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Abstract: Natural language understanding (NLU) includes temporal text understanding,

which can be complex and encompasses temporal common sense understanding. There

are many challenges in comprehending common sense within a text. Currently, there is

a limited number of datasets containing temporal common sense in English and there is

an absence of such datasets specifically for the Arabic language. In this study, an Arabic

dataset was constructed based on an available English dataset. This dataset is considered

a valuable resource for the Arabic community. Consequently, different multilingual pre-

trained language models (PLMs) were applied to both the English and new Arabic datasets.

Based on this, the effectiveness of these models in Arabic and English is compared and

discussed. After analyzing the errors, a new categorization of errors was proposed. Finally,

the ability of the PLMs to understand the input text and predict temporal features was

evaluated. Through this detailed categorization of errors and classification of temporal

elements, this study establishes a comprehensive framework aimed at clarifying the specific

challenges encountered by PLMs in temporal common sense understanding (TCU). This

methodology underscores the urgent need for further research on PLMs’ capabilities for

TCU tasks.

Keywords: common sense; temporal understanding; Arabic temporal understanding;

natural language understanding; reading comprehension; transformers; transfer learning

1. Introduction

Temporal text refers to a text that contains temporal features (time, events, and re-

lations). The presence of these features can be explicit or implicit, making the task more

challenging. Moreover, comprehending temporal common sense is crucial for understand-

ing the inherent temporal aspects of a text. The term “common sense” can be defined as

“the basic level of practical knowledge and reasoning concerning everyday situations and

events that are commonly shared among most people” [1]. Although humans possess this

ability as part of their cognitive intelligence, it is challenging for machines to acquire it.

For example, understanding temporal common sense enables people to understand the

order in which events occur. Humans innately understand that certain events precede

others, such as falling ill before dying. However, machines face difficulties in acquiring

this understanding, as they require complex algorithms and programming to infer the

chronological sequence of events. In addition to event ordering, temporal aspects include

the event duration. Humans find it relatively easy to predict the duration of activities, such

as eating, opening a door, or walking. However, the limited datasets about the temporal

understanding or extraction that are currently available primarily involve unusual events
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or unusual durations, posing a significant challenge for machines to predict the duration

of routine events. There are more examples, including the frequency of an event; humans

know that lunch happens once per day. Additional temporal aspects will be discussed

later in this study, including the typical time that events occupy and the situation of an

event. Therefore, the task of temporal common sense understanding (TCU) is complex.

Figure 1 illustrates an example of a TCU challenge and how a model can fail to validate the

correct answer.

Figure 1. Example of a TCU challenge showing a scenario where the model fails to validate the correct

answer. The table highlights the scenario description, posed question, provided candidate answers,

the correct label (marked with a ✓), and the model’s incorrect prediction (marked with a ✕). This

example illustrates the limitations of the model’s temporal commonsense reasoning, emphasizing the

need for better training or enhanced datasets tailored for temporal understanding.

Although progress has been made in TCU for English, little to no attention has been

given to Arabic, a language spoken by over 400 million people globally and deeply rooted

in diverse linguistic and cultural traditions. This study aims to address this gap by focusing

on the development and evaluation of Arabic TCU, marking the first systematic exploration

of this topic. Focusing on Arabic is essential not only due to the absence of existing datasets

but also because of the unique linguistic and cultural challenges inherent to the language.

Arabic is characterized by its rich morphological complexity, highly flexible syntactic

structures, and distinctive temporal expressions, which differ significantly from those

in English. These features introduce nuances that make temporal reasoning in Arabic

both challenging and unique. These challenges will be discussed in greater detail in the

subsection on challenges.

The scope of this research is TCU, and it is evaluated as textual reading comprehension

by employing a multiple-choice format. Using the contextual information provided, a

multiple-choice reading comprehension (MRC) system is responsible for selecting an

appropriate response from a range of possible answers. To satisfy the requirements of the

MRC task, which entails choosing the correct answer from a range of candidate alternatives,

the suggested model must determine which answer is correct. In this study and based

on the dataset, the model is asked to validate the plausibility of the answer, and each

question might have more than one plausible answer. The effectiveness of deep learning in

comprehending temporal common sense has been measured using a variety of models.

The model will take three inputs (context, questions, and answers), and it should learn

to predict whether this answer is plausible. This model uses examples of textual training,

where c is a context that is a passage of text, q is a question relevant to the context c, and a

is an answer to question q. The model aims to learn a predictor l, which takes a context c, a

corresponding question q, and a candidate answer a as inputs and predicts a score that will

be high if the answer is likely plausible and low otherwise. This predictor model can be

formulated with the following formula:

Scorei = l({(ci, qi, ai)})
n
i=1 ∈ [0, 1] (1)
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This formula is applied so that the model can be applied to various MRC tasks with multiple

correct answers.

1.1. Challenges

The challenges will be classified into three main categories.

1. Implicit Temporal Features: Temporal reasoning is complicated because some events

are vague. Therefore, the task of extracting and annotating the temporal features

is difficult [2]. For example, the sentence “She visited her friend after finishing her

work” is ambiguous because the word “after” does not state whether the visit actually

happened immediately after, a few hours later, or even the next day. According to

that, the uncertainty about the precise timing of events makes it challenging for a

model to accurately process temporal information.

Implicit temporal features are another challenge. For instance, the temporal sequence

in the sentence “Sara finished her breakfast and left for school” must be inferred

because it suggests—without explicitly stating—that Sara left for school soon after

finishing her breakfast. Similarly, the statement “He often travels for work” suggests

a regularity of events without providing information about how frequently the travels

take place. The process of temporal reasoning is made more difficult by these implicit

temporal cues, which force models to infer the frequency and sequence of events from

the context.

In the MC-TACO dataset [3], if a question concerns an event’s duration, all candidate

responses belong to a duration type. The challenge is how to validate whether there

is a logical duration for this event. Because each candidate’s answer has a different

duration, categorizing the answers based on the temporal type of the question—

for instance, duration—will not eliminate answers that do not fit into the category.

Thus, the model should acquire temporal common sense knowledge. For example,

the model should know that 30 s would be an illogical illness duration—that is, in

this case, 30 s would be a valid duration but not a logical answer. Acquiring this

knowledge is expensive and difficult.

2. Limited Data: While there are a few datasets available in English, there is currently no

dataset specifically designed for TCU in Arabic. One of the most widely used English

datasets is MC-TACO, which is designed to evaluate models on TCU. MC-TACO is

small, lacks a specific training split, and consists of only evaluation and test sets. In

addition, the evaluation set is quite small and contains only 3783 question-answer

pairs. Moreover, to the best of our knowledge, there is no dataset in English that is

designed to cover all temporal features except MC-TACO. This scarcity of datasets

significantly affects the development of models for TCU.

3. Lack of Knowledge: According to existing research, current language models lag

behind human performance in the task of common sense understanding. For example,

this is evident from the MC-TACO leaderboard. Numerous studies have shown that

this performance gap can be overcome by relying on external sources that encapsulate

common sense knowledge [1,4–6]. For instance, as previously discussed, temporal

reasoning involves understanding sequences of events, durations, and implicit time-

related features, which are often not fully captured by existing datasets [5,6]. As a

result, models struggle to make accurate predictions. Therefore, insufficient data

restrict the improvement of these models.

Existing models still struggle to understand the varying lengths of different events, as

the duration of a verb describing an event can change depending on the context. For

example, regarding the duration of the verb “taking”, the act of “taking a vacation”

generally takes longer than “taking a shower”. The latter usually lasts for only a
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few minutes, whereas the former can last for several days or even weeks [3]. To

address this issue, there should be a source of knowledge to help models accurately

capture this temporal context. The existing corpus that can be used for this purpose

is skewed towards uncommon or unexpected event durations and rare events [3].

For example, the duration of “opening a door” is not mentioned unless it is longer

than usual. Determining the duration of various events manually is expensive and

time-consuming. Addressing this gap requires the construction of comprehensive

knowledge bases (KBs) specifically designed for temporal information or, alternatively,

developing more advanced models and algorithms that can learn and infer temporal

common sense from the limited data available.

Challenges of Arabic Temporal Text Understanding

The difference between how Arabic and English express temporal information can

make it challenging to compare temporal common sense understanding in the two lan-

guages. The Arabic language is known for its richness and complexity. Below are some of

the challenges that machines may face in understanding Arabic temporal text.

• Arabic is a complex language in which diacritics represent short vowels, but in MSA,

they are often omitted. This lack of diacritics causes numerous ambiguities [7,8].

For instance, the same word “I. ë
	X” without diacritics can have these two different

meanings: “gold” if it is diacritized “I.
�ë
�	X” or go–went if it is diacritized “I.

�ë
�	X” [8].

This issue, which leads to ambiguity, is not present in English, as English does not

use diacritics.

• Additionally, an Arabic date can be represented using the Gregorian calendar, the

Hijri calendar, or both simultaneously. The Hijri calendar, also known as the Islamic

calendar, is a lunar calendar that includes 12 months in a year with either 354 or

355 days. There are various methods of representing the Gregorian month names in

Arabic, including using phonetically correct English or Arabic names [9]. For example,

“January” can be written as “QK
A
	JK
” (Janāyer) or phonetically as “ø
 P@ñJ


	K Ag. ” (Jānyuwārı̄).

• Another challenge arises from the dual usage of Hijri month names as personal

names [9]. The names Rajab, Shaaban, and Ramadan can refer to either a month or a

person. Additionally, Eid, which is an Islamic holiday, can also refer to a person’s name.

For example, in the provided sentence, the term “ 	àA 	�ÓP” is open to interpretation, as it

can denote either an individual’s name or the Islamic month of Ramadan: “The family

is happy with the arrival of Ramadan” 	àA 	�ÓP Èñ 	kYK.
�èYJ
ª�

�èQå�


B@.

• Another difference between Arabic and English is the use of temporal adverbs. In this

aspect, Arabic has a wider variety of temporal adverbs than English. For example, the

Arabic adverb “ÉJ.
�̄
” (“before”) can refer to events that happened before the present

moment, events that occurred before a specific time, or events that happened before

another event. For instance, see the following examples:

–
�é 	JÓA�JË @ �é«A�Ë@ ÉJ.

�̄ �é�PYÖÏ @ úÍ@

�IJ.ë

	X (“I went to school before 8 o’clock”);

– èYË@ð É��

	à


@ ÉJ.

�̄ éJ.k. @ð úæî 	E


@ (“He finished his homework before his father ar-

rived”);

– �H@ñ	J� �HC�K ÉJ.
�̄ �é»Qå��Ë @ ú



	̄ ÉÔ«



@ �I	J» (“I was working at the company three years

ago”);

– QîD��


@ �èY« ÉJ.

�̄ H. A
�JºË@ @

	
Yë �H



@Q�̄ (“I read this book several months ago”).

While the English adverb “before” can also order two events in the past or present,

such as “I went to school before 8 o’clock” and “He finished his homework before his

father arrived”, it does not encapsulate all of the nuances and contexts that “ÉJ.
�̄
” can
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in Arabic. For example, “before” does not express time periods without additional

context as naturally, such as “I was working at the company three years ago” or “I

read this book several months ago”, whereas Arabic can use “ÉJ.
�̄
” directly to convey

these time frames.

Allen’s temporal relations [10] offer a formal structure for understanding temporal

nuances in natural language. For example, the “Before” relation in Allen’s framework

corresponds to sentences like “I went to school before 8 o’clock”, which depict a

specific order of events. In Arabic, the adverb “ÉJ.
�̄
” adds further complexity as it

can describe a wide range of temporal contexts, including intervals spanning past

periods. This demonstrates the depth and flexibility of temporal expressions in Arabic,

highlighting the need for more sophisticated natural language processing (NLP)

approaches to accurately capture and interpret such temporal relationships across

different languages.

Although English also shows ambiguity, it appears in a different way because of its

sequential morphology and spelling patterns. An example of ambiguity in English is that

identical words can possess multiple meanings.

1.2. List of Contributions

This study makes several significant contributions to the field of temporal common

sense understanding (TCU) using deep learning models.

1. Construction of an Arabic TCU Dataset: An Arabic dataset is constructed to serve

in TCU tasks. This construction will be highly impactful for the Arabic community,

and it addresses the absence of such a resource. The dataset is based on an existing

English dataset. The dataset and the code are available from the corresponding author

upon request.

2. Benchmarking for Temporal Understanding: To evaluate the ability of PLMs to under-

stand temporal features, a benchmark for temporal understanding was established.

3. Applying Multilingual Pre-Trained Language Models (PLMs): The effectiveness of dif-

ferent multilingual PLMs on MC-TACO (the original English dataset) and the Arabic

dataset was examined. Each model was assessed in terms of each temporal aspect.

4. Analyzing Errors: By analyzing the errors, a new classification is suggested to identify

specific issues, which will help improve the understanding of PLMs.

The rest of this article is structured as follows: Section 2 reviews and discusses related

works. The construction of an Arabic dataset for the TCU task is presented in Section 3.

Section 3 also provides a detailed overview of the dataset statistics. Section 4 presents

the evaluation metrics used in this study. In Section 5, the applied PLMs for Arabic

TCU are explored. A detailed analysis of the results of applying PLMs is presented in

Section 6. Consequently, a methodology for evaluating the effectiveness of multilingual

PLMs by analyzing and categorizing errors is proposed in Section 7. To understand the

challenges affecting PLMs’ performance in TCU, a benchmark for assessing PLMs in

temporal classification is presented in Section 8. Finally, Section 9 provides the conclusion

of the study and suggests potential directions for future research.

2. Related Works

The first application of a PLM to the MC-TACO dataset was in 2019, when Zhou

et al. [3] applied BERT as a baseline model. The performance of BERT [11] fell significantly

below human performance levels [3]. This led to the application of unit normalization

for the inputs as a preprocessing step, resulting in slight improvements. Subsequently,
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RoBERTa [12] was applied without unit normalization or any preprocessing, and its perfor-

mance was better than that of BERT with unit normalization [3].

Duration normalization was also proposed as a preprocessing step to improve the

results. In 2020, Kaddari et al. [13] applied duration normalization with T5 [14]. The

result of the proposed model outperformed other models without duration normalization,

although the improvement was marginal compared with T5 without the preprocessing step.

State-of-the-art performance was achieved by applying DeBERTa-Large [15] without any

preprocessing. It outperformed all models by a significant margin. This indicates that PLMs

may be effective even without rule-based processing. Rule-based preprocessing, such as

unit or duration normalization, is language-dependent, prone to errors, and labor-intensive

due to manual coding.

A few studies have attempted to build specific language models for the TCU task, as

proposed after the observed shortcomings of existing PLMs.

• TACOLM: This study highlights the inadequacies of PLMs in addressing TCU tasks,

particularly in terms of their failure to recognize and learn from temporal dimen-

sions. The study proposed an additional pre-training step designed to enrich models

with time-related data by using two methodologies to construct the dataset for this

enhanced pre-training phase [6].

• ECONET: This study aimed to develop temporal language models to improve event

ordering tasks. Inspired by ELECTRA [16], this approach leveraged a targeted masking

strategy to focus the model’s learning on temporal aspects [17].

• A Third Language Model for TCU: This model also utilized a continual training

approach, introducing a different target masking strategy and employing various

time-related datasets. Unlike TACOLM and ECONET, this study did not construct its

dataset but used pre-existing time-related datasets, offering comprehensive coverage

of all temporal dimensions [18].

Virgo et al. [5] demonstrated that recent PLMs have yet to reach human performance

levels in an event duration task. The limited training data, which cover only a finite

number of events and their attributes, highlight the need to incorporate external event

duration information to enhance effectiveness. A new QA dataset for event duration

was constructed from an existing dataset and used for intermediate tasks in an adaptive

fine-tuning approach. While Kimuar et al. [18] used the existing dataset as is, Virgo

et al. [5] focused solely on event duration, whereas the authors of [18] studied all aspects of

temporal understanding.

Several adaptive fine-tuning techniques were explored for the English MC-TACO

dataset [19,20] and adversarial fine-tuning [21]. Despite exploring alternative training

methodologies and constructing specialized datasets, the outcomes from these studies still

fall short of the performance levels achieved by more advanced PLMs, such as DeBERTa [15].

According to the leaderboard (https://leaderboard.allenai.org/mctaco/submissions/public,

accessed on 29 October 2024), these techniques perform worse than the DeBERTa-Large

model [15], which uses the standard fine-tuning paradigm.

Although all suggested techniques have been surpassed by DeBERTa-v3, DeBERTa’s

performance still falls significantly short of human performance on the same task. This

gap emphasizes the complexity of temporal reasoning in NLU and the ongoing need for

research to refine and enhance the capabilities of language models in this critical area.

3. Dataset

TCU is an essential part of the larger field of natural language common sense com-

prehension. Despite the importance of TCU, the availability of resources dedicated to this

aspect in English is limited. Remarkably, there are no datasets in Arabic that are tailored
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to this specific domain. Currently, the only Arabic dataset that addresses common sense

understanding is essentially an English translation that concentrates on common sense

validation [22]. This disparity severely restricts the ability to assess the effectiveness of

transformer-based models in understanding Arabic temporal common sense. The creation

of a dataset is essential for the goals of this study, which include evaluating and enhancing

the effectiveness of transformer-based models in Arabic TCU.

Despite the challenges of its construction, such a dataset promises to be a valuable

addition to Arabic resources, allowing for a more sophisticated and culturally appropriate

understanding of temporal common sense in Arabic. The construction of an Arabic TCU

dataset is considered to have a crucial impact not only on the field of TCU but also on the

Arabic community. This dataset would also greatly advance Arabic natural language under-

standing (NLU) by serving as a foundational resource for further research, in addition to the

main goal, which is to evaluate transformer-based models in the Arabic linguistic context.

Dataset Construction

The construction of a dataset from scratch is particularly resource-intensive. This

challenge is compounded in the context of Arabic, where there is a conspicuous absence

of time-related datasets and a general scarcity of resources. Given these constraints, the

decision to adapt an existing dataset from English to Arabic was motivated by both the

practicality and the unique requirements of the focus of this study.

The MC-TACO dataset [3] was selected for translation into Arabic because of several

key factors that align with the research objectives. First, MC-TACO is recognized, to the

best of our knowledge, as the only dataset that encompasses a wide range of temporal

characteristics, making it exceptionally relevant for our study of TCU. Second, the dataset’s

straightforward structure and use of simple sentences render it particularly amenable to

translation, ensuring the preservation of semantic integrity during this process.

MC-TACO was designed as a multiple-choice reading comprehension (MRC) task.

The input of the model from the dataset consists of three components: an abstract or context,

a question, and a corresponding answer. The model requires the output of a prediction

score based on a judgment of the plausibility value of the answer. The score should be close

to one if the candidate answer is valid. The relatively concise nature of the information

provided in the dataset, often encapsulated in three sentences, makes it feasible to employ

a translation tool for the initial construction process. Google Translate was utilized for

this purpose, with subsequent translations being subjected to a thorough review by two

native Arabic speakers specialized in proofreading to ensure accuracy and natural language

use. The reviewers, who examined all the inputs individually, were from different Arabic

countries—specifically, Saudi Arabia and Morocco—as cultural differences might affect the

understanding of the translated results. Finally, the overall results were reviewed to ensure

consistency and accuracy.

The dataset encompasses approximately 13K question–answer pairs spanning five

temporal dimensions, thereby offering a rich resource for exploring various aspects of

temporal reasoning. The temporal dimensions included in MC-TACO are explained below.

1. Event duration: How long does an event last?

2. Temporal ordering: Typical order of events.

3. Typical time: When did an event occur?

4. Frequency: How often do events occur?

5. Stationarity: Is a state maintained in the long term or indefinitely?

Table 1 presents statistical information for both the English and Arabic versions of

the dataset. Table 2 presents statistics for the temporal features. Furthermore, Figure 2

illustrates the distribution of question–answer pairs across different temporal aspects. The
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dataset predominantly consists of question–answer pairs related to event duration, with

frequency being the second most common aspect. On the other hand, the coverage of the

stationarity feature is notably low, comprising only 870 pairs (7%).

Table 1. Dataset statistics.

Measures Arabic English

Number of unique questions 1893 1893

Number of unique question–answer pairs 13,225 13,225

Avg. context length 15.2 17.8

Avg. question length 6.5 8.2

Avg. answer length 3 3.3

Table 2. Temporal category statistics.

Category
Number of Unique

Contexts
Number Unique

Questions
Avg. Number of

Candidates

Event Duration 135 440 9.4

Event Ordering 26 370 5.4

Frequency 229 433 8.5

Typical Time 43 371 6.8

Stationarity 73 279 3.1

Figure 2. Percentage of the unique question–answer pairs in each temporal category.

A sample of the dataset is presented in Figure 3. This figure provides a comprehensive

overview of different temporal categories, illustrating an example of each one. Additionally,

this figure includes a question along with its corresponding set of answers. The correct

answers are highlighted in bold.
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Figure 3. Sample of the dataset. Each row targets one temporal aspect from the five aspects covered by

the original dataset. An example context for each aspect is provided from both the English and Arabic

datasets. The English column is from the MC-TACO dataset and includes five different contexts,

each representing one aspect. For each context, the question is provided along with all candidate

answers, with the correct answers in bold. Note that there may be more than one correct answer

for a question, and the number of answers for each question varies. The Arabic column is from the

translated dataset.

4. Evaluations

Although the dataset can be viewed as a binary classification task, where accuracy

is a commonly used metric, it may not be the most appropriate metric in this case. The

distribution of labels for the candidate’s responses is approximately one “no” to two



Computation 2025, 13, 5 10 of 23

“yesses”, implying that a high level of accuracy (or a low error rate) can be achieved even

by a model without real skill that simply predicts the majority class. Consequently, the

accuracy can be a misleading metric for this type of dataset.

To address this, we adopted the F1 score and Exact Match metrics based on recommen-

dations in prior research by Zhou et al. [3]. The F1 score was chosen for its ability to balance

precision and recall, which is critical for assessing nuanced tasks such as TCU, where errors

often involve partial correctness. This ensures that the model’s predictions are evaluated

not just for their frequency of correctness but also for their completeness and consistency.

Meanwhile, Exact Match serves as a stricter metric, providing insight into models’ ability

to produce fully correct outputs.

The F-measure is a single metric that trades precision for recall. This factor is the

weighted harmonic mean of the precision and recall, where the weight is denoted by the

variable β. The default balanced F-measure, where β = 1, is commonly written as F1, which

is short for Fβ=1.

F =
(1 + β2)× Precision × Recall

(β2 × Precision) + Recall
(2)

F1 = 2 ×
Precision × Recall

Precision + Recall
(3)

Exact Match (EM) is a strict version of accuracy in which all labels must match exactly

for the sample to be correctly classified. For MC-TACO, the model must correctly predict

all answers to each question to be considered a correct prediction.

EM =
Total Number of Questions that are Predicted Correctly

Total Number of Questions
(4)

5. Models

Various experiments were conducted using different PLMs. Multilingual PLMs and

Arabic versions of BERT were applied to understand the Arabic dataset. Subsequently, a

detailed comparison and analysis of the model results are presented. Two Arabic versions

of BERT were adopted: AraBERTv2 and CAMeLBERT. AraBERTv2 is the latest version

of AraBERT that was initially introduced by Antoun et al. [23]. This model was selected

over other Arabic versions of BERT due to its superior performance, as evidenced by the

model card on Hugging Face (https://huggingface.co/aubmindlab/bert-base-arabert,

accessed on 1 May 2024) and research conducted by Alammary et al. [24]. This study

involved text classification specifically for the Arabic language. In this study, AraBERT-

v2 exhibited better outcomes than XLM-RoBERTa. The CAMeLBERT model [25] (https:

//huggingface.co/CAMeL-Lab, accessed on 1 May 2024) was not included in the analysis

conducted in [24]. It would be valuable to compare this model with the current leading

Arabic BERT model. Furthermore, the performance of AraBERTv02 is better than that

of CAMelBERT according to [25]. However, CAMeLBERT was the second-best model

among all Arabic versions of BERT based on research conducted by CAMeL Lab [25].

Therefore, it is worthwhile to compare these two models for this task. CAMeLBERT has

different versions. CAMeLBERT-msa was selected among all others because the target

dataset was written in MSA Arabic. Notably, AraBERT and CAMeLBERT are different

from multilingual models because they are tailored to Arabic. AraBERT, CAMelBERT, and

multilingual BERT all have the same architecture because they are derived from the original

BERT with some modifications. According to Inoue et al. [25], the pre-training data size

may not be an important factor in fine-tuning performance.

In this study, multilingual BERT was selected because BERT was the baseline model

for the original dataset and numerous versions of BERT have been designed specifically
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for the Arabic language. Furthermore, mDeBERtav3 and XLM-RoBERTa were specifically

chosen because of the effectiveness of their original models on the English dataset.

6. Results

This section presents the results of applying multilingual PLMs to Arabic TCU. To the

best of our knowledge, this is the first study to explore this area. AraBERT and CAMeLBERT

were pre-trained only on the Arabic dataset. Therefore, the Arabic versions of BERT were

expected to outperform their multilingual counterpart and multilingual PLMs. The results

of these experiments are presented in Table 3.

To assess the stability and variability of the system, additional runs were conducted,

each with a different random seed. Three runs were conducted. Each run was independent,

and its random processes, including data shuffling and GPU initialization, were influenced

by its specific seed. From these three runs, the performance metrics were observed, and

the standard error was calculated to deduce how much the performance varied with the

change in seeds. Finally, the reported performance metrics were based on running the

system with a default random seed, which was equal to 42.

Table 3. Results of applying PLMs on the Arabic dataset.

Model F1 EM

mBERT 58.12 28

Arabert-v02 64.46 34.01

CAMeLBERT-msa 61.76 32.51

XLM-RoBERTa-Large 64.99 36.19

XLM-RoBERTa-base 61.77 31.53

mDeBERTa-v3 67.98 38.66

Based on the results presented in Table 3, multilingual DeBERTa-v3 achieved the best

performance, followed by XLM-Roberta Large. Although AraBERTv02 and CAMeLBERT

were trained on Arabic datasets, mDeBERTa-v3 outperformed them significantly. This

may have occurred because the target task required common sense reasoning, suggesting

that more advanced models such as mDeBERTa-v3 could be necessary, explaining the

performance discrepancy. Factors that can be attributed to the superior performance of

mDeBERTa-v3 compared with the other models are as follows:

1. The depth of the architecture in XLM-RoBERTa-large is 24 layers—twice the number

of layers in mDeBERTa-v3, XLM-RoBERTa base, and mBERT, which all have 12

layers. This difference could indicate that the number of layers might not provide the

best performance.

2. Although BERT and XLM-RoBERTa employ self-attention mechanisms, mDeBERTa-

v3 may incorporate more advanced attention mechanisms, such as disentangled

attention, which is specifically designed to capture precise linguistic dependencies.

Consequently, this model can surpass the others in tasks requiring extensive linguistic

analysis, such as TCU.

3. This is also evidenced by applying English DeBERTa-v3 Large to MC-TACO, which

achieved state-of-the-art results. The success of DeBERTa-v3 in TCU demonstrates the

effectiveness of transfer learning, which overcomes the problems of limited datasets

and extensive labeling by leveraging the large knowledge base acquired during the

pre-training process.
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This study compared the performance of AraBERT-v02 and CAMeLBERT, which

are both designed for the Arabic language. AraBERT-v02 showed better results than

CAMeLBERT, which was possibly due to the former’s vocabulary size, which is twice that

of CAMeLBERT.

Figure 4 presents the outcomes of the various models when applied to the Arabic

dataset. The F1 score is displayed for each temporal aspect, facilitating an assessment of

the effectiveness of each model. The figure reveals several significant findings, which are

summarized below:

• The strength of all models is the stationarity aspect. All of the models scored above

74 in this aspect. mDEBERTa-v3 and XLM-RoBERTa Large scored the same. Upon

analyzing the data, it appears that this particular aspect may be less difficult than

other aspects. This is mainly because the majority of the responses for this feature

were either yes or no. Furthermore, certain responses are evidently unrelated and are

easily dismissed by the models.

• The event duration was the most challenging feature for all models, with a mean

discrepancy of 10 units less than the overall F1 score of each model. Due to the

challenging nature of this aspect, some studies, including that of Virgo et al. [5],

suggested that an external source is required.

• Overall, mDeBERTa-v3 is the most effective model, but it did not outperform all

models in all aspects, and mDeBERTa-v3 demonstrated superiority in event duration

and frequency.

• AraBERt-v02 and CAMeL-msa demonstrated superior performance to that of all other

models in the Typical Time feature. Notably, the overall effectiveness of CAMeL

was lower than that of the other models. Thus, it was necessary to identify the

distinguishing factor of the typical time feature that made the models trained on

Arabic datasets perform better than the other models. This might be because the

typical time is closely related to the nature of the culture, making models fully trained

on Arabic datasets more effective.

• mBERT had the lowest performance in all categories.

Figure 4. Model results: F1 score for each temporal aspect.
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Although the AraBERT and CAMeL models have different performance levels, it

is important to analyze the differences in their predictions because they have numerous

similarities in their model architecture and pre-training datasets. The distribution of the

prediction percentages across the different temporal features is illustrated in Figure 5. The

prediction of the probable order of events varied significantly between the two models, with

most predictions differing by approximately 30%. Moreover, the percentage of identically

incorrect predictions was the highest. The most similar predictions were those of frequency

and event duration.

Figure 5. Predictions of AraBERT vs. CAMeLBERT.

Hyperparameter Settings

The hyperparameters used for training and evaluating all models in this study were

kept consistent to ensure a fair comparison across the different pre-trained language models.

These settings were chosen based on preliminary experiments and followed best practices

from related work in temporal reasoning tasks. Table 4 summarizes the hyperparameters

used across all models.

Table 4. Hyperparameters used to train and evaluate all models in this study. These hyperparameters

were consistent across all models to ensure a fair comparison.

Parameter Value

Learning Rate 2 × 10−5

Batch Size 32

Number of Epochs 10

Max Sequence Length 128

These hyperparameters were applied uniformly to all models to ensure that differences

in performance were solely attributable to the model architecture and not the configuration.

Computational Environment: All experiments were conducted on Google Colab

using an A100 GPU, and the model implementation was based on PyTorch (version 2.4.0)

and the Hugging Face Transformers library (version 4.45.0).
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7. Error Analysis

The task undertaken in TCU presents significant challenges, as evidenced by the results

of the models in the previous section. This led to a manual investigation of the inputs to

understand the challenges. Thus, by studying the MC-TACO dataset, certain questions pose

difficulties, even for humans, which is substantiated by the dataset’s human performance

metrics (87%). Consequently, errors encountered in this context can be classified into

two main categories: human-challenging errors and linguistic and task complexity errors.

Human-challenging errors are instances where both the model and humans struggle to

validate the given answers. On the other hand, linguistic and task complexity errors denote

situations in which the model fails to grasp the intricacies of language use or validation of

answer plausibility. The following sections present each type of error in detail and provide

a more detailed analysis.

7.1. Human-Challenging Errors

As previously mentioned, the first type of error, characterized by its complexity and

the challenges it poses to both humans and models, can be approached with a degree of

acceptance or tolerance compared with the second type. These errors fall into an “uncertain

zone”, where they are neither fully correct nor entirely incorrect. For instance, from MC-

TACO, consider the question related to the duration of an illness based on a provided

context: “Dürer’s father passed away in 1502, and his mother died in 1513. How long

was his mother ill?”. One of the candidate answers is that she was ill for 30 years. Even

though the gold label for this answer is “no”, meaning that the answer is incorrect and

considered an unlikely duration for an illness, it is also possible to argue “yes”, indicating

that a 30-year duration could indeed represent a period of illness. This example highlights

the subjective nature of certain inputs, emphasizing the complexity and potential ambiguity

inherent in evaluating the validity of the answers provided for the TCU task.

The human performance metric displayed on the leaderboard of MC-TACO—

specifically, the F1 score—was 87.1%, and the Exact Match (EM) rate was 75.8%. However,

it is important to note that these measures, which were derived from a subset of the dataset,

may not fully encapsulate accuracy. Despite this limitation, it can be assumed that human-

challenging errors account for approximately 22% of the total error rate, providing insight

into the extent of the challenges posed by these types of questions.

Capturing inputs considered challenging for humans within a test set comprising

9442 items is an arduous task. Implementing a voting mechanism across the entire test set

could offer insight into the difficulty level of each question. However, the benchmark was

derived from a sample of the total data [3], suggesting that a rough sampling of instances

falling into this challenging category would be both practical and acceptable. This approach

allows for the identification and analysis of particularly complex cases without the need

to exhaustively review every item in the dataset, thereby providing a feasible method for

gauging the extent of challenging human errors within the dataset.

Additionally, it is important to recognize that some answers may be culturally depen-

dent, meaning that for certain cultures, an event or concept might be considered plausible,

whereas for others, it might not. This variability introduces another layer of complexity,

classifying instances as human-challenging errors. This cultural dimension underscores the

necessity of incorporating a diverse perspective when evaluating answers, as it highlights

the subjective nature of understanding and interpreting information. Recognizing the

influence of cultural context on what is deemed correct or incorrect is crucial for accurately

assessing the scope of human-challenging errors within the dataset. For instance, within the

dataset, a question regarding the appropriate time for an interview illustrated the impact of

cultural differences. In Saudi culture, interviews can be scheduled on Sundays, a practice



Computation 2025, 13, 5 15 of 23

that might differ from norms in other cultures, where the workweek typically begins on

Monday. Furthermore, the start time for schools in Saudi Arabia is earlier than that in

many other countries, reflecting another aspect of cultural variance. In addition, during

Ramadan, eating late at night is very common to accommodate the fasting schedule. This

contrasts with the dining habits of cultures that do not observe Ramadan. These examples

highlight how cultural contexts significantly influence the interpretation of what constitutes

a correct or plausible answer, thereby contributing to the categorization of such instances

as human-challenging errors within the dataset.

Some research has focused on the grounding of time expressions as a culturally

dependent aspect. One notable study by Shwartz [26] analyzed time expressions across

27 languages, although Arabic was not included. This study aimed to define how the

conceptual range of time periods, such as morning and noon, can vary significantly across

different cultures. Additionally, it explores the impact of these cultural variations on PLMs.

The findings of such studies are crucial because they highlight the challenges of PLMs in

accurately understanding and generating context-appropriate responses to time-related

queries [26]. These variations in the perception of time can affect a model’s ability to provide

correct and culturally sensitive answers, underscoring the importance of incorporating

diverse cultural understanding into the development and training of language models.

Accordingly, human-challenging errors can have two subcategories: “cultural tempo-

ral interpretation” and “subjective event understanding”.

In the exploration of PLMs to navigate the complexities of culturally dependent

temporal expressions and subjective understandings, it is crucial to examine the specific

instances where errors occur. The following examples provide a comprehensive overview

of various error types identified in this category, showcasing sample inputs alongside

the expected responses and comparing these with the outputs generated by the PLMs.

This comparative analysis not only highlights the discrepancies between expected and

actual responses but also offers insights into the models’ underlying challenges with

cultural nuances and subjective interpretations. This examination can shed light on areas

of improvement in PLMs for the TCU task. Moreover, creating a dataset that can address

this issue has great potential.

Examples

Table 5 presents the various scenarios that can be classified as subjective event under-

standing. The analysis of each example is discussed in the following list, which is ordered

according to the same sequence as the examples in the table.

1. All of the PLMs in English and Arabic predicted “no”. This outcome is indicative of

a challenge for PLMs and touches upon human cognitive processes. The specificity

of the duration—7.5 min—represents an atypical time frame that is not commonly

associated with the activity described.

2. The response of all of the PLMs in English and Arabic is “yes”. This input could be

considered a human-challenging error, as it involves understanding the legislative

process and the realistic pace at which laws and initiatives are typically passed, which

vary significantly across different jurisdictions and over time.

3. Not all of the PLMs are able to predict the correct label. The scenario involving steam

rising from a wet road after a summer rainstorm, with the duration specified as “steam

rises for 30 min off a wet road before a summer rainstorm”, presents a nuanced chal-

lenge that tests both temporal reasoning and contextual understanding. The question

is inherently human-challenging, not just because of the temporal aspect—quantifying

the duration for which steam rises—but also because of the contextual misunder-

standing in the provided response. The mention of steam rising “before” a rainstorm
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contradicts the common observation and understanding that steam typically rises

“after” rain has fallen and is heated by the warm road, creating a visual phenomenon

observed by many.

Table 5. Examples of errors in subjective event understanding.

Context Question Answer Label

It was huge and inefficient,
and she should never have

spent so many pesos on a toy,
but Papa would not let her

return it.

How long did she
spend at the store
buying the toy?

She spent 7.5 min at the
store buying the toy

yes

California was first to require
smog checks for clean air and
to pass anti-tobacco initiatives

and bike helmet laws.

How often are such
initiatives passed?

One a month no

Most of us have seen steam
rising off a wet road after a

summer rainstorm.

How long does
steam rise after a

summer rainstorm?

Steam rises for 30 min
off a wet road before a

summer rainstorm.
no

Table 6 presents various scenarios that may be classified as cultural temporal inter-

pretation. The analysis of each example is discussed in the following list, which is ordered

according to the same sequence as the examples in the table.

1. All PLMs, in English and Arabic, predicted “no”. In fact, this case touches on cultural

or geographical dependency. The perception of how often it rains in the summer

varies significantly across different regions and climates, which makes this question

inherently dependent on the cultural and geographic context. This information is not

provided in the context.

2. Labeling certain answers as “no” can be culturally dependent, which touches on

broader themes of consumer behavior, store operating hours, and possibly societal

norms regarding appropriate times for shopping. The assumption that purchasing a

toy at midnight is unusual or incorrect may indeed vary by culture and locale. In some

regions or during certain times (such as holidays or special sale events), late-night

shopping can be common, while in others, it might be seen as atypical due to differing

social norms and operational hours of businesses.

3. Similarly to the previous case, in some cultures and during holidays, baking is possible

at 12 a.m.

Table 6. Examples of errors in cultural temporal interpretation.

Context Question Answer Label

Most of us have seen steam rising off
a wet road after a summer rainstorm.

How often does it
rain in the summer?

A couple times
every month

yes

It was huge and inefficient, and she
should never have spent so many

pesos on a toy, but Papa would not let
her return it.

What time did she
purchase the toy at

the store?
Midnight no

For example, what if you place a cake
in the oven and you leave it in

too long?

What time would
you put the cake in

the oven?
12:00 a.m. no
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7.2. Linguistic and Task Complexity Errors

This category encompasses a broad range of challenges encountered by language

models, making it the most diverse category of errors. These errors are predominantly

language-dependent, and they are significantly influenced by the specific tokenization

methods used during model training. Additionally, linguistic features such as morphology

and overall complexity contribute to the difficulties faced by models in processing and

understanding language inputs accurately. Finally, validating the likelihood of provided

answers can be challenging and requires common sense knowledge.

A key aspect of linguistic complexity errors is their relationship with the structure and

nuances of language, including how words are formed and combined. The way a model

tokenizes input—breaking down sentences into words, subwords, or characters—affects its

ability to understand and generate coherent responses. Morphological complexity, which

involves the structure of words and their relationship with one another within a language,

further complicates comprehension, especially in languages with rich inflectional systems.

Moreover, these types of errors can often be mitigated through strategic preprocessing

steps, such as time normalization (converting time expressions to a standard format) [13]

or unit normalization (standardizing measurements) [3]. Additionally, models vary in their

ability to interpret numbers, whether presented in word form or as numerals, which can

lead to inconsistencies in understanding and answering questions accurately.

Some models demonstrate proficiency in identifying the type of answer required (e.g.,

a date or a quantity) but falter when it comes to providing the correct specific response.

This discrepancy may stem from the models’ training datasets, which might not adequately

prepare them for the breadth of task complexity that they encounter in real-world appli-

cations. This limitation suggests the need for more comprehensive training approaches

that better encapsulate the linguistic diversity and complexity inherent in natural lan-

guages. Moreover, enhancing the current dataset can assist the model in comprehending

this complex task.

Table 7 illustrates a sample of errors in the complexity of the language and tasks. The

analysis of each example is discussed in the following list, which is ordered according to

the same sequence as the examples in the table.

1. mBERT failed to predict this in both. For the Arabic dataset, XLM-R base, AraBERT,

and CAMeL failed, while a human can easily validate the answer as “no”. However,

this represents a more complex challenge for PLMs. The models must not only process

the natural language of the question but also apply logical reasoning and background

knowledge to identify the irrationality of the premise that a historical figure could

die multiple times. This difficulty arises from the models’ reliance on patterns and

data within their training corpus, which does not explicitly cover every aspect of

common sense or logical reasoning needed to immediately flag the question’s premise

as impossible.

2. All of the PLMs in English and Arabic predicted “no”. The difficulty lies not only

in interpreting historical events and their timelines but also in the nuanced under-

standing of the term “postwar slump” and its impact over time. The term “postwar

slump” refers to the economic downturn following a significant conflict—in this case,

likely World War I, considering the reference to the 1930s. The incorrect labeling of

“decades” as a possible answer by all PLMs could be attributed to different reasons.

The model’s failure to recognize “decades” as a plausible duration may indicate a gap

in understanding the prolonged effects of postwar economic conditions or the specific

historical context.

3. All of the PLMs in English and Arabic predicted “no”. Correctly interpreting and

validating answers regarding the frequency of activities also involves common sense
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understanding and world knowledge, such as the typical behaviors of families with

young children. PLMs must leverage this broader knowledge to make informed

inferences about habitual actions.

Table 7. Linguistic and task complexity errors.

Context Question Answer Label

However, more recently, it has been
suggested that it may date from earlier

than Abdalonymus’ death.

How often did
Abdalonymus die?

every two
years

no

Setbacks in the 1930s caused by the
European postwar slump were only a

spur to redouble efforts by diversifying
heavy industry into the machine-making,

metallurgical, and chemical sectors.

How long did the
postwar slump last?

decades yes

Tommy and Suzy (brother and sister)
went to the playground one afternoon

with their mom and dad, Jan and Dean.

How often did they
go to the

playground?

twice a
month

yes

Adopting error categorization can enhance our understanding of PLMs’ behavior and

pinpoint the sources of errors. This insight lays the foundation for future research focused

on improving these models in several key areas.

• Domain-Specific Pre-Training: Pre-training models on specialized temporal corpora,

such as Arabic news archives or domain-specific datasets, can improve their under-

standing of temporal expressions across diverse contexts. This approach would enable

models to better grasp nuances specific to temporal reasoning in the Arabic language.

• Data Augmentation: Introducing diverse temporal reasoning examples, such as his-

torical timelines, weather forecasts, or event-driven narratives, can broaden models’

ability to generalize. By enriching the dataset with varied temporal scenarios, we can

enhance a model’s robustness and its capacity to handle different forms of tempo-

ral reasoning.

8. PLM Evaluation

In this section, after identifying the errors in the previous section, the investigation

focuses on determining whether the failure stems from a lack of understanding of temporal

features or the inherent challenges of the TCU task. Additionally, a comparison between

the two languages is conducted to analyze this aspect.

A novel hypothesis proposes the assessment of PLMs’ proficiency in TCU tasks by

categorizing inputs into five temporal dimensions. Within this framework, a model’s

ability to categorize questions correctly suggests that it grasps the temporal features and

understands the type of temporal question being asked. However, failing to provide the

correct answer implies that the model struggles to apply logical reasoning or lacks the

necessary world knowledge to determine whether an answer is plausible within the given

temporal context.

Drawing inspiration from traditional question–answer (QA) systems, where question

classification is crucial for high performance, based on Huange et al. [27] and Kolomiyets

et al. [28], our approach adapts this methodology for a modern context. Unlike QA systems,

where classification directly aids in generating answers, here, it serves as a diagnostic

tool. This distinction is key, emphasizing that our goal is not to classify for the sake of

classification but to deepen our understanding of PLMs’ handling of temporal information.



Computation 2025, 13, 5 19 of 23

Implementing this strategy requires the utilization of all PLMs applied to the dataset

for temporal classification. This foundational step ensures that the models understand the

temporal dimension of queries. Following classification, the models’ performance on this

task was compared with their TCU task performance, focusing on each temporal aspect.

This comparison was designed to reveal correlations or discrepancies, providing insight

into the models’ capabilities and areas that need refinement.

For example, a model proficient in classifying questions but faltering in providing

accurate answers might indicate an understanding of temporal concepts but a lack of

application in complex scenarios. Such findings highlight the importance of enhancing

models’ reasoning capabilities and understanding temporal contexts.

Our methodology not only offers a nuanced assessment of PLMs’ handling of temporal

information but also points to potential improvements. By identifying specific weaknesses,

this approach can guide the development of targeted training or fine-tuning strategies,

thereby enhancing PLMs’ effectiveness in TCU tasks and beyond.

Results and Discussion

The classification task was implemented in both monolingual and cross-lingual set-

tings, examining the models’ performance across different languages. In monolingual

environments, specifically for Arabic and English, the classification accuracy reached

an impressive rate of approximately 97%. This high level of accuracy underscores the

effectiveness of PLMs in understanding temporal information in a single-language context.

Figure 6 distinctly showcases the significant gap between classification accuracy and

performance on the TCU task. This discrepancy is notably pronounced, emphasizing the

challenges that PLMs face when transitioning from understanding temporal categories to

applying this understanding in more complex TCU scenarios.

Figure 6. The results of TCU and temporal classification for Arabic and English.

Given the similarity in outcomes between the Arabic and English datasets, the analysis

focused in depth on the Arabic dataset to explore this phenomenon further. This targeted

approach allows for a nuanced examination of where and how PLMs struggle, particularly

in the context of language-specific nuances and temporal reasoning.

Figure 7 breaks down the gap across various temporal aspects, shedding light on the

specific areas where discrepancies in performance are most stark. This visual represen-

tation serves as a critical tool for identifying the dimensions of temporal understanding
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that require further refinement in PLMs, offering insights into potential focus areas for

improving model training and development.

Figure 7. Results of Arabic temporal classification in comparison with TCU.

9. Conclusions

This study has made several contributions to the field of TCU, especially for Arabic.

The scarcity of datasets has been addressed by constructing an Arabic version from the

English MC-TACO dataset. Furthermore, this study examined the performance of several

multilingual PLMs across both datasets. As a result, the overall performance exhibited a

significant gap between Arabic and English. Moreover, the results showed that, for the

English dataset, models originally designed for English revealed a significant performance

advantage over their multilingual counterparts. However, this is not the case for Arabic

models with an Arabic dataset. This study highlighted the inherent complexity of the Arabic

language and emphasized the significant scarcity of suitable datasets for this research area

for the Arabic language. Addressing this gap will require a collaborative effort.

To evaluate PLMs’ understanding of TCU tasks, a new hypothesis was introduced.

Based on this analysis, it was found that the challenge leading to the failure of PLMs lies in

the complexity of common sense reasoning rather than in understanding temporal features.

Several issues must be addressed and considered as limitations of this study. First, the

size of MC-TACO is quite small, and the split that has been suggested might be adapted to

enhance the performance of PLMs in both languages. Additionally, the dataset contains

inputs that might conflict with Arabic cultural standards, which might have limited the

efficacy of the models with the Arabic dataset.

To address these issues, MC-TACO can be augmented using a temporal common

sense dataset specifically designed for Arabic. This can enhance the model performance
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by overcoming cultural disparities. Addressing cultural issues could significantly reduce

the potential for errors and misunderstandings in the model’s output. The construction

of an extensive Arabic dataset is the optimal solution. However, this effort could require

substantial investment in both resources and specialized knowledge.

In addition, we acknowledge the imbalance in the distribution of temporal categories,

particularly the underrepresentation of the stationarity feature. This distribution reflects

the natural occurrence of these features in the collected texts. While balancing the dataset

could improve evaluations, it may compromise the realism and authenticity of the dataset.

As such, this trade-off remains a critical consideration for future work in this domain.

This study serves as a foundation for advancing temporal reasoning in Arabic, offering

valuable insights for further research on underrepresented languages and real-world

applications such as healthcare, legal systems, and digital assistants.
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Abbreviations

The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers

DeBERTa Decoding-enhanced BERT with disentangled attention

EM Exact Match

NLU Natural Language Understanding

MRC Multiple-Choice Reading Comprehension

MSA Modern Standard Arabic

PLM Pre-trained Language Model

RoBERTa Robustly optimized BERT approach

TCU Temporal Common Sense Understanding

XLM-RoBERTa Multilingual version of RoBERTa
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