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Deep Learning for Underwater Object Detection:

From CNNs to Transformer-Based Real-Time

Solutions

Hari Bhandari1 and Pengcheng Liu1

AbstractÐThis paper presents a comprehensive review of
recent advancements in underwater object detection (UOD),
with a focus on the transformative role of deep learning ap-
proaches, particularly Convolutional Neural Networks (CNNs)
and Transformer-based architectures. It examines the progression
from traditional thresholding and sonar-based techniques to
modern, data-driven models capable of addressing the unique
challenges posed by underwater environments, including poor
visibility, data scarcity, and computational constraints. Special
attention is given to the development of hybrid CNN-Transformer
models and the integration of sonar and optical data for en-
hanced detection accuracy. Additionally, the paper highlights the
importance of specialised datasets, real-time performance con-
siderations, and ethical implications in deploying AI systems for
marine applications. Ongoing research directions are discussed,
emphasising the need for efficient, robust, and adaptable models
suitable for real-world underwater tasks.

Index TermsÐDeep learning, underwater, object detection,
CNNs, transformer.

I. INTRODUCTION

Underwater object detection (UOD) has evolved signifi-

cantly over the past few decades, transitioning from simple

manual inspections and rule-based algorithms to sophisticated

deep learning and Transformer-driven approaches. This evo-

lution reflects the growing need for robust, efficient, and

accurate detection systems capable of operating in complex

marine environments. Applications of UOD are wide-ranging,

encompassing ecological monitoring, underwater exploration,

marine resource management, and aquaculture.

Early object detection techniques, such as thresholding and

traditional model-based strategies, relied heavily on predefined

heuristics and manual feature engineering. These methods per-

formed adequately in controlled or predictable environments

but struggled under the dynamic and visually challenging

conditions of underwater settings. Factors such as poor vis-

ibility, light attenuation, turbidity, and occlusion frequently

undermine the reliability of these classical approaches.

The advent of deep learning, particularly Convolutional

Neural Networks (CNNs), marked a transformative milestone

in object detection. CNN-based methods demonstrated an abil-

ity to automatically learn hierarchical features from raw image
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data, greatly surpassing the limitations of handcrafted features.

These advancements enabled more robust detection capabili-

ties even in complex underwater scenes. Further innovations,

including region-based CNN frameworks and real-time single-

shot detectors like YOLO and SSD, offered improved accuracy

and speed, opening new possibilities for practical deployment

in marine applications.

More recently, Transformer-based architectures have revolu-

tionised the field of computer vision by introducing global self-

attention mechanisms that capture long-range dependencies

within images. Vision Transformers (ViT), Detection Trans-

formers (DETR), and hybrid CNN-Transformer models have

begun to address some of the persistent challenges in UOD,

such as detecting objects in low-contrast, cluttered, or noisy

underwater environments. Additionally, these architectures of-

fer promising solutions for fusing multimodal data, such as

sonar and optical imagery, enhancing detection performance

and reliability in real-world scenarios.

Despite these advancements, several challenges remain. Un-

derwater environments impose significant constraints on data

acquisition, computational resources, and model generalisa-

tion. Limited availability of large-scale, high-quality annotated

datasets further complicates the training and evaluation of

robust models. Additionally, real-time detection requirements

in underwater robotics and autonomous systems necessitate

computationally efficient solutions that balance accuracy with

speed. This paper presents a comprehensive examination of

the progression of underwater object detection technologies. It

traces the journey from early heuristic-based methods to state-

of-the-art CNNs and Transformer-based models. Furthermore,

it highlights key challenges, ongoing research efforts, and

emerging trends aimed at developing efficient and adaptable

detection systems suitable for deployment in complex and

resource-constrained underwater environments.

II. EARLY APPROACHES & SONAR

A. Manual Methods & Thresholding

Early object detection, particularly in industrial and surveil-

lance applications, relied on manual inspections or simplistic

automated routines [1]. In assembly lines, for example, human

inspectors or technicians would visually scan products for

apparent defects [1]. This approach was economical when

the environment was steady; it failed as scenes grew more

complex or inspection periods prolonged. Initial algorithmic



methods typically used threshold-based rules to identify signif-

icant deviations from a baseline image or background. These

techniques were efficient when the environment was uniformly

lit and had low clutter but they quickly lost effectiveness in

dynamic conditions or when objects partially overlapped [2].

This is very normal and expected in underwater settings.

In underwater settings, threshold-based approaches are par-

ticularly challenging [3]. They operate as crude filters that

capture only the most obvious outliers.Light absorption, colour

changes, and turbulence cause abrupt and random changes in

pixel brightness, which makes it impossible to use a single

global threshold. Even slight changes in the depth or water

transparency can greatly alter the appearance of an object,

which can lead to many false alarms when the background

noise exceeds the threshold or missed detections when the

background is dark and objects are indistinguishable from

it because of low contrast [3]. This highlights the need for

more intelligent, learning-based strategies for object detection

in underwater environments.

B. Sonar for Underwater Exploration

Historically, UOD has relied on sonar for so many years

[4]. Sonar systems work by transmitting acoustic pulses and

measuring the returning echoes to map the seafloor, find large

aquatic animals, or follow subsea structures [4]. Although

sonar is good for coarse localisation in even the darkest or

murkiest waters, it cannot typically resolve subtle differences

between organisms or detect small scale anomalies. This

limitation has in turn led to the consideration of camera-based

detection in underwater research, for example, for identifying

specific fish species in aquaculture facilities. However, recon-

ciling sonar readings with optical imagery involves complex

data fusion processes, due to significant differences between

the two modalities [4].

C. Feature-Based Computer Vision

Before the advent of deep learning, researchers turned

to more advanced feature-based algorithms [5]. Approaches

like edge detection, optical flow, and background subtraction

improved upon raw thresholding by isolating motion or well-

defined object boundaries. Eventually, descriptors such as

Scale-Invariant Feature Transform (SIFT) and Histogram of

Oriented Gradients (HOG) allowed more robust detection

by capturing gradients and corners across different scales

or angles [6], [7]. These pipelines coupled with machine

learning classifiers including Support Vector Machines (SVM)

did better in different conditions but they were still a far

cry from being independent and required extensive feature

engineering [5]. These algorithms were often rendered less

helpful in underwater contexts by subtle shifts in colour or

illumination, resulting in frequent misclassifications unless

they were meticulously tuned.

III. DEEP LEARNING IN OBJECT DETECTION

A. LeNet-5: Foundations

The field of object detection has seen a remarkable growth

primarily driven through the advancements in CNNs [8].

CNNs gained recognition through the work of Yann Le-

Cun and collaborators, particularly on LeNet-5 [9]. It was

initially designed for handwritten number recognition 0,1..9

but demonstrated significant potential of CNNs . LeNet-5

demonstrated that networks featuring convolutional and pool-

ing layers could learn relevant features from pixels directly.

This marked a clear improvement over traditional handcrafted

feature extraction methods. However, early CNNs had notable

challenges, including vanishing gradientsÐwhere deeper lay-

ers failed to update properly during trainingÐhigh computa-

tional requirements, and a tendency to overfit, especially when

datasets were small [8].

B. AlexNet & Advances

The transition from LeNet-5 to AlexNet was motivated by

the limitations of shallow networks [10]. The complexity of

datasets, increasing demands for accuracy, and the advance-

ment of GPU hardware led researchers to pursue deeper,

more capable CNN architectures. AlexNet [10], notably won

the ImageNet competition by leveraging GPU acceleration,

using ReLU activations to mitigate the vanishing gradient

problem, and incorporating dropout to reduce overfitting [11].

This highlighted the advantages of deeper architectures and

established a new baseline for visual recognition tasks. Sub-

sequent architectures, including ZFNet [12], GoogLeNet [13],

VGGNet [14], and ResNet [15], expanded further, refining

network depth, kernel dimensions, and connection patterns to

improve performance across various computer vision tasks be-

yond simple classification; they could also be adapted for tasks

like segmentation and object detection, fueled by bounding-

box regression and region proposal strategies [16].

IV. REGION-BASED CNNS

A. From R-CNN to Faster R-CNN

Region-Based CNN (R-CNN) represented a turning point

in object detection. Initially, R-CNN [17] generated bounding-

box proposals through selective search, then employed a CNN

to classify each proposal. Although significantly more accurate

than earlier techniques, the process was computationally inten-

sive since each proposal required a separate pass through the

network. Fast R-CNN addressed this inefficiency by sharing

convolutional computations and using a region of interest

pooling strategy, thereby accelerating inference. Faster R-CNN

further refined this approach through the introduction of a Re-

gion Proposal Network (RPN), which produced bounding-box

suggestions with minimal overhead [18]. Faster R-CNN went

on to establish leading performance on well-known datasets

like Pascal VOC and MS COCO, blending high accuracy

with reasonable speed.Region-based CNNs did not remain

confined to terrestrial imagery. A study by Han et al. [19]

illustrated the effectiveness of Faster R-CNN in classifying

marine wildlife captured in underwater video. Despite uneven

lighting and challenging water conditions, they achieved a

mean Average Precision (mAP) of 74.63 at an IoU threshold

of 0.5. This demonstrated how region-based methods, when

trained with domain-specific data, could handle many of



the complexities typically encountered in marine ecosystems.

Sonar might remain valuable for broader-scale surveys, but

region-based CNNs excelled at identifying individual fish or

other organisms with fine-grained accuracy [19] .

V. SINGLE-SHOT & REAL-TIME FRAMEWORKS

A. Speed in Detection

Although region-based models reached high precision, their

multi-stage workflows often limited real-time viability. In

contexts such as autonomous driving or continuous underwater

footage analysis, inference speed becomes critical as we

are computationally limited. Single-shot detectors, combining

bounding-box prediction and classification into one super

efficient step [20].

B. SSD: Single Shot MultiBox Detector

The Single Shot MultiBox Detector (SSD) introduced by

[20] marked a massive advancement in object detection es-

pecially in real-time. It captures images at multiple scales

and uses several feature maps to do so, each of which is

responsible for the detection of objects of different sizes. SSD

achieved this using convolutional predictors on these multi-

scale feature maps, therefore eliminating the need for separate

proposal generation stages, improving both speed and accuracy

[20]. These qualities made it very suitable for application in

real-time underwater detection tasks, where quick and accurate

decisions are very important.

C. YOLO Iterations

YOLO (You Only Look Once) [21] sets the stage by treating

detection more like a regression problem. It divides the input

image into grids. Each cell in the grid predicts bounding boxes

and class probabilities simultaneously all within single forward

pass. This design improved speed considerably, although ini-

tial versions struggled with smaller objects or heavy clutter.

This modal was designed to be simple yet very efficient in

interference and extremely suitable for real time application.

Over time, refinements like YOLOv3 [22], YOLOv5 [23] and

all the way up recently released YOLOv12 [24] incorporated

advanced data augmentation, more pronounced robust back-

bones, and refined anchor box mechanisms to narrow the gap

between single-stage and region-based detectors in terms of

accuracy [24]. These developments have cemented the position

of YOLO as crucial in real-time underwater monitoring tasks

where objects need to be detected quickly and accurately for

duties such as aquaculture monitoring and ecological surveys.

VI. UNDERWATER DETECTION: SONAR & OPTICAL

The Sonar remains essential for large scale underwater

mapping but lacks detailed identification capabilities, unlike

optical imaging, which excels at capturing fine morphologi-

cal features. Kim et al. [25] improved underwater detection

accuracy by fusing sonar with optical imagery, significantly

enhancing image clarity. However, reconciling geometric dif-

ferences between these modalities remained challenging due

to geometric calibration, noise reduction, and real-time fusion

coordination of these distinct data types.

VII. TRANSFORMERS IN VISION

A. Self-Attention

Transformers first made massive impact in natural language

processing with openai’s GPT series. It completely changed

the way we think about AI by allowing models to understand

context from anywhere within a sentence. When GPT came

out, it dramatically shifted expectations, demonstrating the

potential of global self-attention [26]. Researchers at google

asked this question,If transformers works for a sequence of

words, can we treat images like sequences too? [27]Not long

after, these ideas jumped into the computer vision world

through Vision Transformers (ViT), which apply the same

principle by splitting images into patches and using atten-

tion mechanisms to understand global relationships quickly

[27]. CNNs rely on local convolutions and pooling layers to

extract hierarchical features. In contrast, Transformers split

the image into patches and utilise global self-attention (as

shown in Figure 1) Now, these powerful ideas have found

their way underwater, inspiring new models like DETR and

Swin Transformer, which are tackling the unique challenges

of detecting objects in complex marine environments [28].

Fig. 1. Comparison of common CNN architecture (top) and Vision Trans-
former (ViT) architecture (bottom) Adapted from [29]. CNNs extract features
through stacked convolution and pooling layers, while Transformers operate
on embedded patches using global self-attention.

B. DETR, Swin, and RT-DETR

Building on the success of ViT, Detection Transformer

(DETR) further advanced object detection by reformulat-

ing it as a set prediction problem, eliminating traditional

bounding-box proposals and post-processing techniques like

non-maximum suppression (NMS) [28]. Although DETR pro-

vided high accuracy, it required extensive training time and

large annotated datasets. To address this limitation, the Swin

Transformer introduced a hierarchical, window-based attention

mechanism that drastically reduced computational require-

ments, allowing models to efficiently scale to higher-resolution



images. More recently, Real-Time DETR (RT-DETR) was

developed to bridge the gap between high accuracy and real-

time inference speeds which was previously lacking, crucial

for practical applications in environments such as underwater

monitoring. RT-DETR maintains the benefits of Transformer

architectures, including global context understanding, while

also being optimised for speed and computational efficiency

[30].RT-DETR introduces a hybrid encoder that splits atten-

tions within scales and across scales to reduce computation

needed, and super efficient query selection for decoding. This

efforts made RT DETR truly the first transformer to rival

one stage CNN’s in runtime [30]. This makes RT-DETR

particularly suited for deployment in resource constrained

underwater devices where real-time detection is essential.

Model Type MAP50 FPS

Faster R-CNN Two-Stage 38.5 23.9
SSD300 Single-Stage 74.3 59
YOLOv8n Single-Stage 37.3 160
ViTDet (Base) Transformer 51.1 N/A
RT-DETR-R50 Transformer 53.1 108

TABLE I
PERFORMANCE COMPARISON OF SELECTED OBJECT DETECTION MODELS

ON BENCHMARK DATASETS.

VIII. HYBRID METHODS

A. CNN & Transformer Integration

Hybrid models attempt to merge CNN-based local feature

extraction with the global self-attention of Transformers. For

instance, a CNN might quickly encode lower-level shapes or

textures, followed by a Transformer stage that refines bounding

boxes using distant correlations in the image. Preliminary

studies indicate that such hybrids can surpass pure CNN or

Transformer setups in dense object scenarios. Nevertheless,

optimising such systems is challenging since two totally

different learning paradigms must be reconciled [35], [36].

B. Ensemble Methods

Ensemble methods have been picking up in popularity

over last few years. It works by combining the outputs from

multiple architectures. For eg. predictions from transformer

based can be integrated with predictions from CNN based

detector. As shown on this study, these methods increase the

performance but also increase the computational complexity.

This very often limits ensembles to more offline analysis tasks

like processing footage of coral reefs to document biodiversity.

It would be not suited for real time scenarios especially where

resources are limited like underwater [37].

IX. VIDEO TRACKING TECHNIQUES

A. Classical Tracking

When object detection moves into multi-frame contexts,

an additional layer of complexity arises. Traditional video

0Data sourced from COCO benchmarks and official repositories based on
the reported benchmarks [31]±[34].

trackers, including feature-based (SIFT, HOG key points) and

model-based (shape fitting over time), attempt to maintain

object identities from one frame to the next. Underwater envi-

ronments, however, amplify the risk of occlusion by sediment

or algae and can involve irregular lighting shifts caused by cur-

rents. Classic trackers frequently require elaborate parameter

tuning to remain stable in such fluid conditions. [38]

B. Deep Learning Tracking

Recent developments have seen deep learning methods

widely adopted for video tracking, significantly overcom-

ing limitations of classical techniques. Deep learning-based

tracking combines more sophisticated CNN or Transformer-

based detectors with re-identification (ReID) methods [39].

With that, It is providing consistent object tracking across

multiple video frames. These methods automatically learn

robust features. Therefore reducing reliance on manual param-

eter adjustments. While more computationally intensive, these

systems greatly enhance the monitoring capabilities of marine

biologists and aquaculture managers by providing continuous,

reliable tracking. This technology has proven particularly

beneficial for detailed studies of marine animal behaviour,

monitoring fish health, and even early detection of issues

within aquaculture facilities which is greatly helpful.

X. DATASETS & UNDERWATER DATA

A. Mainstream Datasets

There are few widely used datasets like MS COCO, Pascal

VOC, and Open Images that have dominated object detection

research, providing diverse categories and ground-truth anno-

tations. They act as universal benchmarks that allow model

comparisons. Yet, these collections rarely account for the

environmental shifts or specialised objects found underwater.

Models trained on them often struggle with the as underwater

differs significantly from standard images: colours are shifted

(blue/green dominance as red light attenuates quickly), visibil-

ity is mostly poor and backgrounds can be extremely complex

(eg. coral reefs) or even open water [2].

B. Domain-Specific Collections

Since underwater environments come with unique chal-

lenges, specialised datasets have been created to account

for changing water clarity, shifting light conditions, and in-

teractions between different species. Notable examples in-

clude, Fish4Knowledge [40], URPC [41], Brackish [42]. These

datasets usually contain labelled images of deepwater fish,

algae, and even man-made structures like cages or mooring

lines. While they are essential for training models that work

well in aquatic settings, they often have limitationsÐsuch

as being small in size or having class imbalances, where

common fish species appear frequently while rarer ones are

underrepresented.



C. Training Implications

When AI models are trained on images from land environ-

ments, they often struggle with underwater scenes, meaning

they need extra adjustments to work properly. One way to

help is through data augmentation, which involves adding

effects like colour shifts or noise to make the images resemble

real underwater conditions. However, fully adapting these

models to marine environments is rarely straightforward. Since

collecting and labelling underwater data takes a lot of time

and money, collaboration between researchers and marine

scientists is essential to combine their expertise and improve

model accuracy [2].

XI. BIAS, FAIRNESS & ETHICS

A. Sources of Bias

Bias in the training dataset is a key issue that can cause the

AI models to emit biased predictions [43]. For example, in

2015-2017, Volvo tested its self-driving car in Australia, which

was trained on European wildlife. The system was found

to have a problem with distinguishing between kangaroos,

due to their hop, not run, which affected the tracking and

detection [44]. This evidenced the critical existing problem of

insufficient diversity in the datasets. Similarly in aquaculture,

a model trained on data from one region might do well at

spotting local issues but fail to detect diseases or conditions

that are more common elsewhere [45].

B. Real-World Impact

Such bias has a profound impact in real-world It can skew

estimates of fish populations, hinder invasive species detection,

misclassify objects or affect feeding strategies that are applied

in different parts of the world [43]. These problems have eco-

logical as well as commercial consequences if decision-makers

rely heavily on automated detections. Ethical conversations

in the field of artificial intelligence have, for the most part,

concentrated on issues directly impacting humans. However,

this focus is beginning to shift. They are now gradually

expanding to include environmental implications. Ensuring

balanced coverage of species and habitats thus remains a

priority. Achieving fair representation of species or classes

dealing with remains a critical concern [43].

C. Mitigation Strategies

Studies have been conducted in practices such as selec-

tive data collection, synthetic over-sampling of the minority

classes, and repeated validation of the models using iterative

approaches. It is therefore more important than ever to provide

evidence of the characteristics of the dataset and to regularly

assess the performance of the model [2]. This is even more

important in high-stakes domains where there is little or no

room for error such as marine conservation and aquaculture.

XII. PERFORMANCE METRICS & CONSTRAINTS

A. Accuracy Metrics

Mean Average Precision (mAP) is widely recognised as

the benchmark for object detection accuracy at various Inter-

sections over Union (IoU) thresholds. Evaluations sometimes

distinguish performance on small, medium, or large objects,

revealing whether certain scales pose recurring issues. In

multi-frame scenarios, metrics like Multiple Object Tracking

Accuracy (MOTA) may be added to assess the consistency of

detection across consecutive frames. [46]

B. Speed & Resources

In real-time applications, performance is typically assessed

using metrics such as frames per second (FPS) or inference

time in milliseconds (ms). If a system processes fewer than

10±15 FPS, it might not work well for fast-moving situations.

Nevertheless, this isn’t a big problem for offline or pre-

recorded video analysis. Hardware choice also makes a big

difference: Transformers typically demand greater memory

and computational resources compared to CNNs, which can

often be simplified through pruning or quantization to run

smoothly on smaller devices [47]. It becomes more tricky

underwater as it brings additional constraints, such as battery

life limited data transmission rates, and limited computational

power that require lighter, more specialised models that deliver

efficiency without compromising performance [37].

C. Underwater Adaptation

Underwater detection models have to be adaptive to vari-

ability in water clarity, lighting, and environment including

currents and depth. A model that works well in one situation

might not perform the same in another unless it is retrained

or adjusted [48]. This is why it is important to test the model

extensively in various marine conditions. Fish farms provide

stable conditions for controlled environments, but open ocean

deployments require far greater adaptability as conditions cans

shift quite dramatically between day time or night time or at

varying depths.

XIII. CONCLUSIONS

This paper has outlined the progression of UOD tech-

nologies, from early manual and threshold-based methods

to advanced deep learning and Transformer-based models.

CNNs significantly improved detection accuracy, while real-

time frameworks like YOLO and SSD enabled practical de-

ployment in dynamic underwater environments. More recently,

Transformer-based models, such as DETR and Swin Trans-

formers, have further enhanced detection by incorporating

global context understanding. More recent hybrid architectures

combining CNNs and Transformers offer promising solutions

by leveraging the strengths of both paradigms, balancing local

feature extraction with global context understanding.

Despite these advancements, challenges remain, including

limited annotated datasets, computational constraints in un-

derwater systems, and the need for robust models adaptable

to varying marine conditions. Future research should focus on



multimodal sensor fusion, domain adaptation, and lightweight

architectures to enable efficient and accurate underwater object

detection for real-world applications.
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