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The observed rate of global warming since the 1970s has been proposed as a strong
constraint on equilibrium climate sensitivity (ECS) and transient climate response
(TCR)—key metrics of the global climate response to greenhouse-gas forcing. Using
CMIP5/6 models, we show that the inter-model relationship between warming and
these climate sensitivity metrics (the basis for the constraint) arises from a similarity
in transient and equilibrium warming patterns within the models, producing an
effective climate sensitivity (EffCS) governing recent warming that is comparable to the
value of ECS governing long-term warming under CO2 forcing. However, CMIP5/6
historical simulations do not reproduce observed warming patterns. When driven by
observed patterns, even high ECS models produce low EffCS values consistent with the
observed global warming rate. The inability of CMIP5/6 models to reproduce observed
warming patterns thus results in a bias in the modeled relationship between recent
global warming and climate sensitivity. Correcting for this bias means that observed
warming is consistent with wide ranges of ECS and TCR extending to higher values
than previously recognized. These findings are corroborated by energy balance model
simulations and coupled model (CESM1-CAM5) simulations that better replicate
observed patterns via tropospheric wind nudging or Antarctic meltwater fluxes. Because
CMIP5/6 models fail to simulate observed warming patterns, proposed warming-based
constraints on ECS, TCR, and projected global warming are biased low. The results
reinforce recent findings that the unique pattern of observed warming has slowed
global-mean warming over recent decades and that how the pattern will evolve in the
future represents a major source of uncertainty in climate projections.
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Equilibrium climate sensitivity (ECS) and transient climate response (TCR) are key
metrics of the global-mean surface temperature response to increasing greenhouse-gas
concentrations. They represent the warming under a doubling of atmospheric carbon
dioxide (CO2) at equilibrium and at the time of CO2 doubling, respectively. Model
values of ECS and TCR are strongly correlated with projections of 21st century warming
(1, 2). The recent IPCC Sixth Assessment Report (AR6) assessed the ranges of ECS and
TCR to be substantially more narrow than in previous Reports (2) following advances in
scientific understanding of several independent lines of observational evidence (e.g., ref.
3). Narrower ranges of ECS and TCR in turn translate to better-constrained projections of
21st century warming compared to projections based on global climate models (GCMs),
which span wider ECS and TCR ranges (4).

One major update in IPCC AR6 was a reinterpretation of historical energy budget
constraints on climate sensitivity based on observed warming since the 1800s. While the
historical energy budget was once thought to place strong constraints on ECS (5–7), in
IPCC AR6 it was assessed to provide relatively weak constraints, particularly at the high
end of the climate sensitivity range. This assessment was based on i) stubbornly large
uncertainty in the radiative forcing that drove historical warming, owing primarily to
uncertainty in aerosol forcing, and ii) work since AR5 showing that differences between
historical and future (centennial timescale) sea-surface temperature (SST) trend patterns
result in estimates of ECS that are biased low (2, 3, 8–19). This SST pattern effect occurs
because the feedbacks governing Earth’s global radiative response per degree of global
warming depend on the spatial pattern of that warming. In particular, warming since
the 1800s has been relatively slow within key regions of positive (destabilizing) radiative
feedbacks including the eastern tropical Pacific Ocean and Southern Ocean; in the long
term, however, these regions are expected to warm more than the global mean, leading
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to a less-negative global feedback and thus an increase in the cli-
mate’s sensitivity to greenhouse-gas forcing (8, 9, 19–27). Thus,
the value of the effective climate sensitivity (EffCS) governing
historical warming is thought to be lower than the value of ECS
governing equilibrium warming under CO2 forcing (2, 3).

Another major advance in recent years has been the devel-
opment of novel observational constraints (often referred to as
“emergent constraints”), wherein coupled GCMs are used to
find a correlation between an observable quantity and something
we wish to predict, and then the model-based relationship is
combined with observations of that quantity to derive con-
strained predictions (28–31). Strong constraints on ECS and
TCR have been derived using the post-1970s rate of global-
mean warming (18, 32–34): Because GCMs with higher ECS and
TCR values tend to overestimate the observed rate of warming,
the implication is that high values of climate sensitivity are less
likely. This constraint was proposed to avoid the issues plaguing
energy budget constraints based on warming since the 1800s
(32): Because global aerosol radiative forcing changes have been
relatively small since the 1970s, the use of this period substantially
reduces the impact of uncertainty in radiative forcing; and SST
pattern effects are implicitly accounted for in the use of GCMs
to derive the correlation between recent warming and ECS (or
TCR).

As summarized in Forster et al. (2), studies using post-1970s
global warming as an observational constraint produce narrow
bounds on ECS (with best estimates of 2.6 to 2.8 ◦C and 5 to
95% ranges within 1.5 to 4.1 ◦C) and TCR (with best estimates
of 1.6 to 1.7 ◦C and 5 to 95% ranges within 1.0 to 2.3 ◦C).
Collectively, these studies provided the strongest constraints on
ECS and TCR of any of the main lines of evidence assessed
in IPCC AR6 and were a primary justification for assessing
the upper bounds on the ECS likely (2.5 to 4 ◦C) and very
likely (2 to 5 ◦C) ranges to be lower than in previous Reports.
These narrower ranges also suggest that GCMs with ECS values
higher than about 5 ◦C, of which there are many (35) in the
Coupled Model Intercomparison Project phase 6 (CMIP6, ref.
36), may be less valid for projecting future warming (e.g., refs. 2
and 37).

For such a constraint to be robust, it must exhibit two key
properties. First, because many spurious correlations between
observable and predicted quantities of interest can be found by
chance within GCMs (38), any correlation that is used as the
basis for the constraint must rest on sound physical principles
(28, 29, 31, 39). Second, the GCMs used as the basis for the
constraint must not share a common bias, relative to nature, in
their representation of this correlation (e.g., refs. 28 and 40).

For constraints on ECS and TCR based on observed post-
1970s global warming, there is a strong physical basis for the
modeled correlation: Higher ECS and TCR correspond to a
less-efficient radiative response per degree of global warming
which, all else being equal, should lead to a faster rate of global
warming under greenhouse-gas forcing. And the constraints have
been shown to produce similar results whether using CMIP5
or CMIP6 models (18, 32–34), providing confidence in their
robustness.

However, recent work has found that historical simulations of
CMIP5/6 models generally fail to simulate the observed spatial
pattern of post-1970s SST trends (16, 17, 41, 42). In particular,
the models produce relatively weak spatial gradients in SST
trends, with somewhat enhanced warming in the eastern tropical
Pacific Ocean and at high latitudes, while observations show
strong spatial gradients in SST trends, with cooling in the eastern
Pacific and Southern Oceans.

These model-versus-observed discrepancies in SST trend
patterns influence the radiative feedbacks that govern climate
sensitivity: When atmosphere GCMs are forced with the observed
post-1970s SST trends, they generally produce global radiative
feedbacks that are substantially more negative (lower EffCS) than
feedbacks produced over this period by historical simulations
of the same coupled GCMs (16, 17). This suggests that there
is in fact a common bias across CMIP5/6 GCMs that could
affect the modeled relationship between post-1970s warming
and climate sensitivity metrics. It is possible, for instance, that
GCMs overestimate recent warming in part due to their biases in
simulated warming patterns, with relatively too much warming
in key positive feedback regions, rather than simply having too-
high values of ECS or TCR (as is assumed by the observational
constraint). IPCC AR6 noted this possibility, finding it more
likely than not that constraints on ECS and TCR based on
observed post-1970s global warming are biased low (2); but
without studies quantifying the magnitude of this bias, no
corrections could be made.

Here we evaluate the potential for SST pattern effects to bias
observational constraints on ECS and TCR via their influence
on the CMIP5/6-based relationship between post-1970s global
warming and these climate sensitivity metrics. We first reproduce
constraints on ECS and TCR based on recent warming and find
similar results to the published literature. We then analyze a
subset of CMIP5/6 models that provide the output necessary
to accurately calculate radiative feedbacks (and corresponding
EffCS) over the historical period. We find that CMIP5/6 models
warm too much over recent decades in large part due to their
failure to replicate the observed post-1970s SST trend patterns,
and thus even high values of climate sensitivity are consistent with
the observed global warming rate. We conclude that the proposed
constraints on ECS and TCR based on recent global warming
are biased low. We evaluate the robustness of our findings using
energy-balance model simulations and coupled-model (CESM1-
CAM5) simulations that better replicate observed patterns via
tropospheric wind nudging or Antarctic meltwater fluxes. Finally,
we discuss implications of these results for recent climate
sensitivity assessments and for 21st century warming.

The Relationship between Post-1970s Warming
and Climate Sensitivity
While several different time periods have been used to place
observational constraints on climate sensitivity from recent global
warming (32, 33), here we focus on 1981 to 2014 following
Tokarska et al. (34). We show relationships between the rate
of global-mean surface warming over this period and ECS
(Fig. 1A) for all GCMs that provide the necessary output on
the CMIP5/6 archives (21 CMIP5 models and 38 CMIP6
models; see SI Appendix for a list). While we focus on ECS
in the main text, the full analysis using TCR produces similar
results (SI Appendix). We calculate warming rates by averaging
over all available ensemble members of each model’s historical
simulation (extended using RCP4.5 over years 2006 to 2014
for CMIP5 models), where each ensemble member is forced by
identical historical greenhouse-gas, aerosol, volcanic, and solar
forcings, and differ only in their phasing of internal variability.
CMIP5/6 model values of ECS have been estimated using the
standard approach of extrapolating to equilibrium the regression
between global top-of-atmosphere energy imbalance and global
temperature change over 150 y of abrupt CO2 quadrupling
simulations, scaled by a factor of a half to account for CO2
doubling (35, 43, 44).
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Fig. 1. Relationships between ECS, EffCS, and the 1981 to 2014 warming rate in CMIP5/6 models. (A) CMIP5/6 ECS versus warming rate using averages of
all available ensemble members for each model (correlation r = 0.68); colors correspond to values of ECS. (B) Eight-model subset ECS versus warming rate
with ensemble means shown as larger circles and ensemble members shown as smaller dots. (C) Eight-model subset ECS versus EffCS over 1981 to 2014
with ensemble means shown as larger circles and ensemble members shown as smaller dots; diamonds show EffCS values from AGCM simulations forced
by observed SST and SIC trend patterns. (D) Eight-model subset EffCS over 1981 to 2014 versus warming rate with ensemble means shown as larger circles
and ensemble members shown as smaller dots; diamonds show warming rates estimated based on EffCS values from AGCM simulations using the regression
between EffCS and warming rate calculated from the eight-model subset (blue line). In B–D, open circles show CESM1-CAM5 simulations with wind nudging or
meltwater fluxes as described in the text. Blue lines show fits calculated using ordinary least squares (OLS) regression, with dashed blue lines showing 5 to 95%
ranges of fit parameters (Materials and Methods). Gray shading shows observational estimates (5 to 95% range) of observed warming rate (HadCRUT5, ref. 45)
and EffCS (19). See SI Appendix for a list of models used.

We find a strong correlation between the 1981 to 2014 global
warming rate and ECS (Fig. 1A) or TCR (SI Appendix, Fig.
S1A). Using this regression (Materials andMethods), the observed
warming rate of 0.18 ◦C dec−1 (0.15 to 0.21 ◦C dec−1, 5 to 95%
range) calculated from HadCRUT5 (45) gives ECS = 2.7 ◦C (1.5
to 3.9 ◦C) and TCR = 1.6 ◦C (1.1 to 2.1 ◦C), in good agreement
with previous studies (18, 32–34).

To better understand the modeled relationship between global
warming and climate sensitivity, we consider a subset of eight
CMIP5/6 models representing all those that provide at least
three historical ensemble members and the output necessary
to accurately calculate radiative feedbacks over the historical
period: CanESM5, CNRM-CM6-1, GISS-E2-1-G, HadGEM3-
GC31-LL, IPSL-CM6A-LR, MIROC6, NorESM2-LM, and
CESM1-CAM5. The relationships between 1981 and 2014
global warming rate and ECS are similar for this eight-model
subset (Fig. 1B) to those found in the full CMIP5/6 ensemble
(Fig. 1A). For each model, there is substantial spread in warming
rates across ensemble members due to internal climate variability
(Fig. 1B), raising two key questions: i) what factors control the

variability in warming rates across model ensemble members?
And, ii) do CMIP5/6 models accurately represent how those
factors were expressed in observations over the period 1981 to
2014?

Each of the eight models in our subset has a corresponding
CMIP6 piClim-histall simulation wherein the same atmospheric
GCM (AGCM) was run with fixed pre-industrial SSTs and sea-
ice concentrations (SICs) while all radiative forcing agents were
varied as in the corresponding CMIP6 historical simulations.
The piClim-histall simulations were performed as part of the
Radiative Forcing Model Intercomparison Project (RFMIP, ref.
46) for CMIP6, while we perform our own piClim-histall-style
simulation for CESM1-CAM5 following the same protocol.
From these simulations, the historical effective radiative forcing
(ERF) can be diagnosed from top-of-atmosphere radiation
anomalies relative to pre-industrial conditions (17, 47), with
a small correction for land warming (2, 48) (Materials and
Methods). Using the standard model of global energy balance,

N = �T + ERF, [1]
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where N is the global top-of-atmosphere radiation anomaly
and T is the global near-surface air temperature anomaly
(both relative to pre-industrial), we diagnose the global effective
radiative feedback � (<0 for a stable climate) from linear
regression of N − ERF against T over the period 1981 to 2014
for each ensemble member (Materials and Methods). From this,
we calculate EffCS for the period 1981 to 2014 as,

EffCS = −
ERF2×

�
, [2]

where ERF2× is the ERF from CO2 doubling (35, 44) (Materials
and Methods). EffCS is largely set by the value of � both
because it is in the denominator in Eq. 2 and because � varies
fractionally more than does ERF2× across models (35). EffCS
can be interpreted as the equilibrium warming that would occur
in response to CO2 doubling if the value of � calculated over the
period 1981 to 2014 applied to that equilibrium state.

We find that there is a large spread in EffCS for the period
1981 to 2014 across ensemble members of each GCM (small
dots in Fig. 1C ). Moreover, differences in EffCS explain a large
fraction of the variance (r2 = 0.61) in the 1981 to 2014 warming
rate across all ensemble members of our eight-model subset; those
with EffCS values near 2 ◦C tend to produce warming rates in
line with observations, while those with higher values of EffCS
warm too much (Fig. 1D).

The high correlation between EffCS and the global warming
rate can be understood by making the approximation N = �T
in Eq. 1, where � is the ocean heat uptake efficiency representing
all processes setting the amount of global ocean heat uptake per
degree of global warming (e.g., refs. 49–51); a larger value of �
corresponds to a more efficient uptake of heat by the deep ocean
and thus less surface warming. Then, the rate of warming can be
approximated as (e.g., ref. 52),

dT
dt

=
d(ERF)/dt
� − �

. [3]

Calculating � from regression of N against T over 1981 to 2014,
and given d(ERF)/dt and � as calculated above, Eq. 3 explains
83% of the variance in the 1981 to 2014 warming rate across all
ensemble members of our CMIP5/6 model subset. Most of the
explanatory power comes from variations in �: Holding � and
d(ERF)/dt fixed at ensemble-mean values, Eq. 3 still explains
58% of the variance across ensemble members. That is, variations
in� (and thus EffCS) largely govern the global warming rate, with
variations in � playing a secondary role. There is little correlation
between � and � on the timescales considered here (Materials
and Methods), so we treat them as independent for our purposes.

Using the regression between EffCS and the 1981 to 2014
warming rate derived from the eight-model subset (Fig. 1D),
the observed warming rate of 0.18 (0.15 to 0.21) ◦C dec−1

implies EffCS = 2.3 (1.9 to 2.7) ◦C. While on the low end of
the CMIP5/6 models (Fig. 1D), this implied value of EffCS
is in good agreement with a recent observational estimate
(19) of EffCS = 2.0 (1.5 to 3.1) ◦C based on global energy
imbalance calculated from a merged satellite dataset (53) in
combination with ERF estimates from IPCC AR6 (2) and
HadCRUT5 temperature observations over 1985 to 2014. The
CMIP5/6-based relationship between EffCS and warming rate
thus compares well with observations.

Importantly, EffCS may be different from ECS, which is given
by

ECS = −
ERF2×

�2×
, [4]

owing to the fact that the radiative feedback � governing recent
warming may be different from the radiative feedback �2×
governing the equilibrium response to CO2 doubling if warming
patterns differ between the two timescales. Given that ECS is
a measure of the equilibrium climate response to CO2 forcing,
it is worth considering why it is highly correlated with the rate
of transient warming over 1981 to 2014 in CMIP5/6 models
(Fig. 1 A and B). The reason appears to be that values of ECS
and ensemble-mean EffCS are nearly identical for each of the
CMIP5/6 models (Fig. 1C ); EffCS is similar to but slightly
smaller than ECS for most of the GCMs, with a high correlation
between them (r2 = 0.70).

These findings are consistent with the fact that the spatial
patterns of historical warming (setting EffCS over 1981 to 2014)
and equilibrium warming under abrupt CO2 forcing (setting
ECS) are similar in CMIP5/6 models (Fig. 2 A and B) (17);
both are characterized by relatively weak spatial gradients in SST
trends. That is, the relationship between ECS and the 1981 to
2014 warming rate, which forms the basis for the observational
constraint, reflects similar patterns of transient and equilibrium
warming within the coupled CMIP5/6 models, corresponding
to a relatively small pattern effect (i.e., values of EffCS governing
recent warming are comparable to values of ECS governing long-
term warming).

As noted in the introduction, the observed SST trend pattern
over 1981 to 2014 (Fig. 2C ) is distinct from patterns simulated by
the coupled CMIP5/6 models (17, 41, 42). With strong warming
in the western tropical Pacific Ocean (a region of negative
feedbacks) and cooling in the eastern Pacific and Southern
Oceans (regions of positive feedbacks), the observed pattern
should favor a low value of EffCS (8, 9, 14, 16, 17, 19–27)
and thus a reduced global warming rate (Eq. 3). This observed
pattern of warming is also distinct from the long-term warming
pattern we expect under CO2 forcing (2), suggesting that the
relationship between EffCS (governing recent warming) and ECS
(governing long-term warming) in nature may be different from
that simulated by CMIP5/6 models. In the next section, we
consider how model SST trend biases may, in turn, bias the
warming-sensitivity relationship which forms the basis for the
observational constraint.

Impact of Model SST Trend Biases on the
Warming-Sensitivity Relationship
To quantify the impact of the SST trend pattern on global
warming rate, we make use of amip simulations wherein the same
subset of eight AGCMs are run with prescribed time-evolving
observed SSTs and SICs while all radiative forcing agents are
varied as in the corresponding historical simulations. The amip
simulations refer to the Atmospheric Model Intercomparison
Project (AMIP II) DECK experiments performed as part of
CMIP6 (36); we perform our own amip-style simulation for
CESM1-CAM5. In combination with the RFMIP simulations,
these simulations allow us to calculate � and EffCS using
regression over the period 1981 to 2014 as described above (see
also refs. 14, 17, and 19).

Across the eight AGCMs, the observed 1981 to 2014 SST
trend pattern produces an average value of EffCS = 2.1 ◦C
(range 1.3 to 3.2 ◦C)—in good agreement with EffCS derived
from global energy budget observations (19) and implied by the
observed global warming rate (Figs. 1C andD). This EffCS value
is lower than the average EffCS simulated by the same coupled
GCMs over 1981 to 2014. With identical atmospheric physics
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Fig. 2. SST trends in CMIP5/6 models and observations. SST trend patterns for (A) CMIP5/6 models over years 1 to 150 following abrupt CO2 quadrupling
(CMIP5/6 abrupt4xCO2 simulations from which ECS is calculated). (B) CMIP5/6 models over 1981 to 2014 (CMIP5/6 historical simulations from which EffCS is
calculated). (C) Observations over 1981 to 2014 (from amip). (D) CESM1-CAM5 over 1981 to 2014. (E) CESM1-CAM5 over 1981 to 2014 with Southern Hemisphere
high latitude wind nudging. (F ) CESM1-CAM5 over 1981 to 2013 with Antarctic meltwater fluxes.

in AGCM and coupled GCM versions of each model, EffCS
differences are due only to differences in observed and simulated
SST and SIC trend patterns (14, 17, 19).

For the coupled GCMs with low values of ECS (GISS-E2-1-
G, MIROC6, NorESM2-LM), 1981 to 2014 EffCS values are
similar for AGCM and coupled GCM simulations (Fig. 1C ).
However, for all other GCMs in our subset (CanESM5, CNRM-
CM6-1, HadGEM3-GC31-LL, IPSL-CM6A-LR, CESM1-
CAM5), 1981 to 2014 EffCS values in AGCMs are substantially
lower than they are in the same coupled GCMs, with AGCM
values being at the edge of or even below the range of EffCS values
generated by internal variability in the coupled model historical
simulations. This suggests that the observed SST trend pattern
(Fig. 2C ) reflects an extreme phase of internal variability, a forced
response not captured by the coupled GCMs, or a combination of
both (17, 42). A possible reason for the larger differences between
AGCM and coupled GCM values of EffCS in high-ECS models
is that ECS differences across models stem largely from model

differences in cloud feedbacks in the eastern tropical Pacific and
Southern Oceans (35). Thus, observed cooling in these regions
over 1981 to 2014 reduces the value of EffCS more for models
with higher ECS, while leaving the value of EffCS relatively
unchanged for models with lower ECS. Further examination
of CESM1-CAM5 shows that the regression of local SST trends
onto either the global warming trend or EffCS over 1981 to 2014
across ensemble members highlights the eastern tropical Pacific
and Southern Oceans as key regions governing the warming rate
and EffCS (SI Appendix, Fig. S2).

The larger values of EffCS in the coupled GCMs relative to
AGCMs suggests that at least a portion of the reason the coupled
GCMs overestimate warming over 1981 to 2014 is that they fail
to simulate the observed SST trend patterns—rather than simply
having too-high values of ECS (or TCR). Moreover, it suggests
that if the coupled GCMs were able to correctly simulate the
observed warming patterns, they would produce lower values of
EffCS (as shown by their AGCM simulations) and thus reduced
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1981 to 2014 warming rates. In other words, CMIP5/6 models
share a common bias in their ability to simulate the observed
SST trend pattern which increases their values of EffCS and thus
their rate of warming over recent decades—directly biasing their
simulated relationship between warming rate and ECS on which
observational constraints are based.

Correcting for SST Trend Pattern Biases in
Observational Constraints
We next estimate the global-mean warming each GCM would
produce if it correctly simulated the observed 1981 to 2014
SST trend pattern. To do so, we multiply the value of EffCS
derived from the AGCM simulations by the regression coefficient
between the EffCS and the 1981 to 2014 warming rate derived
from all ensemble members in the eight-GCM subset (diamonds
in Fig. 1D and Materials and Methods). The results suggest
that each of the eight CMIP5/6 models would have produced
warming near the observed warming rate had it simulated the
observed SST trend pattern. Thus, once biases in SST trend
patterns are accounted for, there is little correlation between the
1981 and 2014 warming rate and ECS (Fig. 3A). The average
warming rate correction across the eight GCMs is −0.09 ◦C
dec−1, with larger reductions in warming rates (and EffCS) for
models with higher ECS (Figs. 1C and 3A).

We conclude that observed warming is consistent with a wide
range of ECS values, and that by failing to account for biases in
coupled GCM SST trend patterns, the proposed observational
constraint biases estimates of ECS toward low values. Similar
results hold if we instead use the regression between 1981 and
2014 EffCS and warming rate derived from each GCM separately
to estimate the warming rate consistent with AGCM EffCS
values, but uncertainties are larger owing to larger uncertainty
in the regression, particularly for models with few ensemble
members (SI Appendix, Figs. S3 and S4).

As another method to estimate warming rates in the eight
GCMs when correcting for biases in SST trend patterns,
we use Eq. 3 with values of � derived from each model’s
AGCM simulation (Materials and Methods). Once again, the
results suggest that each of the eight CMIP5/6 models would
have produced warming near the observed warming rate had
they simulated the observed SST trend pattern, leaving little
correlation between the 1981 and 2014 warming rate and ECS
(Fig. 3B). The average warming rate correction across the eight
GCMs is −0.05 ◦C dec−1 with a larger impact for models
with higher ECS, once again. This supports our conclusion that
observed warming is consistent with a wide range of ECS values,
and that the proposed observational constraint biases estimates
of ECS toward low values; similar results hold for constraints on
TCR (SI Appendix, Figs. S1 and S4). It also suggests that observed
global warming has been slowed by the unique SST trend pattern
over recent decades (Fig. 2C ) and that warming would have been
more rapid had the pattern been more similar to that simulated
by CMIP5/6 models (Fig. 2B).

Simulations with a Two-Layer Energy Balance Model (EBM).
The results presented so far rely on diagnostic interpretation of
CMIP5/6 output and on inferences of GCM warming rates had
they correctly simulated the observed 1981 to 2014 SST trend
pattern and associated EffCS. Here we evaluate the robustness of
this interpretation within the context of a widely used EBM
(refs. 54–56) which represents the Earth as two interacting
layers—one representing all surface components of the climate

C

B

A

Fig. 3. Relationships between ECS and the 1981 to 2014 warming rate with
(diamonds) and without (circles) accounting for observed warming patterns.
ECS vs warming rate for (A) CMIP5/6 eight-model subset, with circles showing
uncorrected warming rates (from Fig. 1B) and diamonds showing corrected
warming rates estimated using AGCM values of EffCS and the relationship
between EffCS and warming (Fig. 1D); horizontal lines show 5 to 95%
confidence ranges from uncertainty in the fit. (B) CMIP5/6 eight-model subset,
with circles showing uncorrected warming rates (from Fig. 1B) and diamonds
showing corrected warming rates estimated using AGCM values of � and Eq.
3, with horizontal lines showing uncertainty ranges reflecting the spread in
� across ensemble members. (C) Relationship between ECS and warming
rate in two-layer EBM simulations with circles showing uncorrected warming
rates and diamonds showing corrected warming rates using observed values
of EffCS (19) (SI Appendix, Fig. S6), with a median of 2 ◦C and horizontal lines
showing 5 to 95% confidence ranges illustrating 1.5 to 3.1 ◦C. Gray shading
shows observational estimates (5 to 95% range) of observed warming rate
(HadCRUT5, ref. 45).
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system, including the near-surface atmosphere, ocean mixed
layer, cryosphere, and land; and one representing the ocean below
the mixed layer. The EBM predicts the surface temperature
response to ERF through a representation of the efficiency of
radiative response (governed by �), the efficiency of ocean heat
uptake, and the efficacy of ocean heat uptake which allows
feedbacks to change over time as in coupled GCMs (Materials
and Methods). This EBM was used extensively in IPCC AR6,
including for constraining global temperature projections (see
climate model “emulators” in refs. 2 and 4). Here it provides a
predictive physical model with all of the necessary ingredients to
test the robustness of the above results derived from diagnostic
analyses of CMIP5/6 models.

We fit the EBM parameters to the CMIP5/6 abrupt4xCO2
simulations of all models used in the analysis above (Materials
and Methods; SI Appendix). For each CMIP5/6 model parameter
set, we run the EBM over the period 1850 to 2014 using the
timeseries of historical ERF calculated as an average over the
eight-model subset as described above, and we calculate EffCS
over 1981 to 2014 using Eqs. 1 and 2. We also run the EBM
under an abrupt increase in ERF representing CO2 quadrupling
(to calculate EBM values of ECS using regression over 150 y, as
in the CMIP5/6 models).

The EBM produces features similar to the CMIP5/6 analysis
seen in Fig. 1. There is a strong correlation between the 1981 to
2014 warming rate and ECS, with lower ECS values being more
consistent with observations (Fig. 3C and SI Appendix, Fig. S5).
This correlation is explained by the fact that 1981 to 2014 EffCS
values, governing warming over that period, are similar to ECS
values (SI Appendix, Fig. S5); EffCS tends to be slightly smaller
than ECS owing to the ocean heat uptake efficacy parameter
being larger than one for most CMIP5/6 models (SI Appendix),
allowing feedbacks under transient warming to be slightly more
negative than at equilibrium. Differences in EffCS explain a
large fraction of the variance in the 1981 to 2014 warming
rate (r2 = 0.88); values of EffCS near 2 ◦C tend to produce
warming rates in line with observations, while higher values
of EffCS produce too much warming (SI Appendix, Fig. S5).
The remaining variations in EBM warming rates come from
differences in ocean model parameters (Materials and Methods),
but differences in forcing do not contribute here because we
have used the same historical ERF for all parameter sets. The
regression between EffCS and the 1981 to 2014 warming rate
also nearly matches that found from the eight-model subset and
agrees well with the relationship between EffCS and the 1981
to 2014 warming rate derived from observational constraints
(SI Appendix, Fig. S5).

We next consider how EBM simulations of the 1981 to 2014
warming rate change when we introduce a linear trend in �
(Materials and Methods), representing an idealization of trends in
� over recent decades as simulated by AGCMs forced by observed
warming patterns (8, 14, 17, 19, 25), such that EffCS over 1981
to 2014 becomes equal to the value EffCS = 2.0 ◦C (with bounds
of 1.5 to 3.1 ◦C also tested) estimated from global energy budget
observations (19). This produces a substantial decrease in EffCS
for high ECS models, but little change in EffCS for low ECS
models (diamonds in SI Appendix, Fig. S5), similar to differences
seen in coupled GCM and AGCM versions of CMIP5/6 models
(Fig. 1C ). The result is that the EBM produces warming near the
observed rate for all CMIP5/6 model parameter sets, in line with
expectations based on the regression between EffCS and warming
rate (Fig. 3C and SI Appendix, Fig. S5). The average warming
rate correction across the subset of eight models is −0.06 ◦C
dec−1, with larger reductions in warming rates (and EffCS) for

models with higher ECS, similar to our analysis using CMIP5/6
models above.

The relationship between ECS and the warming rate when
imposing observed EffCS within the EBM is shown in Fig. 3C.
Each CMIP5/6 model parameter set produces warming near
the observed 1981 to 2014 warming rate, with little correlation
between warming rate and ECS. These results show that the low
value of EffCS produced by the observed 1981 to 2014 SST
trend pattern implies warming in line with the observed global
warming rate, regardless of the value of ECS. This supports our
interpretation that observed warming is consistent with a wide
range of ECS values once accounting for the observed SST trend
pattern and its associated low EffCS. Similar results hold for
comparisons of warming rates and TCR (SI Appendix, Fig. S5).

Simulations with a Coupled GCM Nudged toward Observed
Warming Patterns. Finally, we evaluate the robustness of our
results using two sets of CESM1-CAM5 simulations wherein the
coupled model is nudged toward the observed 1981 to 2014
SST trend pattern in physically plausible ways. The first set of
simulations, performed by Dong et al. (57) based on methods
developed in Blanchard-Wrigglesworth et al. (58), involves
nudging Southern Hemisphere tropospheric winds (above the
boundary layer) poleward of 40◦S to match the ERA-Interim
Reanalysis over the period 1981 to 2014; five ensemble members
were run, which we average together for comparison to the
CESM1-CAM5 ensemble mean response. The second set of
simulations, performed by Dong et al. (52) and Pauling et al. (59),
involves adding meltwater to the Southern Ocean subsurface
to represent discharge due to mass imbalance of the Antarctic
ice sheet over 1981 to 2013 (an effect not represented in
CMIP5/6 historical simulations); nine ensemble members were
run, which we average together for comparison to the CESM1-
CAM5 ensemble mean response. In both sets of simulations,
the SST trend pattern more closely matches observations, with
some cooling in the Southern Ocean and eastern tropical
Pacific Ocean and with warming in the western Pacific Ocean
becoming relatively larger (Fig. 2 E and F ); see ref. 57 for a
discussion of the atmospheric teleconnection pathways by which
these southern high latitude forcings influence tropical SST
patterns.

Using Eqs. 1 and 2 as before, we find that both sets of
simulations produce smaller values of EffCS than the ensem-
ble mean of CESM1-CAM5 historical simulations (Fig. 1C ),
bringing EffCS nearer to that estimated from global energy
budget observations (19). In turn, both sets of simulations show
reduced global warming rates (Fig. 1D) that are more in line
with observations. The relationship between EffCS and warming
rate in these simulations also approximately follows expectations
based on the regression between EffCS and warming rate derived
from either the eight-model subset (Fig. 1D) or CESM1-CAM5
(SI Appendix, Fig. S3). However, despite similar changes to
EffCS, Antarctic meltwater forcing produces a larger reduction
in global warming rate than Southern Hemisphere wind forcing
in this model owing to an increase in ocean heat uptake efficiency
(�) that works together with feedback (�) changes to slow the
warming (52). Similar results hold for comparisons of warming
rates and TCR (SI Appendix, Figs. S1 and S4). These findings
support the interpretation above that EffCS (rather than ECS or
TCR) governs the global warming rate over 1981 to 2014, and
that when coupled GCMs more accurately replicate observed
SST trend patterns, they produce lower EffCS and thus slower
global warming, in line with observations.
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Discussion and Conclusions
The results presented here suggest that high-sensitivity CMIP5/6
models produce too much post-1970s warming in part due to
their failure to simulate observed SST trend patterns, which in
turn leads to model values of EffCS that are too high compared
to the observed EffCS of around 2 ◦C over this period. Because
GCMs with high values of ECS and TCR are able to produce
values of EffCS near 2 ◦C when forced by observed SSTs over
1981 to 2014 (Fig. 1C and SI Appendix, Fig. S1C ), we estimate
that even those high-sensitivity GCMs could produce global
warming rates in line with observations if they were able to
better simulate observed SST trend patterns (Figs. 1D and 3 A
and B). This is a bias in the GCM-based relationship between
post-1970s warming and climate sensitivity metrics which causes
the proposed observational (or “emergent”) constraint to be
biased toward low values of climate sensitivity. While published
constraints (18, 32–34) may still reflect useful lower bounds on
ECS and TCR, we find that they are consistent with wide ranges
of ECS and TCR extending to higher values than previously
recognized. While not a focus here, model biases in historical
radiative forcing (e.g., refs. 60 and 61) could also impart biases
in the modeled warming-sensitivity relationship on which the
observational constraint is based.

It is worth considering the implications of these results for the
recent climate sensitivity assessments that substantial narrowed
climate sensitivity uncertainty by estimating very likely ranges
of around 2 to 5 ◦C for ECS (2, 3) and 1.2 to 2.4 ◦C for
TCR (2). That the observed rate of recent warming cannot
be used to constrain climate sensitivity means we must rely on
other lines of evidence. Sherwood et al. (3) employed a Bayesian
framework to combine several independent lines of evidence for
ECS, with paleoclimate observations and process understanding
of climate feedbacks providing strong constraints on the high
end. Importantly, that assessment did not use observational (or
emergent) constraints based on recent warming, so our findings
do not affect that assessed ECS range.

However, without employing a formal Bayesian framework,
AR6 relied on observational constraints based on global temper-
ature changes as the strongest constraint on the upper ends of
the ECS and TCR ranges (while many different lines of evidence
support the lower ends of the ranges). Together with the recent
result that the climate response to the Mt. Pinatubo eruption also
does not provide a reliable observational constraint on ECS (62),
our findings suggest that the upper end of the climate sensitivity
range is less well supported than it was within AR6, particularly
for TCR which relied more heavily on this type of observational
constraint. There still remain other observational constraints
providing evidence against high ECS values, most notably those
based on proxy-estimated cooling at the Last Glacial Maximum
(2), but for now, the Bayesian framework of Sherwood et al. (3)
may provide the most robust support for a 2 to 5 ◦C very likely
range of ECS. A final implication is that the evaluation of model
ECS, TCR, and future warming based on their performance
in historical simulations (e.g., refs. 34, 63, and 64) must also
account for different SST trend patterns between observations
and models, with our results suggesting that even high sensitivity
models are compatible with observed warming. This too suggests
that testing in paleoclimate settings (e.g., ref. 65) may provide a
more useful evaluation of model climate sensitivity and long-term
warming.

Important questions remain, including: i) why do CMIP5/6
models fail to replicate observed warming patterns over recent
decades, and how can this model bias be corrected? And, ii) for

how long will the observed pattern of warming over recent
decades continue into the 21st century? Model-observation dis-
crepancies may be due to model deficiencies in simulating internal
variability and/or historical forced responses. Paleoclimate proxy
and instrumental data suggest that tropical Pacific multidecadal
variability may be substantially larger than that produced by
coupled GCMs (e.g., refs. 66–68), which seems consistent with
the observed 1981 to 2014 SST trend pattern resembling an
extreme phase of the Interdecadal Pacific Oscillation mode of
variability (e.g., refs. 41, 42, 68, and 69). Alternatively, several
other model deficiencies have been proposed to contribute to the
SST trend pattern over recent decades including model biases
in trends in the Southern Annular Mode, potentially due to a
misrepresentation of ozone depletion (e.g., refs. 57, 70, and 71);
missing Antarctic meltwater fluxes (e.g., refs. 52, 57, 59, and
72); a misrepresentation of tropospheric aerosol forcing, which
can affect Pacific trade winds (e.g., ref. 73); model biases in
Atlantic Ocean SSTs that limit the ability of the Atlantic basin
to affect Pacific trade winds (74); model biases in the transient
response of the tropical Pacific to CO2 forcing (e.g., refs. 75
and 76) or volcanic forcing (16); and limitations associated with
model resolution (e.g., ref. 77).

Our findings do not depend on the source of the discrepancy
between CMIP5/6-simulated and observed warming patterns
because radiative feedbacks and EffCS depend only on SST and
SIC patterns, regardless of how those patterns arise (e.g., refs. 78
and 79). But implicit in our use of AMIP simulations to estimate
how the SST trend pattern has influenced global warming rates
is that the pattern itself is largely independent of ECS. Recent
studies argue that models with more-positive subtropical low-
cloud feedbacks (and thus higher ECS) may better replicate the
observed cooling of the eastern tropical Pacific (e.g., ref. 80), at
least when resulting from Southern Ocean cooling (52, 57). This
potential link between ECS and the SST trend pattern would
further support our finding that high ECS models can produce
low values of EffCS, and thus slow global warming rates.

The results presented here suggest that changes in EffCS have
the capacity to substantially affect the global warming rate and
that a low value of EffCS driven by a unique SST trend pattern
has slowed global-mean warming over recent decades, relative
to what it would have been had the pattern been more spatially
uniform. However, more work is needed to determine whether
CMIP5/6 models with high ECS (above ∼4 ◦C) are capable of
producing the observed SST trend pattern and associated low
EffCS needed to bring their simulated global warming rates in
line with observations over recent decades. It would be valuable to
perform similar wind nudging and/or Antarctic meltwater flux
simulations, shown here for CESM1-CAM5, using high ECS
models.

These results reinforce previous findings that global warming
will depend on how the SST trend pattern evolves in the future
(e.g., refs. 52 and 81–83). Our findings suggest that if the
observed 1981 to 2014 pattern continues over the 21st century,
then the value of EffCS governing future warming will remain
near 2 ◦C. This would produce 21st century global warming
near the lower end of IPCC AR6 projections (SI Appendix,
Fig. S7), which assume a very likely range of ECS of 2 to
5 ◦C (2). However, if enhanced warming of the eastern tropical
Pacific and Southern Oceans were to emerge in the future—
a pattern projected by GCM simulations of the 21st century
and supported by paleoclimate proxy evidence (e.g., refs. 2 and
84)—then EffCS would increase, resulting in an increase in the
rate of global warming (SI Appendix, Fig. S7). The degree to
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which EffCS could increase depends on the magnitude of the
warming in the eastern tropical Pacific and Southern Oceans,
and on the magnitude of the radiative feedbacks in those regions.
Because observed post-1970s warming has a unique spatial
pattern that does not appear to be representative of the long-
term response to greenhouse-gas forcing, it does not preclude the
possibility that high values of EffCS are possible for the future,
potentially leading to future warming near or even above the
upper end of IPCC AR6 projections if ECS turns out to be on
the high end. How the pattern of warming will evolve in the
future thus represents a major source of uncertainty in climate
projections.

Developing improved understanding of the causes of the
observed SST trend pattern over recent decades and better
constraints on how those patterns will evolve in the future is
a major challenge for climate science with direct implications
for how we interpret the historical warming record and project
21st century warming. We could, for instance, see an increase in
the climate’s sensitivity to greenhouse-gas forcing if SST trend
patterns evolve to become more similar to those projected by
models. For now, climate model biases in historical SST trend
patterns suggest that caution is needed in the use of models
to derive observational (or emergent) constraints on climate
sensitivity or future warming based on the rate of global warming
over recent decades.

Materials and Methods
Linear RegressionMethods. We use OLS regression to calculate 1981 to 2014
warming rates and the regression of climate sensitivity metrics (ECS, TCR) against
1981 to 2014 warming rates using ensemble-mean values (Fig. 1 A and B and
SI Appendix, Fig. S1 A and B). To estimate ECS and TCR from the warming-
sensitivity relationships (Fig. 1A and SI Appendix, Fig. S1A), we calculate a linear
fit of ECS (or TCR) versus 1981 to 2014 warming rate and use the parameters of
that fit to estimate ECS (or TCR) given the observed warming rate (HadCRUT5, ref.
45) over 1981 to 2014. Uncertainties in ECS and TCR reflect 5 to 95% confidence
ranges of fit parameter values.

For the calculation of the effective feedback � from the regression of N −
ERF against T (Eq. 1), the presence of error in the predictor variable biases
OLS regression toward zero (regression dilution). To correct for this, we use
Deming regression, a total least squares regression method, to calculate �.
We estimate the ratio of error variances (variance of global average top-of-
atmosphere radiation and variance in global average surface temperature) to be
approximately 10 W2m−4K−2 based on AGCM simulations using SSTs fixed
at pre-industrial conditions. We use OLS regression for all regressions based on
the two-layer EBM, which does not represent internal variability. Within CESM1-
CAM5, moderate correlations between EffCS and warming rate over 1981 to
2014 are found when using the CAM5 Green’s function (22) combined with SST
trend patterns to estimate radiative feedback and EffCS (SI Appendix, Fig. S2).

ERF. Historical ERF is calculated for each of the eight models in our subset
using RFMIP (46) simulations. The historical ERF is diagnosed as the global top-
of-atmosphere radiation anomaly in piClim-histall simulations (wherein SSTs
and SICs are fixed to pre-industrial values while all radiative forcing agents are
varied as in the corresponding CMIP6 historical simulations) relative to piClim-
control simulations (wherein SSTs, SICs, and all radiative forcing agents are
fixed to pre-industrial values). A small correction (2, 48) is made to remove the
radiative response to global near-surface air temperature change T (mostly land
warming) by subtracting �2×T , where �2× is estimated from abrupt4xCO2
simulations (35). For all RFMIP simulations, the ensemble mean is used when
more than one member of the simulation exists. CMIP5/6 model values of ERF
for CO2 doubling (ERF2×) have been estimated using the standard approach of
extrapolating to zero global temperature change the regression between global
top-of-atmosphere energy imbalance and global temperature change over 150 y

of abrupt CO2 quadrupling simulations, scaled by a factor of a half to account
for CO2 doubling (35, 44).

Correcting for SST Trend Pattern Biases. For the first method of estimating
the warming each GCM would produce if it correctly simulated the observed 1981
to 2014 SST trend pattern (Fig. 3A), we first calculate a linear fit (OLS regression)
of EffCS versus 1981 to 2014 warming rate from all ensemble members of the
eight-GCM subset (Fig. 1D). We then use that fit to estimate the warming rate
given EffCS derived from each AGCM simulation (diamonds in Figs. 1D and 3A).
Uncertainties (horizontal lines in Fig. 3A) reflect 5 to 95% confidence ranges of
fit parameter values.

For the second method of estimating the warming each GCM would produce
if it correctly simulated the observed 1981 to 2014 SST trend pattern (Fig. 3B),
we use Eq. 3 with values of � derived from each model’s AGCM simulation. In
the eight-model ensemble considered here, the average correlation between �
and � across historical ensemble members is small (average r2 = 0.25), and
models disagree on the sign of the correlation. Without a deeper understanding
of how variations in � and � are related, we assume they can be varied
independently and use ensemble-mean values of � for each model in this
estimate. To evaluate the degree to which variations in� could affect the results,
uncertainties (horizontal lines in Fig. 3B) are generated by using the highest
and lowest values of � from the ensemble members of each model in this
calculation.

Two-Layer EBM. The two-layer EBM (refs. 54–56) evolves surface temperature
according to the following equations:

C
dT
dt

= �T + ERF− "(T − T0),

C0
dT0
dt

= (T − T0),
[5]

where T is the temperature anomaly of the upper layer, representing the global
surface temperature anomaly; T0 is the temperature anomaly of the lower layer;
ERF is the effective radiative forcing, as above; C is the effective heat capacity
of the upper layer (representing the ocean mixed layer, land, and atmosphere);
C0 is the effective heat capacity of the lower layer (representing the ocean below
the mixed layer);  represents the efficiency of vertical heat transport between
upper and lower layers; and " is the efficacy of ocean heat uptake, which allows
effective radiative feedbacks to change over time as represented by coupled
GCMs. Note that in the limit of C0 � C, such that deep ocean temperature T0
does not change much, these equations reduce to Eq. 3 with � = " .

We fit the two-layer EBM parameters to the abrupt4xCO2 simulations of all
CMIP5/6 models used in the analysis above using the fitting scheme developed
by Lutsko and Popp (85), which was based on Geoffroy et al. (56) (see SI
Appendix for parameter values). To simulate historical warming consistent with
observational constraints on EffCS, we run the model using a wide range of linear
trends in� over the period 1981 to 2014 (starting from initial values of� as fit to
CMIP5/6 models and changing linearly with time) and calculate EffCS over this
period (using Eq. 1) for each. We then select the simulations that correspond
to EffCS values of 2.0 ◦C, 1.5 ◦C, and 3.1 ◦C (50%, 5%, and 95% intervals of
the observationally constrained EffCS from ref. 19). See SI Appendix for details
regarding the 21st century EBM simulations under different assumptions about
how EffCS will evolve in the future.

Data, Materials, and Software Availability. netcdf files and code data have
been deposited in Dryad (https://doi.org/10.5061/dryad.zgmsbcckd) (86).
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