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Abstract | Endocrine disrupting-chemicals (EDCs) are natural or synthetic compounds that are 

ubiquitous in the environment and in daily-usage products, which interfere with the normal 

function of the endocrine system leading to adverse health effects in humans. Exposure to 

these chemicals might elevate the risk of metabolic disorders, developmental and 

reproductive defects, and endocrine-related cancers. Prostate cancer is the most common 

hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, 

partly owing to a lack of knowledge about the mechanisms that lead to aggressive castrate-

resistant forms. In addition to early-stage prostate cancer’s dependence on androgen actions, 

the prostate is a target of oestrogenic regulation. This hormone dependence, along with the 

fact that exogenous influences are major risk factors for prostate cancer, make the prostate a 

likely target of harmful actions from endocrine-disrupting chemicals (EDCs). Various sources of 

EDCs and their different modes of action might explain their role in prostate carcinogenesis.  

 

[H1]Introduction 

Endocrine disrupting-chemicals (EDCs) are natural or synthetic compounds found in the 

environment, everyday objects, food, and cosmetics, which interfere with the normal function 

of the endocrine system, leading to adverse health effects 1,2. These chemicals can affect 
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hormone synthesis, metabolism, release, and transport, as well as altering the interaction of 

endogenous hormones with their receptors and related signalling cascades 3. Common sources 

of EDCs include plasticizers, pesticides, heavy metals, UV-filters, and flame retardants, 

amongst others 1. The broad action of EDCs, the diversity of mechanisms that they can reach, 

their widespread distribution, and the capacity of some of them to bioaccumulate — 

particularly in adipose tissue (AT) — means that EDCs could substantially affect human health, 

being crucial components of the exposome (that is, all the environmental exposures an 

individual experiences throughout their lifetime)  

Over the past 20 years , several governmental agencies, including The European Society of 

Endocrinology (ESE) and the World Health Organisation, have expressed concern about the 

harmful effects of EDCs on human health and wellbeing. In line with this, the Endocrine Society 

has highlighted that EDCs can be found as complex mixtures, have significant and/or long-term 

biological impact even with low exposure levels and produce effects affecting individuals 

across several generations   

Several studies have shown that EDCs exposure might elevate the risk of metabolic disorders, 

developmental and reproductive defects, and endocrine-related cancers 3,8. Prostate cancer is 

a hormone-dependent cancer and the second most common cancer in men, which accounts 

for a substantial number of deaths, and is the fifth leading cause of cancer-related mortality 

according to the 2022 global cancer statistics (published 2024)9. This scenario is partly 

attributable to the unknown aetiology of the disease and a lack of understanding of the 

mechanisms that accelerate the progression of prostate cancer to aggressive castrate-resistant 

forms. Initially, prostate cancer growth depends on the action of androgens mediated by the 

androgen receptor (AR), which sustain cell survival by stimulating proliferation and inhibiting 

apoptosis10,11. The intraprostatic activity of 5α-reductase, which converts ~90% of testosterone 

into 5α-dihydrotestosterone (5α-DHT), a potent metabolite with a 5-fold higher affinity for the 

AR than testosterone, has also been linked to disease progression 11. By contrast, advanced 



stages of prostate cancer are characterized by the acquisition of androgen-resistant 

phenotypes with tumours growing and metastasizing independently of circulating androgen 

levels 12.  

The prostate is also subject to oestrogenic regulation that directly and indirectly affects its 

growth and differentiation 13-16, with distinct effects triggered by the nuclear oestrogen 

receptors (ERs) isoforms, ERα and ERβ, and the membrane G protein-coupled ER (GPER) 17-19. 

ERα-signalling has been shown to promote proliferation, inflammation, and migration, 

whereas ERβ is considered antiproliferative and tumour-suppressive, with its loss being 

associated with the progression to castration-resistant prostate cancer 13,20. The role of GPER in 

prostate cancer is less clear, but a tumour suppressive function has been suggested, as its 

expression is inversely correlated to the degree of neoplastic cell differentiation 20. 

Importantly, AR, ERs and GPER have been shown to be activated (or inhibited) by different 

classes of EDCs, which can also interfere with other signalling pathways that control cell fate 

and tissue homeostasis 21-28. Thus, this hormone dependence suggests the possibility of the 

prostate as a target of EDCs, which are driving prostate carcinogenesis. This premise is further 

supported by data indicating that extrinsic factors contribute up to ~70-90% of the risk for 

prostate cancer 29-31, which also supports the potential that prostate cancer is linked to 

environmental influences such as EDCs. Indeed, over the past decade, the concept that EDCs 

might promote prostate cancer development has gained the attention of the scientific 

community, resulting in the publication of several reviews; however, these do not exclusively 

focus on prostate cancer, deal only with specific classes of compounds, or limit the discussion 

of different mechanisms of action to the analysis of the AR and ERs signalling pathways only32-

34. Thus, this Review provides a holistic overview of EDC classification, sources, and modes of 

action, discussing the diverse mechanisms that might explain their potential as prostate 

carcinogens, with a focus on EDCs-induced epigenetic alterations, immune dysregulation and 

disturbed cell survival and death in the prostate. 



 

[H1]Classification, sources and general mechanisms of EDCs 

EDCs can be classified into different categories according to their chemical origin, source, or 

physiological mode of action (Table 1). By chemical origin, EDCs can be divided into two 

groups: those that occur naturally, for example, mycooestrogens and phytoestrogens (for 

example zearalenone and genistein, respectively), and synthetic compounds, such as bisphenol 

A (BPA), vinclozolin or dioxins1. Alternatively, EDCs can be classified based on their source into 

natural and artificial hormones (for example, phytoestrogens and contraceptive pills, 

respectively), as drugs with hormonal side effects (such as naproxen and metoprolol), as 

industrial and household chemicals (for example, polycyclic aromatic hydrocarbons (PAHs), 

phthalates, fire retardants and plasticizers), as constituents of personal care products (such as 

ultraviolet absorbers in sunscreens, or phthalates and parabens in lotions and creams) and 

substances used in agricultural or gardening activities (insecticides and fungicides) 1,3,7. In the 

agricultural sector, persistent organic pollutants (POPs) such as organochlorine pesticides 

(OCPs) are the most concerning, owing to their resistance to degradation and metabolization35.  

Finally the mode of action and physiological responses of EDCs means that they can act as 

‘hormone mimickers’ or blockers (classified as xenohormones or antihormones, respectively)8. 

Notably, some of the substances that have been identified as EDCs can exhibit both xenobiotic 

and anti-hormone activity (Table 1). 

 

[H2] Xenoestrogens and xenoadrogens 

Xenoestrogens are chemicals that interfere with endocrine processes by mimicking the actions 

of endogenous oestrogen with downstream estrogenic effects via agonistic binding to the 

oestrogen receptors (ERs)36. Substances demonstrated to have estrogenic effects include 

phytoestrogens, industrial chemicals, polychlorinated biphenyls (PCBs), polybrominated 

biphenyl ethers (PBDEs), diethylstilboestrol (DES), BPA, UV filters, preservatives, pesticides, 



and heavy metals such as cadmium 37-41. Humans are also constantly exposed to complex 

mixtures of airborne pollutants with estrogenic activity, such as diesel exhaust particles42.  

Accordingly, xenoandrogens are the group of chemicals capable of disrupting endocrine 

homeostasis by mimicking androgen actions via agonistic interaction with the AR. This group 

includes mixtures of PCB congeners, UV filters, tributyltin (TBT) and triphenyltin (TPT) 43-47. 

EDCs with xenoandrogenic activity are less common than those with estrogenic activity 48.  

As the name indicates, antioestrogens and antiandrogens act as hormone antagonists, blocking 

the activation of ERs and AR, respectively. By inhibiting ERs and AR activity, these compounds 

disrupt hormone action, affecting physiological responses across a broad range of human 

tissues. 

Substances with antiestrogenic activity) include both natural and synthetic compounds (Table 

1)49-54. Products formed during chlorination of wastewater, extracts from soils collected near 

highways, extracts of motorcycle exhaust particulate and extracts from sedimentation dust 

from subway stations are also examples of complex mixtures of pollutants with potential 

antiestrogenic activity, to which humans are exposed in the environment 55-58. EDCs acting as 

antiandrogens include PCB 138, organochlorine pesticides, UV filters, 

dichlorodiphenyltrichloroethane (DDT) metabolite and insecticides (Table 1) 23,52,59,60. Complex 

mixtures of pollutants present in soils near highways, gaseous and particulate fractions of 

ambient air and diesel exhaust particles have also been shown to display antiandrogen 

activity42,57,61. 

 

[H1]Relationship between EDCs and prostate cancer 

Epidemiological studies are scarce and sometimes difficult to interpret, but they remain a 

crucial tool in monitoring human exposure to EDCs and establishing their relationship with 

disease.  



The great majority of the existing published studies that focused on the effect of EDC exposure 

on prostate cancer have addressed the influence of persistent pesticides on the development 

and aggressiveness of disease 62-67. High lipid adjusted serum concentrations of the OCPs beta-

hexachlorocyclohexane (HCH, 53.9 ng/g lipids, p = 0.02), trans-nonachlor (56.4 ng/g lipids, p = 

0.002), and dieldrin (14.7 ng/g lipids, p = 0.04) have been shown to be significantly associated 

with the risk of prevalent prostate 62. Data was obtained from the NHANES survey cycles 

conducted between 1999 and 2004 when blood samples from participants were collected. 

Adjusted odds ratios (ORs, 95% confidence interval, 95% CI) for the third tertile of detectable 

values were 3.36 (1.24–9.10) for HCH; 14.1 (2.55–77.9) for trans-nonachlor; and 2.74 (1.01–

7.49) for dieldrin compared with concentrations in the lowest tertile or below the limit of 

detection 62. A nested case-control study conducted between 1988 and 1999 within a large 

cohort (222 prostate cancer cases and 1110 age-matched controls) of predominantly Hispanic 

farmers in California demonstrated that workers with relatively high levels of exposure to OCPs 

(lindane, adjusted OR = 2.37; 95% CI: 1.22-4.61,  and heptachlor, adjusted OR = 2.01; 95% CI: 

1.12-3.60), OPs (dichlorvos, adjusted OR = 1.64; 95% CI: 0.97-2.78), fumigants (methyl 

bromide, adjusted OR = 1.59; 95% CI: 0.77-3.30), or triazine herbicides (simazine, adjusted OR 

= 1.81; 95% CI: 0.93-3.53) had an elevated risk of prostate cancer than those with lower 

exposure 63. Simazine (OR = 1.89; 95% CI: 1.08–3.33) and lindane (OR = 2.02; 95% CI: 1.15–

3.55) exposure were also associated with an increased risk of prostate cancer development in 

farmers from British Columbia (1,516 patients with prostate cancer and 4,994 age-matched 

internal control patients, covering the period between 1950 and 1998), with significant 

association observed between prostate cancer and dichlone (OR = 1.79; 95% CI: 1.13–2.85), 

malathion (OR = 1.34; 95% CI: 1.01–1.78) and endosulfan (OR = 1.52; 95% CI: 1.00–2.29) 64. In a 

study performed in Guadeloupe (France), involving 576 men with newly diagnosed prostate 

cancer (before treatment) and 655 control patients, higher plasma concentrations of DDE were 

associated with the development of prostate cancer (adjusted OR = 1.53; 95% CI: 1.02-2.30, p 



= 0.01)65. Interestingly, PCB-153 was more strongly associated with low-grade prostate cancer 

(p < 0.001) than with high-grade disease (p = 0.10), suggesting that this compound’s actions 

might be more impactful for onset of the disease than for its progression65. Higher serum 

levels of PCBs were also observed in Korean individuals with prostate cancer compared with 

the control group (median values ranged from 1.13-30.12 in cancer cases vs. 0.50-10.63 

ng/lipids in control individuals, hazard ratio, HR: 4.29; 95% CI: 1.52–12.08)66.  

An extensive study in The Netherlands investigated the influence of occupational exposure to a 

variety of compounds on the development of prostate cancer67. Investigation of occupational 

exposure to pesticides, PAHs, diesel exhaust, metal dust, metal fumes, and mineral oil in a 

cohort of 58,279 men identified a significant association with prostate cancer only for 

exposure to pesticides 67. However, the authors highlighted the need for more specific 

research and detailed information on exposure or potential confounders67.  

Occupational exposure to PAHs generally occurs from burning of  wood, petroleum and coal, 

via respiratory and cutaneous routes68. A study conducted in Detroit (Michigan, USA), between 

2001 and 2004, assessed prostate cancer and PAH exposure in 637 men with prostate cancer 

and 244 control patients of white and African-American ethnicity 68, groups with reported 

distinct prostate cancer incidence and mortality rates (64% higher incidence and 2.3 times 

higher mortality in African-American men compared with Caucasian populations 69,70). Other 

defined subsets were based on age (<60, 60-69 or >70), family history of prostate cancer 

(positive or negative), type of disease (aggressive or not) and selected non-occupational 

sources of PAH exposures (smoking or diet). To maximize statistical power, gene–environment 

interaction was assessed by the presence or absence of the glutathione S-transferase (GSTP1) 

Val(105) variant allele 68. In the multivariate models adjusted for age and PSA, OR for the 

GSTP1 codon 105 Val genotypes were slightly elevated in African-Americans, but <1 in 

Caucasians 68. In cases with an earlier age of disease onset (60 years) or who were smokers or 



had a family history of prostate cancer, the association between the GSTP1 Val105 variant and 

respiratory occupational PAH exposure from petroleum was increased 68. Overall, the study 

concluded that the carriage of this variant allele was associated with the exacerbation of 

respiratory exposure to PAH from any source, which was concomitant with an increased risk of 

prostate cancer (OR = 1.85; 95% CI: 1.19–2.89; p = 0.006) 68. A subsequent study from Canada 

collected detailed work histories from 1,929 patients with prostate cancer (436 with aggressive 

disease) and 1,994 control patients between 2005 and 2012 71. In all analyses, the reference 

category included men who had never been occupationally exposed to any PAHs, compared to 

those who had probably or definitely been exposed to PAHs only within the 5 years preceding 

the diagnosis/interview 71. After application of a 5-year development period from exposure, no 

clear association emerged for any of the PAHs. However, a slight increase in the risk of 

developing prostate cancer was apparent in the case of wood smoke exposure (OR = 1.06; 95% 

CI: 0.95-1.18) 71., frequently occurring among firefighters. An accentuated risk for the 

development of high-grade prostate cancer (OR = 1.37; 95% CI: 0.65-2.89) was reported 71.  

EDCs are also present in other daily products, such as food packaging, waterproof clothing, 

non-stick cookware, carpets, cosmetics and plastics 72-77. A study analysed the relationship 

between exposure to the EDC perfluorooctanoic acid  (PFOA) and cancer among residents 

living near the DuPont Teflon manufacturing plant in Parkersburg, West Virginia (USA) 72 and 

reported that increased PFOA serum levels were associated with several cancers, including 

prostate cancer (adjusted OR = 1.5; 95% CI: 0.9-2.5; 110–655 µg/L) 72. A  large prospective 

study, comprising 76,685 men aged 55–74 years across ten US centres73, evaluated a variety of 

polyfluoroalkyl substances (PFAS) and showed an inverse association between PFOA and 

aggressive prostate cancer (OR = 0.79; 95% CI = 0.63-0.99). However, this association was 

limited to cases diagnosed ≤3 years after blood collection and became weaker or null in cases 

diagnosed at a later follow-up point73. Contrastingly, a significantly higher risk of prostate 

cancer was also observed in employees of an ammonium perfluorooctanoate manufacturing 



facility in Minnesota, compared with an internal reference population of non-exposed workers 

(USA, HR = 3.0; 0.9–9.7 and HR = 6.6; 1.1–37.7, for moderate or high exposures, respectively, 

between 1997-2002) 74. Worryingly, standardized mortality ratios (95% CI) for prostate cancer 

with no, probable and definite exposure were 0.4 (0.1– 0.9), 0.9 (0.4 –1.8), and 2.1 (0.4 – 6.1), 

respectively 74. Residents of Merrimack (USA), a community with documented PFAS 

contamination of drinking water in public and private water sources, in a study performed 

between 2015 and 2019, also displayed a significantly higher risk of prostate cancer (risk 

ratio = 1.36; 95% CI 1.15-1.60) 75. 

A nested cohort study from Spain (n=1838 sub-cohort and n=467 non-sub-cohort, between 

1992-1996) demonstrated a relationship of parabens with prostate cancer risk. Significantly 

increased serum levels of methyl- and propyl-paraben were found in prostate cancer patients 

(1.03 vs. 0.93 ng/mL in control, p = 0.041; 0.24 vs. 0.22 ng/mL in control, p < 0.001), 

respectively). Methyl- and butyl-paraben as well as total were positively correlated with the 

development of prostate cancer (HR = 1.60, 95% CI = 1.16–2.20; HR = 1.19, 95% CI = 1.14–1.23 

and HR = 1.62; 95% CI = 1.10–2.40; respectively) 76. An increased risk of prostate cancer was 

also identified in Spanish men with increased serum BPA levels 77. When categorizing BPA into 

tertiles, a 40% increase in the risk of prostate cancer was found for tertile 1 (p = 0.022), versus 

37% for tertile 2 (p = 0.034) and 31% for tertile 3 (p = 0.072) 77.  Moreover, mean serum values 

of BPA in prostate cancer cases were higher than the ones from the non-sub-cohort (1.33 vs 

1.29 ng/mL, respectively) 77. 

A cohort study in Guadeloupe (French West Indies) was prospectively conducted on patients 

with incident prostate cancer who initially participated in a population-based case–control study 

between 2004 and 2007 and subsequently underwent radical prostatectomy in one single centre 

(Urology Department of the University Hospital of Guadeloupe) 78. Plasma samples were 

obtained 1–3 months before surgery to determine POPs concentrations  78. The xenoestrogen 



chlordecone, measured in 326 plasma samples (0.16-19.1 µg/L), was associated with increased 

biochemical recurrence of prostate cancer after prostatectomy (median follow-up of 6.1 years, 

adjusted HR = 2.51; 95% CI: 1.39-4.56, p = 0.002)  78. 

[H1] Mechanism of action of EDCs 

EDCs exert their actions by highly complex mechanisms including nuclear receptor binding, 

interaction with membrane receptors, epigenetic modifications, altered expression of 

microRNAs and disruption of hormone synthesis and metabolism (Fig. 1). Noteworthy, the 

consequences of EDCs actions are strongly dependent on the timing of exposure during 

individuals’ developmental stages, as well as on its duration, frequency and concentration 79.  

[H2]Nuclear receptor binding 

The most well-understood mechanism of EDCs action is the interaction with nuclear receptors 

(NR) (Fig. 1), which is a consequence of the general high liposolubility of these compounds. 

NRs act as transcription factors, with crucial roles in regulating gene expression in target cells 

and tissues 80,81. After ligand binding, NRs dimerize, translocate to the nucleus and bind to the 

respective hormone-responsive elements, which are consensus DNA sequences in the 

promoter region of target genes81. The interaction of the ligand–NR complex with DNA and its 

activity regulating gene transcription is modulated by a set of co-activators and co-repressor 

proteins 27,82,83. Both the ERs and AR are classical NRs belonging to the steroid receptor 

superfamily 84. In addition to the classical steroid NRs, EDCs can also bind other members of 

the NR superfamily, including the oestrogen-related receptors (ERRs), constitutive androstane 

receptor (CAR), pregnane X receptor (PXR), peroxisome-proliferator activated receptor (PPAR), 

retinoic acid (RA) receptor (RAR) and thyroid receptor (TR) 84,85.  

 

[H3] Oestrogen receptors 



The two ER subtypes, ERα and ERβ, which are encoded by distinct genes on separate 

chromosomes (ESR1 in chromosome 6 and ESR2 in chromosome 14, respectively) and exhibit 

tissue-specific expression patterns and functions 86, are targets of EDCs, which disrupt their 

transcriptional activity. Notably, EDCs display different binding capacities depending on the ER 

subtype, and some only bind ERα or ERβ87. For example, 2,2-bis(p-hydroxyphenyl)-1,1,1-

trichloroethane (HPTE) is selective for ERα both in vitro and in vivo88,89. ERα selective agonism 

was also observed for similar chemicals with bis-hydroxyphenyl core structures, such as BPA89. 

An increase in ERα expression and translocation from the cytoplasm to the nucleus was also 

observed in prostate neoplastic cells (LNCaP) upon exposure to 4-nonylphenol (NP)90. By 

contrast, phytoestrogens – such as coumestrol, genistein, zeralenone and equol – showed a 

higher affinity for ERβ than for ERα 91. The anti-estrogenic activity of the  organophosphate 

esters 4-hydroxyphenyl diphenyl phosphate (para-OH-TPHP) and resorcinol bis(diphenyl 

phosphate) (RDP) was demonstrated by their ability to inhibit ERα,  with 20 % relative 

inhibitory concentration (RIC20) values of 5.1 × 10−7 M and 5.6 × 10−7 M, respectively 92. Besides 

differential selectivity and affinity, the agonistic or antagonistic properties of an EDC might also 

depend on which ER subtype it binds, as proved by the capability of chlordecone and 

methoxychlor to display ERα agonistic activity though being ERβ antagonists 93.  

Estrogenic EDCs, including phthalates, PCBs, pesticides, BPA, alkylphenols and phytoestrogens, 

can bind also bind the AR, mainly antagonizing its activity 94-96. Androgen-mimicking EDCs, 

benzo[a]pyrene (BaP), dichlorvos, genistein and endosulfan, have been also identified26. 

Despite having high levels of similarity and identity with ERs in the DNA-binding and ligand-

binding domains, the distinct ERRs — ERRα, ERRβ and ERRγ — do not interact with 17β-

oestradiol (E2) 97. However, these receptors can bind to the functional oestrogen-response 

elements, and their transcriptional activity is repressed by some EDCs such as DES and BPA 

97,98. ERRγ was shown to bind p-hydroxybenzoic acid esters, NP, 4-tert-octylphenol, 2-tert-

butylphenol, pentachlorophenol, hexachlorobenzene, TBT, Di-(2-ethylhexyl) phthalate (DEHP), 



hydroxylated benzophenones and some phytoestrogens 35,99-104. Two other compounds, 

toxaphene and chlordane, have been identified as ERRα antagonists105. 

[H3] CAR and PXR 

CAR and PXR have been associated with the metabolism and transport of xenobiotics by 

regulating the expression of cytochrome P450 enzymes 106-108. Moreover, these receptors can 

establish crosstalk with other NRs, disrupting cell and tissue homeostasis by interfering with 

the control of intracellular signalling pathways109,110. Unlike other NRs, CAR is constitutively 

active under most circumstances, although some steroids can repress its activity 109. Many 

environmental chemicals can alter CAR activity, including trans-nonachlor, methoxychlor, 

alachlor, arsenite, BPA, butylate, chloropropham, chlorpyriphos, cypermethrin, cyproconazole, 

phthalates, dieldrin, endosulfan, fenitrothion, imazalil, kepone, metolachlor, NP, parathion, 

PCBs, pentachlorophenol, PFAS, propachlor, and triclopyr106,109,111-120.  

An extensive list of EDCs trigger the activity of PXR, including some phthalates, phenolic 

compounds and derivates, pesticides, plasticizers, UV-screens, mycoestrogens and 

phytoestrogens, brominated flame retardants, NP, PBDEs, DDT, trans-nonachlor and phthalic 

acid 115,121-146.  

[H3] PPAR 

The PPAR family of NRs includes three receptor subtypes, PPARα, PPARβ and PPARγ, which 

have crucial roles in the control of cellular differentiation, adipogenesis, and energy 

homeostasis by regulating lipid and carbohydrate metabolism 147,148. PPARα is essentially 

expressed in cardiac and skeletal muscles, adipose tissue, liver, kidney and intestine, and is 

important in fatty acid catabolism149-154. PPARγ has been shown to have a crucial function in 

adipocyte differentiation and lipid storage155-157, whereas PPARβ has a broader tissue 

expression and function, with a role in cell differentiation and survival and in both systemic 

and tissue-specific fatty acid metabolism157. Beyond the activation by natural ligands, such as 

polyunsaturated fatty acids and eicosanoids, PPARs’ activity is influenced by a panoply of 



environmental pollutants. Phthalates, and organotins have been shown to activate these 

receptors 158-167. The obesogens TBT and bis(triphenyltin) oxide induce adipocyte 

differentiation by promoting PPARγ transcriptional effects on target genes 168. Furthermore, 

perinatal exposure to BPA or BPA analogues has been shown to alter PPARγ-mediated early 

adipogenesis in the rat169,170. 

[H3]Retinoid receptors 

The retinoid-responsive NRs include the RAR and the retinoid X receptors (RXRs), which 

include α, β and γ subtypes and distinct isoforms 171. Specific regulation of gene expression is 

achieved by 48 possible RAR–RXR heterodimer complexes 171,172. Moreover, the responsiveness 

of RXR to its ligand was shown to depend on RAR agonist binding; thus, RXR is considered a 

silent or subordinate partner173-175. At low levels, retinoids have been proposed to exert 

anticarcinogenic effects in various tissues by suppressing cell proliferation, differentiation and 

apoptosis176-187. However, high retinoid levels are associated with an increased risk of cancer, 

particularly prostate cancer 188-190. Accordingly, the organochlorine pesticide toxaphene was 

shown to inhibit the binding of the endogenous ligand 3H-All trans retinoic acid to RAR in the 

human prostate 191 and the pesticide methoprene can also interact with RXR activating 

transcription through RXR response elements192. Although environmental concentrations of 

methoprene are not enough to cause RA-like effects, ultraviolet and/or microbial degradation 

products of methoprene could affect morphogenesis via teratogenic effects through the 

retinol signalling pathway 192. Furthermore, the methoprene metabolite methoxy-methoprene 

acid can bind and activate RXR193. TBT and TPT were also demonstrated to activate mammalian 

RXR in the F9 murine embryonic carcinoma cell line at the same concentrations of RXR’s 

physiological ligand 9-cis RA161.  

Alterations in retinoid circulatory levels caused by exposure to PCBs raise the question of 

whether is pertinent to consider retinoids as biomarkers of exposure to organochlorides194. In 

line with the previous hypothesis, PCBs were dose-dependently associated with levels of 



retinoids in fish, birds and mammals195-200, suggesting important effects of these compounds in 

retinoid-dependent signalling pathways in birds and mammals201-209. PAHs are another group 

of widespread pollutants that affect the retinoid system and have been shown to have 

carcinogenic potential, mainly owing. to their mutagenic ability (DNA adducts) and highly 

reactive metabolites, such as epoxides210-212. 

[H3]Thyroid receptors 

Five isoforms of TR exist: TRα1, TRα2, TRβ1, TRβ2 and TRβ3; TRα1 seems to act as a repressor 

of TR action213. TRα is expressed in all tissues, but TRβ is only found in the kidney, liver, central 

nervous system and pituitary gland214. Through the mediated response of TRs, thyroid 

hormones (THs) regulate metabolism, cardiac function, mental status and bone remodelling215-

225, controlling cell differentiation and growth in various organs226-233. PCBs can dysregulate 

thyroid action, decreasing hormone levels, blocking binding to TR and affecting the expression 

of TH-responsive genes 234-238. Both para-OH-TPHP, and another organophosphate ester, the 

tris (2-biphenylyl) phosphate demonstrated to have antagonistic activity on TRβ, whereas 

para-OH-TPHP presented significantly higher affinity for TRβ (RIC20 of 7.5 × 10−7 M vs. 5.4 × 10−6 

M, respectively) 92. Other classes of compounds that affect THs actions by reducing their levels 

include flame retardants (for example tetrabromobisphenol A, PBDEs and polybrominated 

biphenyls), pesticides (such as DDT and hexachlorobenzene), UV filters (such as octyl-

methoxycinnamate), phthalates (including di-n-octyl phthalate) and PFAS (such as 

perfluorooctane sulfonate) 215,239-261.  

 

[H2]Aryl hydrocarbon receptor 

Although not classified as an NR, the aryl hydrocarbon receptor (AhR) is a ligand-activated 

transcription factor, displaying functional similarities with the members of the NR 

superfamily262. After interacting with the nuclear protein Arnt, AhR specifically binds to dioxin-

responsive elements in the upstream regulatory regions of target genes 262. AhR transcriptional 



activity induces the expression of cytochrome P450 enzymes (CYPs), for example CYP1B1, one 

of the major enzymes involved in the hydroxylation of androgens and oestrogens, which is a 

key reaction in hormone-dependent carcinogenesis 263,264. Studies have demonstrated that AhR 

can be activated by several EDCs including dibutyl phthalate, diisodecyl phthalate, DEHP, some 

phenols, perfluorooctanoic acid, perfluoroalkyl acids, methoxychlor, PCBs, BaP, TBT, 

phytoestrogens and UV filters 262,265-271.  

 

[H2Interaction with membrane receptors 

Rapid nongenomic actions of EDCs via their interaction with plasma membrane receptors, not 

dependent on the regulation of gene transcription, have been reported. These mechanisms of 

rapid responses involve second messenger-triggered signalling cascades and include the 

membrane-bound ERs mERα and mERβ and the GPER 272. The mERα and mERβ are the classical 

nuclear ERs, which are translocated to the plasma membrane via mechanisms that remain 

unelucidated273.  

The mERα and mERβ also mediate a nongenomic pathway via the rise of intracellular calcium 

(Ca2+) levels driven by a rapid increase in Ca2+ influx, which can promote changes in 

intracellular and extracellular processes, cell motility and hormone secretion 274. Some 

xenoestrogens such as dieldrin, endosulfan, NP and BPA can affect Ca2+ influx and prolactin 

release in pituitary tumour cells via mERα activation, with consequences on hormonal 

regulation, cell proliferation and immune response274. GPER is expressed the brain, ovary, 

breast, testis, heart, pancreas and prostate275-282. Thus, GPER activation is an alternative 

oestrogen-signalling pathway that might used by EDCs, leading to deregulated hormonal 

balance and downstream effects in a broad range of tissues. Xenoestrogens, such as BPA, 

genistein, DDT derivates, atrazine, PCBs, kepone, methoxychlor, cadmium, arsenite and NP 

bind with high affinity to GPER283-286. 

 



[H2]Epigenetic modifications 

Besides directly interfering with the mode of action of NRs and, therefore, gene expression, 

EDCs can also induce epigenetic modifications(FIG. 1) 287. Moreover, epigenetic alterations 

capable of altering the DNA landscape and gene transcription rate can be heritable through 

successive generations 288. 

The main epigenetic changes induced by EDCs are DNA methylation and histone 

modifications16,289-292. The DNA methylation pattern, determined by the activity of a family of 

DNA methyltransferases (DNMTs), establishes the chromatin structure. An open chromatin 

structure (active) is associated with hypomethylated DNA sequences, whereas 

hypermethylated DNA is packaged in a more compact structure (inactive) 293. DNA 

hypermethylation can block the access of transcription factors to gene promoter binding sites, 

suppressing gene expression 293. Thus, aberrant hypermethylation can have a profound effect 

on cell fate by suppressing, for example, the expression of tumour suppression genes 294-300. 

Chromatin conformation can also be altered by post-translational modifications of charged 

amino acids of histone tails, such as acetylation, methylation, phosphorylation, ubiquitination 

or ADP-ribosylation, which protrude histones from the nucleosome, inducing a DNA relaxation 

and regulating gene expression 301. Thus, alterations at this level can dramatically affect gene 

expression. For example, changes in the global levels of individual histone modifications have 

been reported to predict the clinical outcome of prostate cancer, more specifically involving 

H3 K18Ac and K4diMe staining, which distinguished between two groups of patients with a 

distinct risk of tumour recurrence (4% and 31%, respectively)302.  

Perinatal and early-life exposure to BPA, cadmium, 17β-estradiol-3-benzoate (EB), PCBs, DES, 

phthalates, methoxychlor or vinclozolin have all been shown to alter the DNA methylation 

pattern in prostate cells 16,303-308. PCBs might also reduce the expression and activity of DNMTs, 

which has been shown in the liver of offspring whose progenitors were exposed to these EDCs 



during gestation 306,307,309. In addition, differential histone methylation was observed in rat 

testes after in utero exposure to vinclozolin or dibutyl-phthalate 289, with BPA, DES and 

phthalates also inducing histone conformational alterations 310,311. The physiological 

consequences in the prostate triggered upon EDCs exposure via epigenetic mechanisms are 

systematized and further explored in the corresponding section.  

 

[H2]Altered expression of microRNAs 

MicroRNAs (miRNAs) are conserved small noncoding RNA molecules that mainly bind to the 3’ 

untranslated regions of target messenger RNAs (mRNAs), altering their translation and 

stability312. An estimated 30% of protein-coding genes are regulated by miRNAs 313, which have 

a crucial role in the regulation of fundamental cellular processes, such as cell proliferation, 

migration and programmed cell death, and hormone metabolism and intracellular signalling 

314-316. Thus, mechanistic disruption of the miRNAs landscape can have profound physiological 

consequences. Deregulation of miRNA homeostasis has been correlated with diseases such as 

obesity, diabetes and cancer 316-318 and EDCs are candidates molecules to interfere with small 

noncoding RNA signalling (FIG. 1) as they have been shown to affect the biogenesis, editing 

and stability of miRNAs, altering their tissue expression levels319. Treatment of the oestrogen-

responsive human breast cancer cell line MCF-7 and placental cell lines with BPA, NP or DDT, 

led to atypical miRNA expression320-322 and NP has also been shown to affect the expression 

profile of several miRNAs, such as miR-16, miR-195, miR-200b and miR-205, which are related 

to metabolism, immune response, apoptosis and cell differentiation 322. Notably, the levels of 

miR-200b and mi205 are inversely associated with prostate cancer aggressiveness323,324. Other 

classes of compounds capable of deregulating miRNAs expression are phthalates, phenols and 

alkylphenols, with effects demonstrated in human placenta and in mouse embryos 319,325. PCBs, 

2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and DES also disrupt the miRNAs population, 



altering their expression and/or functionality, leading to disruption of hormone homeostasis, 

metabolic disorders and cancer326-331 .  

Studies showing a link between EDCs-dysregulated miRNA populations and prostate cancer 

begin to emerge. The oral administration of 2 μg/kg BPA every day for 8 weeks reduced the 

expression of cfa-miR-204 in the prostate of beagle dogs, concomitantly with KRAS oncogene 

upregulation, which triggered the malignant transformation of prostatic hyperplasia via this 

axis 332. Decreased miRNA expression (miR-134, miR-373, miR-155, miR-138, miR-205, miR-

181d, miR-181c) targeting KRAS superfamily members was also observed during the malignant 

transformation of human prostate epithelial and stem cells by arsenic 333. Downregulation of 

miRNAs in rat dorsolateral prostate (rno-miR-329-3p, and rno-miR-126a-3p) and plasma (rno-

miR-329-3p) was found after postnatal administration (days 1, 3, and 5) of 2.5 mg/kg EB, which 

was accompanied by increased prostate weight and dorsolateral prostate inflammation. This 

study also found downregulated expression of miR-329-3p's target genes 

(Esrrg, Tp53inp2 and Bmp2r), which can result in activation of malignancy and cell 

proliferation/tumour growth 334.  

 

[H2]Disruption of hormone synthesis and metabolism 

EDCs can also interfere with hormone synthesis and metabolism (FIG. 1).  

The activity of steroidogenic enzymes such as hydroxysteroid dehydrogenases, aromatase, 

sulfatase and sulfotransferases and the steroidogenic pathway (FIG. 2) can be affected by 

xenoestrogens. Some phthalates have been shown to inhibit 3β-hydroxysteroid 

dehydrogenase and 17β-hydroxysteroid dehydrogenase isozyme 3 in both rat and human 

testis in a dose-dependent manner 335,336. For example, BPA inhibited the activity of 11β-

hydroxysteroid dehydrogenase isoform 1 isolated from human liver, rat Leydig cells and testis 

microsomes and 11β-hydroxysteroid dehydrogenase isoform 12 (FIG. 2) from human and rat 

kidney microsomes 337. The flavonoids genistein, daidzein, formononetin, and biochanin A 
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significantly inhibit the 3β-hydroxysteroid dehydrogenase isozyme 2 338,339. Moreover, 

genistein has been shown to reduce 17β-hydroxysteroid dehydrogenase isozyme 3 activity in 

human and rat testicular microsomes, as well as in rat Leydig cells 336. The UV-filter 

benzophenone-1 has also been reported to inhibit 17β-hydroxysteroid dehydrogenase isozyme 

3 (FIG. 2)340.  

Oestrogen sulfotransferase (FIG. 2) is necessary for the excretion of oestrogens and inhibition 

of this enzyme by EDCs can, therefore, increase bioavailability of oestrogens to target organs 

341,342. Estrone sulfatase activity was shown to be reduced by the flavonoids quercetin, 

kaempferol, naringenin, and the sterol sulfatase enzyme is inhibited by daidzein 343,344. 

Aromatase activity (FIG. 2) can be disrupted by several classes of environmental pollutant 

compounds, which can induce or inhibit its activity, altering the normal physiological ratio of 

androgens:oestrogens. Pesticides — atrazine, simazine, terbuthylazine, propazine, methomyl, 

pirimicarb, propamocarb, iprodione, prothioconazole, benomyl and carbendazim — and other 

compounds such as dichlorodiphenyldichloroethylene (DDE), NP, BPA and arsenic are known 

inducers of aromatase activity in several neoplastic and non-neoplastic human cell lines 

(including those of breast, ovary, adrenal cortex, and placenta), and in rat hepatocytes, Leydig 

cells and prostate 345-356. On the other hand, disruptive actions of environmental pollutants 

such as prochloraz, fenarimol, endosulfan, chlorothalonil, propiconazole, TBT, imazalil, 

triadimenol, triadimefon, dicofol, DES, chlordecone, PBDES, parabens, dibutyltin and TPT lead 

to the opposite effect, inhibiting aromatase activity 349,350,357-364. Exposure to BPA was also 

shown to reduce the levels of the 5α-reductase isozymes R1 and R2 in rat prostate, increasing 

the levels of isoform R3, which has been proposed as a biomarker of malignancy 356.  

EDCs can also inhibit other p450 enzymes that are involved in the metabolism of testosterone 

and estrone365,366. The p450 enzyme families most affected by EDCs are CYP1, CYP2, CYP3 and 

CYP4. Chemicals that can affect the CYP1 family, for example CYP1A isoforms, are TCDD, BPA 

and alachlor 367-369, whereas in the CYP2 family, DDE, DDT, methoxychlor, BPA, benzophenone, 



alachlor, some flame retardant, trans-nonachlor, endosulfan, chlordane, dieldrin, aldrin and 

pentachlorophenol disrupt activity of the CYP2A, CYP2B and CYP2C isoforms111,115,131,134,368-374. 

The CYP3A isoform was shown to be affected by environmental pollutants, such as TBT, DDE, 

DDT, methoxychlor, BPA, benzophenone, alachlor, trifluralin, vinclozolin, lindane, chlordane, 

dieldrin, endosulfan and trans-nonachlor 111,131,134,370-372,375 and EDCs such as hepatochlor, BPA, 

NP and some phthalates disrupt the activity of CYP4 family members115,376,377.  

Although altered expression of CYPs has not been directly associated with prostate cancer, 

significant correlative relationships between the expression of CYPs (CYP7B1, CYP27A1, 

CYP39A1, CYP51, CYP1B1, CYP3A5, CYP4F8, CYP5A1, CYP4F2, CYP2J2, CYP2E1, CYP2R1, 

CYP27B1, CYP24A1) and some prostate-cancer-related genes (CDH2, MMP9, SCHLAP1, GCR, 

CYP17A1, ACTA2, CXCL14, FAP, CCL17, MSMB, IRF1, VDR) was observed 378. The relationship 

between CYPs and genes associated with cancer indicates the existence of common regulatory 

pathways that might have a synergistic effect to ensure the survival of cancer cells and tumour 

growth.  

Reduced 5α-reductase activity, thereby limiting the conversion of testosterone to 5α-DHT, 

could be another route for an unbalanced androgen:oestrogen ratio to predispose to prostate 

malignant transformation. These data highlight the complexity of the action of EDCs in steroid 

biosynthesis and metabolism. 

 

[H1]Physiological effects of EDCs driven by epigenetic alterations 

Epigenetic alterations are common events seen in cancer cells, which contribute to the 

establishment of malignant phenotypes as the global changes in chromatin state disrupt the 

expression of oncogenes and tumour suppressor genes, triggering tumour progression, 

aggressiveness and resistance to therapy379. Aberrant hypermethylation has been shown to 

have a substantial effect on the progression of prostate cancer by affecting hormone signalling 

294-297, DNA repair 298, tumour suppression 299,300,380-383, cell adhesion 384-387, cell cycle and the 



expression of proapoptotic genes 388-390. This wide range of actions justifies the concern about 

EDCs and their role in deregulating the epigenetic pattern towards a cancer-promoting state. 

Prenatal and early life exposure to EDCs can alter the methylation level of several genes, with 

harmful outcomes later in life. Activity of phosphodiesterase type 4 variant 4 (PDE4D4), an 

enzyme responsible for cyclic AMP breakdown and directly associated with preneoplastic 

prostate lesions, is augmented in rats exposed to environmental doses of BPA during the 

neonatal period391. In human healthy prostates, the specific methylation cluster for PDE4D4 is 

gradually hypermethylated with ageing 391. However, in this work, early and prolonged 

hypomethylation at this site was seen after exposure, culminating in continued and elevated 

expression of PDE4D4391. Another study demonstrated that exposure to EB and BPA during 

neonatal development stage increased susceptibility to prostate cancer in rodent models 305. 

This experiment identified 111 EB-associated genes and 86 BPA-associated genes with 

significantly different methylated regions, 20 of them in common 305. The majority of these 

genes were related to cell-to-cell signalling and interaction, cell-mediated immune response, 

and cellular growth and proliferation. The oncogenic signalling molecules protein kinase B 

(AKT) and extracellular signal-regulated kinases 1/2 (ERK1/2), which support stem and cancer 

cell proliferation, migration and tumorigenesis, were specific targets305. In rats, DEHP exposure 

altered methylation of the prostate carcinogenesis-related genes PSCA, GSTP1 and PTGS2, 

plausibly contributing to the increasing susceptibility to prostate cancer in later life 305. EDCs 

also can alter the catalytic activity or the expression levels of histone-modifying enzymes, 

which interact with steroid receptors facilitating the transcription of their target genes 306. 

Jarid1b is a histone demethylase upregulated in prostate cancer cells that catalyses the 

removal of trimethylation of lysine 4 on histone H3 (H3K4me3) 392. This histone demethylase 

interacts with AR, promoting its transactivation 306. A study of the effect of PCBs on the 

interaction between AR and Jarid1b interaction demonstrated that PCBs promoted AR 

transcriptional activity in a dose-dependent manner306. Notably, the effects of PCBs were 



dependent on the presence of Jarid1b and at least 2 DNA-binding sites for the Jarid1b 

enzyme306. BPA was shown to downregulate nucleolar RNAs with a C/D motif via altered 

recruitment of H3K9me3, H3K4me3, and H3K27me3 to 5'-regulatory exonic sequences 393. 

Expression of 4 of these 5 nucleolar RNAs (SNORD59A, SNORD82, SNORD116, and SNORD117) 

was shown to be reduced in prostate cancer samples compared with adjacent normal tissue393. 

Another study demonstrated that BPA increased the activity of the histone methyltransferase 

MLL1 via activation of nongenomic signalling (PI3K) in the neonatal developing prostate394. 

Whole-genome transcriptome sequencing determined the differentially expressed genes 

targeted by BPA, exhibiting a persistent elevation of H3K4me3394. Moreover, BPA 

administration exaggerated the response to carcinogenesis-promoting hormone treatment 

(testosterone + E2 implantation)394. Indeed, both DNA methylation and histone modifications 

(H3K9ac, H3K9me3, H3K27me3, and H4K20me3) could be proposed as molecular biomarkers 

of BPA-induced prostate cancer progression395,396. In silico studies and molecular docking 

analysis demonstrated that androgenic EDCs (BaP, dichlorvos, genistein and endosulfan) can 

bind the epigenetic regulatory enzymes DNA methyltransferase 1 (DNMT1) and histone 

deacetylase 1 (HDAC1) 26. Furthermore, exposure to these EDCs enhanced the expression of 

DNMT1 and HDAC1 in the human prostate neoplastic androgen-sensitive cell line LNCaP26.  

EDCs have demonstrated transgenerational effects — altered gene expression induced by 

EDCs via epigenetic mechanisms, especially when exposure occurs early in life, can be 

heritable through successive generations304,397. For example, male rats exposed to vinclozolin 

during foetal development, as well as non-exposed F2-F4 generations, developed tumours (12-

22%, breast adenomas, malignant breast carcinoma, lung sarcoma, and melanoma), whereas 

their control counterparts were tumour-free 398. F1-F4 vinclozolin generation males also 

presented accentuated higher frequencies of prostatic lesions (45-55%), with abnormal 

prostate histology that ranged from primary ductal atrophy to cystic hyperplasia and focal 

prostatitis398. Vinclozolin also able to transgenerationally altered the prostate transcriptome 



(259 genes with significantly changed expression), including genes associated with prostate 

cancer (for example, beta-microseminoprotein and tumor necrosis factor receptor superfamily 

6) 399.  

Overall, the promotion of epigenetic alterations seems to be a common mechanism underlying 

the action of EDCs in tumorigenesis. 

 

[H1]Immune system alterations  

A panoply of immune and inflammatory cells (for example, tumour-associated macrophages 

(TAMs), lymphocytes, dendritic cells, neutrophils and myeloid-derived suppressor cells) and 

several cytokines (such as IL-1β, IL-6, IL-10, IL-17, TGF-β, TNF-α) are present in the tumour 

microenvironment 400. Lack of balance in these biochemical and cellular components results in 

a chronic inflammatory state, which is associated with cancer development 400-402. The 

inflammatory environment ranges from high immunological reactivity by cytotoxic innate and 

adaptive immune cells during the early stages of tumorigenesis to peripheral tolerance and 

immunosuppressive tumour environment in advanced stages of the disease, which are linked 

with poor prognosis 400,402. Cancer-associated inflammation contributes to genomic instability, 

epigenetic modification, induction of cancer cell proliferation, enhancement of anti-apoptotic 

pathways, stimulation of angiogenesis, and cancer dissemination 401. Approximately 20% of 

cancers, including prostate cancer, are attributable to chronic inflammatory conditions, with 

environmental factors being strong drivers of immune response impairment 403,404. 

Two major properties make the immune system susceptible to chemical deregulation: first, the 

fact that the immune system develops later in life and bone marrow-derived immune 

components are continuously being renewed and second, immune surveillance, which requires 

a delicate control of the balance between activation, silencing and regulation of immune 

reactivity405. In a risk assessment study involving 27 compounds, the relationship between 



immunotoxicity and carcinogenicity was reported at 81%, suggesting that if a compound is 

immunotoxic, it is highly likely to also be carcinogenic 406. EDCs that affect the activity of 

immune cells or alter cytokine production might also compromise cancer immune 

surveillance406, which is associated with several cancer types including haemopoietic, prostate, 

liver and pancreas 407-409. Reports assessing the direct relationship between EDC-induced 

immune dysfunction and prostate cancer are almost non-existent; however, the dysregulation 

of the immune component is correlated with procarcinogenic features, and some studies have 

explored this idea 410,411. Although some EDCs exert immunosuppressive actions and others 

have been shown to exacerbate immunological responses, paradoxically, both responses are 

able to promote tumorigenesis412-415. 

Immunosuppression – specifically impairment of neutrophil chemotaxis and adhesion — was 

observed in industrial workers exposed to several pesticides, such as trichlorfon, malathion, 

DDT, hexachlorocyclohexane and fenitrothion412,413. NP and 4-octylphenol have also been 

shown to reduce macrophage-derived chemokine expression when macrophages were LPS-

activated, via ER-dependent mechanisms 416. However, duality was observed in the case of NP, 

as this EDC was shown to upregulate key target genes — the pro-inflammatory cytokines IL-8 

and IL-1β — involved in the inflammation process of prostate cell lines PNT1A and LNCaP90,417. 

Some pesticides, the fungicide ziram, organotins (TBT and dibutyltin), and PCBs have been 

shown to decrease natural killer (NK) cells’ activity, which might be relevant for immune 

surveillance and destruction of abnormal cells such as tumour cells)418-420.  

EDCs also affect adaptive immunity. Exposure to cadmium, PCBs, dioxins, dibenzofurans, 

hexachlorobenzene, dieldrin and DDT have been shown to disrupt the proliferation of 

thymocytes and thymic maturation of T cells, inhibiting T cell proliferation and interfering with 

metabolic pathways421-425. TCDD has been shown to cause thymic atrophy, suppressing cell-

mediated immunity, and inhibiting the complement system and myelotoxicity, which might 



increase the predisposition to carcinogenicity410,411. Besides TCDD, PCBs can also induce 

atrophy of the thymus in numerous species, including rats, rabbits, pigs, monkeys and humans 

420,426-429.  

EDCs can stimulate inflammation and immune response. The organotins TBT and TPT have 

been shown to promote CCR9 chemokine receptor expression to levels above that seen with 

anti-CD3/-CD28-induced activation, increasing T cell recruitment in the gut414. Immune 

dysregulation propitiating chronic gut inflammation is relevant in the context of prostate 

cancer, as it can lead to increased levels of pro-inflammatory cytokines and immune cell 

infiltration in the prostate 430,431, creating a pro-tumorigenic environment. This relationship is 

corroborated by studies that demonstrate the association of inflammatory bowel disease with 

prostate inflammation and prostate cancer430,431. Notably, neonatal administration of the 

xenoestrogens DES and EB resulted in marked inflammation of prostate lobes later in life (180 

and 90 post-natal days, respectively)415,432. BPA exposure has also been associated with 

exacerbated prostate inflammation 391,433-435. Prepubertal BPA exposure induced inflammation 

in the adult rat prostate, whereas adult BPA exposure aggravated pre-existing benign prostate 

hyperplasia436,437. Moreover, chronic BPA exposure promoted the infiltration of both CD4+ and 

CD8+ T cells in the rat dysplastic epithelium of prostatic intraepithelial neoplasia (PIN) lesions 

438. Accumulation of CD4+ T cells is linked to a worse prognostic, as the infiltration of these cells 

in prostate tumours correlates with an increased risk of lethal prostate cancer in humans439. 

Altogether, these findings suggest that BPA exposure alters T cell homeostasis, possibly 

predisposing to prostate tumorigenesis 438. This hypothesis is also supported by the literature 

regarding other cancers. For example, BPA can alter and disturb the antigen-specific immune 

response, leading to moderate Th1-type immunoreaction 440. Furthermore, exposure to 

aldicarb-contaminated groundwater was associated with increased CD8+ T cell number and 

decreased CD4+:CD8+ T cell ratio 441. 



Independently of stimulating immune reactivity or immunosuppressors, EDCs affect important 

immune system components and, in some cases, immune function, which might be related to 

the development of prostate cancer and/or progression to more aggressive forms.  

 

[H1]The effect of EDCs on the fate of prostate cells  

Deregulated cell proliferation and resistance to death are among the most widely studied 

hallmarks of cancer 442. In non-neoplastic tissues, cell growth and division are tightly controlled 

by various signals and cell cycle regulators, which contribute to maintaining tissue homeostasis 

443. By contrast, cancer cells display enhanced cell cycle activity 444 and acquire the capacity to 

sustain high proliferation rates, for example, by dividing even in the absence of mitogens or 

growth-stimulating factors 442. In addition, cancer cells become resistant to damage and 

capable of evading programmed cell death 442,445. 

Apoptosis is the most common mechanism of programmed cell death, and has a crucial role in 

removing injured or unnecessary cells. Apoptosis is regulated in part by several Bcl-2 family, 

which control mitochondrial integrity and the activity of pro-apoptotic molecules 446. Overall, 

the balance between pro-apoptotic and anti-apoptotic signals and regulators determines the 

fate of the cell447. The deregulation of these control mechanisms enables cancer to circumvent 

apoptosis. Such mechanisms include the loss of function of the tumour suppressor protein 

p53, which usually induces the expression of anti-apoptotic proteins or survival factors and the 

apoptosis of cells that display critical DNA damage442. An efficient apoptotic programme 

protects against carcinogenesis and, therefore, several apoptosis regulators have been 

exploited as therapeutic targets442. Some of the evidence supporting a role of EDCs as 

carcinogens includes their actions as deregulators of cell proliferation and apoptosis, most 

likely by interfering with oestrogen and/or androgen signalling pathways. 448 



Oestrogens are well-known mitogens and potent apoptosis regulators 449. Several reports 

indicate that the ERα pathway is responsible for the E2-induced cancer-promoting response, 

whereas ERβ is associated with a protective role against carcinogenesis 450,451. ERs are key players 

in regulating cell proliferation in prostate cancer after exposure to xenoestrogenic EDCs 15,391,452. 

In this context, perinatal exposure to environmentally relevant doses of BPA (10 µg/kg body 

weight) have been shown to alter rodent prostate growth and differentiation, resulting in 

precancerous lesions15,391,452. This effect occurred either via altering the expression of genes 

encoding cell cycle and/or apoptosis regulators, or by nongenomic modulation 391. NP also can 

stimulate the proliferation of both non-neoplastic (PNT1A, 10−6 M) and neoplastic (LNCaP, 

10−10 M) human prostate cells, upregulating Cyclin D, Cyclin E and Ki67 gene expression via 

interaction with ERα, and not affecting p53 expression 90,417. Cyclin E and Cyclin D promote G1/S 

phase transition of the cell cycle and are often used as markers to evaluate the carcinogenic 

potential of EDCs 417,453. Evidence suggests that, besides ER-mediated pathways, AR signalling is 

also involved in NP-induced prostate cancer cell proliferation. NP (10−6 M), as well as 

hexabromocyclododecane (HBCD, 10−8 M), were shown to increase the viability and growth of 

LNCaP cells through AR activation, leading to the downregulation of the cell-cycle inhibitors p21 

and p27 and upregulation of Cyclin D or Cyclin E 454. HBCD and NP exposure also affected the 

expression of the pro-apoptotic gene BAX, reducing apoptosis of LNCaP cells by decreasing BAX 

protein levels454. Higher expression levels of cathepsin D, a protease that regulates cancer 

progression and metastasis, were also observed after treatment of LNCaP cells with NP 454. Other 

compounds with androgenic activity, including the xenoandrogens TBT and TPT, have been 

shown to increase the proliferation of LNCaP and related cell lines (LA16)455. Moreover, the 

increased proliferative activity, along with activation of AR-dependent transcription, in TBT/TPT 

treated-LNCaP cells further sustains the hypothesis that these chemicals could promote prostate 

tumour aggressiveness, as the AR mutation observed in LNCaP is frequently found in advanced 

human prostate cancer, rendering it susceptible to this type of dysregulation 455-457. 



Remarkably, EDCs with androgenic activity can also affect prostate cells through AR-

independent mechanisms, which is demonstrated by their effects on the fate of AR-negative 

prostate cells, such as PC3. BaP exposure significantly increased the proliferation of the 

neoplastic human prostate cell line PC3, with a reduction in the G0-G1 phase population and 

elevation in S phase458. The migratory capacity of PC3 cells was also significantly increased, 

owing to the modulation of MMP-9, CYP1A1, CYP1B1, Cyclin D1, and E-cadherin levels 458. 

Alterations in epithelial-mesenchymal transition (EMT) markers were also observed in DU145 

and PC3 cells after endosulfan exposure, reflecting repression of E-cadherin expression and 

induction of fibronectin, SNAIL2, ZEB2, TWIST1 and Vimentin 459.  Similarly, despite being a 

xenoestrogen, low doses of BPA have been shown to activate AR and mitogenesis in prostate 

adenocarcinoma cells (LNCaP) 24. The xenoestrogen EB, which is related to tumour growth or 

abnormal proliferation, induced substantial changes in expression levels of several miRNAs 

(rno-miR-146-5p, rno-miR-329-3p, and rno-miR-126a-3p) in the dorsolateral prostate of 

exposed rats334.  

In prostate epithelial cells, the expression of the tumour suppressor protein p27 is modulated 

by androgens, with reduced expression levels after malignant transformation being associated 

with the acquisition of androgen-independent growth 460. In the RWPE-1 prostate epithelial 

cell line, cadmium was shown to potentiate androgen-independent malignant transformation 

along with increased ER and 5α-aromatase expression, suggesting that oestrogen signalling 

might be critical to this process 461. Indeed, cadmium enhanced cell growth and reduced 

expression levels of tumour suppressor protein p27 and p21 461,462, increasing other cell cycle-

associated proteins such as cyclin D1 and B1 462. 

EDCs can also affect cell fate independently of ER-mediated and AR-mediated mechanisms. 

Indeed, arsenic-malignant-transformed prostatic epithelial and stem cells demonstrated 

impairments in the Toll-like receptor 3 anti-tumour pathway 448. In the same cell line, inorganic 



arsenic was shown to stimulate cell self-renewal, suppressing the differentiation of prostate 

stem-progenitor cells by activation of the p-62-KEAP1-NRF2 pathway 463. Another worrying 

factor in arsenic-associated cancer stem cell overabundance is the ability of arsenic-

transformed malignant epithelial cells (MECs) to influence the nearby non-neoplastic stem 

cells 464. A noncontact co-culture model demonstrated that arsenic-transformed prostate MECs 

caused the hypersecretion of MMPs with increased invasiveness, clonogenicity and 

suppression of the tumour suppressor gene PTEN in normal stem cells, consistent with the 

acquisition of a cancer phenotype 464. Moreover, dysregulated miRNA expression has been 

implicated as an important mechanism in the modulation of prostate cell fate by EDCs. 

Aberrant miRNA expression was observed during the malignant transformation of human 

prostate epithelial and stem cells by arsenic, linked with RAS activation333. Increased 

expression of activated ERK was shown in both transformants, concomitantly with altered 

components of the PI3K/PTEN/AKT pathway including decreased PTEN and increased BCL2, 

BCL-XL, and VEGF 333. In LNCaP and PC3 cells treated with butyl benzyl phthalate, miR-34a 

expression was downregulated, with the resulting promotion of cell proliferation 465. 

In summary, EDCs could plausibly drive prostate carcinogenesis either via ER-dependent and 

AR-dependent mechanisms or by directly or indirectly affecting other components of key 

survival pathways, resulting in the enhancement of cell cycle progression, inhibition of 

apoptosis and stimulation of metastatic capacity.  

 

[H1]The role of adipose tissue 

Adipose tissue has major roles in mediating the toxicological effects of EDCs 466-470, as many 

(although not all) EDCs are lipophilic molecules that are stored and tend to accumulate in the 

adipose tissue. Thus, adipocytes act as an internal source of chronic low-level systemic 

exposure to EDCs 467,471, which could be more important in obesity conditions. Moreover, 



awareness of the contribution of the adipose tissue to the consequences of exposure to EDCs 

is increasingly relevant owing to the escalation of obesity in the 21st century. Around 18% of 

the adult population is estimated to be obese in 2030, and 30% of children also are estimated 

to have obesity472,473. 

The dynamics of body fat-stored EDCs have been described. EDCs undergo lipolysis in the 

adipose tissue, which progressively releases large quantities of EDCs into the circulation in a 

continuous cycle of post-exposure storage and subsequent release 467,470,471. Approaches to 

study these dynamics include a murine cell model mimicking lipolysis for testing PCBs 

mobilisation 467, which demonstrated the mobilisation of PCBs from adipocytes during lipolysis 

and showed that the structure of PCBs congeners defines their release rate 467. These findings 

were pivotal in highlighting the importance of the specific chemical properties of EDCs on their 

mobilisation from adipose tissue 467. Another study using a xenografted fat model of TCDD 

exposure 470 demonstrated that TCDD stored in the adipose tissue can be released and 

distributed to the organs of the recipient mice. Moreover, the authors confirmed that the 

released compound led to altered gene expression in the liver and adipose tissue, stimulating 

inflammation, gluconeogenesis and fibrosis 470. 

Epidemiological studies have shown that adipose tissue can be used as a biological sample to 

monitor EDCs levels and their effects on the human body 474. In this context, a study analysed 

OCP levels in the periprostatic adipose tissue (PPAT) of patients with prostate cancer from 

Mainland France and the French West Indies to investigate correlation with tumour 

aggressiveness 474. Most OCPs (8 out of 13) were found at elevated concentration in the PPAT 

of Caucasian patients, but DDE content was twice as high in PPAT from African-Caribbean 

patients and chlordecone was only detected in the PPAT from African-Caribbean patients 474. 

Among the pesticides assessed, the organophosphate mirex (which was banned in the USA in 

the 1970s) was associated with aggressive features of prostate cancer in Caucasian men474. 



Altogether, these findings highlight an ethnogeographical variation in adipose tissue 

accumulation and response to OCPs 474. In this context, it is important to emphasise that 

besides this ethno-geographic variation in adipose tissue accumulation, exposure to EDCs may 

vary according to sociodemographic factors, lifestyle characteristics, and inter-individual 

susceptibility. 

Adipose tissue is, unquestionably, an endocrine organ and a target of EDC-induced 

dysregulation 471, with implications for to other tissues. In the case of prostate cancer, the 

‘threat’ of adipose tissue is particularly relevant as it has been shown that PPAT dysregulation 

is a driver for aggressiveness, invasiveness, and metastasis development 473,474. Furthermore, 

adipocyte-secreted factors in obesity such as chemokines, cytokines and metabolites increase 

the proliferation and invasion of prostate cancer cells, fuelling cancer progression 475,476. 

Overall, data regarding the relationship between EDCs, adipose tissue and prostate cancer are 

scarce. However, the available evidence should stimulate research to address whether EDCs 

can induce adipocyte dysfunction, contributing to prostate malignant transformation and 

cancer progression. Furthermore, improved understanding of the role of adipose tissue in 

shaping the toxicological profile of EDCs is paramount, particularly regarding whether adipose 

release and, therefore, EDC exposure is dependent on, for example, an individual’s ethnicity, 

genetics, or other physiological conditions. 

[H1]Future directions  

Research is needed to comprehensively characterize the individual and combined exposure 

and effects of EDCs, which requires collection of large amounts of data regarding exposure. 

Large-scale, well-designed longitudinal prospective studies are needed to gather information 

from diverse populations worldwide and more accurately determine the consequences of a 

specific exposome. Robust epidemiological studies are needed to confirm the underlying 

mechanisms of action and identify the critical exposure windows. Research efforts should also 



be directed towards identifying specific pathways and downstream molecular targets activated 

by EDCs, which will be critical for the development of preventive approaches.  

The actions of EDCs as prostate carcinogens require improved understanding of how EDCs can 

affect the components of the tumour microenvironment, particularly the adipose tissue, as 

adipocytes are a source of prolonged exposure to EDCs, dysregulation of which can contribute 

to carcinogenesis.  

Future studies should also focus on implementing primary and secondary preventive measures 

to substantially reduce exposure to EDCs. Primary prevention measures would involve stricter 

regulations and monitoring of their compliance, including enforcing bans or restrictions on 

products that contain chemicals with endocrine-disrupting potential, such as pesticides, 

plastics, cosmetics, and household goods. Secondary prevention would include public health 

initiatives aimed at reducing exposure in at-risk populations and public awareness campaigns 

about the impact that minimal changes in life habits could have on this matter, such as 

reducing the consumption of processed foods. Additionally, improving occupational safety 

measures in industries where workers are exposed to hazardous chemicals could further 

reduce EDCs’ exposure risks. 

 

[H1]Conclusions 

These data support a role for EDCs as potential prostate carcinogens. Several classes of 

compounds, via several different exposure routes, can promote prostate dysfunction by 

inducing epigenetic changes, immune dysregulation, and cell fate disturbance (FIG. 3). 

Identification of the molecular mechanisms underlying the carcinogenic potential of EDCs is in 

progress and epidemiological studies have illustrated that specific compounds are associated 

with an increased risk and aggressiveness of prostate cancer. However, the specific targets and 

effects of EDCs still need to be fully identified. Furthermore, thresholds of exposure related to 



the carcinogenic potential of EDCs must be established, in order to limit exposure to harmful 

compounds and provide awareness of their potential effects. 

Research in this area has several limitations, particularly the lack of comprehensive analyses of 

the exposome, which reflects real-life environmental exposure conditions. Studies combining 

two or more EDCs with different modes of action are challenging to perform, which makes 

correctly interpolating the results complicated. Furthermore, carrying out case-control studies 

of the impact of EDCs in humans is difficult, due to the variability in environmental 

concentrations, time of exposure, and the lipophilic nature of EDCs that means they accumulate 

in the adipose tissue. Finally, the complexity of the tumour microenvironment makes studies 

difficult to plan, as this panoply of cellular and molecular components able to tightly influence 

cancer cell fate and which are sensitive to exogenous stimuli, as is the case of EDCs.  

Nonetheless, research to explore the relationship between EDCs and prostate cancer is crucial 

for the future. The overall goal of this work — to obtain responses that are as translatable as 

possible to the real context — is needed to provide to implement effective prevention policies 

to mitigate EDCs’ effects and drive public awareness. 

 

Figure legends 

FIG. 1. Comprehensive overview of endocrine-disrupting chemicals (EDCs)’ mechanisms of 

action. (a) Interaction with nuclear receptors (NRs). After the agonistic interaction of EDCs with 

NR, the receptor dimerizes, translocates to the nucleus, and binds to the respective hormone-

responsive elements. The interaction of the EDC-NR complex with DNA enhances or suppresses 

gene transcription, disrupting the network of synthesized proteins. Antagonistic EDCs can block 

the interaction of NR with its natural ligands. (b) Interaction with membrane receptors. Rapid 

nongenomic actions of EDCs can occur through their interaction with membrane hormone 

receptors, seven helix G-protein coupled receptors or NRs that can be translocated to the cell 



membrane and act as membrane receptors, as is the case of oestrogen receptors (ERs). This 

mechanism encompasses second messenger-triggered signal cascades through successive 

phosphorylation of the substrates. Calcium (Ca2+) release is also observed, as well as the 

stimulation of the activity of transcription factors (TF), indirectly regulating the transcription 

rate. (c) Epigenetic changes. The main epigenetic changes induced by EDCs are DNA methylation 

and histone modifications. The DNA methylation pattern is determined by the activity of a family 

of DNA methyltransferases (DNMTs). Some EDCs can interact with these enzymes, either 

increasing (activator EDC) or decreasing (repressor EDC) their activity. DNA hypermethylation 

can block the access of the transcriptional machinery to gene promoter binding sites, 

suppressing gene expression, whereas hypomethylation has the reverse effect. Chromatin 

conformation can also be altered by EDCs-induced post-translational modifications of charged 

amino acids of histone tails (e.g. acetylation, phosphorylation and ubiquitination), which 

protrude histones from the nucleosome, playing a regulatory role in gene expression. (d) Altered 

expression of micro RNAs (miRNAs). EDCs can affect the biogenesis, edition and stability of 

miRNAs, altering their tissue expression levels and, consequently, their interaction with target 

mRNAs, altering mRNA translation and stability. (e) Disruption of hormone synthesis and 

metabolism. The function of steroidogenic enzymes is affected by EDCs’ ability to activate or 

inhibit their activity or regulate the expression of enzyme-coding genes. 

 

FIG. 2. Endocrine-disrupting chemicals affecting the mineralocorticoid, glucocorticoid, and 

androgen biosynthetic pathways. Compounds with inhibitory (red)/stimulatory (green) effects 

on the activity of steroidogenic enzymes involved in the mineralocorticoid, glucocorticoid, and 

androgen biosynthesis are identified in groups 1 to 4. Legend: BBOP: bis(2-butoxyethyl); BPA: 

bisphenol A; CYP11A1: cholesterol side-chain cleavage enzyme-coding gene; CYP17A1: 17α-

hydroxylase-coding gene; CYP19A1: gene codifying aromatase-coding gene; CYP21A2: gene 

codifying 21-hydroxylase-coding gene; DBT: dibutyltin; DCHP: dicyclohexyl; DDE: 



Dichlorodiphenyldichloroethylene; DES: diethylstilbestrol; NP: 4-nonylphenol; PBDES: 

polybrominated biphenyl ethers; SRD5A2: 5α-reductase type 2 enzyme-coding gene; TBT: 

tributyltin; TPT: triphenyltin; 3β-HSD: 3β-hydroxysteroid dehydrogenase; 11β-HSD: 11β-

hydroxysteroid dehydrogenase; 17β-HSD: 17β-hydroxysteroid dehydrogenase. 

 

FIG. 3. Endocrine-disrupting chemicals (EDCs) as prostate carcinogens. EDCs affect the 

development of prostate cancer (PCa) and aggressiveness of disease by a panoply of 

mechanisms that disrupt prostate cell fate. These compounds induce (a) epigenetic and (b) 

immune system alterations and interfere with (c) nuclear receptor (NR)-dependent/-

independent pathways, increasing cell proliferation, migratory capacity and invasiveness). (d) 

Moreover, due to their lipophilic nature, some EDCs can bioaccumulate in the periprostatic 

adipose tissue (PPAT), being gradually and long-term released, dysregulating PPAT function and 

their secreted factors. Legend: AKT: protein kinase B; AR: androgen receptor; BaP: 

benzo[a]pyrene; BPA: bisphenol A; CYP1A1: cytochrome P450 family 1 subfamily A; CYP1B1 

cytochrome P450 family 1 subfamily B; DBT: dibutyltin; DDT: dichlorodiphenyltrichloroethane; 

DEHP: Di-(2-ethylhexyl)phthalate; DES: diethylstilbestrol; DNMT1: DNA methyltransferase 1; EB: 

17β-estradiol-3-benzoate; ER: estrogen receptor; ERK1/2: extracellular signal-regulated kinase 

1/2; HBCD: hexabromocyclododecane; HCB: hexachlorobenzene; HCH: hexachlorocyclohexane; 

HDAC1: histone deacetylase 1; H3K9ac: acetylation of lysine 9 on histone H3; H3K4me3: 

trimethylation of lysine 4 on histone H3; H3K9me3: trimethylation of lysine 9 on histone H3; 

H3K27me3: trimethylation of lysine 27 on histone H3; H4K20me3: trimethylation of lysine 20 on 

histone H4; IL: interleukin; microRNA 34a: miR-34a; MMP-9: matrix metalloproteinase-9; NK: 

natural killer; NP: nonylphenol; PCBs: polychlorinated Biphenyls; PDE4D4: phosphodiesterase 

type 4 variant 4; PSCA: prostate stem cell antigen; TBT: tributyltin; TCDD: tetrachlorodibenzo- 

p-dioxin; TPT: triphenyltin. 
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Table 1| Classes of EDCs categorized by their chemical origin and mode of action. 

Class Origin 
Mode of Action 
(examples) 

References 

Phytoestrogens 
 

Naturally 
occurring 

Xenoestrogens 91,136,269,338,477,478 



(isoflavones, coumestans, 
lignans) 

Plasticizers Synthesized 
Xenoestrogens, Antiandrogens 
(BPA, phthalates) 

16,25,97,101,115,117,124,144,169,254,

290,292,305,311,320,337,352,356,368,3

77,479-485 
Drugs 
(e.g. 
contraceptive 
pills) 
 

Synthesized 
Xenoestrogens 
(DES, naproxen, 
ethinylestradiol, progestin) 

41,81,290,310,486-488 

Dioxins and 
dioxin-like 
substances 
(PCBs) 

Synthesized 
Xenoestrogens, Xenoandrogens, 
Antiestrogens, Antiandrogens 

43,51,56,130,198,209,235,260,342,367,

489-491 

Fire Retardants Synthesized 

Xenoestrogens 
(PBDEs) 
Antiestrogens 
(para-OH-TPHP, RDP) 

92,258,260,261,492-494 

Heavy metals 
 

Naturally 
occurring 

Xenoestrogens 
(Cadmium) 

284,303,495 

Pesticides Synthesized 

Xenoestrogens 
(lindane, atrazine, MXC), 
Xenoandrogens 
(TBT, TPT) 
Antiestrogens, 
Antiandrogens 
(DDT, VNZ) 

21,45-

47,100,106,146,239,245,262,267,304,37

1,397,398,496-498 

Preservatives Synthesized 
Xenoestrogens 
(parabens) 

364 

 
Anti-corrosives 

Synthesized Antiestrogens (Benzotriazole) 54,270 

UV filters Synthesized 

Xenoestrogens 
(BP1, BP2), Xenoandrogens 
(BP2, HMS), 
Antiestrogens 
(BP3, BP4), 
Antiandrogens 
(PS) 

44 

Cleaning 
products 

Synthesized 
Xenoestrogens 
(NP) 

28,118,351 

BP: Benzophenone; BPA: Bisphenol A; DDT: Dichlorodiphenyltrichloroethane; DES: Diethylstilbestrol; 

HMS: Homosalate; MXC: Methoxychlor; NP: Nonylphenol; PBDEs: Polybrominated Diphenyl Ethers; 

para-OH-TPHP: 4-hydroxyphenyl diphenyl phosphate; PCBs: Polychlorinated biphenyls; PS: Phenyl 

salicylate; RDP: resorcinol bis(diphenyl phosphate; TBT: Tributyltin; TPT: Triphenyltin; VNZ: vinclozolin 
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Key points 

 

• Endocrine disrupting chemicals of various sources, classifications, and mechanisms of 

actions, might promote prostate cancer development. 

• Epigenetic alterations, specifically aberrant methylation patterns and histone 

modifications are common mechanisms that underlie the tumorigenic actions of EDCs. 

• Some EDCs exert immunosuppressive actions, while others have been shown to 

exacerbate immunological responses; paradoxically both are able to promote 

tumorigenesis. 

• EDCs could plausibly drive prostate carcinogenesis by directly or indirectly affecting 

components of key survival pathways, resulting in the enhancement of cell cycle 

progression, inhibition of apoptosis and stimulation of metastatic capacity.  

• Adipose tissue is an endocrine organ (and a target of EDC-induced dysregulation) 

having the ability to shape the toxicological effects of EDCs and their impact on 

adjacent tissues, as is the case of the prostate. 

 

Toc blurb 

Endocrine disrupting-chemicals (EDCs) can interfere with the normal function of the endocrine 

system leading to adverse health effects in humans. In this Review, the authors discuss how 

exposure to these chemicals might be major risk factors for prostate cancer, and consider the 

various sources of EDCs and their different modes of action.  
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