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Abstract: Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in
aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical
and tribological properties primarily attributed to lubrication failure. Understanding the reasons
behind these failures and identifying potential solutions could have significant economic and societal
implications, ultimately enhancing quality of life. This review provides an overview of developments
in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the
role of lubrication in degraded AC, offering insights into its structure and function relationship.
Further, it explores the fundamental connection between AC mechano-tribological properties and
the advancement of its degradation and puts forth recommendations for strategies to boost its
lubrication efficiency.

Keywords: tissue engineering; biotribology; cartilage lubrication; osteoarthritis treatment; intra-
articular injections

1. Introduction

The prevalence of OA is steadily increasing, particularly among Europe’s aging popu-
lation, which is estimated to be around 40 million [1,2]. This upward trend is even more
pronounced in the United Kingdom, where OA affects 40.5% of every 1000 people annu-
ally [3]. In 2011, the surge in arthritis cases led to a significant increase of 165,000 joint
replacement surgeries, with OA patients constituting a remarkable 93% of these proce-
dures [4]. Consequently, this increase in surgeries exerts a substantial economic burden,
and it is anticipated to rise 7% by 2035 due to various factors, such as age, gender, and
body mass index [5,6]. There is a number of mechanical factors that contribute to the devel-
opment of OA, including work-related activities, participation in sports, musculoskeletal
injuries, and obesity [7,8]. To tackle this growing issue and conserve economic resources, a
deeper understanding of the AC structure should be achieved, which will help to develop
a cost-effective solution to delay the need for total joint replacements.

Synovial joints exhibit a high level of incongruity at the central surface compared
to the peripheral surface, resulting in a limited contact area at the interface. This lack
of congruency makes these joints susceptible to surface damage when subjected to high
loads [9,10]. The primary components determining the frictional and mechanical properties
of AC are mainly collagens, particularly type 2 collagens (55–75%), proteoglycans (15–30%),
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and lipids, specifically phospholipids (10%). These components vary across the superficial
(10%), middle (40–60%), and deep (30%) zones of the AC. Collagen fibers are densest
in the superficial zone (1–200 µm thickness, 5–20 nm diameter), providing resistance
against compressive, tensile, and shear forces. In the middle and deep zones, collagen
fibers have a similar size, with a diameter of 30–5000 nm. Proteoglycan density is lower
in the superficial zone but increases in the middle and deep zones. The arrangement of
extracellular matrix consisting of collagen fibers and proteoglycans in each zone contributes
to the mechanical strength of the AC, with parallel arrangement in the superficial zone and
more random arrangements in the middle and radial arrangement in the deep zones [11–17].
The presence of AC layers covering synovial joints acts as a protective barrier, enabling
smoother movements, as shown in Figure 1. These layers facilitate near-frictionless motion,
with friction coefficients ranging from 0.005 to 0.025 due to their specific structural and
lubricating characteristics [18]. The AC structure exhibits both viscoelastic and poroelastic
material properties and typically measures 1–4 mm in thickness in a healthy joint [19].
The elasticity modulus of the AC surface ranges from 0.5 to 10 MPa, which helps with its
high load-bearing ability [20]. Considering this complex structure of AC and its role as a
protective layer to the synovial joints, their metabolic activities are influenced by various
factors, such as matrix composition, soluble mediators from synovial fluid (SF), mechanical
load, and pressure [21,22].
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The junction between synovial joints secretes SF, which plays a crucial role in joint
function. SF acts as both a shock absorber by providing cushioning and as a natural
lubricant by facilitating smooth and near-frictionless movement at the joints [23,24]. It is
composed of several major constituents, including hyaluronic acid, albumin, lubricin, and
globulin, which contribute to its lubrication mechanisms [25,26]. Each of these constituents
has a specific role in enhancing lubrication properties. At low shear rates, hyaluronic
acid acts as a viscosity modifier for SF by influencing its flow characteristics. Albumin
helps protect the AC from wear and maintains its integrity [27,28]. Lubricin plays a
role in reducing the shear strength of the contacts between asperities at the synovial
interface, which contributes to smoother movement [29,30]. Lastly, globulin contributes to
boundary lubrication at the joint interface, which further reduces friction. Collectively, the
composition of SF and the specific functions of its constituents contributes to the lubrication
mechanisms that allow for optimal joint functionality and minimize wear and friction
within the synovial joints.

Despite the well-designed structure of the AC and the presence of effective natural
lubrication provided by SF, abnormalities can occur in synovial joints, causing AC degrada-
tion and leading to tissue remodeling, as shown in Figure 2. The damage in the OA cartilage
is shown using the synovial inflammation, cartilage degradation, bone remodeling, osteo-
phyte formation, and neurogenesis [31]. OA also leads to the thickening of the calcified
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zones that separate the AC from the underlying calcified cartilage. This calcification of
the AC is accompanied by the presence of calcium pyrophosphate dehydration [32,33].
Moreover, OA causes synovial infiltration, characterized by the presence of low-grade
macrophages and lymphocytes in the early stages of the disease, leading to synovitis
(inflammation of the synovium) [34]. These abnormalities are driven by inflammatory
mediators present in the joints that result in OA [35,36]. In OA, there is an increase in
cell proliferation, leading to the formation of cell clusters and an upregulation of matrix
proteins and matrix-degrading enzymes. This disruption of chondrocytes is considered
an injury response, triggering matrix remodeling, cartilage calcification, and abnormal
hypertrophy-like maturation within the cartilage [37,38]. A variety of techniques have been
utilized to detect structural abnormalities resulting from OA. These include computed
tomography, X-ray imaging, ultrasonography, and physical examination. Additionally, al-
ternative methods like vibroarthrography Raman spectroscopy, Fourier transform infrared
scanning, etc., have been explored for this purpose [39–41]. Based on these methodolo-
gies and the extent of damage in OA cartilage, it is commonly classified according to the
Kellgren–Lawrence (K-L) system, which includes grades 0 to 4. Grade 0 indicates a healthy
AC, while grade 4 indicates a severely damaged AC [42].
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This review aims to provide a comprehensive overview of the advancements made
in understanding the lubrication mechanisms of AC. By conducting mechano-tribological
tests, researchers have gained insights into the degradation of AC, particularly in cases
of OA. These tests have revealed changes in the properties, surface characteristics, and
structural integrity of AC, shedding light on the underlying lubrication mechanisms. Recent
developments in tribological testing methodologies, such as stationary, migrating, and
convergent stationary contact area, have significantly contributed to our understanding
of cartilage tribology. These testing setups have also provided new insights into theories
regarding the progression of OA in AC. Building on a brief background on AC, each section
of this review deals with a specific AC lubrication mechanism, covering research summaries,
testing methods, quantitative explanations of AC properties, and their relationship to AC
degradation. Finally, the report concludes with an understanding of AC degeneration in the
case of OA based on the failure of the lubrication mechanism at the joint interface. Finally,
the importance of temporary solutions using intra-articular injections is summarized.
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2. Mechanical Properties of AC in OA

AC serves as a protective covering for bones and exhibits different biomechanical
properties across synovial joints. Its elastic nature allows it to deform under load, with
collagen fibrils, proteoglycans, and interstitial water being key contributors to these proper-
ties. Collagen fibrils provide tensile strength, while proteoglycans and interstitial water
contribute to compressive strength. Experiments such as confined, unconfined, and inden-
tation tests have been conducted to assess aggregate modulus, permeability, compressive
stiffness, shear strength, and tensile strength across various specimens, as tabulated in
Table 1. In healthy AC, the aggregate modulus and permeability are calculated from the
creep behavior of the cartilage compression, where the load is constant, allowing for the
displacement of the cartilage. This aggregate modulus measurement is of the stiffness of the
tissue at equilibrium; further, this stiffness is the result of a change in glycosaminoglycan
and water content. Similarly, the tensile stiffness of the AC is due to the collagen content
and the permeability is due to interstitial water variation at the surface interface.

In cases of OA, the cartilage surface wears out at heavily loaded regions like the medial
area of the femur and tibia. This results in a loss of the superficial lining, which increases
surface permeability, allowing interstitial fluid to move in and out rapidly (Figure 3).
Deformation-dependent permeability is the property of AC that helps with load sharing
between the solid and fluid composition in a healthy condition. However, having rapid
fluid flow within the cartilage matrix due to increased permeability in the case of OA
causes uneven distribution of the load, causing high stress on the solid matrix [11]. Based
on these mechanical tests, researchers have highlighted the differences between healthy
and degraded cartilage across species. Lower modulus values and increased permeability
have been found to be the characteristics of degraded cartilage [43]. For example, bovine
samples exhibit decreased aggregate modulus in degraded cartilage (from 0.37 MPa to
0.06 MPa in confined compression and from 3.9 MPa to 0.7 MPa in indentation tests).
Similarly, porcine samples show reduced modulus values for degraded cartilage (from
0.71 MPa to 0.09 MPa under confined compression). Human OA cartilage samples follow
a similar trend, with modulus values decreasing to a minimum of 0.07 MPa, indicating
lower mechanical strength. Additionally, the unique morphology of human knee joints
is influenced by bipedal locomotion, which results in increased compressive forces at the
medial condyle compared to the lateral side. Consequently, this increases stress in the
medial region, which progresses the cartilage degradation [44,45].
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Table 1. An overview of the mechanical testing conducted on AC across various species, including
details regarding the experimental conditions, testing setup, and quantitative data obtained from
these experiments.

Sample
Source Reference Healthy/

Osteoarthritic
Natural OA/
Induced OA

Cartilage
Region

Testing
Condition

Mechanical Properties

Young’s
Modulus

Aggregate
Modulus Other Findings

Bovine

[46] H - Knee joint

Static and
dynamic
confined

compression
(microscale)

-

0.37 ± 0.03 MPa
(adult) 0.43 ± 0.02

MPa (calf), and
0.15 ± 0.01 MPa

(fetus)

Permeability (kp)
expressed as

(log10kp(m2/(Pa s))
−14.92 ± 0.93 (adult)

−15.19 ± 0.32 (calf), and
−15.60 ± 0.46 (fetus)

[47] H - Knee joint
Unconfined
compression
(macroscale)

14.6 ± 6.9 MPa
at 0.1 Hz to

28.7 ± 7.8 MPa
at 40 Hz

0.49 ± 0.10 MPa

Peak compressive
strain amplitudes

15.8 ± 3.4% at 0.1 Hz to
8.7 ± 1.8% at 40 Hz

[48] H - Knee joint
Unconfined
compression
(microscale)

-

0.96 ± 0.47 MPa
(adult) 0.89 ± 0.39

MPa (calf), and
0.72 ± 0.36 MPa

(fetus)

Poisson’s ratio
0.26 ± 0.11 (adult)

0.09 ± 0.02 (calf), and
0.11 ± 0.03 (fetus)

[49] H - Knee joint Indentation
(microscale)

3.9 ± 0.7 MPa
(Effective

contact
modulus)

0.62 ± 0.10 MPa
(equilibrium

contact modulus)

Tensile modulus
4.3 ± 0.7 MPa and

permeability
2.8 ± 0.9 × 10−3

mm4/Ns

[50] H - Knee joint Indentation
(microscale) -

0.93 MPa
(equilibrium

contact modulus)
-

[51] OA

(In vitro) induced
with type II

bacterial
collagenase

Knee joint
Confined

compression
(macroscale)

- 0.06 ± 0.03–
0.13 ± 0.06 MPa

Permeability
4.73 ± 1.43 × 10−14

m4/N
s–8.25 ± 2.24 × 10−14

m4/N s

[52] OA

(In vitro) induced
using collagenase,

chondroitinase
ABC, or elastase

Knee joint Indentation
(microscale) -

0.7 MPa
(collagenase),

0.3 MPa
(chondroitinase

ABC), and 0.7 MPa
(elastase)

-

[53] OA (In vitro) induced
using collagenase Knee joint

Unconfined
compression
(microscale)

-

0.45 ± 0.21 to
0.23 ± 0.14 MPa

with
2 U/mL

collagenase
treatment and
0.49 ± 0.19 to

0.19 ± 0.08 MPa
with 10 U/mL

collagenase
treatment

Compressive strain
21.7 ± 5.6 to 26.2 ± 7.6%

at 0.1 Hz loading
frequency and from

9.6 ± 3.3 to 13.5 ± 3.2%
at 40 Hz loading

frequency with 10
U/mL collagenase

treatment

Porcine

[54] H - Knee joint Indentation
(microscale)

2 MPa at 2.5
mN and 7 MPa

at 10 mN
-

Contact stiffness 0.5
kNm−1 at 2.5 mN and
4.0 kNm−1 at 10 mN

Hardness
0.07 ± 0.01 MPa at

2.5 mN

[55] H - Knee joint Indentation
(mesoscale) 2.93 MPa - Hardness 0.05 MPa

[56] H - Knee joint
Confined

compression
(micro scale)

-

0.71 ± 0.50 MPa
(creep) and

0.68 ± 0.48 MPa
(recovery)

-

[57] OA (In vitro) induced
with papain Knee joint

Confined
compression
(microscale)

-

0.09–0.38 MPa
(medial

femoral condyle),
0.32–0.42 MPa
(lateral patellar

groove), and
0.095–0.38 MPa
(medial patellar

groove)

(1.9–7) × 10−15 m4/N s
(medial

femoral condyle),
(1.2–2.6) × 10−15 m4/N

s (lateral patellar
groove), and

(1.2–1.5) × 10−15 m4/N
s (medial patellar

groove)
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Table 1. Cont.

Sample
Source Reference Healthy/

Osteoarthritic
Natural OA/
Induced OA

Cartilage
Region

Testing
Condition

Mechanical Properties

Young’s
Modulus

Aggregate
Modulus Other Findings

Rabbit

[58] H - Knee joint
AFM

indentation
(nanoscale)

-

0.52 ± 0.05 MPa
(superficial zone)
1.69 ± 0.12 MPa
(calcified zone)

Surface roughness
59.0 ± 12.6 nm

[59] OA

(In vivo)
intramuscular

injection of
ketamine

(100 mg/kg) and
xylazine

(8 mg/kg)

Knee joint Surface
properties - -

Surface roughness
values (mean rms
values) 95–320%

[60] OA

(In vivo) anterior
cruciate
ligament

transection (ACLT)
model

Knee joint Indentation
(nanoscale)

3.37 ± 1.23
MPa

(instantaneous
modulus)

0.85 ± 0.29 MPa
(equilibrium

modulus)
-

Human

[61] H - Knee joint
Confined

compression
(macroscale)

-
0.499

± 0.208 MPa to
1.597 ± 0.455 MPa)

Permeability
0.689 ± 0.304 × 103

(mm4/N-s) to
1.318 ± 0.673 × 103

(mm4/N-s)

[62] H - Knee joint
Unconfined
compression
(macroscale)

- 1.60 ± 0.51 MPa to
2.47 ± 0.49 MPa -

[63] H - Knee joint
Unconfined
compression
(microscale)

- 0.53 ± 0.25 MPa -

[64] OA
Total joint

replacement
patients

Knee joint
Unconfined
compression
(macroscale)

- - Shear modulus 4.6 ± 1.8
MPa

[65] OA
Total joint

replacement
patients

Knee joint Indentation
(macroscale)

2.51 to 10.7
MPa

(instantaneous
modulus)

0.07 to 2.86 MPa
(equilibrium

modulus)
-

[66] OA
Total joint

replacement
patients

Knee joint
Micropipette

aspiration
technique

-

Chondrocytes
(0.63 ± 0.51 kPa),

instantaneous
modulus, and

0.33 ± 0.23 kPa)
equilibrium

modulus

-

(H—healthy, OA—osteoarthritis, AFM—atomic force microscopy).

3. Tribological Properties of AC in OA

Bio-tribology explores the surface interaction of AC in synovial joints using both
biological and modeled samples [67,68]. Various experimental setups have been designed
to investigate the surface interaction of AC, which include pin-on-plate configurations
(such as cartilage on a glass plate or a cartilage pin on a cartilage plate), pin-on-disk setups
(using a spherical probe made of metal or glass on cartilage discs), and pendulum friction
simulators [67,69,70]. Researchers have also mimicked the natural properties of AC by
examining quantitative properties such as surface roughness, coefficient of friction, and
wear rate. However, replicating the tribological properties and engineering a tissue that
mimics the physiological conditions of AC pose significant challenges [71,72]. Traditional
tribology tests have estimated the friction coefficient of AC to range from 0.005 to 0.025 [73].
These experimental setups deal mainly with understanding the tribological behaviors of the
cartilage in different physiological conditions. The three important types of contacts used to
study cartilage tribology are stationary (SCA), migratory (MCA), and convergent stationary
contact area (cSCA) setups. Ateshian and Wang first observed this phenomenon while
sliding a glass sphere probe onto the AC surface, referring to it as the MCA, which resulted
in lower friction coefficients [74]. Conversely, when the cartilage was paired with a flat glass
surface, the friction coefficients increased, leading to what they called the SCA [75]. These
two contact configurations, the MCA and SCA, are utilized to study cartilage tribology
to investigate interstitial fluid pressurization and migration at the AC contact interfaces.
The c-SCA configuration is the modified version of SCA configuration that was developed
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solely for experimental purposes to explain the concept of elasto-hydrodynamic lubrication
in larger cartilage plugs. All three setups are shown in Figure 4 [76].
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Figure 4. Schematic representation of three different tribological setups for AC experiments. (a) Sta-
tionary contact area setup, demonstrating the boundary lubrication phenomenon of AC lubrication
in loaded and sliding contact with a flat surface. (b) Migrating contact area setup, illustrating the
interstitial fluid pressurization supporting the cartilage matrix in the loaded condition using a spe-
cialized probe. (c) Convergent stationary contact area setup, showing the wedge-shaped cartilage
surface sliding on a flat surface, enabling cartilage rehydration and providing lubrication through
interstitial pressurization.

Researchers have utilized the developed experimental setups to investigate various
tribological properties of AC. These experiments have calculated COFs for AC across
different species, as summarized in Table 2. In the case of animal cartilage, the COF values
for healthy bovine cartilage range from 0.024 to 0.2, depending on the parameters used.
For healthy porcine cartilage, COF values range from 0.001 to 0.14, while healthy human
cartilage exhibits a COF value of 0.22. In contrast, degraded cartilages show increased COF
values for all samples. For degraded bovine samples, COF ranges from 0.17 to 0.19, and in
the case of human samples, COF values gradually increase based on the grades of OA up
to 0.409. The observed changes in the trends of frictional behavior raise a crucial question:
Does the tribological alteration on the surface of the cartilage contribute to the development
of OA, or does OA lead to changes in tribological behavior? This is a significant question
that this article aims to address by the end.

Table 2. Summary of tribological experiments performed on AC of different species along with the
details on the experimental setup and contact types used.

Articular
Cartilage Reference Healthy/

Osteoarthritic
Natural OA/
Induced OA

Cartilage
Region

Type of
Contact

Tribological Properties

COF Lubricant Lubrication
Mechanism

Other
Findings

Bovine

[49] H - Knee
joint

MCA
(stainless

steel ball on
cartilage)

0.024 ± 0.004 PBS Not discussed
Fluid load

fraction
0.81 ± 0.03

[77] H - Knee
joint

SCA
(cartilage on

glass)

PBS (0.218 ± 0.015),
equine SF

(0.071 ± 0.012),
bovine SF

(0.068 ± 0.013)

PBS, bovine
SF, and

equine SF

Biphasic lubrication
was observed along

with the mixed
mode and boundary

lubrications;
however, full-film

lubrication was not
observed even at

high speeds.

-
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Table 2. Cont.

Articular
Cartilage Reference Healthy/

Osteoarthritic
Natural OA/
Induced OA

Cartilage
Region

Type of
Contact

Tribological Properties

COF Lubricant Lubrication
Mechanism

Other
Findings

Bovine

[74] H - Knee
joint

MCA
(spherical

glass lens on
cartilage)

PBS (0.022 ± 0.010),
SF (0.015 ± 0.004) PBS and SF

Boundary
lubrication is

prominent when the
thickness between

the interface is
lower. Fluid film

lubrication is
prominent when

thickness is higher.

-

[78] H - Knee
joint

cSCA
(cartilage

plug on glass
slide)

0.011 ± 0.007 PBS

Tribological
rehydration due to

the formation of
wedges, which

supports full-film
lubrication.

-

[79] H - Knee
joint

MCA
(stainless

steel probe
on cartilage)

0.0272 ± 0.0006–
0.1168 ± 0.0014
(3.2 mm radius

probe)
0.0251 ± 0.0006–
0.1337 ± 0.0016
(0.8 mm radius

probe)

PBS Lubrication due to
fluid pressurization -

[80] OA

Induced
with chon-
droitinase

ABC
and

collagenase
III

Knee
joint

SCA
(cartilage on

glass)

Collagenase III
(0.17 ± 0.04) and
chondroitinase

ABC (0.28 ± 0.02)

PBS Biphasic behavior -

[81] OA

Induced
with chon-
droitinase

ABC

Knee
joint

MCA (glass
on cartilage)

Chondroitinase
ABC (0.19 ± 0.02) PBS

Time dependent
interstitial

pressurization
-

Porcine

[82] H - Knee
SCA

(cartilage on
glass)

0.001–0.11 SF Weeping lubrication -

[83] H - Knee
joint

MCA (glass
on cartilage) 0.04–0.14 PBS Not discussed -

[84] H - Knee
joint

Cartilage on
Cartilage 0.024 ± 0.003 PBS Not discussed -

[85] OA

Induced with
hyaluronidase,
Chondroiti-
nase ABC,
alkaline
protease

Knee
joint

SCA
(cartilage on

glass)

0.0025 ± 0.0012
(hyaluronidase),
0.0043 ± 0.0013
(chondroitinase

ABC),
0.0070 ± 0.0003

(alkaline protease)

Normal
saline

Boundary
lubrication is

possible due to the
presence of various

molecules on the
surface of the

cartilage.

-

Human

[86] H - Knee
joint

SCA
(cartilage on

glass)
0.22 PBS Not discussed -

[87] OA Total joint
replacement

Knee
joint

MCA
(cartilage on

cartilage)
and SCA

(cartilage on
glass)

MCA SF (0.019–0.02)
MCA PBS

(0.025–0.027)
SCA SF (0.04) SCA

PBS (0.09–0.12)

PBS and SF

SF lubricates better
than PBS in both
lesser and worse

OA conditions due
to its boundary

lubrication
properties.

-

[80] OA Total joint
replacement

Knee
joint

SCA
(cartilage on

glass)

0.22 ± 0.01 (patient
1) and 0.23 ± 0.01

(patient 2)
PBS Biphasic behavior -

[88] OA Total joint
replacement

Knee
joint

AFM
(polysterene
spherical tip
on cartilage)

0.119 ± 0.036 for
stage 0 (normal

carti-
lage),0.151 ± 0.039

for stage 1,
0.158 ± 0.041 for

stage 2, and
0.409 ± 0.119 for

stage 3

PBS Not discussed

Surface
roughness

137 ± 25 nm
for stage 0 to
533 ± 196 nm

for stage 3

(H—healthy, OA—osteoarthritis, SF—synovial fluid, COF—coefficient of friction, SCA—stationary contact area,
MCA—migratory contact area, cSCA—convergent stationary contact area, AFM—atomic force microscopy,
PBS—phosphate buffered saline).
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4. Chronology of Cartilage Lubrication

Numerous lubrication models proposed to explain the characteristics of AC in syn-
ovial joints aiming to minimize friction and wear are shown in Figure 5. These models
consider different loading and motion conditions experienced by the joints. Knowledge of
joint lubrication dates back to the medieval period, when Paracelsus introduced the term
“synovia” in the sixth century [89]. In 1691, Harvey studied the lubrication properties of SF,
which contributes to smooth joint movements [90]. In recent years, extensive research, both
theoretical and experimental, has been conducted to understand the reasons behind the low
friction in synovial joints.
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In 1932, MacConaill proposed the use of hydrodynamic lubrication theory considering
the wedge-like fluid film formation between the AC surfaces [91], which was later supported
by Jones’ friction measurements of synovial joints in 1936 [92]. However, this theory did not
consider the incongruent nature and low-speed motions of the joints, which are unfavorable
for creating hydrodynamic lift to form the wedge. In 1959, McCutchen explained that AC
has porous walls and that when the load is applied, the fluid is pushed out to the interface
and supports the load. This weeping nature of porous cartilage was termed “weeping lu-
brication” [93]. In 1963, Dintenfass modified this theory by considering the deformability
of the AC structure and the viscous resistance of SF, calling it “elastohydrodynamic lubrica-
tion” [94]. Hooke and O’Donoghue further studied this modification; however, the calculated
film thickness in this lubrication model was smaller than the surface roughness of the AC
surfaces at the contact interface [95]. To address this issue, Dowson and Jin proposed the
concept of micro-elastohydrodynamic lubrication, taking into account that AC surfaces have
flat asperities under physiological pressure [96]. Yet, this theory could not explain the time-
dependent variation in frictional properties of AC. Following studies on fluid film lubrications,
Mow and Lai proposed a self-generating lubrication mechanism considering the biphasic
nature of AC [97]. They suggested that fluid exuded at the edges of the tissue is reabsorbed in
the center, contributing to lubrication and reducing friction at the AC surface interface. This
model provided visual evidence for the flow behavior of AC using an optical sliding contact
rheometer. The high load-bearing capacity of synovial joints was explained by the squeeze
film lubrication theory [98]. Fein studied this in 1967 [99], and Higginson and Unsworth later
demonstrated it [100,101]. They explained that the AC’s ability to bear high loads is due to
the time-varying pressure field created by the lubricant’s viscous resistance as it is squeezed
from the gap. During squeeze film conditions, water content from SF passes into AC over the
contact region, while the remaining solute content, such as hyaluronic acid protein, acts as a
lubricant. This theory was termed “boosted lubrication” and was later supported by qualita-
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tive and quantitative characterizations [102]. In 1989, based on the boundary conditions of the
AC–SF interface, Hou and colleagues formulated the biphasic squeeze film model [103]. This
inspired Hlavacek in 1993 to develop the first biphasic model for SF, combining the boundary
lubricant nature of solute composition in SF as viscous and non-Newtonian with Mow’s
biphasic theory of cartilage [104]. This theory explained that the gel formed during squeeze
film due to hyaluronic acid is minimal and contributes very little to boosted lubrication (≤1 s).
Researchers have also studied boundary lubrication models by varying the lubricant contents
in water to evaluate their effect on the friction coefficient. While these studies have shown
improvements in the friction of AC, these improvements alone are not significant enough to
fully explain friction reduction or joint lubrication.

Considering the complexities of the synovial joint mechanisms, it is not possible to explain
the physical aspects of joints with one individual lubrication regime. Hence, a combination of
different lubrication regimes explains different gait cycles, giving rise to mixed or multimode
lubrication regimes, as shown in Figure 6. The aspects of speed and eccentricity in the joint
movements are not enough to maintain the fluid film in contact, which creates the solid–solid
interaction and gives rise to the mixed regime [105]. Further, researchers have conducted
experiments to study interstitial fluid pressurization in the joint interface and to understand
the role of the solid matrix, which represents the collagen proteoglycan network, along with
the fluid phase, representing the interstitial water with dissolved ion phases [74,106–108].
The interactions between these phases and their contribution to friction reduction on the AC
surface have been explained using biphasic and triphasic theories developed by Mow, Lai, and
their colleagues [109,110]. These theories provide an explanation for the pressurization and
flow of interstitial water into the porous and permeable solid matrix when the joint is loaded.
Experimental results have confirmed these theories by describing compression creep, stress
relaxation, and dynamic relaxation of AC. Investigations have also been carried out on these
theories to understand cartilage rehydration under conditions that do not involve unloading
or induced migration of AC [74,111]. Further studies on tribological rehydration explains the
fluid retention and recovery of joint conditions [78,112]. The study of AC lubrication and wear
has been conducted using various theories, often with contradictory results, as summarized
in Table 3 [113]. However, it is crucial to understand the fundamental mechanisms of cartilage
lubrication to develop therapeutic solutions for joint degeneration such as OA. The primary
focus of this review is to comprehend the AC lubrication models mentioned above to gain
insights into the progression of OA.
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Table 3. The summary of lubrication models for AC, along with their physiological significance,
encompassing diverse physical factors, experimental configurations, and samples employed.

Conventional
Lubrication Model

Cartilage Lubrication
Model Physical Considerations Samples Experimental Condition Physiological

Relevance

Fluid film
lubrication model

Hydrodynamic
lubrication

Occurs at high articulating
speeds or low load

Horse stifle joint [115]
Proximal

interphalangeal joint of
human finger [116]

Cartilage-on-cartilage
experiment [115]
Modified Stanton
Pendulum [116]

Swinging phase of
walking and running in

human gait cycle

Hydrostatic/weeping
lubrication

Occurs at constant load over
time

Closed-cell rubber foam
soaked with soapy

water [117]
Ovine AC [118]
Bovine AC [24]

Pin on plate (rubber on
flat surface) [117]

Cartilage on glass [118]
Cartilage on
cartilage [24]

Stance phase of walking
and running in human

gait cycle

Elastohydrodynamic
lubrication

Occurs at high contact
pressures and elastic
deformation of AC

Human ankle joint [119]
Soft material
rubber [120]

Joint simulators [119]
Roller bearing and soft

surface [120]

Weight transfer phase
due to walking, running,

or jumping in human
gait cycle

Micro-
elastohydrodynamic

lubrication

Occurs at the microscale
interaction of AC and SF.

Influenced due to change in
surface topography, contact

deformation, and
load-bearing capacity.

Human ankle joint [121] Joint simulator [121]
During heel strike,

midstance, and toe-off of
the human gait cycle.

Tribological rehydration

Modified version of
hydrodynamic lubrication

explaining the movements of
SF into AC matrix during

pressure distribution.

Bovine AC [78]
Bovine, equine, porcine,

ovine, and
caprine [122,123]

Cartilage on flat
surface [78,122,123]

Different phases of
human gait cycle such as

heel strike to toe-off,
loading, unloading, and
variable loading phases.

Boundary
lubrication model

Boundary lubrication

This model considers the
synovial constituents such as
hyaluronic acid, lubricin, and

glycoproteins.

Human knee joint [124]
Human and bovine

SF [125–127]

Modified flat-on-plate
setup [124]

Rheological properties
of lubricin in SF [125]

Pendulum oscillation in
different SF

concentrations [126]
Hyaluronic acid

rheology and
concentration in SF [127]

It occurs mainly in the
toe-off of the stance

phase and other
intermediate phases in
the human gait cycle.

Hydration lubrication

This model is an extension of
boundary lubrication where

it focuses mainly on the
water molecules trapped
inside the phospholipid

layers of the synovial
constituents.

Mica layers [128] Surface force balance
measurements [128]

It occurs in mainly in the
toe-off of the stance

phase and other
intermediate phases in
the human gait cycle.

Mixed lubrication
model

Osmotic lubrication

Osmotic pressure gradients
within cartilage matrix and
interstitial fluid contributes

to lubrication

Theory [129] Theory [129]

It occurs in all the
phases of human gait
cycles, like the stance
phase (heel strike to

toe-off), the swing phase,
transition phases, and
dynamic movements.

Squeeze film lubrication

Occurs when the joints are
compressed, leading to

interstitial fluid expulsion
and redistribution and
causing hydrodynamic

pressure.

Glass lens with poly-
methylmethacrylate

flats [99]

Cylinder on flat
surface [99]

It occurs in the
weight-bearing and
relaxing phases of

human gait cycles, such
as heel strike and

intermittent contact
phases.

Boosted lubrication

This occurs with the
combination of both squeeze

film and boundary
lubrication.

Mathematical
model [130]

Mathematical
model [130]

It occurs in prolonged
stances of the human

gait.

Biphasic lubrication

This considers cartilage with
solid and fluid matrix and

explains the load support in
both strain and compressive

forces.

Bovine AC [75,131–133]

Cartilage on metal (pin
on plate) [75,131]

Cartilage indentation
with flat surface [132]

Confined and
unconfined

compression [133]

It occurs in all the gait
cycles of human

movements.

Triphasic lubrication

This considers the
electrostatic interactions

introducing an ion phase to
biphasic lubrication.

Models [134,135] Models [134,135]
It occurs in all the gait

cycles of human
movements.
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4.1. How Lubrication Models Fail in the Case of OA

Previous discussions regarding lubrication models for AC can be categorized by
drawing from established tribological lubrication models, which include fluid film, mixed,
and boundary lubrication. These models have been adapted to account for the structure
and function of AC, resulting in modifications to these lubrication models. To examine the
concept of fluid film formation within AC, several models have been developed, including
hydrodynamic, weeping, elastohydrodynamic, micro-elastohydrodynamic, and tribological
rehydration models. Additionally, models have been proposed based on the formation of
mixed film modes in AC, such as osmotic, squeeze film, boosted, biphasic, and triphasic
models. Lastly, a hydration model has been explained considering the lubrication effects of
synovial constituents and their boundary lubrication properties. All these models focus
on comprehending how healthy cartilage is lubricated with SF at the interface to ensure
smooth functioning. However, when it comes to OA, the effectiveness of these models in
explaining the progression of cartilage degeneration becomes questionable. In this section,
we will dive into each model to assess its relevance in the context of OA.

4.1.1. Fluid Film Lubrication

Fluid film lubrication theory was originally developed within the conventional context
of tribological lubrication in journal bearings. The interface is separated by the pressure
generated by the lubricant film at the contact point, which has been adapted for under-
standing AC lubrication in synovial joints. This adaptation has led to the emergence of
various theories, including hydrodynamic, hydrostatic (or weeping), elastohydrodynamic,
micro-elastohydrodynamic, and tribological rehydration models. These lubrication models
have been formulated while considering the function and physiological characteristics of AC.

The proposal of a hydrodynamic lubrication mechanism is based on the notion that SF
in synovial joints creates a wedge-shaped fluid layer at the articulating junction, as shown
in Figure 7a [91,116]. This fluid layer prevents direct contact between the two surfaces by
acting as a thin lubricant and generating a hydrodynamic lift (about 10 µm [136]). However,
unlike typical hydrodynamic bearings that require high-speed transverse motion to estab-
lish this lift (500 to 4000 rpm for 40 mm-radius bearings [137]), the pin-on-plate experiments
performed by Gleghorn et al. using bovine AC failed to obtain the hydrodynamic lubrica-
tion even at a high speed of 50 mm/s and a low strain of 5% [77]. The non-conformal nature
of biological joint surfaces and the absence of consistent high-speed and lighter loads make
the contacting geometries unfavorable for this mechanism. Also, research has highlighted
the critical role of a healthy meniscus in maintaining optimal fluid load support within
the knee’s AC. The low permeability of a healthy meniscus serves to limit fluid exudation
from the AC, thereby aiding in joint protection against OA [138]. Thus, it is evident that
meniscus damage in OA leads to lower fluid load support by the AC. The properties of
SF in OA conditions can vary due to aging or damage at the articulating surfaces. The
reduction in constituents such as hyaluronic acids and lubricin in diseased joints can affect
the viscosity of the SF, which may not support interstitial fluid pressurization (viscosity
was reduced by a factor of 20 at a shear rate of 10−1 s−1 and by a factor of 3 at a shear
rate of 103 s−1) [139–141]. Hence, hydrodynamic lubrication is insufficient to explain the
degradation mechanism of OA.

Hydrostatic/weeping lubrication was introduced by McCutchen in 1959, drawing inspi-
ration from hydrostatic bearings [117,118]. According to this theory, when two articulating
surfaces are compressed, the interstitial fluid is forced out of the AC pores, resulting in a
pressurized fluid film that supports the solid matrix, as shown in Figure 7b [115,142]. Con-
sequently, the frictional forces primarily act on the portion of the load that is transferred
across the solid matrix, which signifies the load-sharing mechanism [93]. These findings
were substantiated through experimental observations of cartilage on glass over a period.
Further, they demonstrated that the frictional force did not decrease when the load was
removed for a brief period of 1 s but rather increased upon reapplication of the load [142]. This
mechanism provided an explanation for the time-dependent frictional behavior of AC, which
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could not be accounted for by hydrodynamic or boundary lubrication theories. However,
this proposed mechanism sparked controversies regarding the principle of conservation of
linear momentum [143]. The concept of hydrostatic lubrication cannot be applied in the
case of OA due to the changes in the permeability of the cartilage surface. Researchers have
identified that the permeability of the cartilage changes in the extracellular matrix structure
allow for rapid fluid flow and cause uneven deformation [11]. This permeability is elevated
from 4.19 ± 3.78 × 10−17 m4/N s to 10.2 ± 9.38 × 10−17 m4/N s, influencing the biomechan-
ical properties of the chondrocytes in the AC tissue [144]. Thus, the fluid load support, as
mentioned in the weeping model, fails to lubricate the degraded cartilage interface.
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Figure 7. (a) Hydrodynamic lubrication mechanism shown at the AC interface along with the
schematic representation of the pressure generated by the interstitial fluid flow. (b) The hydro-
static/weeping lubrication at the AC interface is shown in the figure, with a schematic representation
of the flow of interstitial fluid load support during the loading and unloading cycles. (c) The inter-
action of the asperities at the AC surface with the surface is shown in the figure, and pressure is
being generated at these interfaces due to the hydrodynamic lubrication. The arrow shows the fluid
movement and applied load.

Previous lubrication models did not take into account the deformation of AC as a factor
in explaining the frictionless motion of synovial joints [94]. Dintenfass developed an AC
lubrication model based on elastohydrodynamic theory, considering the viscous resistance
of the SF (viscosity of SF is 10 Ns/m2 at 0.1 s) and the elastic deformation (10.78 MPa
when compressed in water) of the AC surface, as shown in Figure 7c [145]. This model
was supported by the observation that the viscosity of SF is negligible under pressure and
that the elasticity modulus of the AC is very small [145,146]. Therefore, when a high load
is applied, the film thickness formed at the interface is minimal due to the flattening of
the AC surface and the increased contact zone. This flattening phenomenon of the AC
surface under physiological load was later referred to as the micro-elastohydrodynamic
effect [96,147]. However, for the elastohydrodynamic lubrication, the film thickness at the
AC interface for an healthy joint was in the range of 0.1 to 1 µm, with a surface roughness
of 2–5 µm; thus, this theory was substantiated by various theoretical calculations and
experimental results [148]. Tanner also calculated the film thickness of hip joints during
normal walking speeds, yielding a thickness of 10−5 cm or greater at a 20 cm2 area with a
friction coefficient of 0.003 [136]. These experimental results demonstrated the formation
of a film thickness during relative motion. But in terms of the degraded AC, the surface
roughness increases due to superficial fronding at the upper layer. The surface roughness
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with arithmetic average absolute values, the maximum peak heights, and the mean spacing
between local peaks of the OA cartilage surface were 71%, 80%, and 51%, respectively,
compared to the healthy cartilage [149]. These studies show that the load-bearing ability of
the AC cannot be explained using the micro-elastohydrodynamic or elastohydrodynamic
lubrication models.

4.1.2. Boundary Lubrication

When the hydrodynamic lubrication mechanism was proposed, it faced skepticism
from researchers for not considering the contribution of synovial compositions. In 1959,
Charnley postulated that the presence of boundary lubrication on the AC surface was due
to the adherence of the SF at the AC interface [124,150,151]. The adherence, or boundary
action, is governed by the glycoprotein fraction of SF, which forms a surface film with a
thickness ranging from 1 to 100 nm [152]. Swann et al. demonstrated that polypeptide
chains within SF function as boundary lubricants when isolated from the SF [125,126]. Sub-
sequently, researchers began investigating the individual components of SF to determine
their contributions to the nature of the boundary lubrication [127]. The main constituents
identified were hyaluronic acid, aggrecans, lubricin, and phospholipids. Several reviews
have outlined the significant contributions of these constituents and the techniques em-
ployed to study their boundary lubricant properties [153,154]. The complete explanation
of the boundary lubrication mechanism at the articulating surfaces of biological joints
cannot be solely attributed to the presence of hyaluronic acids, lubricin, and phospholipids
constituted in SF [155]. Through in-depth studies on friction conducted using surface force
balance measurements, it has been observed that hydrated ions are trapped within the
phospholipid solutions [156]. These hydrated ions act as effective lubricants by creating a
strong repulsion during compression, facilitated by the repulsive hydration shells surround-
ing the trapped counterions. This phenomenon is referred to as the hydration lubrication
mechanism (Figure 8) [128,157]. The underlying reason for this low-friction behavior is the
formation of a slip plane between closely packed phosphocholine liposomes, wherein the
outer surfaces of liposomes oppose each other within a group [158]. Studies on degraded
cartilage indicate that an increase in surface roughness and permeability of the cartilage
leads to an extension of the boundary-mode plateau, resulting in higher friction at the
interface. This is primarily attributed to the loss of boundary lubricants present in the SF at
the AC interface. To counteract this, boundary modes can be achieved by either increasing
the viscosity of the lubricants (for instance, if the lubricant viscosity for healthy cartilage is
150 mPas, degraded cartilage might require 1500 mPas to achieve healthy friction values) or
by elevating the sliding speeds at the interface [159]. By understanding and harnessing this
mechanism, it becomes possible to develop intra-articular injections containing suitable
lubricants that effectively reduce friction. Furthermore, this knowledge can be applied in
the field of tissue engineering scaffolds for diseased cartilage [155].
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4.1.3. Mixed-Mode Lubrication

The film thickness formation in the case of hydrodynamic lubrication and the boundary
effect of the synovial constituents cannot completely explain the complex lubrication
mechanism of the synovial joints. There must be different modes of lubrication that comes
together in this complex structure that help explain its low friction and wear properties [106].
This mixed lubrication regime can be called adaptive multi-mode lubrication, which can
explain each individual phase of gait cycles. Based on this knowledge, various lubrication
models, such as osmotic, squeeze film, boosted, biphasic, and triphasic lubrication models,
have been proposed.

The squeeze film lubrication model proposed by Dowson in 1966 suggests that during
joint motion the SF between the AC surfaces in synovial joints experiences compression
(around 18 MPa under the physiological loading condition [160]), resulting in the generation
of pressure [161]. This pressure is attributed to the resistance offered by the lubricant as it is
squeezed out by the contact surfaces, as shown in Figure 9a. Consequently, the articulating
surfaces are separated by a fluid film, leading to a localized depression where the lubricant
becomes trapped in supporting that load [162]. Similarly, Maroudas and Walker et al.
proposed boosted lubrication, which suggests that when two articulating surfaces are
compressed, the solvent component of SF enters the pores of the AC surface, as shown in
Figure 9b. The solute or concentrated part of SF remains behind, providing lubrication,
and this phenomenon is called “boosted lubrication” [102,163–166]. Both squeeze film and
boosted lubrication fails in the case of OA due to the loss of proteoglycans, which leads to
a decrease in the dynamic and equilibrium compressive modulus of the AC [167,168]. This
reduction allows for increased hydraulic permeability, resulting in decreased interstitial
fluid load support during loading, ultimately leading to more cartilage damage [167].

Previous lubrication mechanisms were unable to provide a satisfactory explanation for
the time-dependent frictional behavior exhibited by cartilage [82]. This behavior can be under-
stood by examining the stress relaxation or creep nature of AC, which are directly associated
with the release of interstitial fluid from the surface during tissue creep [75,131,132,169–171].
These properties of AC were elucidated by the biphasic theory proposed by Mow et al. When
AC is subjected to compression or tension, the flow-dependent and flow-independent be-
haviors, as well as the mechanism of viscoelasticity, can be understood based on the change
in the modulus values and the stress relaxation experiments (Figure 9c) [134,172]. This the-
ory provides an explanation for the viscoelastic behavior of AC in various configurations,
including tension, compression, and indentation [173]. According to the biphasic theory, AC
is composed of a binary mixture consisting of an incompressible elastic solid (collagen and
extracellular matrix) and an inviscid incompressible fluid (interstitial fluid) [174,175]. Various
researchers reported experimental measurements of interstitial fluid pressures calculating
the aggregate elastic modulus of AC from creep experiments to be around 0.7 ± 0.09 MPa
and from stress relaxation experiments to be around 0.76 ± 0.03 MPa [174–176]. Oloyede
and Broom demonstrated this phenomenon through confined compression creep-loading
ex situ experiments [177], while Soltz and Ateshian explained it using AC behaviors such
as creep, stress relaxation, and dynamic loading in both confined compression (aggregate
compression modulus = 0.64 ± 0.22 MPa and axial permeability = 3.62 ± 0.97 × 10−6 m4/Ns)
and unconfined compression ex situ experimental setups (tensile modulus = 12.75 ± 1.56 MPa
and radial permeability = 6.06 ± 2.10 × 10−16 m4/Ns ) [133,175]. These findings have es-
tablished that the viscoelastic behavior of AC is solely influenced by intrinsic mechanical
properties [178] such as porosity and permeability of the solid phase in AC, as well as the
frictional resistance arising from the drag exerted by the interstitial fluid. Furthermore, a state
of stress relaxation equilibrium can be achieved when the flow of interstitial fluid comes to
a halt. In this equilibrium state, the entire load is borne by the solid matrix, providing an
explanation for the load deformation response observed in AC tissue [179,180].
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Figure 9. (a) The squeeze film formation at the interface of the AC is shown alongside the motion
of fluid in and out of the loaded and unloaded region. (b) The fluid load support due to boosted
lubrication is shown in the AC interface of the synovial joint. (c) The biphasic nature of the AC is
shown in the figure, with the fluid flowing in and out at the AC interface during loading and sliding
motions. The arrow shows the fluid movement and applied load.

As an extension of biphasic theory, triphasic theory was put forth, which introduces
the concept of an additional phase known as the ionic phase, which is distinct from the
interstitial fluid. This model examines the mechanical properties of AC by incorporating
three distinct phases: the solid phase, the interstitial fluid phase, and the ionic phase. In this
model, the solid phase of the tissue is described as a homogeneous, isotropic, linearly elastic
material that experiences infinitesimal strain within the interstitial fluid phase [134,135,175].
Considering these models, effective lubricant-based solutions can be identified depending
on the properties of the AC. However, in the case of degraded cartilage, the alterations,
including elevated water content within the AC structure, hinders the generation of proper
fluid pressure during applied loading. Furthermore, the degenerative process impacts the
hydraulic permeability of the superficial zones, thereby influencing the flow-dependent
and flow-independent viscoelastic behavior of AC.

4.2. Concept of Tribological Rehydration

Previous studies have extensively examined various fundamental concepts of AC
to elucidate its low-friction characteristics. These investigations have highlighted the
significant role of interstitial fluid within the cartilage in facilitating both its load-bearing
capacity and its smooth, frictionless motion [181–183]. Several studies, such as those
on weeping [142], boosted [102], biphasic [175], and hydration lubrication [157], have
primarily focused on interstitial fluid pressurization and its influence on joint movement.
However, most of these studies have examined the process of fluid exudation through
controlled experiments involving static loading [29,184,185]. In contrast, the mechanisms of
interstitial rehydration in AC remain unclear; however, the concept of hydrostatic/weeping
lubrication by McCutchen [117,118] covered the time-dependent interstitial fluid movement.
Also, he later proposed an explanation for interstitial rehydration as the osmotic pressure
gradient resulting from the density of fixed charges in the tissue, which creates a driving
force for AC rehydration [78,122,123,186,187]. There is only a limited number of studies
that have specifically addressed this aspect. Nevertheless, during joint articulation, there
is evidence of tissue thickness recovery, suggesting the presence of an additional mode
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of tissue recovery [78]. Consequently, various investigations have been conducted to
comprehend motion-induced tissue recovery, ultimately revealing the migratory nature
of joints [187]. This concept has led to the identification of a novel phenomenon known
as tribological rehydration, wherein the AC can regain interstitial hydration while sliding
within a continuously loaded stationary contact area, thereby contributing to contact
migration [78,123]. However, the degraded OA cartilage has uneven surfaces across the
contact regions that could possibly avoid contact migration at the loaded regions.

5. Relevance of AC Lubrication Theories to OA

Comprehensively addressing cartilage degeneration, particularly OA, necessitates
detailed knowledge of the lubrication process within the structure of AC. As previously
mentioned, the frictional properties of the AC primarily depend on its lubrication. However,
due to pathological changes occurring in the synovial joints, the AC surface becomes softer
and more permeable, thereby affecting its inherent self-lubricating mechanisms [188–190].
These changes are a result of alterations in joint mechanics and the aging process. Ini-
tially, these changes disrupt the mechanisms responsible for joint lubrication, leading
to joint pain [37,38]. Over time, if left untreated, they progress and eventually result in
the complete breakdown of the AC, leading to severe joint dysfunction and the need
for surgery [191–193]. Mechanical stresses are commonly observed as precursors to this
degenerative process, causing surface alterations such as microcracks, microcraters, and
peeling of the superficial layer of the AC [194,195]. Additionally, it has been suggested that
the penetration of SF enzymes through the AC surfaces can lead to the breakdown of the
matrix ground substance, resulting in tissue softening and contributing to OA [196,197].
All these factors collectively disrupt the normal lubrication mechanisms within the joints
and interfere with the nutritional pathways necessary for maintaining the health of the AC.
It is evident from the discussion that both the mechanical and physiological functions of
the AC are vital in providing proper lubrication mechanisms. Unfortunately, these factors
are often compromised, thereby compromising the self-lubricating nature of the AC.

The application of classical lubrication theories to synovial joints reveals that no single
lubrication theory can fully account for the overall tribological behavior of these joints. This
underscores the complexity of the biological nature of synovial joints, particularly in their
response to varying velocities, loads, and motions. From this comprehensive understanding,
it becomes evident that synovial joints do not rely on a single lubrication mechanism but
rather operate through a combination of multiple modes. However, in the case of OA,
where the AC surface is damaged, its normal functioning is compromised, often leading to a
reliance on one or two specific lubrication mechanisms due to physical constraints. Friction
at the interface of AC is primarily influenced by lubrication, which is sensitive to changes
in normal and tangential forces as well as relative velocities over time. When subjected
to higher loads, the ability of interstitial fluid to provide support decreases, resulting in
the solid extracellular matrix bearing most of the compressive and frictional loads [107].
This is when the properties of boundary lubrication in AC become significant, emphasizing
solid–solid interactions [198,199]. However, in cases of OA, the initial cartilage damage
involves surface irregularities, matrix deterioration, and progressive wear, as seen in the
K-L classification. This damage progressively increases from grade 1 to 4 via structural
changes, which negatively impacts the lubrication properties. Further, this damages the
lubrication by the interstitial fluid, leading to increased reliance on boundary lubrication at
the surface. Therefore, understanding the effects of SF constituents like hyaluronic acid,
lubricin, and phospholipids on boundary lubrication is crucial for developing therapeutic
approaches aimed at enhancing AC lubrication efficiency. This provides information to
identify therapeutic approaches that can help restore function during the early stages of
these diseases. Numerous therapeutic strategies have been explored to reduce pain, slow
down cartilage degradation, and enhance the functioning of AC [200–203].
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Lubricant-Based Solutions

Lubricant-based injections serve as a temporary remedy for managing AC function in
OA conditions. These injections are designed to provide lubrication at the interface and
regulate normal cartilage function [204]. However, due to erosion and increased permeabil-
ity in the superficial layer of degraded AC, many proposed lubrication mechanisms may
be ineffective. Nonetheless, lubrication injections still offer temporary relief and can be
beneficial for older individuals with OA [205]. SF acts as a natural lubricant at the cartilage
interface, containing essential constituents that enhance lubrication. These constituents are
used in various lubricant-based injections, facilitating tribosupplementation and reducing
friction. Natural lubricants such as hyaluronic acid, chondroitin sulphate, lubricin, and
phospholipids possess bifunctional properties, forming loops on the cartilage surface and
acting as amphiphilic surfactant molecules [206]. They are modified to form bioinspired
molecules, especially hyaluronic acid and lubricin. Furthermore, alternative forms of lubri-
cants are explored for example nanoparticle-based and peptide-based lubricants [207]. In
OA conditions, the levels of these constituents significantly decrease compared to healthy
samples. Specifically, the concentration of hyaluronic acid declines from 3.12 mg/mL to
0.91 mg/mL, chondroitin sulphate decreases from 18.4 mg/mL to 8.71 mg/mL, lubricin
measures at 0.28 mg/mL, and phospholipids measure at 0.2 mg/mL [207]. Furthermore,
these natural lubricants serve as inspiration for the development of bioinspired lubricants
utilizing long-chain molecules with nanoparticle or peptide-based structures to mimic their
characteristics, as shown in Figure 10.
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Figure 10. Schematic diagram showing the overview of natural and bioinspired and alternative
lubricants for enhancing and restoring AC lubrication. Natural lubricants are long-chain polymeric
molecules such as hyaluronic acid, chondroitin sulphate, phospholipids, and lubricin (reprinted with
permission [207]).

Advancements in lubricant-based injections utilizing bio-inspired lubricants have demon-
strated significant improvements in frictional behavior. The summary of these lubricants and
their impact on degraded cartilage-enhancing frictional coefficients is presented in Table 4.
Several hyaluronic acid-based injections, including Synvisc, Eurflexxa, and Supartz in the
United States [208], and Durolane and Ostenil in the United Kingdom [209], have been ap-
proved by regulatory authorities. Despite providing initial fluid film lubrication in hyaluronic
acid-based and boundary lubrication in lubricin-based injections, as evidenced in the Table 4,
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these injections exhibit diminished long-term effectiveness due to shear thinning and erosion.
The decline in viscosity of these lubricants over time at the cartilage interface post-injection
period contributes to their lubrication failure. However, relying solely on a single lubrica-
tion mechanism to reduce the friction coefficient has proven to be inadequate. Combining
two or three lubrication mechanisms to enhance effectiveness may be a more reasonable
approach for achieving long-term efficiency. Ideally, injections should possess compositions
that concurrently offer fluid film and boundary effects to prolong their efficacy at the degraded
interface. This characteristic is equivalent to natural SF, although SF lacks a sufficient quantity
of increased boundary lubricants. Consequently, enhancing the constituents with additional
boundary lubricants such as lubricin, long-chain phospholipids, etc., and incorporating these
molecules into intra-articular injections can potentially achieve synergistic effects from dif-
ferent lubrication mechanisms. Several studies have been conducted to accomplish this goal,
employing approaches such as mesenchymal stem cell-derived therapies and hyaluronic acid
gel-enhanced injections in conjunction with osteochondral scaffolds to facilitate early-stage
treatments of OA [210–212]. Thus, biotribology of AC lubrication emerges as a crucial area for
resolving OA issues through improved treatments.

Table 4. Overview of lubricant-based solutions for enhancing AC degeneration by utilizing modified
synovial constituents.

Natural Synovial
Constituent Reference Products/Molecular

Composition

Type of Contact
and Testing
Apparatus

Lubricant
Properties

Frictional
Properties—Dynamic

COF
Dose Comments

Hyaluronic Acid

[213,214] Synvisc One

Universal
mechanical

tester—Bruker
(reciprocating

test)

Dynamic
viscosity—

325.8 ± 3.4 Pa s
Molecular weight

6000 kDa

0.008–0.009
Injections every 3
weeks (8 mg/mL)

(2 mL)

Boundary
lubrication is

observed

[214,215] Eurflexxa

Custom
tribometer

(cartilage against
glass sliding)

Dynamic
viscosity—100.09

Pa s
Molecular weight

2400–3600 kDa

0.22–0.23

Injections every 3
weeks

(10 mg/mL)
(2 mL)

Adsorption of
molecules on the
surface increased
the viscosities and
hence improved

frictional properties

[214,215] Supartz

Custom
tribometer

(cartilage against
glass sliding)

Dynamic
viscosity—2.11

Pa s
Molecular weight

620–1170 kDa

0.25

Injections every 5
weeks

(10 mg/mL)
(2.5 mL)

-

[214] Durolane
Molecular

weight—100,000
kDa

-
1 injection

(20 mg/mL)
(3 mL)

-

Lubricin
[216] mLub

Cartilage on
glass surface

sliding

Molecular weight
~107 kDa 0.15 -

Reduces friction
and adhesion
resulting in

decreased cartilage
degradation

[217,218] Proteoglycan 4
(Prg4)

Pendulum
system - 0.01

1 injection every
month

(250 µg/mL–
10 mg/mL)

(1–2 mL)

Improves
chondrocytes

health and prevents
stick-slip at the
superficial zone

reducing
mechanical strain

and avoiding
cartilage

degeneration

Chondroitin
Sulphate [219]

PBS + 100 mg/mL
Chondroitin

sulphate

Custom designed
sliding test (glass

on cartilage)
- 0.05 -

Higher
concentration
chondroitin
sulphate can

improve frictional
behavior at the

cartilage interface
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Table 4. Cont.

Natural Synovial
Constituent Reference Products/Molecular

Composition

Type of Contact
and Testing
Apparatus

Lubricant
Properties

Frictional
Properties—Dynamic

COF
Dose Comments

Phospholipids [220]
Mica coated with

aminothiol or
poly-lysine

Surface force
apparatus - 0.08–0.3 -

The type of
adsorption of the
phospholipids on

the surface
determines how

effective the
frictional behavior

(COF—Coefficient of friction).

6. Conclusions

In conclusion, the study of lubrication in AC offers valuable insights into the knowledge
of mechanical and tribological aspects in AC and its degeneration. The failure in the lubrica-
tion mechanism of the natural synovial joints is clearly seen as an aging effect or accidental
damages resulted due to change in various physical conditions of human body. This change
in lubrication mechanism can lead to complete failure of tribological aspects of joints leading
to OA. Therefore, the question of whether tribological changes lead to OA can be answered
by asserting that these changes in cartilage are the results of OA and are the cause for further
progression. Thus, understanding AC lubrication is a potential way to revolutionize OA
management, by developing lubricant supplements that can improve the cartilage tribology.
Furthermore, a range of biomimetic scaffolds, mesenchymal stem cell-based therapies, and
hyaluronic acid-based gels have demonstrated promising outcomes in slowing the damage
progression. Therefore, future research should prioritize enhancing the effectiveness of these
techniques, as they have the potential to significantly improve the quality of life for patients
affected by this degenerative joint disease.
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