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The need for sustainable aquaculture practices has become very important to ensure sufficient production in 
addressing the increasing global demand for seafood. In this context, accurately assessing the size and weight 
of prawns is pivotal for efficient farming and resource utilization, allowing farmers to make informed decisions 
and productions. The integration of advanced AI algorithms into aquaculture practices holds great promise for 
fostering sustainability, thereby enhancing the overall productivity and resilience of prawn farming in the face 
of growing global challenges. This paper compares different length-weight regression techniques to estimate 
the weight of prawns and proposed a novel Regression-based Artificial Intelligence Biomass Estimation (RAIBE) 
systems for prawn aquaculture. RAIBE leverages deep learning and regression models to estimate the weight 
from images captured from a mobile device. The proposed methodology employs YOLOv8 with Segmentation for 
precise prawn identification. A unique biomarker is applied to estimate the length information. Subsequently, 
a polynomial based regression model is selected to correlate prawn length with actual weights, utilising 
comprehensive datasets collected under real-world farm conditions. As many different regression approaches 
have been proposed for the length-weight relationship, four commonly used approaches have been analysed. 
Results from extensive statistical analysis revealed that the modified polynomial regression with correction factor 
provides the best weight prediction. The integration of these techniques has equipped farmers with a reliable 
tool for predicting prawn weight during the sampling process, thereby minimizing stress on the prawns, and 
optimizing the segregation process.

1. Introduction

Sustainable aquaculture practices are crucial in meeting the escalat-
ing global demand for seafood. Ensuring optimal production, especially 
considering the influence of local breeding environments, depends on 
precise sampling and accurate size and weight measurement. Ye et al. 
emphasised the considerable spatial variations in oceanographic condi-
tions across the Middle East’s coastal waters, underscoring their poten-
tial impact on localised fish stocks [1]. Traditional weight assessment 
methods, involving labour-intensive physical measurements, are time-
consuming. Conventional prawn sampling techniques, such as baited 
traps, visual census methods, and hand netting, often proven challeng-
ing and inaccurate [2].

In response to these limitations, alternative technological approaches 
like precision aquaculture offer promising solutions. Precision aquacul-
ture leverages advanced Artificial Intelligence (AI) techniques, Internet 
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of Things (IoT), and data-driven approaches to transition from tradi-
tional practices to knowledge-based methodologies, ensuring profitabil-
ity, sustainability, and environmental protection. The utilisation of IoT 
sensors and edge devices, such as the Raspberry Pi, enables in-situ pro-
cessing, facilitating immediate decision-making with data transmission 
to the farmer over the network. Machine learning algorithms and image 
processing have demonstrated efficacy in disease detection, predicting 
the growth and survivable of farmed fish, as well as forecasting pond 
water quality [3–5]. However, despite its proven potential, the practical 
implementation and deployment of these AI methods on actual aquacul-
ture farms has been constrained by computational complexity, including 
challenges in edge-processing capabilities and prediction accuracy.

To bridge this gap between AI potential and real-world application, 
particularly in biomass and size estimation, it is essential to explore 
methods that are computationally efficient yet practically useful for de-
ployment on resource-constraint edge devices. While many AI systems 
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rely on complex deep learning models for high-level tasks such as disease 
classification, simpler statistical approaches like regression analysis are 
better suited for continuous variables such as weight and length estima-
tion, which require lower processing power and are easier to deploy at 
the farm level. This highlights a shift from AI for classification problems 
to AI-supported regression models for numerical prediction, tailored to 
on-site aquaculture needs.

To overcome these challenges, regression analysis methods, known 
for their low processing requirements, have gained popularity in vari-
ous domains, including weather forecasting, earthquake prediction, and 
stock market analysis. Additionally, they have been applied for length 
and weight inference in fishes and prawns [6], utilising formulas such 
as the growth model based on the length-weight relationship, 𝑊 = 𝑎𝐿𝑏

[7] in linear regression. Nevertheless, the relationship between length 
and weight can be inherently non-linear, thus the reliance on linear re-
gression models may not yield accurate results.

The primary contribution of this paper proposes a Regression-based 
Artificial Intelligence Biomass Estimation (RAIBE) model, which inte-
grates image processing and deep learning algorithms with a non-linear 
regression-based model to estimate prawn weight using images from 
mobile devices. The proposed approach employed YOLOv8 for prawn 
detection and segmentation to enhance size estimation accuracy. Each 
prawn is assigned a unique biomarker, serving as a reference for length 
and weight information. The secondary contribution of the paper pro-
vides a comprehensive comparison between different regression models 
using actual farm data to identify the most accurate model for prawn 
weight estimation. The results of the paper also highlight that the com-
monly used length-weight formula (𝑊 = 𝑎𝐿𝑏) does not consistently 
predict the optimal weight predictions for prawns and instead incurred 
additional processing.

The subsequent sections of the paper are organized as follows: Sec-
tion 2 provides an overview of related works in the research area, Sec-
tion 3 presents the proposed architecture to predict the weight of the 
prawn, and Section 4 details the experimental approaches to determine 
and compare different linear and non-linear regression model to predict 
the weight. Section 5 compares and discusses various regression models 
results. Finally, Section 6 concludes the research, summarising the find-
ing and recommended regression model for weight prediction in prawn.

2. Related works

There have been many research works published on weight predic-
tions based on regression models for aquatic species. Nahavandi et al. 
[7] studied the length-weight relationship of giant tiger shrimp (Pe-
naeus monodon) cultured in artificial seawater. They have analysed the 
length-weight relationship by using the formula 𝑊 = 𝑎𝐿𝑏 based on lin-
ear regression. Results revealed an isometric growth of P. monodon at 
b = 2.94, indicating proportional growth in length and weight. When 
the length-weight exponent b = 3.0, the body form remains constant in 
proportion to the length and the fish develops isometrically, resulting 
in an ideal shape. This study suggested the potential of using artificial 
water for culturing P. monodon. Silva et al. [8], also conducted a similar 
approach in identifying the length-weight relationship of cage-farmed 
Nile tilapia. Likewise, the b coefficient indicates isometric fish growth 
at b = 3.06 at 𝑅2 = 0.9952.

A similar study by Waiho et al. [9], investigated the length-weight 
relationship of a mud spiny lobster Panulirus polyphagus by using a linear 
regression approach. The study noted a significant strong positive corre-
lation between body length and weight of P. polyphagus at 𝑅2 >0.94, in-
dicating robust growth patterns in relation to body size. They have also 
engaged in a sex-specific allometry study, revealing a positive allometry 
among males, while females displayed an opposite trend-negative allom-
etry. These specifics are often related to reproductive function and feed 
resource allocation. As such, females are more likely to allocate more 
resources into egg production compared to males for reproduction pur-
poses [10].

Fig. 1. Proposed Regression-based Artificial Intelligence Biomass Estimation 
(RAIBE) system.

Alternatively, Clain et al. [11], studied the length-weight rela-
tionship of South-Eastern Australian population of large-head hairtail 
(Trichiurus lepturu) by employing non-linear regression approach. The 
power regression best described the relationship between length and 
weight of the samples, with females revealing positive allometry where 
weight increases faster with length compared to males. This suggests 
potential differences of strategies in the allocation of feed resources.

3. Regression based AI Biomass Estimation model

The aquaculture industry depends on accurately estimating prod-
uct bio-mass to ensure sustainable practices and enhanced profitabil-
ity. Regression-based AI models can provide a powerful tool to allow 
biomass and weight predictions even based on singular parameters such 
as body length. In this section, we present our proposed RAIBE Model 
shown in Fig. 1 to estimate the biomass of the prawn in terms of length 
and weight.

All images in the dataset of Macrobrachium rosenbergii prawns were 
annotated, excluding the legs (chelipeds and pereiopods) to concentrate 
on the body segments essential for length estimation.

The system first estimates the prawn’s length, which serves as the in-
put for a regression model to predict its weight. To accurately measure 
length, prawn detection is required within the captured images. This de-
tection is performed using the YOLOv8 Convolutional Neural Network 
(CNN) trained on a dataset of prawn images to identify and localize 
prawns accurately. Additionally, the YOLOv8-Segmentation model is 
applied to segment each detected prawn, further improving the detec-
tion precision.

Following segmentation, an oriented bounding box is generated 
based on the minimum area rectangle that aligns with the prawn’s 
shape. This bounding box adapts to various angles and orientations of 
the prawn, enabling the systems to detect the prawn and estimate the 
size. The goal of the detection is to detect the length of the prawn from 
the tip of the head (rostrum) to the tip of the telson (tail), while the 
width will not be considered in this research as there was not enough 
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data collected to consider trying out multiple linear regression with the 
carapace width of the prawn.

To calculate the length of the prawn, a known biomarker reference 
point based on ArUco marker is employed. ArUco marker is a type of 
fiducial marker used for scaling in object detection and estimation in 
computer vision [12]. The system measures the perimeter of the ArUco 
Marker in pixels and converts to find the pixel-to-cm ratio. This is used 
to calculate the length of the prawn by multiplying the pixel-to-cm ratio 
with the length of the bounding box of the prawn, in which the longer 
side of the oriented bounding box represents as the length of the prawn. 
Since the bounding box is rotated at an angle, a distance formula is 
applied between two corners of the bounding box to calculate the length 
of the prawn through the oriented bounding boxes,

Based on the calculated length value, the weight can be estimated 
using the regression model. In existing literature, most common model 
utilises the growth equation 𝑊 = 𝑎𝐿𝑏, where W represents weight, L 
as the length and a and b represent coefficients determining the rela-
tionship between length and weight [13]. Traditional linear regression 
identifies a and b coefficients as y-intercept and slope directly from the 
equation: 𝑦 = 𝑏𝑥 + 𝑎 [8]. While power regression provides a direct es-
timation of coefficients a and b with its equation 𝑦 = 𝑎𝑥𝑏 [6]. For our 
proposed systems, we will evaluate different regression models to iden-
tify the best 𝑅2 values and compare the accuracy of the predicted and 
actual weight in the next section.

4. Evaluation approaches

4.1. Stage one: data collection

The data collection for model training and validation was completely 
derived from actual farm conditions to ensure model applicability and 
reliability. For the development of the prawn detection and measure-
ment model, a comprehensive aerial image data set was collected and 
processed. Specifically, the training data set comprised 8370 aerial im-
ages, and validation involved an additional 711 images, all captured 
from farm conditions and used in training the YOLOv8 segmentation 
model for detecting and segmenting prawns. A separate and indepen-
dent dataset, also collected from real farm environments, included 1201 
manual measurements of M. rosenbergii prawn lengths and weights 
across 3 grow-out ponds over a 7 month period, provided by ODE 
Aquaculture and Agriculture Company Sdn Bhd, Brunei. This dataset 
was instrumental in developing robust linear and non-linear regression 
models, including power, exponential, and polynomial regressions, for 
predicting prawn weight based on length. Finally, to rigorously assess 
the accuracy of the model, an independent set of 397 manually mea-
sured prawn data points was used, allowing comparison between the 
predicted and actual weights using standard accuracy metrics (RMSE, 
MAE and 𝑅2).

4.2. Stage two: prawn detection

The prawn detection system stage was carried out by retrieving aerial 
images of the prawn. This system utilises YOLOv8-Segmentation to cre-
ate set of masks that outlines the shape of the prawns. The Open CV 
library utilises these segmentation results to create and calculate the 
minimum area of a rectangle to create an oriented bounding box that fol-
lows the shape of the prawn. This allows prawn detection and size esti-
mation at any angle or rotation of the prawn. The YOLOv8-Segmentation 
model, trained on the largest YOLOv8 backbone (YOLOv8x-seg), was 
used for this purpose. The model was trained on a dataset containing 
8370 training images and 711 validation images, with an image size set 
to 800, for 500 epochs. Using YOLOv8, the system calculates the mini-
mum area of the rectangle to estimate the prawn’s length. The different 
detection annotations are as displayed in Fig. 2. A biomarker based on 
ArUco marker, with a side length of 4 cm and a perimeter of 16 cm, is 
used to determine the pixel-to-cm ratio. This ratio is then applied to the 

Fig. 2. Prawn detection comparison between (a) YOLOv8 object detection and 
(b) YOLOv8-Segmentation model, with ArUco marker reference.

length of the bounding box drawn from the segmentation to calculate 
the prawn’s length.

4.3. Stage three: prawn length-weight model

This stage involves taking manual measurements of the prawn length 
and weight for model development. Exactly 1201 readings of M. rosen-
bergii length (cm), measured from the rostrum to the telson tail tip and 
weight (g). This dataset is used to develop regression models. Both linear 
and non-linear regressions, including power, exponential and polyno-
mial regression were considered.

Linear regression stands as the direct and most widely used statistical 
technique for modelling relationships between variables. This method 
assumes a straight-line relationship between an independent variable 
and a dependent variable [14]. In the context of seafood weight pre-
diction, length often serves as the independent variable, while weight 
is the dependent variable. By fitting a straight line through the data 
points, the model estimates a weight value for any given length. This 
allows for quick and straightforward weight predictions based on eas-
ily obtainable length measurements. Power regression, a non-linear re-
gression model, offers a valuable tool for weight prediction in various 
seafood species. This approach assumes a power-law relationship be-
tween length as the independent variable and weight as the dependent 
variable, which are often observed in biological development patterns 
[15]. In contrast with exponential regression model, it assumes an expo-
nential increase in weight with increasing length, which are potentially 
suitable for rapid development phases. Finally, polynomial regression al-
lows the capturing of a more complex relationship between length and 
weight by including higher-order terms [16]. This flexibility is particu-
larly beneficial, suggesting a suitable approach for modelling crustacean 
growth that often exhibits curvature in length-weight relationships.

4.4. Stage four: model testing

The evaluation stage was then carried out, testing the model for the 
weight estimation of 397 prawn data. To evaluate the accuracy of the 
trained model’s prediction against the observed data, the models was 
assessed through root mean squared error (RMSE, Equation (1)), mean 
absolute error (MAE, Equation (2)) and 𝑅2 (Equation (3)). The model 
with the lowest RMSE and MAE, combined with the highest 𝑅2 value, 
is considered to be the most accurate [17]. The equations are as follows 
[18]:

𝑅𝑀𝑆𝐸 =

√∑
(𝑦𝑜 − 𝑦𝑝)

2

𝑛 
(1)

𝑀𝐴𝐸 = (|(𝑦𝑜− 𝑦𝑝)|)∕𝑛 (2)

𝑅2 = 1 −

∑
(𝑦𝑜 − 𝑦𝑝)

2

∑
(𝑦𝑜 − 𝑦𝑚)

2
(3)
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Fig. 3. Length-weight relationship of M. rosenbergii based on (a) Linear regression, (b) Power regression, (c) Exponential regression and (d) Polynomial regression to 
establish the best-fit model for weight prediction based on prawn length.

where, 𝑦𝑜 represents the observed value, 𝑦𝑝 as the predicted value, 𝑦𝑚
as the mean value of 𝑦 and 𝑛 as the number of observations.

Following the selection of the best-performing regression model, a 
further post-processing step involving a correction factor (CF) was in-
troduced to further enhance the accuracy of the model’s predictions. 
Regression models can exhibit subtle systematic biases when applied to 
validation or real-world datasets due to factors such as minor differ-
ences between training and application environments, or limitations in 
capturing complex non-linearities across the entire data range [19,20]. 
Thus, the CF was introduced to mitigate such systematic deviations and 
improve the overall predictive accuracy, particularly in terms of align-
ing the mean predicted weight with the mean observed weight in the 
target population. The CF value was then used to calculate the new cor-
rected weight values (CW) for individual prawns (Equation (5))

𝐶𝐹 =𝑚𝑜∕𝑚𝑝 (4)

𝐶𝑊 = 𝐶𝐹 × 𝑝𝑤 (5)

where, 𝑚𝑜 represents the mean observed weight, 𝑚𝑝 as the mean pre-
dicted weight and 𝑝𝑤 as the predicted weight.

This correction based on mean ratio is a practical approach applied 
in predictive modelling to calibrate predictions and reduce overall sys-
tematic bias observed in validation data. This serves as an additional 
refinement step to further improve the model’s performance character-
istics in real-world application.

5. Experimental results

The proposed RAIBE system integrates image processing and regres-
sion analysis to estimate prawn weight. The initial step of the RAIBE sys-
tem utilises YOLOv8-Segmentation model to detect individual prawns 
in a single frame and with the use of ArUco marker as the reference 
point, the length of Macrobrachium rosenbergii can be determined. The 
YOLOv8-Segmentation model allows detection of the prawn with more 

accurate length estimation in any angle of the or rotation, based on the 
bounding box and segmentation result, when compared to YOLOv8 ob-
ject detection (Fig. 2). This was confirmed in our previous study where 
YOLOv8-Segmentation recorded the least MAE and percentage error of 
0.93 cm and 5.79% [21]. This estimated length information from the im-
age processing step is then passed as input into the selected regression 
model to predict the prawn’s weight.

The regression weight prediction for M. rosenbergii was initially de-
veloped using a dataset of 1201 training data points based on the actual 
farm data from the manually measured prawn length and weight val-
ues. The objective was to develop a reliable predictive model that could 
accurately determine the weight of prawns based on length measure-
ments. To achieve this, we applied various machine learning regression 
techniques, specifically linear, power, exponential, and polynomial re-
gression models (Fig. 3). The developed weight prediction model for 
M. rosenbergii was validated by using a blind dataset (n = 397), which 
was not used in the model development. The observed lengths of M. 
rosenbergii individuals ranged from 6.0 cm to 15.0 cm, with correspond-
ing weights between 3.0 g and 44.0 g. The mean observed weight in 
a separate validation dataset was 21.5 g. This range of data provides 
the model with a comprehensive foundation for training and validation, 
to ensure that the models could effectively generalise to prawns of all 
sizes.

In evaluating the performance of our models, we utilised a combina-
tion of metrics to assess accuracy, goodness-of-fit, and the significance 
of results. Two key accuracy metrics were Root Mean Squared Error 
(RMSE) and Mean Absolute Error (MAE). RMSE calculates the aver-
age magnitude of the error, taking the square root of the average of 
the squared differences between predicted and observed values. Lower 
RMSE indicates a better fit, as smaller errors contribute less to the fi-
nal value. MAE, on the other hand, calculates the average of the ab-
solute differences between predicted and observed values. It provides 
a more comprehensive understanding of the average prediction error, 
with lower values signifying better performance.
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Fig. 4. Predicted prawn weights using different regression models: (a) Power (b) Linear (c) Exponential (d) Polynomial, (e) Modified Polynomial regression and 
(f) Growth model, against observed weight values. The line represents the ideal fit.

Table 1
Comparison of mean, RMSE, MAE, 𝑅2, Pearson’s Correlation test (r) and T-test, 
between observed and predicted weights of prawns based on the growth model 
(𝑊 = 𝑎𝐿𝑏) and regression models; Linear, Power, Exponential (Exp), Polyno-
mial (Poly), Modified Polynomial with correction factor (Poly + CF).

Model Mean (g) RMSE MAE 𝑅2 r T-test 

Actual weight 21.5 
𝑊 = 𝑎𝐿𝑏 20.0 2.47 2.09 0.95 0.98 < 0.05 
Linear reg. 20.9 3.69 2.87 0.90 0.93 < 0.05 
Power reg. 20.0 2.47 2.06 0.96 0.95 < 0.05 
Exp reg. 19.5 2.87 2.34 0.96 0.94 < 0.05 
Poly reg. 20.4 2.26 1.92 0.96 0.98 < 0.05 
Poly reg. + CF 21.5 2.04 1.77 0.96 0.98 > 0.05 

To assess model fit, we utilised the coefficient of determination (𝑅2). 
𝑅2 represents a statistical measure that quantifies the proportion of vari-
ance in the response variable explained by the model’s independent 
variables. It ranges from 0 to 1, with higher values indicating the best 
fit, suggesting better model performance (Fig. 4).

Furthermore, we employed paired t-test analysis to evaluate the sta-
tistical significance of the difference between observed and predicted 
weight values. This test allows us to identify if the model’s predictions 
are systematically different from the actual observations. This informa-
tion is crucial for understanding the model’s generalization and poten-
tial biases. Finally, we implemented Pearson’s correlation coefficient (r) 
to quantify the strength and direction of the linear association between 
the observed and predicted weight values. This coefficient ranges from 
-1 to 1, with values closer to 1 indicating a strong positive linear rela-
tionship, signifying that the model’s predictions tend to increase as the 
observed values increase.

5.1. Comparative analysis of prawn length-weight models

Among the models tested (Table 1), polynomial regression demon-
strated promising initial results. It achieved an average predicted value 
of 20.4 g, with a low RMSE and MAE of 2.26 g and 1.92 g, respectively, 
while having a high 𝑅2 value of 0.96. This was further corroborated by 
its high Pearson correlation coefficient of 0.98 between observed and 
predicted weights, suggesting a positive association.

However, the introduction of a correction factor (CF) within the 
polynomial regression yielded more compelling results. The modified 
polynomial model achieved a comparable mean value of predicted 
weight to the observed weight of 21.5 g. This model also produced the 
lowest RMSE value of 2.04 g and MAE value of 1.77 g, while main-
taining a high 𝑅2 of 0.96 and Pearson coefficient (r) of 0.98. These 
collectively demonstrate the modified polynomial regression model’s 
ability to capture the intricate relationship between prawn length and 
weight, with consistently producing most accurate weight predictions 
with minimal deviations from the actual measurements. The t-test anal-
ysis further confirmed the model’s reliability by indicating that there is 
no significant difference between the observed and predicted weights, 
thus signifying that the model’s predictions were statistically indistin-
guishable from the observed measurements.

Alternatively, the growth model with the equation 𝑊 =0.0138𝐿2.9801, 
linear, power, and exponential regression models were less effective as 
each of these models had resulted in RMSE and MAE value of greater 
than 2.00 g. This translates to greater prediction errors and a much 
larger deviation from the actual prawn weights. Although these models 
showed similarly high significant positive 𝑅2 and Pearson’s correlation 
values ranging between 0.90 - 0.98, the t-test revealed significant differ-
ences between the observed and predicted weight values, highlighting 
their lower accuracy and reliability. Linear regression had demonstrated 
good accuracy in various seafood species [22]. However, it fails to 
capture the complexities that are inherent in most seafood growth pat-
terns. As highlighted by Gumus et al. [23], the inability to account for 
non-linear growth dynamics consistently leads to under-performance 
compared to other models.

For power and exponential regressions, although effective in predict-
ing weight for certain fish species [11] are less suitable for prawns due 
to their limited applicability across a wide weight range. This restricted 
scope also raises concerns about generalisation to different prawn vari-
eties. These models struggle to accommodate the variations in growth 
patterns observed across diverse prawn populations.

5.2. Enhanced accuracy of the polynomial models through correction 
factor (CF) integration for overall effectiveness of the RAIBE system

The superior performance of the polynomial models, especially the 
modified polynomial model, can be attributed to their ability to capture 
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non-linear relationships in the data. Prawn growth does not comply with 
a simple linear progression. It is largely influenced by a number of bi-
ological and environmental factors, such as genetics, nutrition, water 
quality, and temperature [24]. These factors can cause the growth rate 
to fluctuate at different stages of a prawn’s life-cycle. Polynomial models 
are more adept at accommodating these complexities. By incorporat-
ing higher-order terms, this model creates a more intricate curve that 
closely mirrors the observed non-linear growth patterns in prawns [25]. 
This enhanced flexibility allows the model to provide a more accurate 
fit to the data, resulting in lower prediction errors and a closer corre-
spondence between predicted and actual prawn weights. Furthermore, 
the introduction of the CF in the modified polynomial regression model 
further refines its ability to capture the variables of prawn growth. This 
CF aids in addressing the systematic bias that may have skewed the ini-
tial model’s predictions [26]. By incorporating this factor, the modified 
polynomial model achieves even lower RMSE and MAE values, while 
maintaining a high 𝑅2 and Pearson’s correlation. This improved perfor-
mance underscores the effectiveness of the CF in fine-tuning the model 
and enhancing its overall accuracy.

5.3. Future considerations

Although this study presents a valuable approach for non-invasive 
weight prediction in M. rosenbergii, several limitations need to be ad-
dressed. One significant limitation is the consideration of additional 
factors such as water quality, sex, and diet. The incorporation of these 
factors may provide more comprehensive predictions, as they largely 
influence the prawn growth and development. Water quality parame-
ters including pH, dissolved oxygen and temperature can influence the 
health and growth rate of prawns [27]. Often, with sub-optimal water 
conditions lead to stress and reduced growth, which the current model 
does not account for.

The sex of the prawns may also influence the growth rates, with 
males and females exhibiting different growth patterns [28]. Incorporat-
ing these data into the model could further improve prediction accuracy 
by capturing these biological differences. Additionally, diet is a critical 
factor affecting prawn growth. Variations in nutrient intake, feed com-
position, and feeding frequency can lead to differences in weight gain 
that are not reflected in a model based solely on length measurements.

Moreover, the Macrobrachium prawn species exhibit diverse mor-
photypes including blue-clawed, orange-clawed, and smaller morphs. 
These are also known to display complex growth patterns that are size-
dependent based on their social hierarchy, influencing individual devel-
opment [29]. While we acknowledge these complex biological factors, 
the current study did not categorise the prawns based on their specific 
claw morphotype. Therefore, future studies will aim to address this lim-
itation by categorising prawns based on their distinct morphotypes and 
life stages to investigate their specific impact on weight estimation and 
further refine the predictive models for increased accuracy and poten-
tially improving the applicability of the model.

6. Conclusion

This concludes that in the current approach, while the growth equa-
tion of 𝑊 = 𝑎𝐿𝑏 has been generally accepted as an effective approach 
in estimating the length-weight relationship, it may not be suitable in 
certain aquatic animals. The non-linear regression models should also 
be taken into consideration as it was observed with a similar outcome 
as the growth equation. In this case, the modified polynomial regres-
sion is the best-suited model in our proposed RAIBE for determining 
the length-weight relationship and as a weight prediction model for M. 
rosenbergii.

By investigating the intricacies of length-weight relationships, it can 
pave ways to optimise prawn aquaculture and promote sustainability 
practices in the aquaculture industry. For future research, intensive sam-

pling in terms of great numbers, sizes and sexes of prawns may assist in 
revealing further insights into the length-weight relationships.
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