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ABSTRACT 

Background: Advance Care Planning (ACP) empowers individuals to make informed 
decisions about their future healthcare. However, barriers including time constraints and a lack 
of clarity on professional responsibilities for ACP hinder its implementation. The application 
of artificial intelligence (AI) could potentially optimise elements of ACP in practice by, for 
example, identifying patients for whom ACP may be relevant and aiding ACP-related decision-
making. However, it is unclear how applications of AI for ACP are currently being used in the 
delivery of palliative care.  

Objectives: To explore the use of AI models for ACP, identifying key features that influence 
model performance, transparency of data used, source code availability, and generalizability.  

Methods: A scoping review was conducted using the Arksey and O’Malley framework and the 
PRISMA-ScR guidelines. Electronic databases (Scopus and Web of Science (WoS)) and seven 
preprint servers were searched to identify published research articles and conference papers in 
English, German and French for the last 10 years’ records. Our search strategy was based on 
terms for ACP and artificial intelligence models (including machine learning). The GRADE 
approach was used to assess the quality of included studies.  

Results: Included studies (N=41) predominantly used retrospective cohort designs and real-
world electronic health record data. Most studies (n=39) focused on identifying individuals 
who might benefit from ACP, while fewer studies addressed initiating ACP discussions (n=10) 
or documenting and sharing ACP information (n=8). Among AI and machine learning models, 
logistic regression was the most frequent analytical method (n=15). Most models (n=28) 
demonstrated good to very good performance. However, concerns remain regarding data and 
code availability, as many studies lacked transparency and reproducibility (n=17 and n=36, 
respectively). 

Conclusion: Most studies report models with promising results for predicting patient outcomes 
and supporting decision-making, but significant challenges remain, particularly regarding data 
and code availability. Future research should prioritize transparency and open-source code to 
facilitate rigorous evaluation. There is scope to explore novel AI-based approaches to ACP, 
including to support processes surrounding the review and updating of ACP information.   

Keywords: Advance care planning, digital tools, palliative care, artificial intelligence, machine 
learning 
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1. INTRODUCTION 

Advance Care Planning (ACP) “…is a voluntary process of person-centred discussion between 
an individual and their care providers about their preferences and priorities for their future care” 
[1]. This often includes multiple discussions and can include any people that a person would 
like to involve. The goal of ACP is to ensure that a person's values, beliefs, and goals for care 
are understood and respected, particularly when they may be unable to communicate these 
wishes themselves [2]. This process is especially important when individuals face serious 
illness, empowering them to articulate their healthcare preferences and appoint a surrogate 
decision-maker. ACP may involve documenting these preferences through advance directives 
or similar legally binding instruments to ensure patient-centered care, even in moments when 
they cannot advocate for themselves. ACP is not limited to palliative care settings but spans 
community and acute care environments [3]. It plays a central role in ensuring that healthcare 
aligns with patient values throughout their illness trajectory. Caregivers, in their supportive 
roles, can help ensure that these values are continually reassessed and that the patient's 
healthcare preferences evolve as needed. The regular review of ACP is essential to reflect 
changes in health status or personal values, further enhancing the quality of care at the end of 
life [4]. Moreover, early engagement in ACP, involving both the patient and their caregivers, 
has been shown to reduce unnecessary interventions, mitigate healthcare costs, and improve 
the overall quality of care by focusing on patient-centered outcomes, especially in populations 
such as cancer patients [5], [6]. Evidence highlights that when caregivers understand the 
patient's goals, they experience reductions in both anxiety and emotional strain as they feel 
more prepared to navigate complex medical decisions [7]. 
Despite the potential benefits of ACP, its implementation remains a challenge for healthcare 
professionals. Insufficient communication skills, a lack of knowledge to determine when and 
how to have ACP conversations, and time constraints hinder its widespread adoption [8].  While 
time constraints are a significant barrier, an emerging approach to support ACP implementation 
is the integration of Artificial Intelligence/Machine Learning (AI/ML) methods which offers 
broader potential benefits beyond simply saving time. Artificial Intelligence (AI) encompasses 
various methods that enable machines to mimic human cognitive functions. Among these, 
Machine Learning (ML) is a dominant and widely used subset, where systems learn from data 
to perform tasks without being explicitly programmed. In that sense, AI can contribute to ACP 
by, for example, supporting the timely identification of people who could benefit from ACP 
through algorithms that predict mortality and disease progression [4], [7], [9], [12], [25], [35], 
[36]. Furthermore, AI can enhance predictive accuracy in identifying individuals who would 
benefit most from ACP discussions [32], [55], [76], [79], personalize ACP processes by 
analyzing patient data to tailor information and discussions to individual needs and values [30], 
[37], [54], [57] and support clinicians with decision-making tools that integrate real-world data 
to forecast patient outcomes and facilitate more informed end-of-life care planning [1], [13], 
[24], [28],[37]. 
Despite the potential benefits of ACP, its implementation remains a challenge for healthcare 
professionals. Insufficient communication skills, a lack of knowledge to determine when and 
how to have ACP conversations, and time constraints hinder its widespread adoption. While 
digital resources such as websites, portals, and apps have been designed to support reflection, 
communication, decision-making, and documentation of end-of-life care, the specific 
application of artificial intelligence approaches in this context remains relatively understudied 
[16]. AI-powered tools differ from traditional digital platforms by offering enhanced 
interactivity, prediction, and data-driven personalization. For instance, AI can facilitate more 
interactive experiences through chatbots or conversational agents that guide users through ACP 
discussions [83]. Predictive AI models can analyze patient data to anticipate future care needs 
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or identify individuals who might benefit most from ACP, enabling proactive engagement [84]. 
Furthermore, AI algorithms can analyze individual patient characteristics to tailor information 
and support, adapting to specific preferences and circumstances in a way that static websites 
or portals cannot [85]. While AI-based approaches are beginning to show promise in 
identifying patients in their last year of life, few resources integrate seamlessly with existing 
healthcare workflows or offer interactive interfaces tailored for healthcare providers [17]. For 
the specific use of AI-based approaches to support ACP, to date, there has been no compilation 
and outline of the current evidence base. This scoping review aims to comprehensively examine 
the current state of AI approaches within digital tools for ACP. Specifically, it explores how AI 
approaches can be applied to support ACP as part of palliative care delivery. 

 

2. METHODS 

2.1. Overview 

This scoping review was undertaken as part of the AI4HOPE project (https://www.ai4hope.eu). 
The review was undertaken as part of early co-design activities to guide the development of a 
digital ACP platform to support information provision for people living with mild to moderate 
dementia, alongside a focus on the documentation of information that they would like to be 
part of ACP discussions. As the topic of AI supporting ACP is still emerging, this review 
focuses on any health conditions. The scoping review questions were formed through applying 
the Population-Concept-Context (PCC) framework [82]. ‘Population’ included people with 
serious or life-limiting illnesses, ‘Concept’ included the application of AI approaches as part of 
the ACP process, and ‘Context’ remained broad and included any country setting 
internationally, alongside including any care setting supporting the population of interest. Three 
broad questions derived from the PCC framework elements guided the approach to the scoping 
review, and included: In which domains of ACP can AI approaches be effectively applied? 
What are the primary and secondary objectives of utilizing AI approaches in digital tools for 
ACP? What are the most critical features to consider in AI approaches for ACP, and how can 
feature selection be optimized to enhance model performance and generalizability? This 
scoping review adhered to the methodological framework outlined by Arksey and O'Malley 
[18] and complies with the PRISMA-ScR checklist [19]. Following this guidance, we 
conducted six sequential steps: 1) defining research questions, 2) developing a comprehensive 
search strategy, 3) selecting studies based on predefined criteria, 4) extracting and analyzing 
data, 5) summarizing and reporting findings, and 6) consulting study authors for validation. 
The PRISMA-ScR checklist ensured the systematic, transparent, and comprehensive nature of 
our review. 

2.2. Eligibility Criteria 

 The search strategy focused on people with serious or life-limiting illnesses, irrespective of 
setting. The emphasis on AI approaches supporting ACP is very relevant to the palliative care 
setting but the review retains a broader focus across any care setting supporting the population 
of interest. . Database searching included published research articles and conference papers 
between 2015 and 2024. Studies in three languages were included (English, German and 
French). 

2.3. Information Sources 
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Scopus and Web of Science (WoS) databases were used to identify relevant literature. Also, the 
following preprints servers were searched: arXiv, bioRxiv, JMIR Preprints, medRxiv, 
Preprints.org, Research Square and SSRN Journal. 

2.4. Search  

Our search strategy was based on the ‘AND’ operation of two main categories; keywords 
related to ACP, and keywords related to AI approaches. The box below provides examples of 
key terms used in the search strategy. 

("advance care planning" OR "advance care directives" OR "advance directives" OR 
"advance statement" OR "advance decision" OR "advanced care planning" OR "advanced 
care directives" OR "advanced directives" OR "advanced statement" OR "advanced 
decision" OR "palliative care" OR "Palliative Medicine") AND ("Artificial intelligence" OR 
"machine learning" OR "multivariate approach" OR "AI-enabled" OR "ML-generated" OR 
"Supervised learning" OR "unsupervised learning" OR "Deep learning" OR "classification" 
OR "Neural networks" )  

 

2.5. Selection of sources of evidence 

A comprehensive literature search yielded a substantial number of potential studies.  Prior to  
independent screening, we conducted a calibration exercise. All authors participated in 
discussions to refine the eligibility criteria and assessed collectively a sample dataset 
comprising more than 10% of the total papers. We discussed our selections and the rationale 
behind them, which led to further refinement of the eligibility criteria. Following this 
calibration, the remaining papers were divided uniformly among the authors for independent 
title and abstract screening. In the second screening phase, all authors conducted a detailed 
review of the full texts of the remaining studies. The same exclusion criteria as in the previous 
stage were applied. Discrepancies were resolved through consensus among the authors. 

2.6. Data collection and Charting Process  

Relevant data were extracted from the final list of studies and organized into a spreadsheet by 
all authors.  

 

2.7. Data Items 

The data extraction characteristics chosen for the scoping review provide an overview of key 
characteristics of included studies. Data categories extracted included Study Identification and 
Design (the target disease(s) or condition(s) being investigated; study design; and number of 
participants); Data and Methodology (origin of the data, such as EHRs or publicly available 
databases, and number of records in the dataset); Application and Evaluation of AI approaches 
(the specific algorithms employed in the study, with categories derived from existing literature 
[20], [21], [22]); primary and secondary aim(s); data types included in models (specific 
characteristics or variables extracted from the data for analysis); data availability (whether the 
study dataset is publicly accessible and, if so, from where, including the source code to support 
replication and further exploration); model performance (evaluation metrics used to assess the 
accuracy and effectiveness of the AI approach, such as sensitivity, specificity, or accuracy); and 
clinical application within ACP processes. For the clinical application of processes, included 



6 

 

studies were charted against different elements that may be involved in the identification, 
documentation, revision and sharing of ACP documentation. The phases were informed by an 
earlier conceptual model of digital approaches to ACP [23]. Studies were classified against any 
of the six elements of ACP (Appendix D), outlined in Figure 1.  

  

Figure 1: Different aspects of ACP 

2.8. Critical appraisal of individual sources of evidence 

To assess the quality of evidence for each included study, the Grading of Recommendations, 
Assessment, Development, and Evaluations (GRADE) approach [24] was employed, which is 
a widely recognized framework for assessing the quality of evidence from research. However, 
GRADE ratings were not assigned to preprints due to their preliminary nature and lack of peer 
review, a standard process for journal articles. The GRADE ratings can be found in Appendix 
A. 

 

2.9. Synthesis of results 

A narrative synthesis was conducted to outline the design, sample size, participant disease 
types, AI methods and primary and secondary aims of the included studies. The main features 
of ACP were then extracted and categorised into thematically similar groups. The performance 
of the AI approach was evaluated by two authors (UM, GM) and given a rating on a 5-point 
scale: Excellent (high accuracy and effectiveness in artificial intelligence approach), Very Good 
(suggesting solid model performance with some room for improvement), Good (demonstrating 
reasonable accuracy and effectiveness), Fair (moderate performance that may require further 
refinement), or Poor (significant room for improvement in the model's accuracy and 
effectiveness) (see Appendix C for further detail). The process of calculating performance 
levels for the models involved assessing each model’s performance based on several metrics, 
including area under the curve – receiver operating characteristic (AUC-ROC), F1 Score (a 
score of model accuracy), Accuracy, Precision and Recall, and Brier Score. The process of 
calculating performance levels for the models involves assessing each model’s performance 
based on several metrics, including AUCROC, F1 Score, Accuracy, Precision and Recall, and 
Brier Score. However, a key challenge arises when certain metrics are missing or unavailable, 
making it difficult to assign an accurate performance level based solely on incomplete data. To 
address this issue, we have developed a method where each individual metric is assessed 
separately for its performance level. This allows us to assign a level based on the available 
metrics. In cases where not all metrics are provided, we still assign a performance level for the 
ones available, ensuring that the evaluation is based on the best available data. Once individual 
performance levels for each metric are determined, a total performance level is calculated by 
considering the minimum value of the individual levels. This ensures that the final performance 
level reflects the model’s overall performance, even if some metrics are missing or unavailable. 
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This paper presents a novel approach to evaluating AI/ML models in scenarios where complete 
performance metric data is unavailable. Traditional methods often rely on a comprehensive set 
of metrics to assess model performance. However, when data is incomplete, accurate 
evaluation becomes challenging. Our proposed method addresses this limitation by evaluating 
each metric individually and assigning a performance level based on available data. The final 
performance level is determined by the minimum individual metric level, ensuring a 
conservative yet informative assessment of the model's overall performance. The data and 
source code availability were summarised. Finally, all studies were assessed for the clinical 
application of the AI approach to ACP and these findings were discussed in a narrative 
synthesis.  

  

3. RESULTS 

 

3.1. Selection of sources of evidence  

The database search yielded 394 studies, which were reduced to 385 unique records after 
duplicates were removed. Of these, 321 were excluded during abstract screening because they 
did not include AI approaches or were irrelevant to ACP. Subsequent screening of the full text 
led to the exclusion of 26 further studies for similar reasons (see Figure 2), resulting in 38 
studies being included in the scoping review. Alongside databases of published research, seven 
preprint servers were searched, yielding a further 500 studies. Of these, 25 were selected for 
full-text review, from which 3 studies were included. A total of 41 studies were including in 
the review (Figure 2). A comprehensive list of included studies and extracted data is reported 
in Appendix B. 
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Figure 2: PRISMA flowchart of scoping review 

 

3.2. Critical appraisal within sources of evidence  

According to the GRADE assessment, the majority of studies (n=28; 68.42%) were rated as 
being of moderate quality. Two studies [25][26] were rated as high quality and five studies 
[27], [28][29][30][31] as low quality. In keeping with scoping review methodologies, these 
were not excluded.  

3.3. Results of individual sources of evidence  
 

3.3.1. Study Designs 

Most studies (n=24; 58.55%) utilized retrospective cohort designs (  
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Table 1).  Real-world EHR data was the most common data source (n=37; 90.24%) for 
developing and training models, with varying sample sizes. The focus of studies varied, with 
'All Diseases' being the most frequent category (n=24; 58.53%) (Table 1). Other common 
disease areas included cancer, Alzheimer's disease, and geriatric fragility fractures. 
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Table 1: Number of study design types used in included studies 

Study Design n Disease n 

Retrospective cohort study 24 All diseases 24 

Prospective cohort study  6 Cancer 13 

Mixed Methods Study 4 Alzheimer’s disease 2 

Prospective observational 

study 

3 End-stage liver 

disease 

1 

Randomized controlled 

trial  

3 Geriatric fragility 

fracture 

1 

Cross-sectional study 1   

    

 

3.3.2. Characterising artificial intelligence approaches for ACP 

The 41 studies included in this scoping review employed a diverse array of AI approaches to 
address aspects of ACP (see Appendix B). Within these, logistic regression (LR) [11], [27] [28], 
[29], [31], [32], [33], [34], [35], [36], [37], [38], [39] and Random Forest models (RF) [11], 
[25], [26], [28], [29], [30], [31], [32], [37], [38], [39], [40], [41] were the most widely used 
methods (see Table 2). Artificial neural networks (ANN) [9], [29], [32], [36], [41], [45], [46], 
extreme gradient boosting (XGBoost) [27], [32], [33], [35], [47], [48], [49], support vector 
machines (SVM) [9], [27], [32], [34], [35], [36], [50] and decision trees (DT) [31], [32], [33], 
[36], [43], [50], [51] were also frequently employed. A range of other AI methods were also 
reported, including gradient boosting machines (GBM), deep neural networks (DNN), 
Gaussian naive Bayes (GNB), k-nearest neighbors (KNN), and natural language processing 
(NLP), where these methods were tailored to specific ACP contexts or tasks.  

The majority of studies (78%) detailed models that focused on forecasting or predicting future 
patient outcomes, such as survival, hospital length of stay, or the likelihood of specific events 
(Table 2). These studies focussed on categorizing data into discrete classes or groups. Four 
studies [30], [41], [52], [53] involved classifying patients into high-risk or low-risk groups, 
predicting the presence or absence of a disease, or determining the optimal course of treatment. 
Studies in this category aimed to describe or summarize data without making specific 
predictions or classifications. This involved identifying patterns, trends, or relationships within 
the data. Two studies [40], [54] were categorized as descriptive, and focussed on finding the 
best possible solution to a given problem, such as optimizing treatment plans or resource 
allocation. One study [50] combined elements of both prediction and classification, aiming to 
both forecast outcomes and categorize patients.  

The included studies were further classified according to their secondary aims (Table 2). The 
most common secondary aim (46.34%) was decision support, alongside studies with a focus 
on selection of individuals who may benefit from specific interventions or treatments (41.17%). 
Additional secondary aims across studies included the discovery of new knowledge or insights 
from patient data (e.g., identifying patterns, trends, or relationships that were previously 
unknown; 7.31%) and optimising treatment plans or resource allocation (4.87%). A focus on 
improving processes within the healthcare system, such as streamlining workflows or 
optimising resource allocation, was also identified (7.31%).  
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Table 2:  Methods applied within AI approaches and aims of included studies 

AI Method Frequency 

(>5) 

Primary Aim n Secondary Aim n 

Logistic 

regression 

13 Prediction 32 Decision Support 19 

Random forest 13 Classification 4 Patient Selection 14 

Artificial neural 

networks 

7 Description 2 Knowledge 

Discovery 

3 

Decision trees 7 Optimization 2 Process 

Improvement 

3 

Support vector 

machines 

7 Prediction and 

Classification 

1 Optimization 2 

Gradient boosting 

machines 

7     

k-nearest 

neighbors 

6     

 

3.3.3. Important Features for ACP 

Below, we outlined a comprehensive overview of the data elements utilised across AI models 
for ACP (detailed further in Appendix B). These features can be categorised into several key 
dimensions:  

Patient-Centric Features  

Demographics and Socioeconomic Factors: Age [9], [27], [29], [42], [43], [51], gender [27], 
[35], [43], [47], [51], and location [27], [37].  

Clinical Data: A broad spectrum of clinical information, including diagnoses [12], [36], [49], 
procedures [12], [55], medications [12], [42], [52], [55], laboratory results [12], [31], [38], [42], 
[48], [49], [50], vital signs [12], medical history [55], [56], and symptoms (frailty [42], activity 
[27], [33], [57], pain [47], [52], [58], nausea [52], and delirium [35], [58]), was employed. 

Palliative and End-of-Life Indices: Factors related to end-of-life care, including palliative care 
consultations [25], and do-not-resuscitate orders [44], largely used for predicting patient illness 
trajectories.  

Behavioral Data: Studies incorporated patient activity data [27], [33], [57], sleep patterns [38], 
and body movements [30], [59].  

Healthcare system features 

Resource Utilization: Information about healthcare costs [36], service utilization (e.g., medical 
care, nursing) [46], [56], and system efficiency (e.g., length of stay, readmissions) [25] to 
optimize care delivery.  

Provider-Related Factors: Information about healthcare providers, such as their experience 
[37], opinions [37], and work habits [26]. 
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3.3.4. Model Performance of the AI Approaches 

Within the studies that provided performance measure data, most of the studies (36.6%) 
demonstrated excellent performance. Some studies reported very good performance (30%) and 
good performance (16.6%). None of the studies were classified as fair, with some studies 
(n=15; 36.6%) lacking sufficient information to assess their performance level.  Particularly, 
traditional AI/ML models, like RF [9], [33], [34], [37], [43], [44], LR [9], [29], [33], [34], [37], 
SVM [9], [33], [34] and DT [33], [43] consistently demonstrated strong performance in the 
included studies, achieving ‘excellent’ results (level 1).  

3.3.5. Data Availability 

The availability of data for the 41 studies varies significantly (see Appendix B). One study [60] 
made the source code publicly available, facilitating replication and further analysis. Some 
studies (n=15; 36.6%) indicated that data would be available upon reasonable request. 
However, many (n=17; 41.5%) did not provide any information regarding data availability. A 
small number of studies (n=5; 12.2%) explicitly stated that the data is not publicly available, 
potentially due to privacy or other concerns. Only one study provided an open dataset [55], 
making it accessible to other researchers for replication and further analysis. Three studies [42], 
[52], [53] provided a link to the dataset, facilitating access for interested parties. However, a 
significant majority of studies (n=32; 78.04%) did not provide any information regarding 
source code availability. 

3.3.6. Clinical application of artificial intelligence approaches for ACP 

The detailed classification of the different elements of ACP in the included studies is reported 

in Appendix D. Almost all studies focused on identifying individuals who might benefit from 

ACP (n=39; 95.1%), while fewer studies addressed initiating ACP discussions (n=10; 24.3%) 

or documenting and sharing ACP preferences and decisions (n=8; 19.5%). Few studies 

explored where ACP discussions are recorded (n=2; 4.87%). The next most frequently studied 

aspect was accessing and using ACP to inform decision-making (n=37; 90.2%). No studies 

directly addressed reviewing and updating ACP information. The tools reported across the 

included studies primarily focused on supporting the identification of patients who might 

benefit from ACP and informing decision-making. No studies were identified where models 

support the reviewing and updating of ACP information (Figure 3).  

 

 

Figure 3: Heatmap for AI support across ACP Phases 
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4. DISCUSSION 

 

4.1. Summary of evidence  

This review provides an overview of the current literature detailing AI approaches for ACP and 
provides an overview of the current state, objectives, and critical features of these models. 
Overall, the scoping review demonstrates a strong focus on prediction and classification within 
the context of AI approaches in ACP. Included studies commonly focused on exploring how to 
embed AI approaches to assist healthcare professionals in making informed decisions about 
patient care and identifying patients who would benefit most from specific interventions or 
treatments. Wider secondary aims also highlighted AI approaches beyond prediction and 
classification, focusing on discovering new knowledge and improving healthcare processes. 
Most included studies were assessed as achieving an excellent performance, indicating the 
exceptional development of AI approaches for supporting ACP. However, while most studies 
performed very well, there is limited data availability and source code to ensure the 
reproducibility and transparency of emerging AI approaches for ACP research. As we have 
stated in the methods section, the findings of this review regarding AI approaches in ACP have 
applicability to broader contexts beyond palliative care settings, encompassing all individuals 
facing serious or life-limiting illnesses. 

Most tools reported across the included studies are primarily focused on supporting the 
identification of patients who might benefit from ACP and informing decision-making, 
suggesting AI-based tools may be well-suited for identifying patients for whom discussion of 
end-of-life care preferences may be appropriate. This includes, for example, models to predict 
mortality and frailty for older patients to guide data-driven decision-making about the initiation 
of the ACP process. This may provide a prompt for earlier identification of opportunities to 
initiate ACP discussions and documentation, but there is recognition that such screening 
approaches may need to be developed to also anticipate palliative care needs and predict the 
rate and course of functional decline [61]. There was, however, gaps in the coverage of AI 
approaches to support different phases of ACP, including during ACP discussions and ACP 
documentation and sharing. In busy clinical practice, clinicians may struggle to find time to 
support ACP at the patient’s preferred pace. A 2019 systematic review described patient-level 
barriers to ACP, such as perceived irrelevance and poor awareness, and also time issues for 
clinicians [62]. Approaches such as using AI-powered chatbots are being considered for 
offering resources for spiritual exploration and facilitating religious practices for people living 
with head and neck cancer [63]. In the context of ACP, similar AI-powered chatbots may have 
potential utility for supporting exploration and documentation of ACP preferences, assisting 
patients across different elements of ACP, which could potentially reduce clinical workload 
while empowering patients. The review highlighted a notable gap in literature detailing the role 
of AI-based approaches to support the reviewing and updating of ACP documentation. AI 
models have the ability to pick up clinical changes in real time [58] [15] and may have the 
potential to facilitate timely review within this aspect of ACP. For example, patient-directed 

chatbots or conversational agents could promote reflection and revision between clinical visits 
[63], [25]. The use of scenario modelling tools can aid patients to anticipate future care needs 
and adjust preferences where necessary [78]. Further, AI added to workflows can stimulate 
clinicians to re-initiate ACP conversations after key health events [10], [11]. Addressing this 
gap in AI-based ACP research should be a priority for future research. 
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An empowered patient who has accessed and processed a certain level of information about 
their disease and its likely future progression, and who has already reflected on their values, 
wishes and fears for the future, would likely derive more benefit from a time-limited interaction 
with a clinician than one who is uninformed and unprepared. AI approaches could support 
targeted, interactive information provision and future scenario modelling to the patient, 
supporting the patient to document their questions, decisions and uncertainties in advance of 
an ACP discussion with a clinician. A patient-driven approach also circumvents the known 
difficulties that clinicians report in finding ‘the right time’ to have ACP conversations [64], as 
the patient can interact with information relevant to them, in their own time, and be empowered 
to seek the ACP interaction, rather than waiting for a clinician to initiate it. AI could also enable 
real-time monitoring of patients’ health conditions and provide alerts to consider adjustments 
to ACP documentation. This use of AI could embed ACP as a continual process, rather than a 
one-time event [65]. 

There are points that should be considered when implementing AI approaches in a healthcare 
system. While AI approaches could offer data-driven insights that may assist clinicians in 
making informed decisions and improve the quality of ACP discussions, they should augment 
clinical skills rather than supplant clinical decision-making [66]. Furthermore, patients’ end-
of-life care choices can be shaped by cultural factors [67], therefore, AI systems should be 
intentionally designed to accommodate a wide range of cultural backgrounds, as there may be 
variability when it comes to how and who should be involved in ACP discussions. For example, 
the development of AI-based approaches could utilise diverse datasets, ACP content may be 
personalised in response to known or disclosed cultural or religious affiliation (e.g., for a 
Muslim patient presenting content addressing fasting during illness), prioritise the ability of 
systems to interpret and respond when people use religious and culturally nuanced terms, and 
ensuring the co-design and development of AI-based approaches with input and involvement 
of patient and communities from diverse backgrounds. There is also scope to draw on emerging 
frameworks such as a focus on adopting AI approaches in culturally diverse healthcare settings 
to avoid culturally inappropriate discussions [68]. The use of AI in healthcare raises ethical 
concerns, such as data privacy, informed consent, and algorithmic bias. It is essential that AI 
systems are transparent and that patients’ data are safeguarded to ensure patients can have 
continued trust in their healthcare [69]. 

The findings of this scoping review highlight the potential of AI approaches to support ACP. 
However, despite the model performance of some of the artificial intelligence approaches being 
categorised as good or excellent, this does not hold across all the models. Limitations in the 
performance of the models can be attributed to the quantity and diversity of the training sample 
available for the AI/ML models to use. This scoping review identified only one study providing 
an open dataset. Promoting open-source practices is essential for improving transparency, 
collaboration, and the overall quality of ACP research with AI-based approaches [70] and is an 
increasing requirement of research funders. While several studies acknowledge the use of 
proprietary datasets or models without sharing source code, this limited transparency poses 
significant challenges. Specifically, it hampers reproducibility, as other researchers cannot 
verify or replicate the reported findings. Furthermore, the inability to inspect training data 
raises concerns about potential bias, which may undermine the fairness and generalizability of 
AI systems. Finally, without open access to code or validation data, independent assessment of 
model performance is not possible, limiting the credibility of these approaches in clinical 
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settings. Furthermore, it is suggested that a range of features used within these models can help 
improve their performance including patient-level variables (functional status and symptoms) 
[71], [72], healthcare utilisation variables (resource utilisation, patient satisfaction) and 
healthcare professional factors (experience and opinions) [35]. Therefore, the diversity of the 
sample and inputs is key to improving model performance. 

This review identified that most studies focussed on all disease types when building the models 
for AI use in ACP. While this approach can make the models generalisable to multiple patient 
populations, it also requires the model to be more complex as it requires an understanding of 
disease-specific factors and variations which can be a challenge to finding samples of sufficient 
size and quality to train the models. Future research focusing on disease-specific models of 
ACP may help in developing more effective and tailored tools to support decision-making that 
addresses the specific needs of different disease populations. For example, research has 
highlighted the different barriers in ACP for certain disease populations, including a lack of 
understanding of the disease trajectory by the healthcare professional, treatment option 
availability, and reduced mental capacity in the patient [73]. The latter is particularly important 
in dementia, a common disease where ACP is needed as the person will lose communication 
and decision-making abilities as the disease progresses [74]. AI approaches could also support 
ACP as a more continuous process, as is known best practice [75], rather than a discrete, rushed 
event. AI approaches could be particularly beneficial in atypical dementia sub-types, where a 
person may be showing signs of impaired speech, understanding or concentration early in the 
disease, and AI could flag up the need for more urgent ACP conversations [75], supporting 
simple information being presented in the means that best suited the person’s information 
processing needs at the time. Therefore, by accurately predicting future outcomes and 
classifying patients into appropriate categories, AI may help healthcare providers initiate timely 
ACP, alongside providing tailored information to guide ACP discussions and documentation.   

Our review identified a diverse range of applications of AI models in the context of ACP. To 
provide a more nuanced understanding of these applications, we categorized the included 
studies based on the directness of their support for ACP: Category 1) Direct ACP Support: AI 
models designed to directly facilitate or perform core ACP activities (e.g., eliciting preferences, 
supporting shared decision-making, generating ACP documents). Category 2) Indirect ACP 
Support: AI models that provide information or perform tasks that support ACP but do not 
directly carry out the core activities (e.g., predicting events that might trigger ACP discussions, 
identifying patients who might benefit from ACP) and Category 3) Tangential Relevance: AI 
models with a more tangential or distant relationship to ACP, focusing on related areas (e.g., 
palliative care more broadly) but potentially having implications for ACP.  

Our analysis suggests that many included studies fall into Categories 2 and 3. For example, 
Study #4 used AI to predict patient mortality as a trigger for ACP discussions, while other 
studies focused on predicting patient outcomes or managing symptoms in palliative care 
settings. While these applications can contribute to the context of ACP, they do not always 
directly engage with the core elements of ACP itself. The limited number of studies that 
explicitly focused on Category 1 (direct ACP support) highlights a potential gap in the current 
literature.  

This observation has several implications: * The current evidence base may be stronger for AI's 
ability to support ACP-related tasks than for its ability to directly facilitate core ACP processes. 
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* The potential of AI to transform ACP by directly engaging with patients in preference 
elicitation or shared decision-making remains largely unexplored. * Future research should 
prioritize the development and rigorous evaluation of AI models that actively support the core 
elements of ACP. 

4.2. Limitations 

While the search strategy was comprehensive, there are certain limitations. The search was 
conducted in Scopus and Web of Science databases, covering a large proportion of existing 
health research literature. However, the omission of CINAHL may have resulted in the 
omission of potentially relevant articles outlining clinical implementation and nursing 
perspectives on AI-based relating to CP. Limiting the search to English, German, and French 
may have excluded studies published in other languages. This review focused on published 
work in academic journals and preprints, which may have excluded relevant studies in the grey 
literature. During data extraction, researchers may inadvertently introduce bias during the 
process due to factors such as preconceived notions, selective interpretation of data, or 
variations in how data is coded. To minimize this, we employed a standardized data extraction 
form, cross-checked extracted data, and ensured inter-rater reliability.  

4.3. Conclusion 

AI-based approaches are being developed for ACP, with the majority focusing on predictions 
to guide the timely initiation of ACP discussions. Beyond prediction and classification, AI 
models are also being explored for decision support, but few studies explore supporting the 
initiation of ACP discussions, or processes around the documentation and sharing of ACP 
information. There is a gap in the evidence base for the role of AI-based approaches in 
supporting the reviewing and updating of ACP information, either undertaken with health 
professionals, or through patient-facing resources that may be completed alone or alongside 
caregivers. To address these gaps and advance the field, future research should prioritize 
several key areas: encourage the creation and sharing of open-access AI datasets specifically 
for ACP. This would enhance the transparency of AI models, facilitate reproducibility, and 
enable more rigorous scrutiny and validation of their performance. It is also important to 
explore the development of AI-driven ACP revision systems that can facilitate real-time patient 
engagement. These systems could leverage AI to dynamically update ACP documents based 
on changes in patient health status, preferences, or values, ensuring that ACP remains a living 
document. Furthermore, there is a need to create AI tools that support culturally sensitive ACP 
discussions. This includes incorporating natural language processing (NLP) to understand and 
respond to diverse communication styles, values, and beliefs related to end-of-life care, 
promoting more inclusive and equitable ACP practices. Further research is also needed to 
investigate AI applications that can effectively support the initiation of ACP discussions. This 
could involve AI tools that can identify optimal timing for these conversations, assist clinicians 
in framing ACP discussions, or provide patients with tailored information and resources to 
prepare for ACP. Alongside exploring novel AI approaches within ACP, there is a need to 
consider the underpinning transparency and quality of emerging AI-based approaches for ACP, 
with a mixed performance of the reported models, and a lack of data and source code that would 
facilitate reproducibility and scrutiny. By focusing on these recommendations, the field can 
move towards developing more robust, equitable, and impactful AI applications to enhance 
advance care planning. 
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Appendix A 

 

Stud

y No 

Stud
y 

GRADE 

Rating 

Stud

y No 

Stud
y 

GRADE 

Rating 

Stud

y No 

Stud
y 

GRADE 

Rating 

1 [76]  Moderate 14 [33]  Low-to-

Moderate 
27 [29]  Low 

2 [27]  Low 15 [40]  Moderate 28 [47]  Moderate 

3 [51]  Moderate 16 [34]  Moderate 29 [38]  Low-to-

Moderate 

4 [12]  Moderate 17 [55]  Moderate 30 [30]  Low 

5 [45]  Moderate 18 [41]  Low-to-

Moderate 
31 [42]  Moderate 

6 [46]  Moderate 

to high 
19 [56]  Moderate 32 [31]  Low 

7 [32]  Moderate 20 [78]  Moderate 33 [53]  Moderate 

8 [28]  Low 21 [50]  Moderate 34 [43]  Moderate 

9 [77]  Moderate 22 [26]  High 35 [48]  Moderate 

10 [57]  Moderate 23 [52]  Moderate 36 [9]  Moderate to 

high 

11 [59]  Moderate 24 [60]  Moderate 37 [54]  Moderate 

12 [58]  Moderate 25 [36]  Moderate 38 [44] Moderate 

13 [25] High 26 [37] Moderate      
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Appendix B 

 

N

o 
Study Year 

Diseas

e 

Study 

Design 

Number of 
participant

s 

Dataset 

source 

Numbe

r of 

Record

s 

AI/ML 

Models 

Primary 

Aim 

Secondar

y Aim 

Data Types Included in 

Models 

Model 

Performance 

Data 

Availability 

Sourc

e Code 

 

1 

[76] 2021 
All 

Disease

s 

Prospective 

cohort 

study  

178 
real-world 

EHR 
97,683 Gboost Prediction 

Patient 

Selection 

Eligibility issues, limited 

ACP resources, early 

patient discharge, lack of 

outpatient follow-up, and 

comparison of outpatient 

vs. inpatient ACP 

effectiveness. 

AUCROC:  

0.86, AUPRC: 

0.76 

Not publicly 

available 
No info 

 

2 

[27] 2021 
Alzheim

er’s 
disease 

 

Retrospecti

ve cohort 

study 

- Facebook  243 

LR, 

GBoost, 

SVM, RF, 

KNN, 

XGBoost, 

GNB 

Prediction 
Optimizati

on 

Gender, age at diagnosis, 

message frequency, 

behavior, activity, 

caregiver, location, and 

relationship. 

GNB F1 

score: 0.85, 

SVM F1 

score: 

models:  

0.79, LR F1 

score: 0.69. 

No info No info 

 

3 

[51] 2024 Cancer 

Mixed 

Methods 

Study 

640 No info No info DT Prediction 
Decision 

Support 

Age, sex, cancer type, and 

treatment type. 
No info 

Available 

upon 

reasonable 

request. 

Availa

ble 

upon 

reason

able 

reques

t. 

 

4 

[12] 2023 
All 

Disease

s 

Mixed 

Methods 

Study 

201 
real-world 

EHR 
18,631 DL Prediction 

Patient 

Selection 

Patient demographics, 

diagnoses, procedures, 

medications, lab results, 

vital signs, and social 

background. 

AUCROC: 

0.89.  

Not publicly 

available 
No info 

 

5 

[45] 2024 

Geriatri

c 

fragility 

fracture 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
7,605 

GBoost, 

ANN, DL 
Prediction 

Patient 

Selection 

Patient background, 

medical evaluation, 

hospital admission details, 

surgery information.  

Model 1: 

GBoost 

AUCROC: 

0.73, F1 

score: 0.68; 

Model 2: ANN 

accuracy: 

0.76, F1 

No info No info 
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score: 0.64; 

Model 3: DL 

accuracy: 

0.79, 

precision: 

0.73, 

AUCROC: 

0.84. 

 

6 [46] 2020 

All 

Disease

s 

Mixed 

Methods 

Study 

No info 
personal 

photos 
No info ANN 

Descriptio

n 

Process 

Improvem

ent 

Patient position in bed and 

nurse actions. 
No info No info No info 

 

7 

[32] 2021 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 

1,462,8

62 

SVM, ANN, 

LR, RF, DT, 

XGBoost 

Prediction 
Patient 

Selection 
Patient characteristics 

(Best Model) 

LR accuracy: 

0.64, 0.68, 

0.60 for all-

cause cohort, 

positive and 

negative 

classes.  

No info No info 

 

8 [28] 2024 

All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
No info LR Prediction 

Patient 

Selection 
No information provided. No info No info No info 

9 

[77] 2022 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
19,753  GBM, DNN Prediction 

Decision 

Support 

Patient survival and frailty 

over one year. 

1-year 

mortality 

classifier 

AUCROC: 

0.87, 1-year 

frailty 

classifier 

AUC ROC: 

0.89.  

Provides 

link 

Provid

es link 

 

10 

[57] 2023 Cancer 

Prospective 

observation

al study  

78 
real-world 

EHR 
66 

Transform

er, LSTM, 

BiLSTM, 

GRU 

Prediction 
Decision 

Support 

Patient activity data and 

medical information. 

Accuracy: 

0.878 and 

0.924 for 12 

and 24 

hperiod. 

Available 

upon 

reasonable 

request. 

No info 

 

11 [59] 2021 Cancer 

Prospective 

cohort 

study  

60 
real-world 

EHR 
44 LSTM Prediction 

Decision 

Support 

Body movement 

measurements. 

Accuracy: 

0.83 

Available 

upon 
No info 
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reasonable 

request. 

 

12 

[58] 2019 

 

Alzheim

er 

disease 

and 

related 

dement

ias 

(ADRD) 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
26,921 LSTM Prediction 

Patient 

Selection 

mental function, delirium, 

cholesterol testing, pain, 

healthcare use, nutrition, 

skin condition, family 

support, severe medical 

problems, and swallowing 

difficulties. 

The 6-month 

model 

AUROC: 

0.978; the 1-

year model 

AUROC: 

0.956; the 2-

year model 

AUROC: 

0.943. 

No info No info 

 

13 

[25] 2023 

All 

Disease

s 

Randomize

d controlled 

trial 

3183 
real-world 

EHR 
755 

Predictive 

modeling 
Prediction 

Patient 

Selection 

Palliative care consultation 

note, hospital 

readmissions, length of 

stay 

Reduced 60-

day and 90-

day hospital 

readmissions

: Odds Ratio: 

0.75 and 

0.72, 

respectively. 

Available 

upon 

reasonable 

request. 

No info 

 

14 

[33] 2023 Cancer 

Prospective 

cohort 

study  

40 
real-world 

EHR 
40 

LR, SVM, 

DT, RF, 

KNN, 

AdaBoost, 

XGBoost 

Prediction 
Patient 

Selection 

Heart rate, physical 

activity, eating, urination, 

and stage of illness. 

(best model) 

XGBoost 

AUROC: 96%, 

F1-score: 

78.5%, 

accuracy: 

93%, and 

specificity: 

97%.  

Available 

upon 

reasonable 

request. 

No info 

 

15 

[40] 2021 

All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
70,788 

RF based 4 

models 

Optimizati

on 

Process 

Improvem

ent 

Improvement assessment, 

patient usage and net 

benefit. 

(RF-1, RF-2, 

RF-3, RF-4) 

Sensitivity: 

0.37, 0.28, 

0.29, 0.26 

Specificity: 

0.95, 0.94, 

0.94, 0.93 

Brier: 0.11, 

0.12, 0.12, 

0.12   

Not publicly 

available 

Availa

ble 

upon 

reason

able 

reques

t. 
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16 

[34] 2021 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
120,940 

LR, RF, 

SVM 
Prediction 

Patient 

Selection 

Patient age, overall health, 

and how the patient arrived 

at the hospital. 

(unsurprising 

deaths) LR, 

RF, and SVM 

AUROC: 0.95, 

0.94, 0.94. 

(All mortality) 

LR, RF, and 

SVM AUROC: 

0.92, 0.92, 

0.93. 

No info No info 

 

17 [55] 2018 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- STRIDE 221,284 DNN Prediction 
Patient 

Selection 

Patient medical history, 

procedures, medications, 

and hospital visits. 

Precision: 

0.69, recall: 

0.34, AUROC: 

0.93 

Open 

dataset 
No info 

 

18 

[41] 2022 
All 

Disease

s 

Mixed 

Methods 

Study 

751 
real-world 

EHR 
751 

ANN, GNB, 

DF, ID3, 

LMT, RF 

Classifica

tion 

Decision 

Support 

Patient symptoms and 

overall condition. 

(Stable, 

Unstable, 

Deteriorating 

and Terminal) 

AUCROC: 

0.639, 0.60, 

0.627, 0.724. 

Available 

upon 

reasonable 

request. 

No info 

 

19 

[56] 2022 Cancer 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
743 LSTM Prediction 

Optimizati

on 

medical care, nursing, 

psychology, rehabilitation, 

spiritual support, social 

work, personal history, and 

medical equipment. 

accuracy: 

69.75% and 

F1 score: 

66.8%  

No info No info 

 

20 

[78] 2024 Cancer 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
2314 

XGBoost, 

Gboost, 

AdaBoost, 

LR, SVM, 

RF 

Prediction 

Knowledg

e 

Discovery 

Gender, previous delirium, 

cancer treatment, 

smoking, alcohol use, and 

living situation. 

(best model) 

XGBoost + RF 

sensitivity: 0. 

68, 

specificity:  

0.70, 

balanced 

accuracy: 

0.69, 

AUCROC: 

0.74. 

Available 

upon 

reasonable 

request. 

Provid

es link 

 

21 [50] 2020 
End-

stage 

liver 

 

Retrospecti
- 

real-world 

EHR 
1903 

LDA, SVM, 

GNB, DT, 

Prediction 

and 

Decision 

Support 

Blood test results related 

to kidney, liver, and fluid 

balance. 

(best model) 

RF AUCROC: 

0.852, 

No info No info 
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disease 

(ESLD)  

ve cohort 

study 

 RF, 

AdaBoost 

Classifica

tion 

AdaBoost 

AUCROC: 

0.833. 

 

22 [26] 2022 Cancer 

Randomize

d controlled 

trial 

2695 
real-world 

EHR 
26059 GBoost Prediction 

Patient 

Selection 

Personal information, work 

habits, and end-of-life care 

practices. 

model 

performance: 

11.6% 

increase 

No info No info 

 

23 

[52] 2021 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- HOPE 9924 ARM 
Classifica

tion 

Decision 

Support 

Pain, nausea, and 

medications. 

model 

performance: 

23.6% 

increase, 

AUCROC: 

0.89 

Provides 

link 
No info 

 

24 

[60] 2019 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
33509 LSTM Prediction 

Decision 

Support 

Patient medical codes and 

doctor notes. 

performance 

increase 

versus 

baseline 

model, the 

frequency 

model: 6%; 

entropy 

model: 5%; 

word2vec 

model: 15%. 

(best model 

versus 

doctors') 

keyword 

model: 9% 

increased 

accuracy. 

Available 

upon 

reasonable 

request. 

Publicl

y 

availab

le 

 

25 

[36] 2021 

All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
17197 

DT, RF, 

SVM, LR, 

ANN, 

AdaBoost 

Prediction 
Decision 

Support 

Patient diagnoses, 

healthcare costs and 

patient information. 

(best model) 

AdaBoost 

precision: 

0.71, recall: 

0.67.  

No info No info 

 

26 [37] 2022 
All 

Disease

s 

Cross-

sectional 

study 

3505 
real-world 

EHR 
3505 LR, RF 

Descriptio

n 

Knowledg

e 

Discovery 

Opinions, work 

environment, confidence, 

job title, hospice 

RF accuracy: 

0.75, F1 

score: 0.84, 

recall = 0.94 

Available 

upon 

reasonable 

request. 

No info 



30 

 

experience, work location, 

and doctor occupation. 

 

27 

[29] 2022 

Cancer 

(lung 

cancer) 

Prospective 

cohort 

study  

80 
real-world 

EHR 
400 LR, ANN Prediction 

Decision 

Support 

Bone marrow problems, 

hospital stay, age, 

diabetes, chemotherapy, 

surgery, and hormone 

treatment. 

LR  AUCROC: 

0,729, ANN 

AUCROC: 

0,897. 

Available 

upon 

reasonable 

request. 

No info 

 

28 

[47] 2024 Cancer 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
561 XGBoost Prediction 

Decision 

Support 

Pain level, calcium level, 

age, sex, and falls. 

AUCROC: 

0.89, 

sensitivity: 

95.8, 

specificity: 

0.71.  

No info 

Availa

ble 

upon 

reason

able 

reques

t. 

 

29 

[38] 2023 Cancer 

Prospective 

observation

al study 

49 
real-world 

EHR 
49 LR Prediction 

Decision 

Support 

Sleep patterns, doctor's 

opinion, overall health, and 

blood test results  

The predicted 

median 

hazard: 

0.00052, 

Pearson’s 
corr. Coef r = 

−0.08; p = 
0.5808. 

Available 

upon 

reasonable 

request. 

No info 

 

30 [30] 2023 

All 

Disease

s 

Prospective 

observation

al study 

14 
real-world 

EHR 
14 CNN, LSTM 

Classifica

tion 

Decision 

Support 

Body movements while 

doing everyday tasks. 

Accuracy: 

99.8. 
No info No info 

 

31 [42] 2021 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
19753 RF Prediction 

Decision 

Support 

Age, medications, overall 

health, function, kidney 

function, blood cell count, 

and cancer spread. 

AUCROC: 

0.83. 
No info 

Provid

es link 

 

32 

[31] 2023 

All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
113 LR, DT Prediction 

Decision 

Support 
Blood test results  

Model 

significance: 

p = 0.001 

(adjusted R2 

= 0.15). 

Available 

upon 

reasonable 

request. 

No info 

 

33 

[53] 2022 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
104 CFA 

Classifica

tion 

Decision 

Support 

Patient's feelings about 

treatment. 

 patients’ 
overall state 

change: 

higher than 

control 

group. The 

Provides 

link 
No info 
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average 

satisfaction: 

20% higher 

than control 

group 

 

34 

[43] 2018 

Cancer 

(colon 

or 

rectal 

cancer) 

 

Retrospecti

ve cohort 

study 

- SEER 27795 
KNN, GNB, 

DT, RF 
Prediction 

Decision 

Support 

Age, tumor size, cancer 

stage, number of lymph 

nodes, surgery, and gender 

for rectal cancer. 

(1-Year 2-

Year 3-Year 4-

Year 5-Year 

Average) 

colon cancer 

(AUROC: 

0.980; 0.984; 

0.986; 0.988; 

0.985; 

0.9846) 

rectal cancer 

(AUROC: 

0.957; 0.960; 

0.961; 0.963; 

0.971; 

0.9608) 

No info No info 

 

35 

[48] 2024 Cancer 

Prospective 

cohort 

study  

5926 
real-world 

EHR 
52538 XGBoost Prediction 

Decision 

Support 

Patient information, 

medical information, lab 

results, cancer treatment, 

and healthcare use. 

AUROC: 

0.861, 

AUPRC:  

0.771, The 

Brier score: 

0.147 

Available 

upon 

reasonable 

request. 

Provid

es link 

36 

[9] 2019 
All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
120940 

LR, SVM, 

KNN, RF, 

ANN, 

Gboost 

Prediction 
Patient 

Selection 

Patient age, overall health, 

and how the patient arrived 

at the hospital. 

AUCROC: 

0.95, 

sensitivity: 

0.87, 

specificity: 

0.86. 

Not publicly 

available 

Availa

ble 

upon 

reason

able 

reques

t. 

 

37 [54] 2023 
All 

Disease

s 

Prospective 

cohort 

study  

24 No info No info CDSS 
Optimizati

on 

Process 

Improvem

ent 

How easy the system is to 

use and user experience. 

SUS: 62.7 ± 

14.1 and 65 ± 

26.2. UEQ-S: 

1.42 and 1.5 

Available 

upon 

reasonable 

request. 

No info 
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38 [44] 2020 

All 

Disease

s 

 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
36368 RF Prediction 

Knowledg

e 

Discovery 

Reasons for hospital visits, 

including palliative care, 

do-not-resuscitate orders, 

and other care. 

AUCROC: 

0.9477 
No info No info 

 

 

 

39 

[49] 2023 Cancer 

Retrospecti

ve cohort 

study 

- 
real-world 

EHR 
38494 XGBoost Prediction 

Decision 

Support 

Demographics, 6-month 

time series of lab test 

results and flowsheet data, 

and diagnoses 

AUROC: 0.83, 

AUPRC:  0.4, 

The Brier 

score: 0.08 

No info No info 

 

 

 

 

40 

[39] 2021 

All 

Disease

s 

Randomize

d controlled 

trial 

- 
real-world 

EHR 
- 

Bayesian 

estimation, 

LR 

Prediction 
Patient 

Selection 
Patient EMR information No info 

Will be 

available 

upon 

reasonable 

request. 

No info 

 

 

 

41 

[79] 2021 
All 

Disease

s 

Retrospecti

ve cohort 

study 

 
real-world 

EHR 

Approx. 

5M 
NLP Prediction 

Patient 

Selection 
Patient documents No info 

Not publicly 

available 
No info 
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Appendix C 

Performance Levels of AI Models in The Included Studies 

Study 

No 

Study Performance 

Level 

Study 

No 

Study Performance 

Level 

Study 

No 

Study Performance 

Level 

1 [76]  Level 2 15 [40]  Level 4 29 [38]  Level 2 

2 [27]  
Level 2 

16 [34]  
Level 1 

30 [30]  No 

information 

3 [51]  No 

information 

17 [55]  
Level 1 

31 [42]  
Level 1 

4 [12]  No 

information 

18 [41]  
Level 3 

32 [31]  
Level 3 

5 [45]  
Level 3 

19 [56]  
Level 4 

33 [53]  No 

information 

6 [46]  No 

information 

20 [78]  
Level 4 

34 [43]  No 

information 

7 [32]  Level 4 21 [50]  Level 2 35 [48]  Level 1 

8 [28]  No 

information 

22 [26]  No 

information 

36 [9]  
Level 2 

9 [77]  Level 2 23 [52]  Level 2 37 [54]  Level 1 

10 [57]  Level 2 24 [60]  Level 4 38 [44]  Level 2 

11 [59]  Level 3 25 [36]  Level 3 39 [49]  Level 1 

12 [58]  Level 1 26 [37]  Level 1 40 [39]  Level 1 

13 [25]  No 

information 

27 [29]  
Level 1 

41 [79] No 

information 

14 [33] Level 1 28 [47] Level 4    

Given the diversity of metrics and the potential for varying interpretations, it's challenging to 

provide a definitive 5-level classification. However, we can offer a general assessment based 

on common performance thresholds based on literature ([80], [81]): 

Level 1 (Excellent): 

• AUCROC > 0.9 

• F1 Score > 0.9 

• Accuracy > 0.9 

• Precision and Recall 

> 0.9 

• Brier Score < 0.1 

Level 2 (Very Good): 

• AUCROC between 

0.85 and 0.9 

• F1 Score between 

0.8 and 0.9 

• Accuracy between 

0.8 and 0.9 

• Precision and Recall 

between 0.8 and 0.9 

• Brier Score between 

0.1 and 0.15 

Level 3 (Good): 

• AUCROC between 

0.8 and 0.85 

• F1 Score between 

0.7 and 0.8 

• Accuracy between 

0.7 and 0.8 

• Precision and Recall 

between 0.7 and 0.8 

• Brier Score between 

0.15 and 0.2 

Level 4 (Fair): 

• AUCROC between 

0.7 and 0.8 

Level 5 (Poor): 

• AUCROC < 0.7 

• F1 Score < 0.6 
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• F1 Score between 

0.6 and 0.7 

• Accuracy between 

0.6 and 0.7 

• Precision and Recall 

between 0.6 and 0.7 

• Brier Score between 

0.2 and 0.25 

• Accuracy < 0.6 

• Precision and Recall 

< 0.6 

• Brier Score > 0.25 
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Appendix D 

 

Study 

No 
Study 

Directness 
of their 

support for 
ACP 

Identity 

person who 

may benefit 

from ACP 

Initiate ACP 

discussion 

Documentation and 

sharing of ACP 

Identifying 

records where 

ACP 

information has 

been recorded 

Accessing and 

using ACP to 

inform decision-

making 

Reviewing and 

updating ACP 

information 

1 [76]  2 X X     X   

2 [27]  3 X       X   

3 [51]  3 X   X       

4 [12]  2   X X X X   

5 [45]  2 X       X   

6 [46]  3 X       X   

7 [32]  2 X       X   

8 [28]  2 X       X   

9 [77]  3 X       X   

10 [57]  3 X       X   

11 [59]  3 X       X   

12 [58]  2 X       X   

13 [25]  2 X X X   X   

14 [33]  2 X X X   X   

15 [40]  2 X X X   X   

16 [34]  2 X       X   

17 [55]  2 X       X   

18 [41]  3 X       X   

19 [56]  3 X   X   X   

20 [78]  3 X       X   

21 [50]  2 X       X   

22 [26]  2 X X     X   
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23 [52]  3 X       X   

24 [60]  2 X X     X   

25 [36]  2 X   X   X   

26 [37]  3   X         

27 [29]  3 X       X   

28 [47]  2 X       X   

29 [38]  2 X       X   

30 [30]  3 X       X   

31 [42]  2 X       X   

32 [31]  3 X       X   

33 [53]  3 X       X   

34 [43]  2 X       X   

35 [48]  2 X       X   

36 [9]  2 X       X   

37 [54]  3 X       X   

38 [44]  3 X       X   

39 [49]  2 X X     

40 [39]  2 X      

41 [79] 1 X X X X X  

    39 10 8 2 37 0 

 


