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Abstract: Climate forcings by greenhouse gases and aerosols cause an imbalance at the top of 
the atmosphere between the net incoming solar radiation and outgoing longwave radiation from 
the Earth. This Earth energy imbalance has strengthened over the period 2001-2023 with satellite 
data. Here, we show that low climate sensitivity models fail to reproduce the trend in Earth 
energy imbalance, particularly in the individual longwave and shortwave contributions to the 15 

imbalance trend. The inability to produce a strong positive shortwave and strong negative 
longwave Earth energy imbalance trend is found to be a robust feature in the low climate 
sensitivity models, especially for models with climate sensitivity below 2.5K. The negative 
longwave contribution to Earth energy imbalance is driven by surface temperature increases and 
is therefore most pronounced in high climate sensitivity models, whereas the shortwave 20 

contribution is generally positive and amplified by greater surface warming.      
 
 
A long-standing research question in climate science is how sensitive the climate is to increases in 
greenhouse gases (1-3). This climate sensitivity is taken as the surface temperature rise for a 25 

doubling of the CO2 concentration (4, 5). In the latest Intergovernmental Panel on Climate Change 
(IPCC) report the best estimate of the equilibrium climate sensitivity (ECS) was assessed as 3⁰C, 
with a likely range from 2.5⁰C to 4⁰C and a very likely range from 2⁰C to 5⁰C (4). How clouds 
change in a warmer world is the main cause of the uncertainty in the climate sensitivity (4, 5) with 
divergent results from observational studies (6-9). The recent warming over the first one to two 30 

decades in the century has been used as arguments for low climate sensitivity models being most 
realistic, in particular how feedback processes are represented for recent warming trend (10, 11). 
However, the pattern of observed sea-surface warming in the Pacific may have biased some of 
these findings (12). 
The last decades have seen a continued increase in greenhouse gases (GHGs) (4) combined with a 35 

reversal of the aerosol effect (13). A reduction in the cooling effect of aerosols has thus a warming 
effect and the total effective radiative forcing has been accelerating over the last decades (14). The 
Earth energy imbalance (EEI) is increasing (15, 16) and will likely give an accelerated warming 
over the coming years (17). Hodnebrog et al.(16) showed that climate models forced with observed 
sea-surface temperatures reproduce the satellite retrieved strengthening in EEI from the Clouds 40 

and the Earth’s Radiant Energy System (CERES), but all models have a weaker trend than the 
observed trend. Schmidt et al (2023) (18) showed that the EEI trend split into longwave (LW) and 
shortwave (SW) trends differed markedly between the CERES satellite and in different 
configurations of a climate model. Here we use a large set of coupled climate models from the 
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Coupled Model Intercomparison Project Phase 6 (CMIP6) (19) to illustrate that low climate 
sensitivity models have an EEI trend behaviour that is inconsistent with the satellite derived EEI 
trend.  

Trend in EEI 

Fig 1 shows the EEI over the period with CERES satellite data and compared with coupled climate 5 

model simulations from CMIP6. The model simulations are a combination of the historical 
simulation until 2014 combined with a SSP5-8.5 scenario from 2015 onwards. The SSP5-8.5 
scenario includes reductions in aerosols combined with a strong increase in GHG concentrations. 
The CERES data shows a stronger trend in EEI than the multi-model CMIP6 mean and higher EEI 
in 2023 than any of the CMIP6 models. However, for individual CMIP6 models and ensembles 10 

EEI is comparable or higher at other periods than the CERES value in 2023. Interannual variability 
in EEI is clearly shown for the CERES data and the climate models. In simulations with observed 
sea-surface temperature, the interannual variability in the CERES data is largely reproduced by 
the climate models (16). 

The strengthened EEI from CERES is further supported by an accelerated trend in the ocean heat 15 

content (OHC) (14, 20-22). Discrepancies exist in the degree of acceleration among various OHC 
datasets, with best agreement between CERES and OHC datasets having better ocean coverage 
and filling in data in data sparse regions (23). 

Relationship of longwave and shortwave EEI trend 

To illustrate climate model differences and robustness between models, we use idealized CMIP6 20 

experiments. In Fig 2 the EEI is shown for a range of models for the experiment with 1%/yr 
increase in CO2 concentrations (named 1pctCO2). All models show an increasing net EEI (Fig 2a), 
but with a much larger model diversity when net EEI is split into LW (Fig 2b) and SW EEI (Fig 
2c). LW and SW EEI are positive when reducing outgoing radiation at the top of the atmosphere, 
typically caused by increase in absorption by GHGs (both anthropogenic and as climate feedback). 25 

An increase in surface temperature causes an increase in outgoing longwave radiation and thus a 
negative LW EEI. The majority of models have a negative LW EEI after some years because the 
increase in surface temperature and more outgoing LW radiation overwhelm the positive effect 
from the increase in CO2. However, several models have a positive or very weak LW EEI even 
after more than 100 years. With one exception, the models have a positive SW EEI mostly 30 

throughout the time period of increase in CO2 caused by less snow and ice (24) and contributions 
from water vapour absorption (25) and clouds for several models (see discussions in next sections). 
Fig 2d shows trend in LW EEI versus SW EEI for the CMIP6 models with uncertainties reflecting 
variation among four 23-year periods over the model simulations. Consistent with Schmidt et al 
(2023) (18), we find a robust linear relationship in the LW and SW EEI trends amongst model 35 

members and a marked spread in the trends. Periods of 23 years are selected to match the length 
of data available from CERES.  

Linking trends in EEI with climate sensitivity 

Fig 3a shows the 1pctCO2 experiment and the abrupt quadrupling of CO2 (abrupt4xCO2) 
experiment with colours reflecting the ECS. The LW and SW EEI trends are calculated as a mean 40 

of four 23-year trends and ECS from regressions using the abrupt4xCO2 experiment over 150 
years (26) and thus consistent with ECS values derived elsewhere (4, 27). The 1pctCO2 and 
abrupt4xCO2 experiments show different trend relationships for LW and SW EEI with the former 
having weaker LW negative trend gradient as a sustained increase in CO2 contributes to LW EEI 
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imbalance. The shading in Fig 3a shows that the net EEI is generally increasing in the 1pctCO2 
experiment and decreasing in the abrupt4xCO2 experiment. Fig 3a also includes atmosphere-only 
simulations with observed sea-surface temperature (SST) fields from 2001 to 2019 from 
Hodnebrog et al. (16). Atmosphere-only simulations where climate drivers (GHGs and aerosols) 
have been kept constant for the period 2001-2019 align with the abrupt4xCO2 experiment, and 5 

atmosphere-only simulations with increase in GHG (but constant aerosols) over the 2001-2019 
period show similar LW and SW trends as the 1pctCO2 experiment. Importantly, the low climate 
sensitivity models have much weaker changes in LW and SW EEI trends than the other models. 
In particular, the models with ECS below 2.5 K all show very weak LW and SW EEI trends. For 
models with ECS 4 K or higher, there is little alignment with the LW and SW EEI trends, and the 10 

models are widely spread along the regression line. Nevertheless, it is notable that none of these 
models show very weak LW and SW EEI trends.     

In Fig 3b the CERES satellite LW and SW EEI trend is shown together with the CMIP6 intra-
model ensemble mean LW and SW EEI trend for the period 2001 to 2023. CMIP6 simulations are 
from a combination of the historical simulation until 2014 and the SSP5-8.5 scenario from 2015. 15 

Results are very similar for other scenarios with aerosol reductions (e.g. SSP2-4.5). Additionally, 
atmosphere-only simulations with changes in GHG and aerosols from Hodnebrog et al (16) are 
included in Fig 3b, note that these are for 2001-2019. The number of ensemble members for each 
model is quite variable, see Supplementary Table 1. Fig 3c shows results for all ensemble members 
included in this study. Fig 3b and Fig 3c show systematic weak LW and SW EEI trends from low 20 

climate sensitivity models, consistent with Fig 3a. Note, that the relationship between climate 
sensitivity and net EEI trends show no systematic pattern, and various intra-model ensemble 
members exhibit a wide range in the net EEI trend (Supplementary Fig 1). All models with climate 
sensitivity below 2.5K have very weak LW and SW EEI trends. It is worth mentioning some of 
the EEI trends of lighter colours in Fig 3b and Fig 3c. FGOALS-f3-l has a LW EEI trend similar 25 

to CERES and SW EEI trend 0.2 W m-2/decades weaker than CERES, but this is a model with 
climate sensitivity of 3.0 K (see Fig 3b). In Fig 3c one ensemble member out of 50 for MIROC6 
has a SW EEI trend above 0.4 W m-2/decades. MIROC6 has a climate sensitivity of 2.6 K. GISS-
E2-2-G is among the very low climate sensitivity models with ECS of 2.4 K and has one out of 
five ensemble members with SW EEI trend above 0.4 W m-2/decades (0.41) but with a near zero 30 

LW EEI. The atmosphere only simulations in Fig 3b are closer to CERES LW and SW EEI trends 
than the fully coupled simulations of the same model. This can be illustrated by HadGEM3, which 
shows slightly weaker trends than CERES where observed sea-surface temperature is used, and 
much stronger trends in the coupled simulations. Similarly, NorESM2 aligns better with CERES 
data when using observed sea-surface temperatures simulations, showing stronger LW and SW 35 

EEI trends than in fully coupled simulations. However, differences with CERES are also evident 
among model simulations using observed sea-surface temperatures, indicating that both the 
atmospheric and ocean components of the climate models contribute to differences in the LW and 
SW EEI trends. 

Clear sky LW and SW EEI trends show similar patterns to all sky with strong negative LW EEI 40 

trends for high climate sensitivity models and positive SW EEI trends in idealized CMIP6 
experiments (see Supplementary Figure 2).  The largest difference between the clear sky and all 
sky results are for SW EEI trends (see Figure 3a and Supplementary Figure 2).   

EEI trends and surface warming 

The surface temperature warming differs substantially between the CMIP6 models, and Figure 4 45 

(and Supplementary Figure 3 and Supplementary Figure 4) investigates if this alters the 
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relationships shown in Figure 3. The most striking result is that the CERES data show higher SW 
EEI trend per degree warming than any of the CMIP6 models, and only the models with strong 
negative LW EEI trend per degree warming are close to CERES (Figure 4). The low climate 
sensitivity models have consistently much weaker LW and SW EEI trends per degree warming 
than the CERES data.  5 

Discussion 

The analysis above relates to models’ long-term climate sensitivity estimated from abrupt 4xCO2 
experiments. This can differ from their effective climate sensitivity, estimated from changes over 
the recent historical period. Previous studies find that climate models are unable to capture the 
recent pattern of East Pacific warming observed (28), and this is associated with reduced effective 10 

feedbacks and reduced effective climate sensitivity (12).. Hodnebrog et al. (16) find that applying 
SST patterns to models improve EEI trends across models. Comparing the observed SST 
simulations (triangles) to their coupled modelled counterparts (circles) in Figure 3b, low sensitivity 
models such as NorESM exhibit relatively modest differences in the EEI trends and remain well 
below the CERES trend even with the observed SST pattern applied. Hence the particular observed 15 

SST pattern is unlikely to play a large role for the low climate sensitivity models substantially 
underestimating the LW EEI and SW EEI trends compared to CERES. 

Climate models consistently show a robust feature of a relationship between LW EEI and SW EEI 
trends which varies depending on climate drivers involved in the simulations (Fig 3a and 3b). This 
relationship is also evident under clear sky conditions (see Supplementary Figure 2), where the 20 

positive SW EEI trend often is modest and driven by reduced surface albedo from less snow and 
ice in addition to contributions from SW absorption by water vapour. The negative LW EEI trend 
is driven by surface temperature increase and moderated if GHGs are increasing during the 
simulations. Cloud changes further amplify the clear-sky relationship between LW EEI and SW 
EEI trends. Supplementary Figure 5 shows previously derived SW and LW cloud feedbacks (27) 25 

which exhibit a similar shape of relationship to that of LW EEI and SW EEI trends, but slightly 
different gradient. Notably, SW cloud feedback demonstrates greater model diversity than LW 
cloud feedback, although the latter also shows substantial variability. A negative correlation 
between LW and SW cloud feedbacks can be expected due to the opposing warming and cooling 
effect of clouds on the climate system (29).    30 

We show, using a large set of climate models, that trend in net EEI has no clear relationship to 
climate sensitivity. Consequently, we argue that the trends in net EEI and surface warming trend 
over the first two decades of this century provide little constraint on climate sensitivity. 
However, we present robust findings for trends in LW and SW EEI. These trends, and their 
relationship to climate sensitivity, are more physically based than the net EEI trend. The model 35 

distribution of EEI trends compared to CERES is shown in Supplementary Figure 6. All models, 
given as the 99.999% level of the distribution, with an ECS of 2.93 K or below are outside the 
CERES range.  The models have a similar positive aerosol radiative forcing trend as that 
observed, around 0.16 Wm-2 per decade (16, 31). This would need to be underestimated by at 
least 50% to make the SW EEI trend from models with an ECS of 2.5 K match the CERES 40 

range, making such a low ECS unlikely.  
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Methods 

All trends of EEI and surface temperatures are linear trends between 2001 and 2023, inclusive. 
The model climate sensitivity is derived by regression of model EEI and surface temperature 
change in CMIP6 abrupt 4xCO2 simulations after 150 years (26), usually denoted as effective 
climate sensitivity (4). Uncertainties in the EEI CERES data are derived as in Loeb et al. (23). In 5 

Figure 4 the LW and SW EEI per degree of warming is derived by regression of LW/SW EEI 
against the temperature trend. 

Funding: The European Union’s Horizon 2020 research and innovation programme under grant 

agreement 820829 (CONSTRAIN) (GM, ØH, PMF) and project grants no. 325270 by the 
Norwegian Research Council (GM, ØH). 10 

Author contributions: 

Conceptualization: GM 

Methodology: GM, ØH, NL, PMF 

Investigation: GM, ØH, NL, PMF 

Formal analysis: GM 15 

Visualization: GM 

Validation: GM, ØH, NL, PMF 

Writing – original draft: GM 

Writing – review & editing: GM, ØH, NL, PMF 

 20 

Competing interests: Authors declare that they have no competing interests. 
 

Data and materials availability: CMIP6 model data used in this study are freely available from 
the CMIP6 repository on the Earth System Grid Federation nodes (https://esgf-
node.llnl.gov/search/cmip6/, World Climate Research Programme, 2020). Derived LW and SW 25 

EEI from CMIP6 data presented in Fig 3b,c are available at Zenodo, 
https://doi.org/10.5281/zenodo.15087491. CERES EBAF-TOA Edition4.2 data were obtained 
from the NASA Langley Research Centre CERES ordering tool at 
https://ceres.larc.nasa.gov/data/. GISTEMP Team, 2024: GISS Surface Temperature Analysis 

(GISTEMP), version 4. NASA Goddard Institute for Space Studies. Dataset accessed 2024-07-05 30 
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Figures: 

 

Fig. 1. Trend in EEI in CERES and CMIP6 models. The CERES data is shown from 2001 to 
2023. The CMIP6 data is shown 2000-2030. All EEI are given as 12-month running means. CMIP6 5 

model mean is shown by a black thick line and individual models in thin grey lines. Only one 
ensemble member for each of the models is shown. 

Fig. 2. EEI in CMIP6 models of 1%/year increase in CO2 (1pctCO2). Net EEI a), LW EEI b), 
SW EEI c) and SW EEI versus LW EEI trends where trends are derived from four 23-year intervals 10 

d). Uncertainty ranges shown in Fig 2d represent the standard deviation among the four 23-year 
intervals.    
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Fig. 3. SW EEI versus LW EEI trends and their relation to climate sensitivity in CMIP6 

models. Primary ensemble member from each CMIP6 model for the abupt-4xCO2 and 
1%/yrCO2 experiments with results from Hodnebrog et al. (16) on all driver constants (following 
abupt-4xCO2) and only GHG changes included (following 1%/yrCO2) a), CERES and ensemble 5 

mean from each CMIP6 models (historical+SSP5-8.5) for 2001-2023 with results from 
Hodnebrog et al. (16) shown in grey colours for the period 2001-2019 (see further description in 
Supplementary text) b), and CERES and all individual ensemble members from CMIP6 models 
for 2001-2023 c). The range of ECS in the CMIP6 models is from 1.9 K to 5.6 K. In panel a) the 
1pctCO2 simulations have thicker lines around the circles than the abrupt-4xCO2 simulations. 10 

Yellow-grey shaded area in panel a) shows where net EEI trend is negative. Lines around the 
CERES trends are 90% confidence intervals.  
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Fig 4: SW EEI per degree warming trends versus LW EEI trends per degree warming in 

CMIP6 models and CERES satellite data. Colours show climate sensitivity of each CMIP6 
model. Temperature for the CERES data is taken from GISTEMP (32). Lines around the CERES 5 

trends are 90% confidence intervals. 
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Supplementary Text 

AMIP-simulations 

We have included additional climate model simulations that use observed monthly sea-surface 
temperatures and sea-ice concentration for 2001-2019 (gray symbols in Figure 3a-b). These 5 

simulations are described in Hodnebrog et al. (16). In brief, most simulations use anthropogenic 
aerosol (precursor) emissions from the Community Emissions Data System (CEDS) version of 
April 2021, while other forcings follow the CMIP6 historical setup until 2014 and assume SSP2-
4.5 thereafter. These simulations (BASE) are included in Figure 3b, while simulations with 
constant aerosol emissions (AERO2000) and with all climate drivers constant (ALL2000) are 10 

included in Figure 3a. 
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Fig. S1. Trends in net EEI (for the period 2001-2023) as a function of climate sensitivity 

(ECS) in CMIP6 simulations. 5 
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Fig. S2. Trends in clear sky LW and SW EEI in 1pctCO2 and abrupt4xCO2 simulations. Colours show the 
climate sensitivity of each CMIP6. X-and y-axes are the same as in Figure 3a. Results for the 1pctCO2 simulations 
have thicker lines around the circles than the abrupt-4xCO2 simulations. 

 5 
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Fig. S3. SW EEI per degree warming trends versus LW EEI trends per degree warming in 

CMIP6 models and CERES satellite data. Colours show climate sensitivity of each CMIP6 
model. All individual ensemble members from CMIP6 models are included.  
 5 
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Fig. S4. Trends in all-sky LW and SW EEI per degree of warming in the CMIP6 experiment 1pctCO2. Colours 
show the climate sensitivity of each CMIP6 model. 
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Fig. S5. LW and SW cloud feedbacks derived in Zelinka et al. (27). Models in orange colours are not included 
elsewhere in this study.  

  
  5 
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Fig. S6. LW, SW, and net EEI trends for 2001 to 2023 versus ECS in CMIP6 models. The CERES data for 2001 
to 2023 is shown with a solid line and yellow shading for the 90% confidence interval (CI). For the SW EEI trends, 
linear regressions are shown by a solid line with 90% CI in dark grey, 99.9% CI in grey and 99.999% CI in light grey.     5 
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Table S1. List of CMIP6 models included in the study with number of ensemble members and climate 

sensitivity (effective climate sensitive with regression of 150 years). 

# in figures Model #Members Climate sensitivity 
1 ACCESS-CM2 10 4.73 

2 ACCESS-ESM1-5 40 3.86 
3 AWI-CM-1-1-MR 1 3.13 

4 BCC-CSM2-MR 1 3.03 
5 CAMS-CSM1-0 2 2.32 

6 CanESM5 50 5.62 

7 CESM2 3 5.24 
8 CESM2-WACCM 3 4.75 

9 CIESM 1 5.54 

10 CNRM-CM6-1 6 4.96 

11 CNRM-ESM2-1 5 4.71 
12 EC-Earth3 4 4.11 

13 EC-Earth3-Veg 8 4.30 
14 E3SM-1-0 5 5.34 

15 FGOALS-f3-L 1 3.01 

16 FGOALS-g3 4 2.80 
17 FIO-ESM-2-0 3 4.26 

18 GFDL-CM4 1 3.94 
19 GFDL-ESM4 1 2.67 

20 GISS-E2-1-G 10 2.72 
21 GISS-E2-1-H 10 3.08 

22 GISS-E2-2-G 5 2.39 

23 HadGEM3-GC31-LL 4 5.58 
24 IITM-ESM 1 2.37 

25 INM-CM4-8 1 1.85 
26 INM-CM5-0 1 1.90 

27 IPSL-CM6A-LR 7 4.52 
28 KACE-1-0-G 3 4.69 

29 MIROC6 50 2.56 

30 MPI-ESM1-2-HR 2 2.96 
31 MPI-ESM1-2-LR 30 3.02 

32 MRI-ESM2-0 6 3.17 
33 NESM3 2 4.70 

34 NorESM2-LM* 1 2.58 
35 NorESM2-MM 1 2.43 

36 TaiESM1 1 4.35 

37 UKESM1-0-LL 5 5.37 
*NorESM2-LM has a negative EEI in the period 2001-2005 in the historical simulation connected to the SSP585 
ensemble. We have used the only historical ensemble member for NorESM2-LM which has a positive EEI for the 5 
same period, which is connected to a SSP245 ensemble member. All other models included in this study have a 
positive EEI in the period 2001-2005, consistent with observational data.  
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Table S2. Regression coefficients for SW EEI in Fig S5, derived using the method from 

Singh, Gaurav, Meena and Kumar (33). Upper and lower values given for 90%, 99.9% and 

99.999% CI. 

CI Constants Coefficients 

50% -0.183 0.154 

90% -0.118 / -0.264   0.174 / 0.138 

99.9% -0.045 / -0.338 0.192 / 0.120 

99.999% 0.007 / -0.389 0.205 / 0.107 
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