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Figure 1: From multi-view raw division-of-focal-plane colour-polarisation images (one input view in Col. 1), we reconstruct a neural SDF

(surface normals, Col. 2) and neural fields for diffuse and specular radiance (Cols. 3–4). Col. 1 includes a zoom-in inset that enlarges

a 16 × 16 patch of the Colour Polarisation Filter Array (CPFA), revealing its mosaic pattern. Combining the two radiance fields yields

unpolarised radiance (Col. 5). From this representation we can render colour, polarised images from any view; the RGB image rendered at

a 0◦ polariser angle appears in Col. 6. All images are rescaled and tone-mapped for display.

Abstract

We tackle the problem of multi-view shape-from-polarisation using a neural implicit surface representation and volume render-

ing of a polarised neural radiance field (P-NeRF). The P-NeRF predicts the parameters of a mixed diffuse/specular polarisation

model. This directly relates polarisation behaviour to the surface normal without explicitly modelling illumination or BRDF.

Via the implicit surface representation, this allows polarisation to directly inform the estimated geometry. This improves shape

estimation and also allows separation of diffuse and specular radiance. For polarimetric images from division-of-focal-plane

sensors, we fit directly to the raw data without first demosaicing. This avoids fitting to demosaicing artefacts and we propose

losses and saturation masking specifically to handle HDR measurements. Our method achieves state-of-the-art performance on

the PANDORA benchmark. We apply our method in a lightstage setting, providing single-shot face capture.

CCS Concepts

• Computing methodologies → Reconstruction;

1. Introduction

When unpolarised light reflects from a surface it becomes par-
tially polarised. This applies to both specular reflection [RC01]
and diffuse reflection [AH06] that arises from transmission out
of the surface after subsurface scattering. The degree and an-

gle of polarisation are related to the local surface normal direc-
tion and view vector and, hence, their measurement provides con-
straints for the reconstruction of surface geometry. This cue has
been exploited by a wide array of shape-from-polarisation meth-
ods [MMSG05, AH06, MSB∗12, MSB∗17, MKI04].

© 2025 Eurographics - The European Association
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Figure 2: Neural shape-from-polarisation. We use a neural SDF to represent the surface and whose gradient provides the surface normal.

Two other MLPs learn unpolarised diffuse and specular radiance, with diffuse radiance being conditioned on position and geometric fea-

tures, assuming Lambertian reflectance, and specular radiance additionally on the cosine of the view angle and reflection direction. Via a

mixed polarisation model we capture the dependence between surface normal, camera pose and unpolarised radiances to predict polarised

radiance. This is volume rendered according to the NeuS [WLL∗21] model for any combination of colour channels and polariser angles. We

select the appropriate prediction from the channel dimension for each rendered pixel and compute a data loss to the raw measurement.

However, these methods have seen limited adoption, partly due
to the challenges of capturing polarimetric images. Recent ad-
vancements, such as commodity division-of-focal-plane (DoFP)
sensors that capture polarisation images in a single shot [pol],
have mitigated this issue. Nonetheless, polarisation alone is a weak
shape cue, providing strong signals only at occluding boundaries
for diffuse regions or within sparse specularities.

Multi-view polarisation measurements potentially overcome this
restriction. As few as two multi-view measurements of the same
point uniquely determine the surface normal direction from po-
larisation constraints alone (Sec. 3.2). The challenge is to choose
a representation that is amenable to optimisation while integrat-
ing information from multiple views. The recent rise of neu-
ral fields [XTS∗22] and their use for implicit surface represen-
tation [YKM∗20, ZLW∗21, LZP∗20, KJJ∗21] provides a compact
and adaptive parameterisation that can be rendered differentiably,
e.g. NeRF [MST∗20] and NeuS [WLL∗21].

Recent works have begun to explore the factorisation, i.e. inverse
rendering, of neurally-modelled radiance into underlying physical
quantities, including illumination, geometry and material proper-
ties via the bidirectional reflectance distribution function (BRDF).
Capturing and modelling polarised radiance offers the potential for
higher accuracy, requirement for fewer input views and the reso-
lution of ambiguities that arise when decomposing RGB radiance
alone. A recent line of work integrates polarisation into neural ra-
diance models [DZV22, LOU∗24]. However, they require the full
Stokes vector at each pixel and perform a full inverse rendering,
entailing estimation of the incident illumination and modelling of
a polarised BRDF. Instead, we directly exploit the shape-from-
polarisation cue in a way that is independent of the illumination
environment and make very limited assumptions about material re-
flectance models. Moreover, we fit our model directly to raw polar-

isation sensor data, bypassing the need for demosaicing, which is
more complex for a Colour Polarisation Filter Array (CPFA) com-
pared to conventional RGB demosaicing (the mosaic pattern has
size 4×4 versus 2×2 for RGB). Our main contributions are:

• Neural shape-from-polarisation: we propose a framework to ex-
tract geometry and appearance from multi-view polarisation im-
ages without inverse rendering illumination or requiring an ex-
plicit BRDF model;

• 3D reconstruction: linking surface geometry with polarised radi-
ance through a multiview mixed polarisation model and the sur-
face normals of a neural SDF, we reconstruct object geometry
with improved accuracy over the state-of-the-art;

• Passive capture: unlike photometric stereo methods, we estimate
object geometry without relying on known enviromental light-
ing, only assuming unpolarised incident light which is a good
approximation for natural light;

• Radiance decomposition: we provide a method to separate dif-
fuse and specular reflections from the object surface;

• Demosaicing: the first neural shape reconstruction method that
does not require demosaiced measurements, fitting instead di-
rectly to the raw sensor data;

• HDR handling: working with saturated HDR data, we propose a
new loss calculated in logarithmic space and apply a conditional
mask that ignores saturated information during training.

The intuition behind our approach is that specular and diffuse re-
flectance produce different, out-of-phase degrees of polarisation.
Observing the same point from multiple views allows us to see the
same diffuse radiance (Lambertian assumption) but varying specu-
lar radiances (dependent on view direction), with degrees of polari-
sation that follow different models. Together, this provides a cue for
extracting specular and diffuse components from polarised image
and constraining the surface normal direction and hence the SDF.

© 2025 Eurographics - The European Association
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Figure 3: Unpolarised light incident on a surface can be specu-

larly reflected (a), acquiring partial polarisation as described by

the Fresnel equations; (b) diffusely reflected, where light scatters

multiple times inside the object before being refracted at the sur-

face, also acquiring partial polarisation due to transmission, out

of phase with specular polarisation; (c) mixed reflection, the model

used in this work, is the combination of both types of reflection.

2. Related work

Shape from Polarisation (SfP) The Fresnel equations describe
the link between surface normal orientation and polarisation prop-
erties of light reflected off a surface. Such link is exploited by SfP
techniques, aimed at estimating surface normal from polarimetric
measurements. While multi-view stereo typically does not work
well with smooth, featureless and glossy surfaces, polarisation can
be used on a wide range of materials, such as metals [MMSG05],
dielectrics [AH06, GPDG12], dark and shiny surfaces [MSB∗12,
MSB∗17], as well as transparent ones [MKI04,MCZ∗22]. Further-
more, polarisation cameras are able to record the polarisation state
in a single shot, thus providing a dense cue, only limited by camera
resolution, and enabling pixel-wise surface normal estimation.

Many polarisation-based methods either deal with specular or
diffuse materials, due to the different reflection phenomena (see
Fig. 3). Atkinson and Hancock [AH06] assumed diffuse reflectance
to estimate the depth map of an object. Miyazaki et al. [MTHI03]
proposed a framework [IMTI08] to separate reflection compo-
nents, from which the objects shape can be inferred. Morel et
al. [MMSG05] developed a SfP method aimed at metals, using a
specular polariastion model. However, most real-world objects ex-
hibit a mixture of both diffuse and specular polarisation, causing
model mismatch [TKR16]. Smith et al. [SRT16] relaxed the classic
assumption and classify each pixel as diffuse dominant or specu-
lar dominant. Taamazyan et al. [TKR16] used both viewpoint and
polarisation information to recover shape of an object, relying on
a mixed polarisation model. Polarisation data from at least 2 view-
points constrains surface normal estimation, posed as a non-linear
least square problem. Cui et al. [CGS∗17] used polarimetric multi-
view stereo to handle a variety of objects with mixed polarisation
reflection, using iso-depth contours to propagate depth.

An additional challenge for SfP methods is the azimuthal am-
biguity, i.e. two azimuthal angles shifted by π radians cannot be
distinguished. Miyazaki et al. [MSB∗17] used space carving to es-
timate the rough structure of an object, before integrating priors to
the SfP pipeline. Similarly, Zhu and Smith [ZS19] used multi-view
information and a coarse depth map obtained from stereo cues as a
guide surface for disambiguation. Kadambi et al. [KTSR15] com-
bined a single polarisation image with the depth map obtained from
a RGBD camera, the latter used to disambiguate normal direction.

Tian et al. [TPW∗23] propose a depth estimation from polarimet-
ric stereo. The polarimetric ambiguities are resolved by iso-depth
constraints. The dual-GRU (Gated Recurrent Unit) architecture is
employed to utilise multi-domain similarity - the similarity of RGB
and polarisation images.

By establishing consistency of tangent space among multiple
viewpoints, MVAS [CSOM23] manages to reconstruct textureless
3D objects which have been challenging for conventional stereo
methods. PolarPMS [ZOMO24] exploits photometric and polari-
metric consistencies. While being able to reconstruct 3D object up
to pixel-level resolution, in contrast to ours which employs SDF to
implicitly infer geometry, PolarPMS iteratively generates several
pairs of depth and normal hypotheses and picks the one that min-
imises inconsistency between views. PMVIR [ZMO20, ZMO23]
address the multi-view SfP problem using a mesh-based represen-
tation and do not fully resolve the ambiguity, relying instead on
the most plausible azimuth angle. Moreover, being a refinement
method, PMVIR requires a reasonable initial shape whereas ours
learns the geometry from scratch. Ba et al. [BGW∗20] and Lei et
al. [LQX∗22] tackle the monocular SfP problem, recovering only
a single normal map from one view. Both methods train networks
using data from many scenes, learning general priors that gener-
alise to unseen novel input. In contrast to our work, we fit a neural
representation to a single scene/object using multi-view input. This
provides much higher quality reconstruction and a complete repre-
sentation of object geometry as opposed to per-view normal maps.

Furthermore, in our work, we explicitly include a mixed polar-
isation model and let our system learn an implicit neural repre-
sentation, encoding 3D geometry and appearance from multi-view
2D polarisation images via volume rendering techniques. Our net-
works map viewing direction and surface location to normal direc-
tion, diffuse and specular reflections, then render polarisation im-
ages for comparison with the raw images (see Fig. 2). Table 1 gives
an overview of methods’ attributes. Among SfP methods, P-NeRF
shares the largest commonality to PANDORA and PMVIR. For a
dedicated review, see Tan et al. [TJK∗23].

Specular-diffuse separation Reflected radiance can be accu-
rately modelled as a combination of specular and diffuse reflec-
tions. Specular reflection occurs when light is reflected off a smooth
surface, whereas diffuse reflection could be due to either sub-
surface scattering or reflection from a rough surface (see Fig. 3).

While some methods rely on pixel intensity [Sha92, MZBK06,
SMNO18] to separate reflectance components, polarisation-based
reflectance separation has been widely exploited. Riviere et
al. [RRFG17] proposed a passive method for uncontrolled environ-
ments, that estimates the reflectance of a planar surface using polar-
isation measurements from 3 views, one along the normal and two
from viewpoints near the Brewster angle. Nogué et al. [NLG22]
proposed planar surface reflectometry using a near-field display,
which requires 3 linear polarisation measurements.

Several recent techniques employ neural networks for radiance
separation. Inspired by real-time graphics, Boss et al. [BJB∗21]
presented a pre-integrated lighting network that converts illumina-
tion integration process into a query network, the latter resulting in
efficient rendering and radiance decomposition. PhySG [ZLW∗21]

© 2025 Eurographics - The European Association
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tackles radiance separation by using Spherical Gaussians and data-
driven embedding to model reflectance and lighting respectively.
Dave et al. [DHGH∗22] proposed a 2-step method to decompose
specular and diffuse reflectances from a single polarimetric image.
The initial separation is done by analysing the relationship among
polarisation cues and reflected radiance, then refined by the net-
work trained on synthetic scenes.

Neural field SfP Closest to our work, PANDORA [DZV22]
incorporates polarisation properties into a neural inverse render-
ing pipeline. Both approaches use multi-view polarisation images,
COLMAP [SZPF16,SF16] camera poses, and binary masks. How-
ever, PANDORA performs full inverse rendering, modelling the
specular BRDF and incident illumination environment, passing this
through a polarised BRDF model and rendering Stokes vectors that
are compared to those recorded by the camera. This requires first
demosaicing the raw images (a challenging task in itself) to pro-
vide full Stokes vectors at every pixel. In contrast, we use black box
neural fields to learn diffuse and specular radiances and use only a
mixed polarisation model relating surface normal direction to de-
gree and angle of polarisation. This allows us to directly fit to the
raw data without demosaicing. GNeRP [LWLC24] uses a Gaussian
representation for surface normals, with the mean indicating over-
all orientation and covariance capturing high-frequency variation. It
employs DoLP reweighting to balance higher DoLP in specular re-
gions. Unlike GNeRP, our work volume-renders radiance which is
linked with surface normal through our mixed polarisation model.
Both methods, though, use implicit neural BRDFs which can han-
dle high-frequency details. Han et al. [HGF∗24] focus on polari-
metric cues, splitting them into geometric and photometric cues
derived from Stokes vectors. While many works assume single-
bounced illumination, polarised rays contain rich information (e.g.,
as modeled by [KJCB23]). NeISF [LOU∗24] relaxes this assump-
tion, using coordinate-based MLPs to capture the Stokes field of the
second-last bounce. Diffuse and specular reflections are modelled
separately: diffuse Mueller matrices depend on surface normals,
while specular ones depend on microfacet normals.

Lightstage-based capture In general, lightstage-based meth-
ods use spherical illumination patterns to perform a version of
photometric stereo. Many light-stage appearance-capture pipelines
aim to recover not only geometry but also spatially varying mate-
rial parameters (see [GGH∗17] for a survey). For example, Ma et
al. [MHP∗07] introduced the spherical gradient illumination pat-
terns while Lattas et al. [LWZG19] use spherical binary patterns.
This provides a per-pixel estimate of the surface normal and mate-
rial properties including diffuse albedo and specular intensity. This
cue can be integrated across views using a multiview stereo type
approach [GFT∗11]. Lattas et al. [LLK∗22] use less-constrained,
desk-based illumination constructed from a panel of LCDs.

Some of these methods use properties of polarisation for the pur-
poses of separating diffuse and specular reflection. This is based on
a simplistic model in which specular reflection is assumed to per-
fectly preserve the plane of linear polarisation while diffuse reflec-
tion completely depolarises the reflected light. In fact, diffuse re-
flection caused by subsurface scattering (as in human skin) partially
polarises the light that is transmitted out of the surface (regardless
of whether the incident light was polarised or not) and specular re-

Method Viewpoints One-shot Polarisation and X Polarisation model Primary input
possible (diffuse/specular)

P-NeRF (ours) dense yes no X both raw polarisation images
[ZS19] pair yes 2-view stereo either polarisation and RGB images
PANDORA [DZV22] dense yes no X both polarisation images
PMVIR [ZMO20] dense yes no X both polarisastion images
NeISF [LOU∗24] dense no no X both bracketed images
[SRT16] single yes shading cues either polarisation image
[LQX∗22] single yes no X either polarisation image
[BGW∗20] single yes no X both polarisation image
NeRSP [HGF∗24] sparse yes photometric cues both polarisation images
[AH06] triplet yes no X diffuse polarisation images
[MMSG05] dense no no X specular polarisation images
[KTSR15] single yes coarse depth map either coarse depth map and polarisation image

Table 1: Method attributes. Modern methods usually consider both

types of polarisation models, either one at a time or co-existed mod-

els, whereas the traditional methods (e.g. [AH06,MMSG05]) solely

focus on specific model. While most methods allow single-shot cap-

ture, some methods (e.g. [LOU∗24,MMSG05] rely on special setup,

prohibiting simultaneously capturing. Because of polarimetric am-

biguities, single-view methods struggle to reconstruct 3D geometry

on its own and have to consider extra input such as [SRT16] using

shading cues or [LQX∗22, BGW∗20] with pre-tranied networks).

Among mixed-model methods with dense input, there are only 3 of

them that allow single-shot capturing: P-NeRF, PANDORA and Po-

larimetric MVIR. The result comparison for this method category

is shown in section 7.

flection similarly partially polarises unpolarised incident light when
it is reflected. It is this shape-from-polarisation cue that our method
exploits, negating the need for varying illumination patterns.

In addition, the diffuse/specular separation technique used by
[MHP∗07] requires each light source in the lightstage to be po-
larised with a particular plane of polarisation. The orientation of
the polarisation filters can only be tuned for a single viewpoint.
This means that such a design cannot be used to provide multiview
information. This reduces coverage of the face but also means that
geometric, multiview shape cues cannot be combined with the pho-
tometric cues. [GFT∗11] proposed an alternative in which polariser
orientations on the lights were arranged such that an approximate
separation was possible from any viewpoint on the equator of the
dome. This allows the use of multiview information but at the cost
of losing exact diffuse/specular separation.

3. Model mechanism

We begin by describing our mixed polarisation model and then ex-
tending it to the multi-view case.

3.1. A mixed polarisation model

When (partially) polarised light passes through a linear polaris-
ing filter and is then measured by a camera, the recorded intensity
varies sinusoidally with the angle of rotation (ϑ) of the linear po-
lariser. For subsurface diffuse reflectance that arises from internal
scattering followed by transmission out of the surface, this is de-
scribed by the diffuse polarisation model [AH06]:

I
diffuse
ϑ = Id(1+ρd(θ)cos(2ϑ−2φ(ϕ))), (1)

where Id ∈R
3
≥0 is the unpolarised RGB diffuse radiance, ρd ∈ [0,1]

is the diffuse degree of linear polarisation (DoLP) which depends
on the zenith angle θ ∈ [0,90◦] of the surface normal in a viewer-
centred coordinate system, i.e. the angle between surface normal

© 2025 Eurographics - The European Association
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and view vectors, and φ(ϕ) = ϕ mod π ∈ [0,180◦) is the phase an-
gle which depends on the azimuth angle ϕ ∈ [0,360◦) of the sur-
face normal in a viewer-centred coordinate system. In general, the
DoLP describes the proportion of a wave that is linearly polarised.
Specifically, ρd characterises the proportion of diffusely reflected
light that is linearly polarised. There exists a similar expression for
polarised specular reflectance:

I
specular
ϑ = Is(1+ρs(θ)cos(2ϑ−2φ(ϕ)+π)), (2)

where Is ∈ R
3
≥0 is the unpolarised RGB specular radiance in the

direction of the viewer and ρs ∈ [0,1] is the specular degree of po-
larisation. Note that both ρd and ρs have fixed expressions derived
from physical laws (Fresnel theory) and also depend on the refrac-
tive index of the surface which can either be assumed known or
estimated [SRT16].

For a glossy surface exhibiting a superposition of specular and
(subsurface) diffuse reflection, we can write a mixed polarisation
model as the sum of Idiffuse

ϑ and I
specular
ϑ :

I
mixed
ϑ = I

diffuse
ϑ + I

specular
ϑ (3)

= (Id + Is)+(Idρd(θ)− Isρs(θ))cos(2ϑ−2φ(ϕ)).

3.2. Multi-view mixed polarisation model

We now rewrite the mixed polarisation model to explicitly account
for the transformation from a world coordinate system to the coor-
dinate system of a given camera.

We denote a 3D point in world coordinates as x = (x,y,z) and
the surface normal in world coordinates at that point as n(x) =
[nx(x),ny(x),nz(x)]

T with ∥n(x)∥= 1. We define camera pose by a
rotation matrix R ∈ SO(3) that rotates world to camera coordinates
and the position of the camera centre by c∈R

3. Hence, the view di-
rection from which a camera with centre c observes point x is given
by: v(c,x) = c− x/∥c− x∥. The spherical coordinates of the sur-
face normal at x in the camera coordinate system can be obtained
as follows. The zenith angle is given by the angle between n(x)
and v(c,x): θ(c,x,n) = arccos(n(x) ·v(c,x)), while the azimuth
angle is given by rotating the surface normal to camera coordinates:
nc(R,x,n) = Rn(x), then converting the Cartesian representation
to the spherical azimuth angle:

ϕ(R,x,n) = atan2

(
nc,y(R,x,n)

nc,x(R,x,n)

)

. (4)

We can now rewrite our multi-view mixed model as a function of
all free parameters: position (x), the camera pose (R,c), the surface
normal (n) and diffuse and specular unpolarised radiances (Id , Is):

I
mixed
ϑ (x,R,c,n, Id , Is) = (Id + Is)+

[Idρd(θ(c,x,n))− Isρs(θ(c,x,n))]cos [2ϑ−2φ(ϕ(R,x,n))] . (5)

For a single view, there are four unknowns in this expression: two
components of the orientation of the surface normal and Id and Is

(assuming grayscale radiance). A single observation with a demo-
saiced polarisation camera provides three observations (the three
parameters of a sinusoid: unpolarised intensity, degree of polarisa-
tion and angle of polarisation). Hence, inverting the mixed model

is ill-posed for one view. The surface normal is independent of
the viewpoint and, under the Lambertian assumption, so is Id . If
we add a second view, this means we only add one additional un-
known but gain three more observations at which point the prob-
lem becomes well-posed. This provides the motivation for multi-
view shape-from-polarisation, though note in practice the corre-
spondences between pixels in different views are unknown making
the problem harder than this theoretical well-posed version.

4. Image formation

We now combine our multi-view mixed polarisation model with
an image formation model and state our simplifying assumptions.
This leads us to our neural formulation.

We assume single-bounce reflectance (i.e. no interreflections),
diffuse reflectance (from subsurface scattering) independent of
view direction (i.e. Lambertian model), unpolarised incident illu-
mination that is arbitrarily distributed but fixed across images, a
refractive index fixed to 1.5, isotropic specular BRDF. Thus the
diffuse term is view-independent, while the specular term remains
view-dependent, as made explicit in Eq. (6). Under these assump-
tions, we can write the rendering equation for the outgoing radi-
ance, Lo, from position x towards the viewer, ωωωo = v, as the sum of
diffuse and specular radiance:

Lo(x,ωωωo) =

diffuse
︷ ︸︸ ︷

bd

π

∫
Ω

Li(x,ωωωi)(ωωωi ·n)dωωωi+
∫

Ω
fs(x,ωωωi,ωωωo;br)(ωωωi ·n)Li(x,ωωωi)dωωωi

︸ ︷︷ ︸

specular

, (6)

where fs denotes the specular portion of the BRDF, bd ∈ R
3 is the

diffuse albedo, br is the roughness and Li(x,ωωωi) is the incident ra-
diance from direction ωωωi. For fixed illumination, since both diffuse
parameters bd and surface normal n depend on position, the diffuse
radiance depends only on position x, which we denote FId

(x). Note
that this function learns the combined effect of diffuse shading (in-
cluding baked self-occlusion of illumination) and texture (i.e. spa-
tially varying diffuse albedo).

Following the rationale of pre-integrated lighting [MS16,
BJB∗21], the specular radiance can be approximated by a sum
of two integrals, both dependent on position x. One of the inte-
grals is independent of the incident radiance, and models the geo-
metric attenuation and Fresnel reflectance for cosine viewer angle
cosθv = ωωωo ·n of a microfacet specular BRDF. The second integral
involves the inner product between the microfacet distribution D

and the lighting, thus leading to the following expression for pre-
integrated lighting, that depends only on the mirrored viewer direc-
tion r(n,v) = v−2(v ·n)n and surface characteristic, roughness br:
L̃i(r,br) =

∫
Ω D(br,ωωωi,r)Li(x,ωωωi)dωωωi. This split does not change

the underlying physics: it merely re-parameterises the integral into
smoother, lower-dimensional factors that our specular network can
learn more easily [VHM∗22]. Hence, we can reduce specular radi-
ance to a function FIs

(x,r,cosθv,br) of position, mirrored viewer,
view angle in the local reference frame and roughness.

We do not attempt to estimate the illumination environment, Li,

© 2025 Eurographics - The European Association
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nor do we explicitly represent or estimate the specular BRDF, dif-
fuse albedo or self-occlusion. Instead, we model diffuse and spec-
ular radiance as black boxes dependent on position, viewing di-
rection and surface parameters. We then endow these unpolarised
radiances with DoLP and AoLP according to the model in Eq. (3)
which in turn depends on the surface normal direction.

5. Polarised Neural Radiance Fields

To implement P-NeRF, we jointly train 3 networks: one represent-
ing geometry via a signed distance function and two radiance net-
works (specular and diffuse). The radiance networks output unpo-
larised radiance that we use in Eq. (5) to compute polarised radi-
ance and then volume render.

5.1. Scene representation

We represent surface geometry with a neural signed distance func-
tion [WLL∗21, ZLW∗21]: FSDF : R3 → R. We can define the sur-
face normal in world coordinates, n(x), at any position x where
FSDF(x) ≈ 0 as: nSDF(x) = ∇FSDF(x)/∥∇FSDF(x)∥. We imple-
ment our method in Nerfstudio [TWN∗23], building on top of
NeuS-Facto [YCA∗22]. For efficiency, this includes a proposal net-
work [BMV∗22] and hashgrid [MESK22] for learnt network input
features. The input to the SDF network is therefore the learnt fea-
tures from the hashgrid. The SDF network also outputs a geometric
feature vector z ∈ R

G which is used to pass features derived from
the hashgrid features to the radiance networks. We assume that z

implicitly encodes surface roughness br.

We use two neural fields to store unpolarised diffuse and spec-
ular radiance as described in Sec. 4. Combined with the surface
normal provided by the SDF and the camera parameters for a train-
ing or validation view, these provide the inputs to our multi-view
mixed polarisation model (Eq. (5)). Since diffuse radiance does not
depend on viewer direction we use simply FId : (x,z) 7→ Id to map a
3D position to the RGB unpolarised diffuse radiance at that point.
Specular reflectance does depend on viewing geometry, parame-
terised as discussed above: FIs : (x,max(n · v,0),r(n,v),z) 7→ Is.
Again, the output is RGB unpolarised specular radiance at that
point, but this time in the direction, v, of the viewer. Since view-
ing rays may not be restricted to the upper hemisphere about the
normal, we clamp the cosine of the view angle to be non-negative.
We apply positional encoding to x, r and cosθv with 6, 4 and 4
frequencies respectively in order to allow the radiance networks to
learn sharp details in surface albedo and specular reflections.

5.2. Rendering

We now show how to perform polarised volume rendering of the
scene representation in Sec. 5.1 using the multi-view mixed polar-
isation model described in Sec. 3.2.

Since polariser angle is defined with respect to the camera coor-
dinate frame, we cannot define polarised radiance along a ray with
unspecified camera coordinate system. So we define the ray that
we render in terms of a camera pose (R,c) and a pixel with nor-
malised coordinates u = [u,v,1]⊤. The ray for this pixel is given by
{p(R,c,u, t) = c+ tR⊤u, t ≥ 0}.

We accumulate polariser-angle-dependent colours along the ray
using NeRF [MST∗20] time-discrete volume rendering:

I(R,c,u,ϑ) =
S

∑
i=1

w(ti)I
mixed
ϑ (xi,R,c,

ni,FId
(xi,zi),FIs

[xi,max(ni ·vi,0),r(ni,vi),zi]),

where xi = p(R,c,u, ti), ni = nSDF(xi), vi = v(c,xi), zi are the geo-
metric features from FSDF at xi, the ti are the S sample points along
the ray and w(ti) the volume rendering weight given by the density
derived from the SDF value, as in NeuS [WLL∗21].

5.3. Training

We use a colour polarisation camera with DoFP sensor. This means
that each pixel records only one of the 12 combinations of colour
channel and polariser angle recorded by the camera using a 4× 4
colour polarised mosaic (see Fig. 2). Demosaicing these measure-
ments is still an open problem [MLB18] and introduces unneces-
sary approximation error. Instead, we train directly on the raw mea-
surements with a single channel per pixel, achieving a sharp recon-
struction demonstrated in Sec. 7. Fitting to raw measurement was
done in RawNeRF [MHMB∗21] for RGB images but we are the
first to do it for a CPFA sensor.

We randomly sample a batch of K pixels from an image
at every iteration. A sampled pixel is represented by P =
(Ik,ck,ϑk,Mk,uk,Rk,ck) where Ik is the measured scalar value at
that pixel, ck ∈ {R,G,B} and ϑk ∈ {0◦,45◦,90◦,135◦} respec-
tively denotes the colour channel and polariser angle recorded at
that pixel, Mk ∈ {0,1} is a mask, and the undistorted pixel coor-
dinate uk and camera pose (Rk,ck) define the ray. Here, uk is the
location that the same light ray would hit on an ideal pinhole (lens-
distortion-free) image plane, obtained by applying the inverse dis-
tortion model to the integer pixel coordinate. Note that because we
do not demosaic we cannot undistort the images. Instead, we pre-
compute the (non-integer) undistorted uk, for every integer pixel
coordinate and use this to define the ray.

We train our networks to minimise the following loss: L =
Lrecon + λmaskLmask + λthetaLtheta + λsmoothLsmooth. Due to our
unique setting, the reconstruction loss has to adapt, which will be
discussed in section 5.4. The mask loss encourages the silhouette
of the SDF surface to match the binary object masks:

Lmask =
1
K

∑
k

|(Mk −Ok)|, (7)

where Ok is the accumulated density along the ray. The DoLP de-
pends on the zenith angle between view vector and surface normal.
For a visible surface point (whose volume rendering weight is > 0),
this means that the zenith angle must be < 90◦ and the DoLP is only
defined in this range. For this reason, we add a theta loss encourag-
ing the SDF network to produce a reasonable zenith angle:

Ltheta =
1
K

∑
k

S

∑
i=1

−w(ti)min(vk ·nk,0). (8)

Finally, in the presence of noise we can optionally introduce a sur-
face smoothness prior that penalises sharp changes in surface nor-
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mal direction [ZMO20]:

Lsmooth =
1
K

∑
k

arccosnk(x) ·nk(x+ ϵϵϵ), (9)

where ϵϵϵ ∼ N (03,σI3) is a random displacement with σ set in the
range of 0 to 0.001. Lastly, following Mip-NeRF 360 [BMV∗22]
we add a proposal loss and, following NeuS [WLL∗21], an Eikonal
loss to encourage the neural field FSDF to correspond to a valid SDF.

5.4. High dynamic range handling

Reflected radiance from glossy surfaces exhibits a very high dy-
namic range between diffuse and specular reflections. This is cap-
tured to some extent by the raw data from the camera sensor; how-
ever, strong specularities can still result in saturated pixels. We
therefore handle the HDR nature of the signal in three ways.

First, we propose a novel masking strategy for handling satura-
tions. For a sensor with bit depth d, the largest value that can be
recorded (Imax) is 2d −1. Either the observed or predicted intensity
can be saturated (≥ Imax). We note that the only scenario in which
the gradient of the reconstruction loss provides no useful informa-
tion is when both observed and predicted values are saturated. In
that case, the model lacks useful information on its distance from
ground truth data. Thus, we define a saturation mask as:

M
sat
k = (Ik < Imax)∨ (Ick (Rk,ck,uk,ϑk)< Imax). (10)

The mask therefore never removes a pixel from optimisation when
either the measurement or the prediction is below saturation; it only
zeroes the loss when both are saturated, where the gradient is unin-
formative anyway.

Second, we find that typical LDR reconstruction losses such as
L1 and even losses designed specifically for HDR [MHMB∗21]
did not perform well on our HDR data. Instead, we found the best
performance was obtained using a combination of L1 in a scaled
and shifted log space and an L2 loss to encourage reconstruction
of specularities, giving the following reconstruction loss: Lrecon =
λHDRLHDR + λspecLspec. The HDR loss, including saturation and
foreground masking, is defined as:

LHDR =
1
K

∑
k

MkM
sat
k |log(αIk +β)− log(αIck (Rk,ck,uk,ϑk)+β)| ,

(11)
where Ick denotes selecting colour channel ck from the rendered
RGB quantity. We set α = 60 and β = 3 so that the measured in-
tensities follow an approximately normal distribution. To promote
reconstruction of specular regions, we define the specular loss as:

Lspec =
1
K

∑
k

MkM
sat
k (Ik − Ick (Rk,ck,uk,ϑk))

2 . (12)

Finally, we use exponential activation for the outputs of the radi-
ance networks to help them generate full dynamic range.

6. A shape-from-polarisation single-shot lightstage

We now describe the application of our method in a specific light-
ing condition. While more constrained than the general approach,
this variant provides additional information about surface material
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Figure 4: Reflectance decomposition and geometry estimation

against ground truth synthetic data. The 1st and the 6rd row re-

spectively show the ground truth for the bust and the globe datasets.

properties and offers an attractive alternative to previous lightstage-
based acquisition techniques. Specifically, we apply our method in
spherically-uniform, unpolarised illumination. In contrast to previ-
ous methods [MHP∗07, GFT∗11, LWZG19, LLK∗22], we do not
modulate individual light sources to create varying illumination
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Figure 5: Reflectance decomposition and geometry estimation on

real data. From left to right, unpolarised radiance, specular reflec-

tion, diffuse reflection and normal map. (Zoom for detail).

patterns, we only require a single image from each camera under
a fixed, uniform illumination. The method is therefore single-shot
and suitable for dynamic objects such as faces, potentially running
at full frame rate. Because the illumination is unpolarised, we make
no assumption about its plane of polarisation relative to the camera.
Rather than using polarisation to approximate diffuse/specular sep-
aration, we exploit it purely as a shape cue.

Under uniform illumination, Li(x,ωωωi) = k, ∀ωωωi ∈ Ω, for an arbi-
trary constant k. The diffuse term in Eq. (6) then reduces to:

Ldiffuse(x,ωωωo) =
bd

π
k

∫
Ω
(ωωωi ·n)dωωωi = bdk (13)

In other words, the diffuse radiance estimated by fitting our model
directly provides the diffuse albedo map (up to a scaling). Under
the same lighting, the specular radiance becomes a view-dependent
reflection coefficient that, after Fresnel compensation, yields the
specular albedo (R0) map [GFT∗11]. In practice, we capture multi-
view face images under uniform, unpolarised light, run our pipeline
(Sec. 5), take FId

as diffuse albedo, and evaluate FIs
at v = n to

obtain the specular albedo.

7. Experiments

7.1. Under spatially-varying illumination

Real data is captured using a Lucid 5.0MP colour polarisation cam-
era with a d = 12 bit Sony IMX250MYR CMOS sensor with 35-
60 images per object. The capture environment varies from object

P-NeRF (ours) PANDORA [DZV22] PMVIR [ZMO23]
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Figure 6: Reflectance decomposition and geometry estimation on

car dataset. From top to bottom, unpolarised radiance, specular

reflection, diffuse reflection, and geometry.

to object but exposure was set to aim for limited saturated pixels
though some do occur and depth of field effects mean some regions
in some images are blurred. We estimate camera poses by applying
bilinear demosaicing and nonlinear gamma to the raw images and
providing the RGB, 0◦ polariser angle images to the COLMAP
structure-from-motion pipeline [SZPF16, SF16]. The demosaiced
images are not used anywhere else in our pipeline. In all of our ex-
periments we use loss weights λmask = 0.1, λtheta = 100, λHDR = 2
and λspec = 0.03. In terms of geometric network architecture, we
use a MLP of 2 layers with the size of 256 to encode SDF; the fea-
ture vector is set to have the size of G = 256; softplus with β = 100
is used as the activation function. Specular and diffuse reflections
are modelled with 2 separated networks. They are identical in shape
with 6 layers of size 256 for real objects and 2 layers of size 256
for synthetic objects, reflecting the image resolution of each ob-
ject type. Real captures (2448×2048) contain markedly more pix-
els and fine-scale structure than the 512×512 synthetic renders, so
larger MLPs are required to represent the additional detail.

Figure 1 shows qualitative results on two real objects, from left
to right, with a raw mosaiced input image, 0◦ re-rendering, nor-
mals and unpolarised diffuse, specular and mixed radiance. Fig-
ure 4 shows qualitative results for synthetic data from the PAN-
DORA dataset [DZV22], with comparisons to the corresponding
ground truth. Corresponding quantitative results are provided in Ta-
ble 2 where we achieve state-of-the-art performance on all metrics.
Across every object, the polarisation-based methods in the table
achieve the lowest surface-normal MAE, whereas appearance-only
baselines such as NeuS fall behind despite competitive radiance
scores. Table 3 reports our ablation study for each loss element.
Notably, our method uses only one measurement per pixel as from
a DoFP polarisation camera, whereas other methods assume per-
fect demosaicing (requiring 12× more data) or unpolarised RGB
(3× more data). In Figures 5 and 6 we show further qualitative re-
sults on real objects with comparisons to PANDORA [DZV22] and
PMVIR [ZMO23]. In all our results, we draw attention to the high
frequency detail recovered in both geometry (c.f. the gnome) and
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Input Normals Diffuse Specular Rendering

Figure 7: Three facial subjects with different skin-tones. Columns: (1) raw CPFA view, (2) predicted surface normals, (3) diffuse radiance,

(4) specular radiance, and (5) mesh re-rendered with the recovered material maps under a distinct HDR light probe for each subject [USC].

All images are tonemapped for display.

diffuse and specular radiance maps (c.f. the lines of longitude and
latitude - not recovered by PANDORA), the lack of texture transfer
from diffuse to normals (c.f. the vase) and the fine HDR lighting
detail recovered in the specular radiance (c.f. the car).

7.2. Under uniform illumination

For lightstage capture, we use the same CPFA cameras but this time
from 15 viewpoints simultaneously providing a sparser input than
for the static objects above. Uniform spherical illumination is pro-
vided by a geodesic dome comprising 160 nodes each supporting
9 LEDs set at full brightness. We extract meshes from the recon-
structed SDF as follows. First, we construct an oriented point cloud
by projecting all pixels by their expected termination depth [CL96]
(filtering pixels with low accumulation values) and refining to en-
sure they lie on the zero level set. We evaluate the SDF gradient
to determine normals. Second, we reconstruct a mesh using Pois-
son surface reconstruction [KBH06]. Finally, we transfer the dif-
fuse and specular albedos to texture maps using xatlas.

Fig. 7 shows our results for three faces. Column 1 shows one
raw CPFA view for each face. Columns 2 – 4 present the learned
decomposition: surface normals, diffuse radiance, and specular ra-
diance, respectively. In Column 5, we render the recovered meshes
with their material maps under HDR light-probe illumination
[USC] using Blender, demonstrating accurate geometry, albedo,
and specular response. Figure 9 compares our reconstruction with
that of a desktop-based facial-capture system [LLK∗22]. Pose and
grooming of the participant may vary due to different capture days.
To make a fair comparison, we omit the photometric-normal re-
finement [LLK∗22], and only render both meshes with their diffuse
maps and geometric normals. Across the three images (raw mesh,
textured mesh, and HDR-lit render), our method matches the com-
peting setup in geometric details while requiring only a single-shot
polarisation capture.

Benefiting from hash-grid [MESK22] and proposal network
[BMV∗22], our model converges rapidly within 30 minutes on
NVIDIA A40 (compared to 15 hours of NeuS trained on NVIDIA
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Diffuse Specular Mixed Normals

Scene Method PSNR SSIM PSNR SSIM PSNR SSIM MAE
↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑ ↓ (◦)

bust NeuralPIL∗ 23.90 0.87 18.04 0.87 26.71 0.87 15.36
PhySG∗ 22.64 0.94 23.00 0.94 19.94 0.72 9.81
PANDORA† 25.82 0.81 22.96 0.75 22.79 0.79 3.91
NeuS∗ N/A N/A N/A N/A 28.09 0.85 8.53
P-NeRF 37.59 0.999 32.01 0.983 32.72 0.962 0.4290

globe NeuralPIL∗ 13.09 0.55 12.92 0.55 20.04 0.66 38.73
PhySG∗ 21.76 0.76 18.90 0.76 17.93 0.70 8.42
PANDORA† 24.33 0.77 22.70 0.89 21.76 0.81 1.41
NeuS∗ N/A N/A N/A N/A 23.57 0.81 3.72
P-NeRF 36.58 0.975 29.98 0.958 30.25 0.939 0.1144

Table 2: Quantitative evaluation on PANDORA [DZV22] synthetic

image benchmark. ∗ = method is given ground truth demosaiced

RGB images. † = method is given ground truth demosaiced 12

channel CPFA images. No smoothness loss is applied to show per-

formance without demosaicing benefits i.e. 12× more input.

Diffuse Specular Mixed Normals

Scene Loss Element PSNR SSIM PSNR SSIM PSNR SSIM MAE
↑ (dB) ↑ ↑ (dB) ↑ ↑ (dB) ↑ ↓ (◦)

bust all 37.95 0.999 32.29 0.984 35.04 0.964 0.3453

no smoothness loss 37.64 0.999 32.05 0.983 34.74 0.963 0.4322
no theta loss 37.88 0.999 32.39 0.984 35.14 0.964 0.3460
no specular loss 37.90 0.999 32.20 0.984 35.06 0.964 0.3562
no HDR loss 29.20 0.974 24.80 0.972 24.90 0.925 2.2454

globe all 36.83 0.976 30.04 0.959 30.32 0.940 0.1035
no smoothness loss 36.64 0.975 30.03 0.958 30.27 0.939 0.1159
no theta loss 36.61 0.975 30.00 0.958 30.23 0.938 0.1072
no specular loss 36.74 0.976 29.99 0.959 30.25 0.939 0.1073
no HDR loss 23.90 0.915 22.05 0.910 20.57 0.824 0.04425

Table 3: Ablation study on PANDORA [DZV22] benchmark.

350 iter 5k iter 20k iter

Figure 8: Convergence: geometry after 350 iterations (∼2 min-

utes), 5k iterations (30 minutes) and 20k iterations (2 hours).

RTX2080Ti). We show the convergence behavior in Fig. 8. A rough
structure of the subject is formed within the first 350 iterations.
The rendered normal map at 5k iterations is similar to that at
20k, implying the convergence point. To demonstrate the benefit
of training on raw measurements, we conduct the ablation shown
in Fig. 10. Demosaicing unintentionally mixes diffuse and specular
radiances by spreading specularities into diffuse regions and vice
versa. This leads to a specular artefact around the chin. Moreover,
the model trained on raw measurement preserves high-frequency
details which are blurred when compared to a counterpart trained
on demosaiced images.

8. Conclusions

We have proposed P-NeRF, a multi-view shape-from-polarisation
method based on neural representations. It maps measured polar-

Geometry Geometry + Diffuse Rendering

Figure 9: Qualitative comparison of the same subject captured on

two different days. Top row: our pipeline; bottom row: Lattas et al.

[LLK∗22] Column 1 shows the mesh geometry, Column 2 the mesh

shaded with the estimated diffuse albedo, and Column 3 a Blender

render under the Pisa Courtyard HDR probe [USC]. Both renders

use geometric normals only; the photometric normals of [LLK∗22]

are disabled. Despite slight pose and appearance changes, the two

reconstructions exhibit comparable geometric fidelity.

Train on raw Train on demosaiced

Figure 10: Demosaicing ablation: On the left we show diffuse and

specular radiance for our method. On the right we show an ab-

lation where we first demosaic and then train our method on all

channels. Zoom to see blurring artefacts.

isation to surface normals with a model that handles both specu-
lar and diffuse reflectance, without inverse rendering or an explicit
lighting or BRDF model. This drives optimisation of the underly-
ing neural SDF while the diffuse and specular radiance networks
accurately separate the two sources of reflection. Many extensions
are possible: polarisation could probe a wider range of materials,
including ones poorly described by surface reflection, such as fab-
rics and transparent objects. A limitation and natural direction for
future work would be to improve speed, for example by moving to
a 3D Gaussian Splat representation [KKLD23].
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