently, a typical mCP traversing the TPC produces

a sequence of soft scatters and one or more hard scatters.

All S1 pulses from different scatters merge, while S2

pulses—having microsecond-scale widths—become unre-

solvable if scatters occur at similar depths. The simulation

accounts for pulse merging by modeling time separation,

pulse widths, and pulse areas [55,61]. The simulated

topology and waveform of a typical mCP SHS event for

ϵ ¼ 0.003 is shown in Fig. 2. This distinct event topology is

characteristic of mCP interactions and enables LZ to probe

mCPs with charge fractions between 0.001 and 0.02.

Event selection and efficiency—To identify mCP signals,

we restricted our search to events with SHS producing a

primary S1-S2 pair, leveraging the well-established SR1

WIMP search analysis, which utilizes single-scatter (SS)

events [45]. Additionally, selected events must contain at

least three small S2s between the primary S1 and S2,

produced by soft scatters. The small S2s after the primary

S2 are not considered due to elevated rates of activity after

large S2s, as is commonly observed in dual-phase xenon

TPCs [62,63]. The S1 signal requires a threefold PMT

coincidence and an S1c of at least 3 phd. The S2 threshold

is set at S2c ¼ 2000 phd, corresponding to ∼1 keV. S2

signals above this threshold are considered primary, while

those below are classified as small S2s. The primary S1 and

S2 signals are required to pass the same data quality event

selection criteria as in the SR1 WIMP search, except for a

prompt OD veto cut and an “excess area” cut [45]. The

prompt OD veto cut removes events with coincident signals

in the OD within 300 ns of the TPC signal, and the excess

area cut rejects events where the summed area of pulses

between the primary S1 and S2 exceeds that of the primary

S2 pulse. Both cuts could potentially exclude mCP signals.

Removing these two cuts maximizes the acceptance of

mCP signal events while still maintaining rejection of

accidental coincidences of isolated S1 and S2 pulses from

the other data quality selections. In addition, an mCP region

of interest (ROI) is defined for the primary S1 and S2 in the

FIG. 1. Top: the mCP flux integrated over all energies from the

PB channel and the MD channel at Earth surface level, as a

function of mCP mass mχ , with ϵ ¼ 0.01 and cos θ ¼ 1.0. The

contributions from each parent meson species to the MD channel

are also shown. Bottom: the differential mCP energy spectra

from the MD and PB channel reaching the LZ detector. As a

benchmark, we show the spectra of the mCP model with

mχ ¼ 100 MeV=c2 and ϵ ¼ 0.01. The underground flux from

the vertical direction (cos θ ¼ 1.0) is represented by the solid

lines, and the flux from the horizontal direction (cos θ ¼ 0.0) is

represented by the dot-dashed lines.

FIG. 2. An example event topology of a simulated mCP

event in the LZ TPC, with mCP mass mχ ¼ 0.1 GeV=c2 and

ϵ ¼ 0.003.
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fS1c; log10ðS2cÞg observable space. This contour is

derived from simulations of mCP SS events at the 90%

confidence level (CL), with energy deposits sampled using

the PAI model. This ROI cut removes events in which the

primary S2 arises from the misclassification of unresolved

multiple energy deposits in the TPC, as well as events with

nuclear recoils from background neutrons.

The total signal efficiency after event selection, shown in

Fig. 3, was evaluated solely from simulation, following the

mCP signal modeling in LZ, and peaks at ϵ ≃ 0.003. The

error band (gray) is the systematic uncertainties quantified

from different S2 width cuts, combined with the uncer-

tainties on the hardware trigger efficiency and other data

quality cuts [45]. At lower charges, efficiency is primarily

suppressed by the absence of small S2 pulses between the

primary S1 and S2, as well as the lack of a hard scatter to

generate the primary S1-S2 pair. For higher charges, most

of the signal loss arises from MHS, and also the primary S2

merging with other S2s, causing the event to move out of

the mCP ROI or fail data quality selection.

Backgrounds—Two primary background sources could

mimic mCP signal signatures. The dominant background

arises from SS background events that produce a primary

S1-S2 pair, accidentally coinciding with random small S2

pulses. The SS background was estimated from the SR1

WIMP search analysis [44,45], whose ROI fully encom-

passes the mCP ROI (Fig. 4). Before requiring three or

more small S2 pulses, we expect 209� 22 SS background

events in the mCP ROI, accounting for the removal of the

prompt OD veto and excess area cuts.

To quantify the likelihood of random small S2 pulses

appearing between the primary S1 and S2, we used two

datasets: sideband data from a pre-S1 window (a time

region before the S1) and tritium calibration data. The

small S2 rate correlates with S1 pulse area, primarily due

to S1-induced SE emissions from the photoionization of

bulk impurities [62]. The pre-S1 window, which lacks

a preceding S1, provides a lower bound on the small

S2 rate, whereas tritium data, exhibiting enhanced activity

between S1 and S2, offers a conservative upper bound.

From these measurements, we estimated that 0.07% to

0.2% of SS background events contain three or more small

S2 pulses. To validate this estimate, we analyzed a

separate sideband dataset of events near the TPC wall,

selected under conditions that mimic SS backgrounds but

exclude mCP signals. Out of 698 events, one exhibits

three or more small S2 pulses, consistent with the

predicted range of [0.5, 1.4] events. As a further cross-

check, we relaxed the criterion to require only two small

S2 pulses, finding six observed events, consistent with the

predicted range of [3.5, 6.9].

The second background category arises from multiple-

scatter (MS) events, where gamma rays and neutrons from

detector radioactivity undergo multiple scatterings in the

TPC. However, simulations indicate that such MS events

rarely produce the mCP-like event topology, with an

expected contribution of < 0.01 events, making this back-

ground negligible.

FIG. 3. Efficiency of the data selection cuts evaluated from

simulations, defined as number of tracks passing the cut divided

by number of tracks simulated. The total efficiency has been

scaled up by a factor of 10 for better visibility. The gray error

band represents the total uncertainty in the efficiency.

FIG. 4. LZ SR1 mCP search SHS events after data selections,

excluding the ROI cut and before applying the three small S2

selection, shown in the log10ðS2cÞ-S1c space within an extended

S1 window (up to 500 phd). Events are marked by small orange

points (zero small S2 pulses between the primary S1 and S2),

orange diamonds (one small S2 pulse), dark-orange triangles

(two small S2 pulses), and large filled dark-red circles (three or

more small S2 pulses). The trend of increasing small S2 pulses at

higher S1 values is due to the increased probability of S1-induced

SEs from the photoionization of bulk impurities [62]. The

unshaded region denotes the WIMP ROI (S1c 3–80 phd), while

solid blue contours show the mCP ROI. The dashed magenta line

marks the 2000 phd threshold. The solid green line represents the

median of a uniform NR background, with dashed lines indicat-

ing the 10% and 90% quantiles. Thin gray lines outline contours

of constant energy.
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Combining these factors, the total expected background

in the mCP ROI is [0.15, 0.42] events, obtained by

multiplying the SS background expectation (209 events)

by the probability of an accidental coincidence of three or

more small S2 pulses ([0.07%, 0.2%]).

Results and discussion—A search for mCPs was per-

formed using LZ SR1 data, applying the same live time

exclusions as those used in the WIMP search [45]. This

resulted in an effective live time of 60� 1 days and a

fiducial LXe mass of 5.5� 0.2 metric tons. The events that

pass all selections except the mCP ROI and the three small

S2 cuts are depicted in Fig. 4, with the mCP ROI overlaid as

a blue contour. After all cuts were applied, no events were

observed, which aligns with the expectations from our

background model. The probability of observing zero

events, given the background prediction, lies between

66% and 86%.

We derived atmospheric mCP exclusion limits following

the Feldman-Cousins [64] procedure for a zero observed

signal scenario. To obtain a conservative constraint, we set

the background expectation to 0.15 events. Atmospheric

mCP models yielding more than 2.26 signal events,

after accounting for the detection efficiency as a weight

factor in the calculation, are excluded at the 90% con-

fidence level. The results are shown in Fig. 5 along

with other experimental limits from beam experiments,

including ArgoNeuT [30], milliQan demonstrator [31],

colliders [65], SLACmq [32], and SENSEI [33]. After

combining contributions from the MD and PB processes,

the lower bound of the LZ constraint on atmospheric mCPs

is at ϵ ∼ 0.002 for mCP masses < 300 MeV=c2, where
the surface mCP flux begins to drop sharply. The

closed-contour shape of the constraints is from the fact

that the selection efficiency drops to zero for ϵ < 0.001 and

ϵ > 0.01, as shown in Fig. 3. We estimated an 11%

uncertainty on the constraints from flux and data selection

efficiency uncertainties.

Conclusions—We have presented the inaugural exper-

imental search for mCPs produced in cosmic ray atmos-

pheric interactions, which is highly complementary to

existing results from accelerator-based experiments. We

have considered mCPs originating from two production

channels: meson decay and proton bremsstrahlung, and

conducted the search using a signature novel to liquid

xenon detectors. Utilizing data from LZ SR1, we found the

data to be consistent with the background-only hypothesis

for all tested mCP model parameters, and based on this

result, we set the first constraints on atmospheric mCP

models.
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End Matter

Appendix: mCP interaction models—In this section,

we discuss different mCP interaction models in liquid

xenon. The PAI model [56], used in our main results,

accounts for xenon’s electron binding energies using

optical constants and has been employed in previous

mCP searches [68,69]. Following Ref. [70], the optical

constants used in our calculations are taken from

Refs. [71,72]. The mCP-electron scattering differential

cross section predicted by the PAI model is related to

that of muons as

dσPAIχ ðβÞ

dEr

¼ ϵ2
dσPAIμ ðβÞ

dEr

; ðA1Þ

where β ¼ v=c is the velocity of the ionizing particle,

and σPAIμ is the PAI cross section for muons.

The free electron model [34,35], which assumes all

electrons in LXe are free, is widely used in recent mCP

theory calculations [34,37,38]. The mCP-free electron

scattering differential cross section is given by [35]

dσFE

dEr

¼ ϵ2α2
Er þ 2E2

χ=Er − 2Eχ −me −m2
χ=me

ErmeðE
2
χ −m2

χÞ
; ðA2Þ

where α is the fine structure constant, Er is the recoil

energy, mχ is the mass of the mCP, and me is the mass of

an electron.

The differential cross sections derived from both models

are shown in Fig. 6. We note that the cross section is

approximately inversely proportional to the square of the

electron recoil energy, Er. Due to the xenon electron shell

structure, the PAI model predicts peaks near 10, 100, and

1000 eV, leading to an increased number of scattering

events at these energies, which are not seen in the free

electron model.

We conducted the analysis separately using the free

electron model. The excluded region derived from the free

electron model is shown in Fig. 7. Compared to the

excluded region derived from the PAI model, the contour

sees an upward shift, due to the smaller cross section, and

the lack of peaks near 1 keV recoil energy.

FIG. 7. The 90% CL limits on mCP fractional charge ϵ ¼ Qχ=e
derived from atmospheric production channels, as a function of

mCP mass mχ , using the free electron interaction model. The

black solid lines are the constraints from the MD process only,

and dot-dashed lines are from both the MD and PB processes

combined. Selected limits on mCPs from beam experiments are

also shown [30–33,65].

FIG. 6. The differential cross section of mCP-electron inter-

action in liquid xenon predicted by the free electron model (solid)

and the PAI model (dashed). As a benchmark, we take

mχ ¼ 100 MeV=c2, Eχ ¼ 0.5 GeV, and ϵ ¼ 1.
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