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Estimated human-induced warming from 
a linear temperature and atmospheric CO2 
relationship

Andrew Jarvis    1  & Piers M. Forster    2

Assessing compliance with the human-induced warming goal in the Paris 
Agreement requires transparent, robust and timely metrics. Linearity 
between increases in atmospheric CO2 and temperature offers a framework 
that appears to satisfy these criteria, producing human-induced warming 
estimates that are at least 30% more certain than alternative methods. Here, 
for 2023, we estimate humans have caused a global increase of 1.49 ± 0.11 °C 
relative to a pre-1700 baseline.

Given the importance of being able to assess compliance with the tem-
perature objectives set out in the Paris Agreement1, suitable methods for 
specifying human-induced warming (HIW) in near real time are urgently 
needed2. However, the magnitude of HIW is not directly observed but is, 
instead, estimated from global mean surface temperature anomaly data. 
There are two elements to this estimation. The first involves specifying 
a suitable pre-industrial baseline for the temperature anomaly data to 
produce estimates of global mean surface temperature (GMST) change. 
The second involves removing the effects of natural variability from the 
GMST change data to leave just HIW. The Intergovernmental Panel on 
Climate Change (IPCC) have made the pragmatic choice to use the mean 
of the 1850–1900 global temperature anomaly data as the pre-industrial 
baseline condition3, although it is known that both emissions4 and the 
atmospheric burden5 (Fig. 1b) were rising well before this period. Fur-
thermore, the 1850–1900 data are the most uncertain in the global tem-
perature anomaly series6 (Fig. 1a), and this uncertainty is currently not 
accounted for when applying baseline adjustments. A range of methods 
have emerged for filtering out natural variability; however, the associated 
HIW estimates either incur lag as a byproduct of the filtering of GMST 
data7 or require model forecasts to make HIW estimates independent of 
natural variability2,8–10. Clearly, lag is unwelcome when evaluating climate 
policy as it introduces delay in policy responses to observed change, 
something that is particularly problematic in the context of the risks 
presented by, for example, climate tipping points. Although employing 
climate modelling approaches to avoid lag effects appears sensible, this 
introduces significant and often difficult-to-quantify uncertainties.

There is an extensive literature highlighting how temperature 
change has responded linearly to cumulative carbon emissions 
throughout the industrial era (fig. 5.3.1 in ref. 11), and this relationship, 
referred to as the transient response to cumulative carbon emissions 

(TCRE), is now central to specifying remaining carbon budgets to 
keep within the 1.5 and 2.0 °C levels set out in Article 2 of the Paris 
Agreement11,12. Because the airborne fraction appears to have been sta-
tionary to date11, variations in cumulative emissions should also be pro-
portional to variations in the atmospheric CO2 concentration, implying 
linearity between global temperature changes and atmospheric CO2 
concentrations (Fig. 1c). This has been somewhat overlooked given 
many studies have emphasized the nonlinear relationship between 
atmospheric CO2 and the radiative forcing it imposes13, yet recent 
research shows the spatial pattern of forcing induced by CO2 leads to 
a far more linear temperature response than previously appreciated14. 
HIW is not driven by CO2 alone, but also by a range of non-CO2 forcing 
agents, the relative contributions of which have varied throughout the 
industrial era3,13. Therefore, any linearity we observe between changes 
in atmospheric CO2 and global temperatures suggests the effects of 
non-CO2 forcings have been subsumed within, and may even have 
contributed to, any CO2–temperature linearity observed to date.

Figure 1b shows a reconstruction of the atmospheric CO2 record 
from 13 ce to present. From this we estimate a stationary pre-1700 
baseline of 280 ± 7 ppm. Figure 1c shows the relationship between 
the observed increase in atmospheric CO2 above this baseline (x) and 
the HadCRUT5 global temperature anomaly data (y). This appears 
linear, lending itself to regression methods. Weighted least squares 
(WLS) regression on the full 1850–2023 paired data gives y = mx + c + e; 
m = 1.06 ± 0.11 °C per 100 ppm; c = −0.54 ± 0.09 °C (Methods), and once 
decorrelated, the regression residuals, e, pass tests for stationary zero 
mean normality (P < 0.01).

The regression result suggests the HadCRUT5 data require res-
caling by −0.54 ± 0.09 °C from their 1961–1990 average to estimate 
temperature change since our pre-1700 baseline period (Fig. 1c).  
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estimates are ~30% more certain than their published equivalents 
(Fig. 1d). We attribute this improvement to the efficiency of the regres-
sion framework leveraging all paired data 1850–2023 set against the 
uncertainty entrained through using climate models.

Although the observed relationship between CO2 and temperature 
change appears to have been statistically linear to date, this cannot 
be guaranteed going forwards, hence the need to avoid extrapolating 
beyond the domain of the paired CO2–temperature observations. 
However, providing the pre-industrial baselines for both CO2 and 
temperature have been accurately specified, the CO2–temperature 
sensitivity can be estimated in near real time directly from the CO2 and 
temperature anomaly data, and this can be used to indicate significant 
departures from the linear regime (Fig. 2 and Methods). Not only could 
this provide early warning for the onset of nonlinearities, including 
tipping points, if the regression framework was to adopt a recursive 
form, HIW could continue to be estimated in near real time.

Linearization is ubiquitous in the sciences, engineering and deci-
sion making because of the robustness, reduced uncertainty and trans-
parency it offers. This explains why the TCRE framework has been so 
readily embraced by the climate science and policy community, even 
though it appears to overlook much of the multivariate and nonlinear 
thinking that underpins more-detailed climate model evaluations. 
The attractiveness of the framework is further supported by the abil-
ity to generate HIW estimates in near real time given the timeliness of 
both temperature anomaly and atmospheric CO2 concentration data 
releases and the simplicity of the analysis, which through being per-
formed in the CO2–temperature state space is largely lag-free.

By comparison, the 1850–1900 mean value of the HadCRUT5 data is 
−0.36 ± 0.21 °C, suggesting ~0.2 °C of HIW is embedded in the current 
IPCC pre-industrial baseline. However, our regression-based estimate 
for HIW 1850–1900 is 0.11 ± 0.07 °C (Fig. 1a), associated with a mean CO2 
increase of 10 ± 8 ppm relative to the pre-1700 baseline (Fig. 1b), which 
is essentially the same as the 1750 to 1850–1900 warming estimated 
from radiative forcing modelling studies3.

The IPCC Sixth Assessment Report (AR6) provides a pooled esti-
mate for the TCRE of 1.65 (1.0–2.3) °C (TtC)–1 (table 5.7 of ref. 11). If, 
on average, non-CO2 forcings comprise 20% of the anthropogenic 
total13 and the airborne fraction is 0.44 (ref. 11), Fig. 1c suggests a TCRE 
of 1.75 ± 0.18 °C (TtC)–1, which is indistinguishable from the current 
median expected value. Again, the observed co-linearities between 
the global temperature anomaly and atmospheric CO2 concentration 
(Fig. 1c), and the corresponding TCRE linearity11 can be observed only 
if the airborne fraction has been statistically stationary to date.

The IPCC AR6 employed three statistical methods to estimate 
HIW on the basis of climate models, radiative forcing and temperature 
change data baselined to 1850–190015, and these three approaches have 
been updated to provide estimates for 2023 with a median of 1.31 °C (1.1–
1.7 °C; ref. 16) (Fig. 1d). By comparison, our regression-based method 
gives a 2023 HIW of 1.49 ± 0.11 °C (Fig. 1d) associated with atmospheric 
CO2 having risen by 142 ± 7 ppm above its pre-1700 baseline. Approxi-
mately 0.1 °C of this difference is again attributed to having accounted 
for the HIW embedded in the 1850–1900 baseline. If we instead use 
1850–1900 as the baseline period and exclude its uncertainty, we esti-
mate a 2023 HIW of 1.31 ± 0.07 °C (Fig. 1d). Our contemporary HIW 
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Fig. 1 | HIW estimates. a, HadCRUT5 global temperature anomalies relative  
to their 1961–1990 mean6, estimated GMST change and HIW (Methods).  
b, Law Dome ice core5 and Mauna Loa18 atmospheric CO2 concentrations.  
c, The relationship between increases in atmospheric CO2 concentration above 
its pre-1700 baseline and the HadCRUT5 global temperature anomaly, WLS 
regression fit and HIW estimates (Methods). d, Median HIW estimates for 2023 

from ref. 16 along with the regression-based estimates from this study. Here the 
regression-based estimates are also shown baselined to 1850–1900 and without 
the CO2 baseline uncertainty to be comparable to those in ref. 16. All uncertainties 
are expressed as 95th percentile ranges. Regression uncertainties are estimated 
from N = 104 samples (Methods).
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Although the regression developed here provides a more accurate 
pre-industrial baseline, because the 1850–1900 baseline appears to 
have become embedded within the climate science and policy com-
munity, it is important to evaluate the likelihood the community would 
embrace changing to a pre-1700 baseline. The fact that climate policy 
is yet to define how its central decision metric is measured speaks of 
an emerging policy framework necessarily still open to change, and 
the pool of methods from which it is selecting presents a range of HIW 
estimates similar to the baseline adjustment we are calling for (Fig. 1d). 
The transition from AR5 to AR6 also saw the climate science community 
switch from using the 1961–1990 baseline to the 1850–1900 baseline 
in their evaluations3,17, and the temperature anomaly data themselves 
have been subject to recent revision on the order of 0.1 °C (ref. 6). 
Note, however, because the 1.5 °C level for HIW has now in effect been 
reached if HIW is estimated using the CO2–temperature linearity, this 
would end any further discussion of keeping below 1.5 °C unless within 
the context of transient overshoot scenarios.

As with the TCRE framework, we make no claim that the observed 
temperature–CO2 linearity is down to more than happenstance and the 
linearizing effects of local perturbations, or will hold going forwards. 
In addition, as with the TCRE framework, we must remain mindful of 
the future effects of non-CO2 forcing and any reorganization of the 
climate system. However, as we have shown, the regression frame-
work articulated here could prove extremely useful for statistically 
detecting any such change, while continuing to supply robust GMST 
change and HIW estimates. The pre-1700 baseline we have estab-
lished for both remains valid in these conditions through the analysis 
of the linear regime that appears to have persisted for at least the  
past 174 years.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Fig. 2 | Recursive evaluation. Recursive WLS estimates of the sensitivity, m, 
and temperature anomaly baseline, c, made by sequentially adding paired CO2 
increase and temperature anomaly data, 1900–2003. Post-2003 sensitivity 
is estimated as (y – c)/x where x and y are drawn from their corresponding 
observational distributions shown in Fig. 1 and c is the 2003 baseline estimate 
(Methods). Error bars show the estimated range for the 2023 WLS estimates for 
the sensitivity m and baseline c. All uncertainties are expressed as 95th percentile 
ranges estimated from N = 104 samples (Methods).
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Methods
We exploit observed linearity between atmospheric CO2 and tempera-
ture change using linear regression methods to derive a pre-industrial 
baseline for both GMST change and HIW, as well as near real time, lag 
and climate model free estimates of HIW. Assuming that pre-industrial 
non-CO2 anthropogenic warming is negligible, when cumulative 
anthropogenic CO2 emissions are effectively zero the atmospheric 
CO2 concentration will be at its pre-industrial level and HIW is, by defi-
nition, zero. All subsequent persistent increases above this level are 
then assumed to be caused directly or indirectly by human activity.

The atmospheric CO2 concentration is well observed in ice-core 
data, and this allows us to look back well before the beginning of the 
industrial era to establish a pre-industrial baseline for atmospheric 
CO2 not reliant on somewhat uncertain CO2 emissions inventory data. 
A further advantage of exploiting the atmospheric CO2 concentration 
data over the cumulative emissions data traditionally used in TCRE 
analysis is that the former are a direct observation of the cumula-
tive effects of anthropogenic emissions on atmospheric composition 
and hence forcing, while the later are the sum of rather uncertain 
annual energy use inventories and hence are vulnerable to compound 
errors. Cumulative emissions estimates also often exclude the effects 
of land-use change, which, by contrast, are necessarily included in the 
atmospheric CO2 record.

We take the compiled Law Dome ice-core data5 covering 13–1700 ce 
as our baseline condition since we find no statistically significant 
increase in atmospheric CO2 over this interval (Fig. 1b), and this time 
frame probably reflects a genuinely pre-industrial state given estimates 
of primary energy use and anthropogenic CO2 emissions start growing 
significantly only after this time4. We subtract this baseline from the 
concatenated Law Dome–Mauna Loa18 atmospheric CO2 concentration 
series (Fig. 1b) to produce the 1850–2023 increase in atmospheric CO2 
concentration shown in Fig. 1c. The ice-core data offer 60% coverage 
1850–1958, with the remaining 40% supplemented following the inter-
polation method used in ref. 5.

We then relate the 1850–2023 increase in atmospheric CO2 con-
centrations (x) to the 1850–2023 HadCRUT5 global temperature anom-
aly data (y; ref. 6; Fig. 1a) in the linear regression model y = mx + c + e 
(Fig. 1c). Here the offset c is our linear regression estimate of the pre-
1700 baseline condition for the global temperature anomaly data 
that are specified relative to their 1961–1990 mean; e is the stochastic 
variation about this linear trend attributable in part to the stochastic 
elements of non-CO2 forcing, nonlinearity, nonstationarity, natural 
variability and measurement error. Providing they correlate with 
variations in atmospheric CO2 or are statistically insignificant, the 
systematic net effects of non-CO2 forcing become embedded in the 
estimate for the CO2–temperature sensitivity, m. Any significant sys-
tematic change in non-CO2 forcing that is not correlated with observed 
CO2 increases, for example, through the recent decoupling of aerosol 
from CO2 forcing10, should degrade any CO2–temperature change 
linearity leading to significant changes in m and c and their associ-
ated uncertainties. We evaluate this through the recursive regression  
shown in Fig. 2.

Given the heteroskedasticity of the temperature anomaly data 
(Fig. 1a), we employ a WLS regression. In this regression, we take the 
5th to 95th percentile range for the HadCRUT5 temperature anomalies 
(Fig. 1a) as a measure of the 4σ uncertainty in these data. From this, we 
then construct 1/σ2 weights. Although the CO2 data are also heteroske-
dastic (Fig. 1b), their measurement uncertainties are far smaller than 
those of the temperature anomaly data, and we find error-in-variable 
effects on the regression are not significant. We do, however, find e 
to be significantly autocorrelated and so accommodate this follow-
ing the Cochrane–Orcutt iterative regression procedure. We find e 
to be close to AR(1), and full convergence of the regression occurs 
within four iterations, with the decorrelated regression residuals pass-
ing an Anderson–Darling test for stationary zero mean normality 

(P < 0.01). We find the second difference of the CO2 data and the first 
difference of the temperature data to be stationary, in line with our 
understanding of the effects of near-exponential emissions growth 
on the accumulation of CO2 in the atmosphere11 and its effects on the 
global energy balance13,15. Using synthetic data, we tested our regres-
sion framework and found this form of nonstationarity in our regres-
sion data had little impact on our regression results other than to 
further weight the most recent, largest observed increases in CO2 and 
temperature. Given these are also the most certain data, we view this  
as advantageous.

We subtract the regression-estimated pre-1700 temperature 
anomaly baseline, c, from the HadCRUT5 global temperature anomaly 
data, y, to produce estimates of GMST change, y – c. We construct the 
uncertainty in this GMST change estimate by sampling the uncertain-
ties associated with the pre-1700 CO2 baseline estimate, the regres-
sion parameter covariance matrix, the AR(1) regression errors and 
the HadCRUT5 temperature anomaly uncertainties (Fig. 1a; N = 104). 
Finally, our estimate for HIW in any year 1850–2023 is given simply 
by mx. To reflect the fact HIW is a trend estimate, uncertainties in this 
estimate are constructed from sampling the regression parameter 
covariance matrix along with the uncertainty in the CO2 increase esti-
mate, x (N = 104). This includes both the uncertainty associated with 
the pre-1700 CO2 baseline estimate and measurement uncertainty in 
the CO2 data themselves. Given the timely release of both temperature 
anomaly and atmospheric CO2 concentration data and the simplicity 
of the analysis, year-end updates of the regression and hence the HIW 
estimate can be made as soon as the paired CO2 and temperature data 
are published.

Estimating both GMST change and HIW in this way is not say-
ing that we see temperature change as being uniquely dependent on 
changes in atmospheric CO2 concentration, even though CO2 accounts 
for approaching 80% of current net radiative forcing16. Our frame-
work is simply exploiting the observed linear covariation between 
increases in CO2 and temperature to constrain within-sample estimates 
of GMST change and HIW. Furthermore, our method does not require 
the relationship between CO2 and temperature to be unaffected by 
non-CO2 factors, just that these factors do not compromise the lin-
earity, although we relax this constraint when thinking about how to 
accommodate future nonlinear effects. We also do not attempt any 
extrapolation in this framework other than through the assumption 
that HIW is zero when atmospheric CO2 concentration is statistically 
stationary about its pre-1700 mean, which we take as the definition of 
the pre-industrial state. Although this might represent 150 years or 
more extrapolation in time, this represents only a 4% extrapolation in 
the CO2–temperature anomaly state space (Fig. 1c).

We stress that, because of the linearity in the paired CO2–tem-
perature anomaly data to date, the regression-based estimate for 
re-baselining the HadCRUT5 data, c, utilizes the entire 1850–2023 
paired data, not simply the most uncertain 1850–1900 temperature 
anomaly data. For example, if we use only the more certain post-1958 
paired data, we obtain similar regression results to those from using 
all 1850–2023 paired data. The same is true if we use only the more 
uncertain pre-1959 paired data closer to the baseline state. We take 
this as evidence that the linearity shown in Fig. 1c has largely persisted 
throughout the industrial era, even if the relative contributions of the 
different forcing agents to warming has changed marginally over this 
time16. If we approach the regression recursively, we find the regression 
converges from ~1900 onwards and produces stable estimates for both 
m and c post-1940 (Fig. 2), with the only significant change thereafter 
being increasing confidence in the regression parameters, and in par-
ticular that for the CO2–temperature sensitivity, m.

We compare our results with those from the three HIW methods 
investigated in the IPCC AR615 updated and unified for 2023 by ref. 16. 
For this, we run the regression on the 1850–2023 paired data before 
constructing our HIW estimates. Because the three methods we are 
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comparing with use the 1850–1900 baseline, we construct HIW esti-
mates using either the pre-1700 CO2 baseline or, for comparison, the 
1850–1900 baseline (Fig. 1d). In addition, because the three methods we 
are comparing with do not include the baseline uncertainty in the GMST 
change data they exploit, we produce HIW estimates that exclude that 
uncertainty again to aid comparison (Fig. 1d). We find our like-for-like 
2023 HIW estimate is ~30% more certain than its counterparts (Fig. 1d), 
and that including the CO2 baseline uncertainty increases the 2023 HIW 
uncertainty by a further ~30%.

There is an expectation that higher levels of warming will induce 
nonlinear effects in the climate system and these nonlinearities could 
be expressed either through the reorganization of elements of the cli-
mate system altering climate sensitivity or warming-induced enhanced 
levels of non-CO2 forcing, such as through methane, substantially alter-
ing the relative contribution of CO2 to warming11,13. Furthermore, the 
relative contributions of CO2 and non-CO2 forcing could change in the 
future through changes in patterns of anthropogenic emissions. Given 
the importance of detecting changes in climate sensitivity because 
of the risks a change could present, a possibly useful ongoing test for 
linearity would be out-of-sample evaluation of the stationarity of m. 
Having estimated c on a subset of the paired CO2–temperature data, we 
can produce ensemble out-of-sample annual estimates for m through 
(y – c)/x (Fig. 2). These capture both the observation uncertainty in x 
and y, and the parametric uncertainty in c. We can then test whether the 
regression estimate for m differs significantly from the out-of-sample 
forecast. Figure 2 shows one such evaluation where the regression is 
calibrated on the 1850–2003 paired data and the regression estimate 
for m is evaluated 2003–2023 against (y – c)/x. If we had detected any 
significant change, the adjustments we would make to the regression 
framework to continue to estimate HIW would depend on what form 
this nonlinearity took, exploiting the array of available recursive regres-
sion methods.
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