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23 Abstract

24 Quality inspection of fruits and vegetables linked to food safety monitoring and quality 

25 control. Traditional chemical analysis and physical measurement techniques are reliable, 

26 they are also time-consuming, costly, and susceptible to environmental and sample changes. 

27 Hyperspectral imaging technology combined with deep learning methods can effectively 

28 overcome these problems. Compared with human evaluation, automated inspection 

29 improves inspection efficiency, reduces subjective error, and promotes the intelligent and 

30 precise fruit and vegetable quality inspection. This paper reviews reports on the application 

31 of hyperspectral imaging technology combined to deep learning methods in various aspects 

32 of fruits and vegetables quality assessment. In addition, the latest applications of these 

33 technologies in the fields of fruit and vegetable safety, internal quality and external quality 

34 inspection are reviewed, and the challenges and future development directions of 

35 hyperspectral imaging technology combined with deep learning in this field are prospected. 

36 Hyperspectral imaging combined with deep learning has shown significant advantages in 

37 fruit and vegetable quality inspection, especially in improving inspection accuracy and 

38 efficiency. Future research should focus on reducing costs, optimizing equipment, 

39 personalizing feature extraction, and model generalizability. In addition, the development 

40 of lightweight models and the balance of accuracy, the enhancement of the database and 

41 the importance of quantitative research should also be brought to attention. These efforts 

42 will promote the wide application of hyperspectral imaging technology in fruit and 

43 vegetable inspection, improve its practicability in the actual production environment, and 

44 bring important progress for food safety and quality management.

45 Keywords ： Food quality and safety; Hyperspectral imaging; Deep learning; 
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46 Convolutional neural network; Nondestructive inspection
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47 1. Introduction

48 Fruits and vegetables are an indispensable source of energy and nutrients in human 

49 life, and an accurate assessment of their composition is essential to ensure food quality and 

50 authenticity. Traditional inspection methods are usually used to evaluate food ingredients, 

51 but for the analysis of fruits and vegetables, common methods include high performance 

52 liquid chromatograph for sugar and vitamin content, and UV-visible spectrophotometry for 

53 evaluating antioxidant substance (Patle et al., 2022; Nikzad et al., 2021). While traditional 

54 methods have been effective in food composition analysis, their low throughput and high 

55 costs limit their applicability for large-scale sample analysis. A comprehensive evaluation 

56 of food testing encompasses safety, visual inspection, and internal quality evaluation. 

57 Fruits and vegetables are susceptible to microbial contamination such as fungi and bacteria 

58 infection, leading to rotting, deterioration or foodborne illnesses. Appearance defects, such 

59 as mechanical damage, blemishes, and irregular shape, can significantly reduce perceived 

60 food quality, leading to economic losses. Internal characteristics such as soluble solids 

61 content and acidity, which are closely related to the aroma and taste of the product, are key 

62 factors in quality assessment.

63 Traditional food quality sorting systems usually rely on manual inspection, which is 

64 laborious and time-consuming, as well as prone to subjective biases. To improve the 

65 efficiency of classification and reduce human error, researchers have devoted themselves 

66 to developing rapid, accurate and non-destructive food inspection technology in recent 

67 years. Computer vision technology, utilizing image analysis, can extract gray-scale or RGB 

68 values from samples, making it a widely used method for food quality inspection (Jia et 

69 al., 2023). While, computer vision technology effectively evaluates the quality of food 

Page 4 of 68Comprehensive Reviews in Food Science and Food Safety



For Peer Review

70 based on external characteristics such as shape, size, color and texture, its reliance on color 

71 changes limits its ability to accurately analyze the internal attributes that exhibit minimal 

72 change in appearance. Currently, spectroscopic analysis methods (such as reflection, 

73 transmission, fluorescence and Raman measurement) have been widely used in food 

74 quality inspection. These methods assess the quality by evaluating the spectral 

75 characteristics of functional groups such as C-H, N-H and O-H within food sample (Feng 

76 et al., 2021). However, these single-point inspection methods have limitations when 

77 applied to heterogeneous samples.

78 Hyperspectral imaging technology (HSI) combines imaging and spectral scanning, 

79 which can provide spectral spatial distribution information of samples and effectively 

80 detect internal characteristics, thus overcoming the limitations of traditional spectral 

81 inspection. Near-infrared light has limited penetration, but its response at specific 

82 wavelengths during reflection and scattering can still provide important information. 

83 Although light cannot penetrate deep into the core of the sample, the texture and 

84 composition of the sample can still be inferred through spectral data from surface reflection 

85 and local scattering. HSI can indirectly reflect internal characteristics by collecting 

86 reflectance spectra at different wavelengths, and can provide more comprehensive and 

87 accurate data support for changes in internal quality parameters of certain fruits and 

88 vegetables, such as moisture content and sugar content. This indirect detection method is 

89 difficult to achieve in traditional spectral analysis, and provides ideas and methods for 

90 quality evaluation.

91 HSI has been successfully applied to evaluate the internal and external attributes of 

92 different foods by combining the advantages of spectroscopy and imaging (Xuan et al., 
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93 2022). Although the HSI system has certain limitations in image acquisition and analysis, 

94 which affects its effectiveness in real-time industrial applications, the introduction of deep 

95 learning (DL) algorithms can significantly improve data processing speed and decision 

96 accuracy. DL effectively extracts useful information from high-dimensional hyperspectral 

97 data and addresses challenges such as sensor noise, illumination changes, and sample 

98 heterogeneity. Using advanced DL techniques such as convolutional neural network 

99 (CNN), researchers can further optimize HSI data processing and improve the robustness 

100 and efficiency of fruit and vegetable quality inspection (Roy et al., 2021).

101 The combination of DL and HSI, offers promising prospects for the future of food 

102 quality inspection. Furthermore, this combined approach has achieved remarkable results 

103 in solving the quality and safety problems associated with fruits and vegetables (Guo et al., 

104 2023 ； He et al., 2024). DL can automatically extract complex spectral features and 

105 achieve accurate evaluation of the appearance and internal quality of fruits and vegetables 

106 through its powerful data processing capabilities (Wang et al., 2024). In this context, this 

107 paper aims to review the latest applications of HSI technology combined with DL in non-

108 destructive evaluation of fruit and vegetable safety, and external and internal quality. This 

109 review specifically focuses on: (1) Introducing the basic principles and key data analysis 

110 steps of HSI technology and DL; (2) Summarizing the current application status of fruit 

111 and vegetable inspection, analyzed from three perspectives: safety, external and internal 

112 quality. (3) Discussing the challenges of HSI technology combined with DL in fruit and 

113 vegetable quality inspection, and exploring future research trends.

114 2. Hyperspectral imaging systems

115 2.1 Principles and System components
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116 2.1.1 HSI principles

117 HSI technology combines mechanical vision and spectral technology, which can 

118 detect the two-dimensional spatial and one-dimensional spectral information of targets, 

119 obtaining continuous and narrow band image data with high spectral resolution, and thus 

120 complete the recognition and inspection process of objects of interest (Saha et al., 2021).

121 In HSI systems, hyperspectral image sensors serve as spatial sensing devices that 

122 capture multiple digital images in different spectral wavelengths. When a substance is 

123 exposed to a known spectral band, specific spectral reflections, absorption, or emissions 

124 occur based on its structure, and this reaction is defined as the spectral characteristics of 

125 the substance. This feature information describes the storage method of data in HSI 

126 technology, where each spectral band is “stacked” according to its wavelength in a cubic 

127 data structure. Compared to traditional spectral inspection techniques, HSI technology has 

128 similar spectral resolution and range, but can provide more detailed and accurate 

129 information contained in the spatial domain, suitable for non-destructive testing of fruit 

130 quality (Mahanti et al., 2022).

131 By integrating imaging and spectral technology, HSI can extract important external 

132 features (such as size, geometry, appearance, and color) of the measured object. 

133 Additionally, the physiological characteristics of fruits and other objects can also be 

134 detected by spectral analysis thereby determining the nature or chemical composition of 

135 the object (Min et al., 2023). The technology can be divided into reflection imaging (Weng 

136 et al., 2021), fluorescence imaging (Fu et al., 2022), and transmission imaging (Li et al., 

137 2022). Among these, reflection imaging technology is the most widely employed.

138 2.1.2 HSI System components
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139 Hyperspectral images may cover a wavelength range of 200 to 2500 nanometers, 

140 including ultraviolet (200-400 nm), visible and near-infrared (400-1000 nm), and 

141 shortwave infrared (1000-2500 nm) spectral bands. To effectively detect the quality of 

142 fruits and vegetables, visible light/near-infrared spectroscopy is the most used, followed 

143 by shortwave infrared spectroscopy. It should be noted that most commercial HSI systems 

144 do not cover the entire wavelength range, which may affect their performance in different 

145 applications. Choosing and configuring hardware is crucial for obtaining high-quality 

146 hyperspectral information. Different wavelengths have different penetration depths: near-

147 infrared light can effectively penetrate the skin of samples such as fruits, usually up to 2-3 

148 mm; while short-wave infrared light can obtain important internal information in some 

149 samples, but its penetration depth is small, about 1-2 mm. In addition, the penetration depth 

150 of ultraviolet light is usually only tens of microns, and is mainly used for the analysis of 

151 surface features. An HSI system typically includes light sources, wavelength dispersive 

152 devices, area detectors, and computers (Fig.1A) (Jo et al., 2023). These components work 

153 together to collect and analyze spectral information of objects at different wavelengths. 

154 Therefore, when establishing a hyperspectral image system, it is necessary to ensure that 

155 the selection and configuration of various hardware components can work together to 

156 provide accurate and high-resolution hyperspectral data.

157 The HSI system sensing modality is mainly due to the absorption and reflection of 

158 light emitted by the light source upon the surface of an object (Fig.1B) (Tang et al., 2023). 

159 After passing through the lens and entrance slit, different degrees of light undergo bending 

160 and diffusion phenomena, and converge on the collimating lens, decomposing the light 

161 with different degrees of wavelength. Then, a three-dimensional data cube containing 
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162 image and spectral information is obtained. As a key part of the imaging system, the light 

163 source should be considered to illuminate the object and weaken the influence of the 

164 background when selecting the light source. Commonly used light sources include halogen 

165 lamps, light-emitting diodes, or lasers, which are important components in optical 

166 inspection systems (Ram et al., 2024). For example, halogen lamps, as broadband lighting 

167 sources involving the Vis/NIR region, are commonly used in HSI systems for food trait 

168 analysis (reflection and transmission modes) (Vejarano et al., 2017).

169 The different acquisition and formation methods of hyperspectral images can be 

170 divided into three methods: point scanning, line scanning, and area scanning (Fig1C). 

171 Among them, line scanning is a widely used scanning mode in the food industry, as its 

172 advantage lies in the ability to achieve continuous unidirectional scanning on the conveying 

173 system, making it more suitable for practical applications (Özdoğan et al., 2021). When 

174 collecting images, the key is to ensure that each layout in the hyperspectral system is 

175 reasonable and set to corresponding parameters based on the object being tested. These 

176 include ensuring that the light source distribution is evenly distributed on the test object, 

177 as well as adjusting and analyzing parameters such as the exposure time set by the camera, 

178 distance between the lens and the moving platform, and scanning speed according to the 

179 application (Rehman et al., 2020).

180 2.2 Data analysis methods

181 HSI technology offer multi-channel, high resolution, and continuous band coverage. 

182 By analyzing hyperspectral images and extracting useful spatial information, the external 

183 quality and internal attribute features of the test sample can be obtained, thereby achieving 

184 target inspection and classification. However, due to the high correlation of adjacent band 
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185 information in hyperspectral images, it will be affected or interfered by factors such as 

186 noise, diffuse reflection and specular reflection from non-planar surfaces. Therefore, when 

187 analyzing spectral data, a series of image preprocessing methods and algorithms are 

188 involved for image calibration. Image enhancement and segmentation are necessary to 

189 reduce anomalies and improve the quality of images acquired (Li et al., 2023).

190 2.2.1 Spectral pre-processing

191 Because the measurement equipment is influenced by factors such as temperature, 

192 light, experimental environment, and the shape of the sample itself, hyperspectral data 

193 collection include problems such as data differences, uneven illumination, pixel anomalies, 

194 and noise (Yoon et al., 2020). These different changes and interference factors introduce 

195 irrelevant or incorrect spectral signals, which affect the reliability and accuracy of 

196 subsequent data analysis. The main purpose of hyperspectral preprocessing is to reduce the 

197 influence of uneven illumination and noise in the acquisition process, obtain high-quality 

198 spectral images and non-mixed spectral signals, and increase the feasibility of data 

199 (Cozzolino et al., 2023). Preprocessing methods usually include smoothing, scattering, 

200 baseline correction, derivatives. Convolution smoothing, derivatives can reduce the effects 

201 of noise and other effects during the data collection process. Recently, S-G convolution 

202 smoothing has been a widely used spectral processing method (Li et al., 2021). To measure 

203 the influence of sample morphology and determine the influence of instrument errors, 

204 algorithms such as multivariate scattering correction, standard normal variable 

205 transformation, and detrending can be used to eliminate the influence of uneven sample 

206 distribution and factors such as illumination and temperature. Preprocessing methods can 

207 be used individually or in combination with processing analysis. Preprocessing methods 
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208 are broadly versatile for different types of spectral data. Although hyperspectral 

209 instruments are primarily used in laboratories, there are still many interfering factors in 

210 practical applications. Therefore, for samples to be tested in different application scenarios, 

211 preprocessing selections must be made based on the uniqueness of the samples to be tested 

212 and the inspection environment. There are no fixed rules when it comes to choosing a 

213 preprocessing method.

214 Image preprocessing involves eliminating the effects of sensor, environmental and 

215 background noise, while image segmentation enhances the relationship between the target 

216 object and the background in the image. The contrast makes the target more visible. For 

217 example, the threshold segmentation method (Yin et al., 2022), region segmentation (Wang 

218 et al., 2022) and watershed algorithm (Tian et al., 2021) have been widely used in the 

219 preprocessing stage of hyperspectral data. Threshold segmentation helps separate 

220 redundant and abnormal areas in hyperspectral images while also reducing noise for better 

221 analysis. In addition, dark current noise may affect imaging quality due to hardware device 

222 limitations and changes in environmental conditions during HSI. The black-and-white 

223 correction method is widely used to eliminate dark current noise in hyperspectral 

224 instruments, and enhancing image reliability.

225 The image information obtained by hyperspectral systems is a two-dimensional image 

226 in terms of spatial dimensions and distribution. Therefore, classic denoising methods can 

227 be used to denoise information in each band. These methods include but are not limited to 

228 median filtering, mean filtering and wavelet transform, etc. They can effectively remove 

229 spatial noise, retain the details and edge information of the image, and improve the visual 

230 effect and analysis accuracy of the image. At the same time, in the spectral dimension, 
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231 Savitzky-Golay filtering can be used to remove digitizing errors, high-frequency noise 

232 whilst retaining spectral information and main features (Zhang et al., 2021).

233 2.2.2 Feature wavebands extraction

234 HSI systems contain the visible spectrum and in addition, hundreds of spectral bands, 

235 each pixel covers hundreds of spectral bands (Zaman et al., 2023). Compared with 

236 traditional imaging systems, HSI systems provide rich spectral information and images, 

237 enabling more accurate identification of external and internal characteristics of the sample. 

238 However, due to the dense spectral band spacing in the spectral imaging systems, which 

239 contains a lot of redundant information and high-dimensional data, the unnecessary amount 

240 of calculation increases and classification accuracy is adversely affected. (Sawant et al., 

241 2020). Some specific bands can reveal key information about sample attributes, but this 

242 band information may not provide corresponding key data for other objects.

243 Currently, there are two main dimensionality reduction methods, namely feature 

244 extraction and feature selection (Hongjun et al., 2022). The feature extraction algorithm 

245 mainly uses the idea of a transformation matrix to scale, compress and rotate the spatial 

246 distribution of spectral data of the original image. Commonly used feature extraction 

247 methods include algorithms such as principal component analysis (Tian et al., 2020), linear 

248 discriminant analysis (Fabiyi et al., 2021), and partial least squares (Chen et al., 2021). 

249 These methods have unique advantages in hyperspectral data analysis and can retain actual 

250 features and key information during application. For example, principal component 

251 analysis maps the original data into a new low-dimensional space through linear 

252 transformation to maximize the explanation of data variance. In addition, to select and 

253 effectively reduce the dimensionality of spectral data, the most discriminative frequency 
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254 band information needs to be recognized. Common optimization algorithms include the 

255 genetic algorithm (Singh et al., 2022), particle swarm optimization algorithm (Wei et al., 

256 2024) and ant colony optimization algorithm (Wang et al., 2022). At the same time, instead 

257 of gradually processing the data of each band with point features, effective wavelength 

258 interval selection methods can also be applied, including interval partial least squares, 

259 moving window partial least squares, variable size moving window partial least squares, 

260 directional partial least squares, post-margin partial least squares, and co-margin partial 

261 least squares. For example, the backward interval partial least squares algorithm uses 

262 reverse selection to exclude intervals with low correlation with the target variable from the 

263 entire wavelength range, reducing the number of bands in the early stage of data processing, 

264 thereby greatly reducing the calculation time and cost of storage (Que et al., 2023).

265 3. Deep learning techniques

266 3.1 DL principles

267 The application of artificial intelligence in the field of fruits and vegetables quality 

268 assessment has a long-standing history. Although initially artificial intelligence was 

269 regarded as a cognitive system that mimics human reasoning and representation, it did not 

270 fully meet the expected goals of developers and practitioners in its early stages. With the 

271 development of advanced algorithms, the rapid increase of big data, and the support of 

272 advanced computer capabilities such as GPU and TPU, modern artificial intelligence has 

273 been able to effectively complete complex tasks (Shi et al., 2023). These tasks previously 

274 required human expertise and cognitive ability to make judgments and decisions.

275 At present, artificial intelligence technology has a higher level of “intelligence” than 

276 previous technologies. The advancement of these technologies has highlighted the 
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277 importance and increased the adoption of artificial intelligence in the field of fruits and 

278 vegetables quality assurance. DL, as the core technology of modern artificial intelligence, 

279 performs particularly well. As a data-driven machine learning method, DL is inspired by 

280 the connection between neurons in the human brain, and completes the learning of complex 

281 features and patterns in the data through multi-level nonlinear changes (Liu et al., 2021). 

282 A deep neural network contains multiple hidden layers, each of which processes the input 

283 data using a nonlinear activation function to gradually extract more advanced features. 

284 Compared with traditional machine learning algorithms, this technology is more efficient 

285 in extracting complex feature representations from large-scale data and can adapt to various 

286 learning tasks and application fields. It can identify and understand complex data patterns, 

287 and perform more accurate tasks such as fruit and vegetable quality assessment, yield 

288 prediction, and automatic picking with greater accuracy (Xiao et al., 2023). The 

289 development of technology has significantly improved production efficiency and quality 

290 control, bringing new opportunities for innovation and sustainable development in the food 

291 field. As a structured model for DL, artificial neural networks imitate the operation of 

292 biological nervous systems and process information through connections between neurons 

293 and weight adjustments. DL expands on traditional artificial neural networks, emphasizing 

294 the improvement of learning capabilities by increasing the number of layers and 

295 complexity of the network, and can more effectively process complex data features. 

296 Therefore, DL can be regarded as an advanced form of artificial neural networks, focusing 

297 on automatic feature extraction and learning of large-scale data sets.

298 DL is composed of many neuron units that transmit and process information by 

299 connecting weights. Among them, “depth” refers to the multi-level structure of the neural 
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300 network model. Each layer maps the input data to a higher-level abstract representation 

301 through non-linear transformation, ultimately achieving efficient learning and prediction 

302 capabilities for complex problems. In DL, the key components include input layer, multiple 

303 hidden layers and output layer. Each level contains multiple neurons, and the connection 

304 between the layers is adjusted by weight parameters. These parameters are optimized and 

305 adjusted by the back propagation algorithm during the training process to minimize the 

306 prediction error or achieve specific task goals. At present, traditional machine learning 

307 methods may be limited by the hand-designed feature extraction process, while DL can 

308 automatically learn the feature representation suitable for the task from the original data 

309 (Abrol et al., 2021). These advantages mean that DL has made significant progress in the 

310 field of food fruits and vegetables. For example, DL can identify the quality characteristics 

311 of products, detect possible defects, and optimize the production process by analyzing a 

312 large number of production data and images (Zhu et al., 2021). This technology improves 

313 product quality and consistency while reducing waste and losses during the production 

314 process. Simultaneously, food production companies can achieve more precise quality 

315 control, automated production adjustments, and personalized product customization. These 

316 tasks that used to rely on manual labor can now be efficiently completed by artificial 

317 intelligence systems (Wan et al., 2020). 

318 In addition, DL can also enhance the autonomy and adaptability of artificial 

319 intelligence systems. Through technologies such as reinforcement learning, artificial 

320 intelligence can optimize product formulations, predict market trends, and adjust 

321 production strategies in real-time to adapt to changing consumer preferences and market 

322 demands (Ding et al., 2023). This capability empowers artificial intelligence in the field of 
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323 food, fruits, and vegetables industry to respond to complex market competition and supply 

324 chain management challenges.

325 3.2 DL algorithm

326 DL algorithms play a vital role in the quality inspection of fruits and vegetables, 

327 especially in the processing of hyperspectral data. Initial hyperspectral research focused 

328 mainly on the analysis of spectral characteristics, but later studies found that the spatial 

329 distribution and attributes of hyperspectral data are also crucial to data analysis. By 

330 combining spectral features with spatial features, the classification and inspection accuracy 

331 of the model has been significantly improved. DL can extract deep feature representations 

332 through multi-layer neural networks, so that complex relationships in data can be 

333 automatically learned and modeled (Sarker et al., 2021). This data-driven strategy enables 

334 DL to discover hidden features in raw data and reduce dependence on human cognition 

335 and judgment (Taye et al., 2023).

336 At present, Convolutional neural network (CNN) and Recurrent neural network (RNN) 

337 are widely used in one-dimensional and three-dimensional spectral analysis, performing 

338 the automatic extraction of data features. CNN is a powerful DL architecture, mainly 

339 composed of a convolution layer, a pooling layer and a fully connected layer. The 

340 convolutional layer uses a sliding convolution kernel to perform local feature extraction on 

341 the input image to generate a low-dimensional feature map, which can capture important 

342 information such as edges and textures in the image. The pooling layer reduces the 

343 computational complexity by reducing the size of the feature map, and enhances the 

344 robustness of the model to prevent overfitting. Finally, the fully connected layer flattens 

345 the feature map after convolution and pooling, and processes it through a series of linear 
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346 transformations and nonlinear activation functions for image classification or regression 

347 tasks, to achieve efficient understanding and prediction of image content (Fig.2A). Further, 

348 RNN is a DL architecture that can process sequence data. By receiving the hidden state of 

349 the previous time step, RNN can effectively transmit information between time steps, so 

350 that the model can capture the dependencies in time series (Fig.2B). The long-term and 

351 short-term memory network (LSTM) introduces a gating mechanism based on RNN, which 

352 uses input gate, forgetting gate and output gate to control the flow of information, to 

353 maintain important information in a long time series and avoid the gradient problem 

354 (Fig.2C). This mechanism makes LSTM more efficient and stable in processing complex 

355 time series data.

356 In addition, DL also includes many types of unsupervised learning models (such as 

357 deep autoencoders) and supervised learning models (such as residual modules and attention 

358 mechanisms) for spectral analysis. These methods provide possibilities for optimization 

359 and improvement of model performance (Xue et al., 2020). In the process of training the 

360 model, the DL model can accurately extract linear and nonlinear related features without 

361 human interference, and has good generalization ability (Zhang et al., 2021). Among them, 

362 the deep autoencoder neural network realizes the denoising of data input or original data, 

363 extracts the effective features of its data, and applies it to unsupervised task spectrum 

364 analysis.

365 As a subfield of artificial intelligence, DL focuses on simulating human thinking 

366 through neural networks to process and analyze complex data. With the continuous 

367 advancement of DL technology, artificial intelligence has made significant breakthroughs 

368 in research and business. These technologies have been widely used in many aspects such 
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369 as evaluating the quality of vegetables, fruits and mushrooms (Wieme et al., 2022). 

370 Therefore, (de Moraes I A et al., 2024) combined computer vision systems with DL 

371 techniques (DCVS) and proposed an integrated explainable artificial intelligence (XAI) 

372 method. This study compares two DL architectures—Residual Neural Network (ResNet) 

373 and Visual Transformer (ViT). The results indicate that ViT achieved an accuracy of 95% 

374 in identifying image regions enhanced by the Random Forest model, while ResNet 

375 achieved an accuracy of 91%. This indicates the potential for application in other fruit 

376 detection tasks. Meanwhile, (da Silva Ferreira et al., 2024) compared two DL computer 

377 vision system architectures, ResNet and ViT transformer, and applied explainable artificial 

378 intelligence methods to reveal the decision-making processes of black box models, such as 

379 Grad-CAM and attention maps. Their study found that machine learning methods can 

380 effectively classify the state of pitaya across four shelf-life stages, while DCVS maps 

381 demonstrate the potential of using pitaya morphological features and hyperspectral 

382 information to predict its shelf life.

383 HSI technology can provide abundant information for the extraction of object features. 

384 Compared to traditional machine vision systems, HSI captures the reflective properties of 

385 objects across different wavelengths, revealing subtle differences that are often 

386 imperceptible to the naked eye. This feature provides a distinct advantage in food quality 

387 assessment, allowing for a more in-depth analysis of the internal composition and condition 

388 of objects. (Ahmed et al., 2024) proposed an innovative method that integrates explainable 

389 artificial intelligence with HSI technology, and utilized Shapley additive explanations 

390 values to evaluate the model's effectiveness. This method successfully assessed three key 

391 quality attributes of sweet potatoes: dry matter content, soluble solids content, and hardness. 
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392 HSI holds significant application value in food quality testing, providing detailed and 

393 comprehensive analyses.

394 4. Hyperspectral imaging and Deep learning applications in fruit and vegetable 

395 quality

396 In recent years, HSI technology and DL algorithms are becoming important 

397 participants in the field of food composition, quality and food safety assessment. This 

398 section focuses on the relevant literature from 2020 to 2024, and elaborate the application 

399 of HSI combined with DL technology from three aspects: safety, external quality, and 

400 internal quality of fruits and vegetables.

401 4.1 Inspection of external quality in fruits and vegetables

402 The external quality of fruits and vegetables refers to their visual characteristics, 

403 mainly including detection of external dimensions, appearance defects, and mechanical 

404 damage. External quality, as the most intuitive quality characteristic, plays an important 

405 role in improving quality evaluation and grading, stimulating consumer desire, increasing 

406 product market recognition, and achieving high-quality and cost-effective processes.

407 4.1.1 External dimensions inspection

408 The shape inspection of fruits and vegetables directly affects their quality and market 

409 value. It can help to distinguish and classify products of different quality, to carry out 

410 accurate quality control of fruits and vegetables and ensure that they meet market demand 

411 and standards. The shape and size inspection of fruits and vegetables is also one of the key 

412 technologies of automatic picking and sorting system, which can effectively reduce labor 

413 costs, and improve production efficiency.
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414 (Mesa et al., 2021) developed a HSI and DL technology based non-invasive 

415 automation system for the export of quality banana layers, capable of pre-classifying 

416 banana grades according to their quality and size. On the other hand, a combination of RGB 

417 and HSI models, along with CNN and MLP models was used to analyze RGB and HSI 

418 data, successfully predicting the size and performance of bananas from different 

419 perspectives (Raghavendra et al., 2022). Their research shows that banana size can be 

420 predicted with 99% accuracy using artificial intelligence technology.

421 Although hyperspectral data provides more spectral information, its ability to process 

422 abnormal data still depends on the design of feature extraction and classification algorithms. 

423 Hence, a hyperspectral data anomaly inspection method called SSC-AE was proposed 

424 based on the joint learning of an autoencoder and a self-supervised classifier (Fig.3A) (Liu 

425 et al., 2022). This method can visualize various types of strawberry defects pixel by pixel 

426 and accurately predict the location and shape of defects. Compared to simple classification 

427 or size prediction, SSC-AE can perform anomaly inspection on hyperspectral data and 

428 combine the advanced idea of self-supervised learning, which effectively detect and 

429 analyze various defect shapes of fruits and vegetables.

430 4.1.2 Defect inspection

431 Fruits and vegetables suffer from cosmetic defects such as rot and scarring due to 

432 factors such as inappropriate growing conditions, improper storage or physical damage 

433 (Zhang et al., 2021). These defects affect the appearance and quality of fruits and 

434 vegetables, thereby reducing their market competitiveness and sales value. Therefore, 

435 timely and accurate classification according to the appearance defects of fruits and 

436 vegetables plays a vital role in achieving high quality and high prices and improving the 
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437 income of fruit farmers. Appearance defect classification of fruits and vegetables refers to 

438 the classification and evaluation of various defects and damages on the surface of fruits 

439 and vegetables.

440 The appearance characteristics of fruits and vegetables are highly complex, involving 

441 various changes in shape, color, and texture. Tiny defects are often misidentified as natural 

442 textures or variations in lighting on the surfaces of fruits and vegetables, making accurate 

443 differentiation challenging. In recent years, significant advances have been made in the 

444 inspection of fruit and vegetable defects using visible and near-infrared HSI technology. 

445 For instance, by applying CNN, researchers have successfully captured local features and 

446 global contextual information, facilitating the inspection of multiple types of citrus defects 

447 (Frederick et al., 2023). However, although this approach performs well in specific 

448 application domains, it typically relies on multiple processing stages, including feature 

449 extraction and classification. 

450 End-to-end CNN models provide a more comprehensive solution to address this 

451 limitation. Zhang et al. proposed an end-to-end CNN qualitative analysis model for 

452 Nanfeng tangerine, and compared its performance with traditional classification models 

453 (Zhang et al., 2024). They used three preprocessing methods and three feature selection 

454 techniques. The results showed that the CNN model based on competitive adaptive 

455 weighted sampling showed the highest overall accuracy (97.27%) in defect recognition. 

456 Although CNN performs well in defect inspection, its shallow network may not be able to 

457 fully extract the deep features of the image, and traditional CNN has a large number of 

458 parameters in feature extraction, resulting in high computational complexity and large 

459 memory consumption. Hence, (Yadav et al., 2022) developed a new CNN based on VGG-
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460 16 architecture. Compared with the general shallow CNN, VGG-16 can better capture the 

461 complex features and structures of the input image, thereby improving the accuracy and 

462 sensitivity of citrus defect inspection.

463 In addition, the application of an automatic fruit and vegetable surface defect 

464 inspection system has also significantly improved the inspection efficiency. Zhou et al. 

465 proposed a lightweight network with improved knowledge distillation (mobile-slimv5s), 

466 which was successfully applied to the surface defect inspection of carrots (Zhou et al., 

467 2023). It significantly reduced the computational complexity of the model while ensuring 

468 the inspection accuracy.

469 4.1.3 Mechanical damage inspection

470 During fruit harvesting and processing, mechanical damage is regarded as an 

471 important stress factor, which is closely related to the physiological and morphological 

472 changes of fruit. When the mechanical force applied to the fruit exceeds its elastic threshold, 

473 cell walls are destroyed, resulting in a decrease in the cohesion of the fruit tissue. This 

474 destruction causes the material inside the cell to leak into the intercellular space. At this 

475 time, enzymes, as one of the internal secretions of fruit cells, such as POD and PPO, will 

476 accelerate the decomposition process of tissues, resulting in bruising or browning of fruits 

477 (Zhang et al., 2023). 

478 HSI technology can capture a large number of spectral data, allowing in-depth 

479 analysis of the chemical composition and structural characteristics of fruit epidermis and 

480 its underlying tissues. DL models, especially CNN, have been widely used in model based 

481 on a one-dimensional CNN (SpectralCNN) shows higher accuracy than traditional 

482 chemometric models in detecting apple damage (Gai et al., 2022). Liu et al. proposed a 
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483 spectral-spatial feature extraction enhanced fully connected neural network (SSFE-FCNN) 

484 (Fig.3B), which is specifically used for pixel-by-pixel damage inspection (Liu et al., 2023). 

485 This method performs advanced feature extraction and classification of tensor features 

486 through fully connected neural networks, which significantly improves the discrimination 

487 between damaged areas and non-damaged areas. This method achieves 98.09% accuracy 

488 in pixel classification of waxy corn. However, SSFE-FCNN inspection relies on the fully 

489 connected layer for feature extraction, and lacks spatial and spectral information analysis 

490 in hyperspectral images. Therefore, local spatial spectral near-infrared HSI technology has 

491 been introduced, offering a new perspective for early damage inspection of fruits and 

492 vegetables (Pourdarbani et al., 2023). They studied 3D-CNN models in 3D tensor 

493 hyperspectral image processing, including ResNet, DenseNet, ShuffleNet and MobileNet. 

494 The results showed that the ResNet model is significantly better than DenseNet, ShuffleNet 

495 and MobileNet in processing images, and its training speed and classification accuracy are 

496 outstanding. Although the ResNet model is characterized by a substantial number of 

497 parameters, its advantages in accuracy and training efficiency make up for this shortcoming. 

498 In contrast, although ShuffleNet and MobileNet are lighter, the classification error is 

499 slightly higher, and the performance is not as good as ResNet. 

500 In addition, (Pourdarbani et al., 2023) also compared the application of ResNetV2, 

501 PreActResNet and MobileNetV2 in the inspection of lemon bruises by integral gradient. 

502 The results showed that ResNetV2 had the highest classification accuracy (92.85%), which 

503 further confirmed its application in spatial spectral data. At the same time, Castillo-Girones 

504 et al. took photos of plum bruises at different stages and used CNN, HSCNN, and ResNet 

505 to construct a bruise inspection model (Castillo-Girones et al., 2024). The research shows 
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506 that the HSCNN model is superior to the ResNet and 3D-CNN models in inspection 

507 performance. It achieved a 90% F1 score when entering the complete image. Further 

508 analysis also showed that compared with the 3D-CNN model trained from scratch, the 

509 migrated pre-trained HSCNN and ResNet networks perform better in inspection accuracy 

510 and efficiency.

511 Due to the huge differences in shape, color and damage types of different fruits and 

512 vegetables, untrained models may not perform well on new fruit and vegetable varieties. 

513 To solve this problem, transfer learning has become an effective solution. Transfer learning 

514 uses existing data and knowledge to transfer patterns and features learned from a related 

515 field or task to a new task to significantly improve the learning effect. For example, transfer 

516 learning methods, including transfer component analysis and manifold embedding 

517 distribution alignment, have effectively demonstrated their efficacy in examining various 

518 types of pear-shaped bruises (Liu et al., 2024). These techniques significantly improved 

519 the classification accuracy of the model on the new data set by knowledge transfer between 

520 different damage types. Typical application examples of hyperspectral combined with DL 

521 in the external quality inspection of fruits and vegetables are shown in Fig.3.

522 4.2 Inspection of internal quality in fruits and vegetables

523 The internal quality of fruits and vegetables includes nutritional composition, maturity, 

524 and hardness. Nutritional composition comprises soluble solids, sugar content, acidity, and 

525 moisture. The internal quality of fruits and vegetables generally cannot be observed by the 

526 naked eye and requires traditional physical and chemical testing. However, physical and 

527 chemical testing is complicated, time-consuming and laborious, and is detrimental to the 

528 inspection, which cannot meet the market demand. At present, the wide application of HSI 
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529 combined with DL has greatly facilitated the accurate inspection of the internal quality of 

530 fruits and vegetables, met the high demand of consumers for food health and quality, and 

531 promoted the sustainable development and market competitiveness of food.

532 4.2.1 Maturity inspection

533 The growth and maturity of fruits and vegetables is subjected to environmental and 

534 physiological factors, which will affect the taste, nutritional value and market value of 

535 fruits and vegetables. Therefore, in the food industry, accurate and rapid determination of 

536 product maturity plays a key role in determining the optimal harvest time and storage 

537 conditions. Maturity inspection involves systematic observation and measurement of the 

538 appearance characteristics, hardness, color and other indicators of fruits and vegetables.

539 Traditional fruit and vegetable maturity assessment methods usually rely on dividing 

540 fruit maturity into several categories, or estimating maturity by measuring indirect 

541 indicators such as hardness. However, in recent years, new methods of HSI combined with 

542 DL regression models have shown significant potential to directly predict fruit ripening 

543 time. For example, Davur et al. used CNN and spectral space residual networks to 

544 systematically train and test a large number of Hass avocado fruit images (Davur et al., 

545 2023). The results showed that the average error of this method is only 1.17 days when 

546 predicting the number of days, it takes for the fruit to reach the mature state, which was 

547 significantly better than the traditional classification method based on dimension reduction 

548 technology.

549 Due to the diverse nature of fruits and vegetables, certain varieties are difficult to 

550 differentiate based solely on color. For example, in blackberries, some varieties exhibit 

551 localized color variation on the surface, including spots or uneven pigmentation. Therefore, 
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552 a new multi-input CNN ensemble classifier was developed (Olisah et al., 2024) (Fig.4A). 

553 Their method combines the image data from visible and near-infrared spectral filters, 

554 evaluating maturity by relying on the color of visible light as well as the information 

555 provided by near-infrared spectroscopy. A pre-trained VGG16 model and a stacked 

556 generalization integration framework were established to effectively identify the ripening 

557 characteristics of blackberry fruits. The experimental results show that the accuracy of the 

558 model reaches 95.1% and 90.2% respectively under unseen scenes and field conditions. 

559 In addition, Garillos-Manliguez et al. proposed a non-destructive multimodal 

560 classification method based on a deep CNN for the maturity evaluation of papaya fruit 

561 (Garillos-Manliguez et al., 2021). They used the data features of visible and HSI systems 

562 to successfully divide the papaya fruit into six mature stages by adjusting and analyzing a 

563 variety of classic DL models (such as AlexNet, VGG16, VGG19, ResNet50, ResNeXt50, 

564 MobileNet and MobileNetV2). This method achieved an F1 score of 0.90 in six stages of 

565 classification tasks, fully demonstrating the superior performance of multimodal data in 

566 maturity assessment.

567 In the process of hyperspectral data acquisition, the raw data may have an insufficient 

568 sample size or insufficient to cover all possible maturity states and environmental 

569 conditions. Therefore, (Sanchez et al., 2023) synthesized the data of avocados through a 

570 generative adversarial network (GAN), and then used it to train the neural network of 

571 avocado maturity classification. The results showed that the synthetic data generated by 

572 the GAN network is efficient in cost and time, while also maintaining the training effect 

573 comparable to the real data. The introduction of synthetic hyperspectral data addresses the 

574 limitations of real data acquisition and opens new possibilities and avenues for 
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575 development in fruit and vegetable maturity assessment research.

576 4.2.2 Nutrient inspection

577 Nutrients in fruits and vegetables are essential for maintaining human life activities. 

578 They play a central role in ensuring basic physiological functions and are instrumental in 

579 the prevention and treatment of various diseases.

580 Recent studies have shown the application of different DL models in fruit and 

581 vegetable quality inspection. For example, a recent study proposed a regression model 

582 based on one-dimensional convolutional ResNet (Con1dResNet), which improved the 

583 inspection accuracy of cherry SSC and hardness by 26.4% and 33.7%, respectively (Xiang 

584 et al., 2022). In addition, (Li et al., 2023) used a custom CNN network based on VGG16 

585 architecture to successfully predict the SSC value of loquat, and the correlation coefficient 

586 was as high as 0.904. The model consisted of an input layer, four convolutional layers, two 

587 max-pooling layers, a fully connected layer and an output layer, which reduced the 

588 complexity of the model while maintaining the inspection accuracy. 

589 However, traditional CNN may be limited by the ability of feature extraction when 

590 processing hyperspectral data, especially for the complex characteristics of fruit and 

591 vegetable surfaces, such as unevenness and color uniformity. Therefore, an innovative 

592 apple quality detection model based on HSI combined with a 3D-CNN was developed 

593 (Wang et al., 2020). Compared with the traditional 1D CNN model, this method can retain 

594 and utilize the three-dimensional shape and spatial features more effectively, which is more 

595 prominent in complex fruit and vegetable quality tasks. 

596 Considering analysis of time series changes in different growth stages of fruits and 

597 vegetables, the information processing of time series is particularly important. Therefore, 
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598 (Qi et al., 2023) introduced the method of temporal CNN (TCN), and constructed the MLP-

599 CNN-TCN model by stacking one-dimensional convolutional layers and causal 

600 convolutional layers to predict the SSC value of pears. This model can effectively capture 

601 the temporal characteristics of pears at different time points, and significantly improve the 

602 performance and effectiveness of the prediction model. At the same time, through the 

603 dimension reduction processing of multi-layer perceptron, combined with CNN and TCN 

604 technology, the method performs well in spectral data analysis. 

605 In hyperspectral data analysis, the traditional manual feature extraction process 

606 significantly increases the complexity of fruit and vegetable quality analysis. Hence, (Yu 

607 et al., 2022) proposed an innovative method based on 2DCNN and fully connected neural 

608 network (FCNN) for extracting phenotypic features of lettuce quality (Fig.4B). Unlike 

609 traditional methods, this model does not require complex preprocessing or dimensionality 

610 reduction steps, and can automatically extract features closely related to quality phenotypic 

611 traits. The model does not require any preprocessing or dimensionality reduction, and can 

612 automatically extract features related to quality phenotypic traits. The soluble solids 

613 content was determined by Deep2 D, and the pH was determined by DeepFC. The 

614 determination coefficients were 0.9030 and 0.8490, respectively.

615 (Gomes et al., 2021) recently proposed a new model based on one-dimensional CNN 

616 architecture, which is specifically used to detect the soluble solids content and pH value of 

617 grapes. By combining DL and transfer learning mechanism the model achieves improved 

618 performance and robustness when evaluation on independent test. Specifically, the 

619 integration of DL and transfer learning improves the generalization capability of the model 

620 and significantly reduces the training cost and time consumption on the new dataset.
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621 4.2.3 Firmness inspection

622 The hardness of fruits and vegetables is an important texture attribute of fruit freshness 

623 and maturity, and it is also a general quality parameter reflecting mechanical properties, 

624 especially for those juicy fruits such as berries, plums and tomatoes. Hardness inspection 

625 plays an important guiding role in measuring the maturity of fruits and vegetables, 

626 determining the picking time, and improving transportation and storage (Wang et al, 2023).

627 To deal with the problems of cost, efficiency and accuracy in non-destructive testing 

628 of yellow peach quality, Xu et al. proposed a new method for hyperspectral multi-quality 

629 parameter inspection based on 3D CNN (Xu et al., 2020) (Fig.4C). This method replaces 

630 the traditional feature wavelength selection method by the method of full-band equal 

631 interval extraction and recombination wavelength, and adopts the method of shared 

632 network convolution layer to realize multi-task learning of sugar content and hardness of 

633 yellow peach, to improve the efficiency and accuracy of inspection. The model can deal 

634 with multiple quality parameters at the same time, making the comprehensive quality 

635 inspection of yellow peach more comprehensive. In addition, depth features can be 

636 extracted from the pixel-level spectral data of each sample using a stacked autoencoder 

637 (SAE), which facilitates the construction of a DL model for evaluating grape hardness (Xu 

638 et al.,2022). Their results showed that the SAE-lssvm model exhibits optimal performance 

639 (R=0.9232, RMSEP=0.4422N, RPD=3.26), and the SAE-pls model also showed 

640 satisfactory accuracy. It was observed that SAE can be used as an alternative method for 

641 processing high-dimensional hyperspectral image data. The research showed that 

642 hyperspectral combined with DL model has brought significant progress to fruit and 

643 vegetable hardness inspection. Compared with other internal inspection, more extensive 
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644 exploration is needed. Integrating HSI technology with various DL models presents 

645 exciting possibilities for future research.

646 Typical application examples of hyperspectral combined with DL in the internal 

647 quality inspection of fruits and vegetables are shown in Fig.4.

648 4.3 Inspection of safety quality in fruits and vegetables

649 The safety quality of fruits and vegetables is mainly aimed at diseases and pests. 

650 Failing to remove fruits and vegetables infected with pests and diseases can facilitate their 

651 dissemination, leading to substantial economic losses and jeopardizing the health of 

652 consumers upon market circulation. Therefore, safety quality is the primary goal of fruit 

653 and vegetable quality inspection. According to pathogen category and infectiousness, the 

654 safety and quality inspection of fruits and vegetables can be subdivided into fungal disease 

655 inspection, bacterial disease inspection and pest inspection.

656 4.3.1 Fungal disease inspection

657 Mycotoxins are secondary metabolites produced by filamentous fungi, naturally 

658 generated in all stages of growth cycle including harvest, storage, transportation and 

659 processing. Fungal diseases of fruits and vegetables are caused by a variety of fungi, which 

660 have the characteristics of latent infection. Once the fungus invades the fruit, it can lurk in 

661 the dead cell layer in the fruit pores for a long time, then develop and cause disease under 

662 suitable conditions. This is the most prevalent form of fruit and vegetable diseases.

663 Apple, as a nutrient-rich fruit, may be infected by Rhizopus nigricans, causing decay 

664 and producing harmful metabolites. For the inspection of Rhizopus nigricans, the RGB and 

665 hyperspectral images of apples can be analyzed by fusing color moments and CNN 

666 extracted features (Sha et al., 2023). The results showed that the accuracy of the classifier 
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667 after feature fusion is 98.6%. In contrast, the accuracy of the classifier using only CNN 

668 feature extraction and color moment feature extraction was 95.1% and 93.4%, respectively. 

669 This showed that feature fusion improved classification accuracy, and CNN improved the 

670 model performance due to its powerful feature extraction ability. 

671 (Fazari et al.,2021) used hyperspectral images and DL techniques to detect the 

672 infection of olives at an early stage. They chose the ResNet-101 architecture and adjusted 

673 it to process the 61-band hyperspectral image. The results showed that the model had a 

674 significant effect on the inspection of infected olives, especially in the early stage, showing 

675 high sensitivity (85% on the third day, followed by 100%). Considering the advantages of 

676 LSTM in sequence data modeling, Li et al. used LSTM to detect the normal state, canker 

677 disease and blue mold (fungal disease) of Gannan navel orange (Li et al., 2022). They 

678 modeled the six band features selected by independent component analysis and genetic 

679 algorithm. The accuracy of the model was 93.41%, and the inspection time of a single 

680 orange was 1.26 seconds. Compared with the full-band feature modeling, the inspection 

681 time was reduced by 44.95 seconds.

682 The attention mechanism can focus on key information for the fine-grained inspection 

683 of disease. Therefore, Guo et al. proposed a dual-branch selective attention capsule network 

684 (DBSACaps) (Guo et al., 2024) (Fig.5A). The network uses two branches to extract 

685 spectral features and spatial features respectively to reduce the mutual interference between 

686 the two, and then fuses the two through the attention mechanism. The capsule network is 

687 used to replace the CNN to extract features and complete the classification. Compared with 

688 the existing methods, this method has the best classification effect for kiwifruit soft rot data, 

689 with an overall accuracy rate of 97.08% and a soft rot classification accuracy rate of 
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690 97.83%.

691 4.3.2 Bacterial disease inspection

692 Bacterial diseases of fruits and vegetables are caused by various bacteria that infect 

693 cells and tissues, leading to lesions. These diseases usually show sudden, transmissible and 

694 destructive characteristics. Compared with fungal diseases, bacterial diseases of fruits and 

695 vegetables are relatively few, so research often focuses on the simultaneous inspection of 

696 bacterial and fungal diseases.

697 Bacterial infection can lead to the decomposition of carbohydrates in fruit and 

698 vegetable tissues, which in turn leads to the decay and corruption of fruits and vegetables. 

699 An improved deep residual 3D CNN framework was proposed for treating surface rot of 

700 fruit peels (Qiao et al., 2020). The framework can quickly extract rich spectral and spatial 

701 features, thereby providing more detailed information on blueberry peel decay. In addition, 

702 the model combines the tree structure Parzen estimator (TPE), which can adjust the 

703 parameters according to the personalized characteristics of the data, thereby improving the 

704 performance of the network. Compared with traditional AlexNet and GoogleNet, this 

705 method significantly improves classification accuracy, reduces the number of network 

706 parameters by half, and shortens the training time by about 10%.

707 Early inspection of bacterial infection in fruits and vegetables can help to prevent the 

708 spread of infection and reduce economic losses. Therefore, (Kuswidiyanto et al., 2023) 

709 proposed a non-destructive, in-situ disease inspection system by combining HSI and drone 

710 technology. They adopted a method based on a three-dimensional residual network (3D-

711 ResNet). The 3d-ResNet CNN of four residual blocks was followed by a corrected linear 

712 unit activation function and a maximum pooling layer behind each residual block. 
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713 Combined with the density-based application spatial clustering method, achieved an 

714 overall accuracy of 0.876 for cabbage, with a pathological class accuracy of 0.873.

715 However, using three-dimensional CNN to process hyperspectral data usually 

716 requires high hardware consumption. Hence, (Gao et al.,2023) proposed a multi-

717 dimensional Atrous-CNN network structure (Fig.5B), which can combine 1D-CNN to 

718 extract spectral information, 2D-CNN to extract spatial information and 3D-CNN to extract 

719 spectral information. At the same time, to increase the perception field of the convolution 

720 kernel of the model structure and reduce the loss of hyperspectral data, zero convolution 

721 was used to extract data features in 1D-CNN and 2D-CNN. The model showed an accuracy 

722 of 99.87% for potato disease recognition.

723 4.3.3 Pest inspection

724 Pests infects fruits, damaging fruits and leading to crop yield reduction or complete 

725 loss. To effectively detect the early pests of fruits and vegetables, (Nguyen et al., 2024) 

726 proposed a inspection model based on deep neural network (DNN). The model performed 

727 non-destructive inspection of Chinese cabbage, showing excellent classification 

728 performance in a laboratory environment. Specifically, the classification accuracy of the 

729 model for the sample control plants was 96.4%, and the classification accuracy for aphids, 

730 spider mites, and thrips-infected plants were 96.9%, 93.9%, and 100%, respectively. This 

731 study verifies the potential of the HSI system combined with DNN classification 

732 technology as an autonomous monitoring tool for plant health in indoor crop production.

733 For outdoor crop pest inspection, (Tan et al., 2024) proposed a two-branch self-

734 correlation network (TBSCN), which combines spectral correlation and random patch 

735 correlation branches to make full use of spectral and spatial information. When detecting 
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736 2115 hyperspectral images of 30 insect categories, the pest inspection accuracy of this 

737 method reached 93.96%. This study significantly promoted the development of insect 

738 classification and inspection, and demonstrated the great potential of HSI technology in 

739 improving inspection accuracy and reliability.

740 Although some progress has been made in the inspection of fruit and vegetable pests, 

741 methods for detecting pests inside fruits and vegetables are still relatively rare. Typical 

742 application examples of DL in the safety and quality inspection of fruits and vegetables are 

743 shown in Fig.5. The application of DL in fruit and vegetable quality inspection is 

744 summarized in Table 1.

745 5. Current limitations and challenges

746 In recent years, HSI technology combined with DL has been widely applied to the 

747 non-destructive testing of fruit and vegetable quality, which has promoted the intelligence 

748 and automation of the food industry. However, there are still some problems to be solved 

749 in the current research field. 

750 (1) High cost of the HSI instrument: Although HSI technology can provide rich 

751 spectral information, its hardware equipment is still expensive, and data processing is 

752 complex. In addition, there are some limitations on the stability and accuracy of the 

753 inspection, which need to be further optimized. 

754 (2) High data dimension and redundant information: Although DL algorithms perform 

755 well in feature extraction and pattern recognition, it is still a challenge to effectively process 

756 and reduce redundant information in the face of hyperspectral data with high data 

757 dimension and redundant information. At present, although some scholars have made some 

758 achievements in the feature extraction of fruit and vegetable quality inspection, there is still 
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759 a lack of personalized extraction methods for different types of samples.

760 (3) The poor generalization ability and insufficient robustness of models. Most current 

761 DL models constructed are only for single varieties, producing areas or fruit batches, 

762 making them less effective in detecting the quality of diverse fruits. Although some 

763 scholars use transfer learning and other technologies to improve the generalization ability 

764 of the model, DL models still face challenges in accurately detecting the quality of diverse 

765 varieties, producing areas or batches. The current DL model lacks sufficient robustness in 

766 dealing with these differences and cannot effectively adapt to the complex and changeable 

767 actual production environment. Therefore, maintaining the model accuracy and 

768 universality across different situations remains a critical issue that in current research. 

769 (4) Models have a long running time and low inspection efficiency. HSI combined 

770 with DL technology can achieve high-quality inspection of fruit and vegetable quality. 

771 However, the existing models generally have the problems of long running time and low 

772 inspection efficiency. Although simple models can effectively detect samples of specific 

773 varieties or similar batches, its generalization ability is obviously insufficient in the face of 

774 diverse samples. Simultaneously, the complex model is difficult to implement in industrial 

775 equipment due to its complex structure, numerous parameters and high computational 

776 requirements.

777 (5) Safety and external quality are mostly qualitative inspection and lack quantitative 

778 research. Existing research in the inspection of fruit and vegetable diseases, pests, 

779 mechanical damage, appearance defects and other quality attributes pays more attention to 

780 inspection, but with limited exploration of infection severity, occurrence time of 

781 mechanical damage, and severity of appearance defects. This information has important 
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782 guiding effects on exploring the mechanism of fruit quality changes, optimizing 

783 transportation schemes, and improving storage conditions.

784 (6) Limitations of interpretability and efficiency. Explainable artificial intelligence 

785 has important value in revealing the decision-making process of DL models, but it also 

786 faces many challenges in the application of HSI of fruits and vegetables. HSI can extract 

787 rich spectral information and is widely used in the classification, quality assessment and 

788 disease detection of fruits and vegetables. However, DL models are often regarded as 

789 “black boxes” and their internal decision-making processes are difficult to understand. In 

790 addition, different interpretability techniques may provide inconsistent explanations, 

791 thereby reducing users' trust in the model. Therefore, how to ensure high performance of 

792 the model while considering interpretability remains a major challenge in the research of 

793 HSI of fruits and vegetables.

794 6. Conclusion and future perspectives

795 In view of the current problems of DL in the non-destructive testing of fruit and 

796 vegetable quality, to further promote the intelligence and automation of the food industry, 

797 future research should focus on the following aspects.

798 (1) Cost optimization and equipment development. Advanced modular design and 

799 cost-effective hardware equipment can reduce manufacturing costs. Then, the data 

800 processing algorithm is optimized and parallel computing technology is introduced to 

801 improve processing efficiency and reduce complexity. At the same time, strengthening the 

802 calibration and calibration of the instrument and establishing a real-time feedback 

803 mechanism will help to improve the stability and accuracy of the inspection. Finally, 

804 promoting cooperation and innovation in the industry and exploring the application of new 
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805 technologies will help promote the further development and application of HSI technology. 

806 (2) Personalized feature extraction of different types of samples. Adaptive CNN and 

807 attention mechanism can be used. By designing multi-layer CNN and dynamic convolution 

808 kernels, the convolution parameters are adjusted according to the sample characteristics, 

809 and the skip connection is used to capture multi-scale features. In the process of feature 

810 extraction, the global and channel attention mechanism and multi-head attention are 

811 introduced to improve the extraction effect of key features. Generative adversarial 

812 networks may be used to enhance the data and generate diverse samples to improve the 

813 generalization ability of the model.

814 (3) Improve the universality of the model. Data augmentation and diversified data set 

815 construction strategies were used to increase the diversity of training samples of the model, 

816 covering fruit and vegetable data of different varieties, producing areas and batches. Then, 

817 applying transfer learning technology, the pre-training model is preliminarily trained on 

818 large-scale and diversified datasets, and then fine-tuned on specific tasks to enhance the 

819 adaptability of the model to new data. In addition, by introducing adaptive network 

820 structures, such as adaptive CNN and attention mechanism, the model can dynamically 

821 adjust its feature extraction process when dealing with different types of samples. In 

822 addition, the generative adversarial network can be used to generate more samples of 

823 different varieties and origins to improve the robustness and generalization ability of the 

824 model. Finally, the combination of meta-learning and online learning strategies enables the 

825 model to quickly adapt to new tasks and continuously update, maintaining high accuracy 

826 and stability. Through these methods, the model can maintain accuracy in different 

827 situations and effectively deal with the complex and variable environments in actual 
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828 production, thereby improving the overall performance and practicality of fruit and 

829 vegetable quality inspection.

830 (4) Balance accuracy and efficiency to build a lightweight DL model. Pruning and 

831 quantization techniques can be used to reduce model parameters and calculations, thereby 

832 improving operating efficiency. In the use of lightweight DL models, such as MobileNet 

833 and EfficientNet, these models have lower computational requirements while ensuring 

834 accuracy, and are more suitable for real-time deployment in industrial equipment. In 

835 addition, the mixed precision training technology is introduced to improve the 

836 computational efficiency by using low precision calculation in the process of model 

837 training and reasoning. At the hardware level, GPU and FPGA can be used to accelerate 

838 hardware-accelerated model inference and improve real-time inspection capabilities. At 

839 the same time, the hyperspectral data processing flow is optimized, and the fast-

840 preprocessing algorithm is used to reduce the data processing time. Through the above 

841 methods, the inspection efficiency can be greatly improved while ensuring the inspection 

842 quality, so that the model can achieve efficient and real-time fruit and vegetable quality 

843 inspection in the actual production environment to meet the needs of industrial applications.

844 (5) Increase quantitative research and improve the corresponding database. To realize 

845 the quantitative inspection of appearance defects, image segmentation and feature 

846 extraction methods can be used to accurately locate and measure the defect area. In addition, 

847 a large-scale and diversified training data set was established to cover fruit and vegetable 

848 samples of different varieties, different growth stages and different storage conditions, to 

849 improve the generalization ability and adaptability of the model. By regularly updating and 

850 expanding the data set, the validity and accuracy of the model in the new environment are 
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851 maintained. 

852 (6) Enhance interpretability and establish unified evaluation standards. With the 

853 improvement of algorithms and computing power, the development of intuitive and easy-

854 to-understand interpretability tools will help non-professional users effectively use DL 

855 models for fruit and vegetable data analysis. For example, future research can explore 

856 visualization techniques to intuitively present complex spectral data and model decisions, 

857 thereby enhancing users' understanding of the model reasoning process. In addition, as the 

858 demand for interpretability of hyperspectral data of fruits and vegetables increases, the 

859 establishment of unified evaluation standards and best practices will promote the 

860 standardization of this field. Therefore, future research should focus on both interpretability 

861 itself and its effectiveness in the practical application of HSI of fruits and vegetables to 

862 promote the widespread application of DL in this field.

863 When discussing the wide application of HSI combined with DL in fruit and vegetable 

864 quality inspection, its advantages are obvious compared with traditional inspection 

865 methods. HSI technology inherits the advantages of high-resolution and multi-dimensional 

866 data acquisition, and significantly improves the inspection accuracy and efficiency through 

867 the introduction of DL, which gives it a clear competitive advantage in specific application 

868 scenarios. However, the development of hyperspectral combined with DL technology still 

869 faces some challenges. The first is how to improve the generalization ability and real-time 

870 inspection performance of the model while maintaining the integrity of hyperspectral data. 

871 This requires in-depth research and optimization algorithms to cope with data changes and 

872 processing complexity under different environmental conditions. Secondly, the high cost 

873 of equipment and the complexity of data processing also limit its wide application in 
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874 industrial production.
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Figures Captions

Fig.1. The principles and process of HSI technology. (A): Diagram of the HSI system (Wang 

et al.2018). (B): Diagram of the HSI principle (Chen et al., 2023). (C): Diagram of the 

acquisition method for HSI system. (a): Point scanning: Scan the spectral image of one point at 

a time. (b): Line scan: Scan the spectral image of the entire line at once. (c): Area scanning: 

Scan spectral images of one region at a time. The blue dashed arrows indicate scanning 

directions in each approach for sequential acquisitions to complete the volume of spatial and 

spectral 3D data cube (Halicek et al., 2019).

Fig.2. (A): CNN model with input layer, convolution layer, pooling layer and output layer. (B): 

RNN (left) and its non-rolling version (right). The state starting from time t-1 is remembered 

and used as the input of time. (C): LSTM model structure

Fig.3. Application of hyperspectral combined with deep learning in external quality inspection 

of fruits and vegetables (A): SSC-AE network structure diagram. (B): SSFE-FCNN network 

structure diagram.

Fig.4. Application of hyperspectral combined with deep learning in internal quality inspection 

of fruits and vegetables (A): Multi-input CNN structure diagram (B): Customize VGG16-CNN 

network structure diagram (C): 2DCNN-FCNN network structure diagram

Fig.5. Application of hyperspectral combined with deep learning in fruit and vegetable safety 

quality inspection (A): DBSACaps network structure diagram (B): Atrous-CNN network 

structure diagram.
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Fig.1. The principles and process of HSI technology. (A): Diagram of the HSI system (Wang 

et al.2018). (B): Diagram of the HSI principle (Chen et al., 2023). (C): Diagram of the 

acquisition method for HSI system. (a): Point scanning: Scan the spectral image of one point at 

a time. (b): Line scan: Scan the spectral image of the entire line at once. (c): Area scanning: 

Scan spectral images of one region at a time. The blue dashed arrows indicate scanning 

directions in each approach for sequential acquisitions to complete the volume of spatial and 

spectral 3D data cube (Halicek et al., 2019).
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Fig.2. (A): CNN model with input layer, convolution layer, pooling layer and output layer. (B): 

RNN (left) and its non-rolling version (right). The state starting from time t-1 is remembered 

and used as the input of time. (C): LSTM model structure
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Fig.3. Application of hyperspectral combined with deep learning in external quality inspection 

of fruits and vegetables (A): SSC-AE network structure diagram. (B): SSFE-FCNN network 

structure diagram.
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Fig.4. Application of hyperspectral combined with deep learning in internal quality inspection 

of fruits and vegetables (A): Multi-input CNN structure diagram (B): Customize VGG16-CNN 

network structure diagram (C): 2DCNN-FCNN network structure diagram
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Fig.5. Application of hyperspectral combined with deep learning in fruit and vegetable safety 

quality inspection (A): DBSACaps network structure diagram (B): Atrous-CNN network 

structure diagram.
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Table Captions 

Table 1

Summary of the application of hyperspectral combined with deep learning in fruit and vegetable 

quality inspection
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Table 1

Summary of the application of hyperspectral combined with deep learning in fruit and vegetable 

quality inspection

Application
Research 

object
Models

Inspection 

contents
Reference

Banana CNN MLP Shape
(Raghavendra et al., 

2022)
External 

dimensions
Strawberry SSC-AE Shape (Liu et al., 2022)

Citrus CNN Defect
(Frederick et al., 

2023)

Mandarin CNN Defect (Zhang et al., 2024)

Citrus VGG-16-CNN Defect (Yadav et al., 2022)

Defect 

inspection

Carrot mobile-slimv5s Defect (Zhou et al., 2023)

Apple SpectralCNN Damage (Gai et al., 2022)

Corn SSFE-FCNN Damage (Liu et al., 2023)

Lemon Resnet Damage
(Pourdarbani et al., 

2023)

Lemon ResNetV2 Bruising
(Pourdarbani et al., 

2023)

Mechanical 

damage 

inspection

Plum HSCNN Bruising
(Castillo-Girones et 

al., 2024)

Maturity Hass avocado CNN Maturity (Davur et al., 2023)
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Boxberry VGG16-CNN Maturity (Olisah et al., 2024)

Papaya MD-VGG16 Maturity

(Garillos-

Manliguez et al., 

2021)

inspection

Avocado GAN Maturity
(Sanchez et al., 

2023)

Cherry Con1dResNet SSC/Firmness (Xiang et al., 2022)

Loquat VGG16-CNN SSC (Li et al., 2023)

Apple 3D-CNN Apple (Wang et al., 2020)

Pear MLP-CNN-TCN SSC (Qi et al., 2023)

Romaine 

lettuce
2DCNN SSC/pH (Yu et al., 2022)

Nutrient 

inspection

Grape 1DCNN SSC/pH
(Gomes et al., 

2021)

Yellow peach 3DCNN Firmness (Xu et al., 2020)Firmness 

inspection Grape SAE Firmness (Xu et al., 2022)

Apple CNN Fungal disease (Sha et al., 2023)

Olive Resnet Fungal disease (Fazari et al., 2021)

Orange LSTM Fungal disease (Li et al., 2022)

Fungal disease 

inspection

Kiwifruit DBSACaps Fungal disease (Guo et al., 2024)

Blueberries 3D-CNN Bacterial disease (Qiao et al., 2020)Bacterial 

disease Cabbage 3D-CNN Bacterial disease (Kuswidiyanto et 
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al., 2023)inspection

Potato Atrous-CNN Bacterial disease (Gao et al., 2023)

Pest inspection Cabbage DNN Pest
(Nguyen D et al., 

2024)

Page 59 of 68 Comprehensive Reviews in Food Science and Food Safety



For Peer Review

Graphical Abstract

Page 60 of 68Comprehensive Reviews in Food Science and Food Safety



For Peer Review

Supplementary material

1.1.  Applications of HSI in assessing fruit and vegetable quality

As an efficient, rapid and non-destructive detection technology, HSI technology is 

widely utilized for quality assessment and detection in food, fruits and vegetables

（Vignati et al.，2023）. Traditional methods for detecting the quality of fruits and 

vegetables primarily rely on visual assessment and basic sensor technologies. While 

effective in certain instances, these approaches often fall short of providing a 

comprehensive analysis of the complex chemical composition and structural 

organization of the samples. By capturing data images and spectral information of 

samples, hyperspectral imaging technology comprehensively encompasses the internal 

chemical information and physical structural characteristics of fruits and vegetables, 

offering new opportunities for precise management and control of fruit and vegetable 

quality.

HSI technology can analyze external spectral data and image information of fruits 

and vegetables, enabling the extraction of parameters such as color, texture, and surface 

defects. This information is essential for the quality assessment and screening of fruits 

and vegetables. For example, (Shang et al., 2023) proposed a hyperspectral online 

sorting device specifically designed to detect full-surface defects in navel oranges. 

Utilizing images from the selected 1655.72 nm spectral band, they employed a non-

uniformity correction method based on quadratic curve fitting to enhance the light 

intensity at the edges of the navel orange surfaces. By integrating this approach with 

threshold segmentation technology, they successfully detected surface defects in navel 
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oranges, achieving a detection accuracy of 100%. This result demonstrates the 

effectiveness of hyperspectral technology in practical applications. (Huang et al., 2020) 

utilized hyperspectral technology to investigate early-stage diseases in blueberries. 

They identified effective spectral bands through correlation analysis and developed 

partial least squares discriminant analysis models, achieving recognition rates of 100% 

and 99%, respectively. The findings indicate that hyperspectral imaging holds 

significant promise for detecting early signs of disease, including opaque appearances 

and spots on fruits and vegetables. Furthermore, hyperspectral technology effectively 

captures changes in the spectral characteristics of fruits at various developmental stages 

and under different storage conditions, thereby directly reflecting their chemical 

composition and quality status. This capability is particularly crucial for accurately 

assessing growth stages during post-harvest quality evaluation. For example, (Shao et 

al., 2024) employed a colorimetric instrument to acquire hyperspectral images of 

tomatoes at various growth stages, including green maturity, discoloration, half 

maturity, and full maturity. They analyzed color coordinates (L*, a*, b*, C, h) and 

utilized support vector machines, k-nearest neighbors, and linear discriminant analysis 

to identify these growth stages. The results demonstrated that the linear discriminant 

analysis model yielded the highest performance, with a prediction accuracy of 93.1%. 

This indicates that hyperspectral imaging technology can non-destructively detect the 

growth stages of tomatoes.

In the internal quality assessment of fruits and vegetables, spectral data across 

different wavelengths reflect changes in the physical and chemical properties of the 
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samples, capturing the reflection or absorption characteristics of their internal tissues, 

which are directly related to quality. Therefore, (Gao et al., 2024) proposed an adaptive 

window length Savitzky-Golay smoothing algorithm that adjusts the window length 

based on the rate of change in spectral data at various wavelengths, thereby enhancing 

the smoothing effect. They established a ridge regression prediction model by 

integrating continuous projection and principal component analysis, achieving an R² 

value of 0.9146 for apple hardness detection. Hyperspectral technology proves effective 

in evaluating the taste, composition, and shelf life of fruits and vegetables, offering 

significant insights for quality assessment.

Although HSI technology has made significant strides in assessing the quality of 

fruits and vegetables, it continues to face challenges in terms of big data processing, 

classification accuracy, and feature extraction (Guerri et al., 2024). Consequently, the 

integration of deep learning algorithms has become crucial for addressing these issues. 

With its superior capabilities in pattern recognition and feature extraction, deep learning 

technology can enhance the analysis and interpretation of hyperspectral data, thereby 

improving the accuracy and efficiency of fruit and vegetable quality assessments. 

Future research should concentrate on optimizing the integration of HSI technology and 

deep learning algorithms to effectively handle data variability, increase classification 

accuracy, and refine feature extraction processes.

1.2. Applications of DL in assessing fruit and vegetable quality

Deep learning, as a machine learning method with excellent performance, can 

handle complex data by constructing and training multi-layer neural networks. This 
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approach has been widely explored, particularly in the field of fruits and vegetables. 

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) have 

become the focus of research due to their superior performance in high-dimensional 

spectral data and complex feature extraction. Compared to traditional methods, the deep 

learning architecture can effectively manage large-scale and high-dimensional datasets, 

providing more accurate and robust prediction results. For example, (Wang et al., 2024) 

combined CNN and LSTM to successfully predict the occurrence of cucumber downy 

mildew, showcasing the potential of deep learning in crop disease detection.

Fruits and vegetables exhibit a wide range of external defects, with considerable 

variation in shape, size, and color. Traditional methods often struggle to account for all 

possible types and variations of these defects. In contrast, deep learning models can 

automatically learn defect features across diverse types, shapes, sizes, and colors, 

demonstrating superior adaptability to the inherent diversity and variability of fruits and 

vegetables. (Dhiman et al., 2023) proposed a combination of CNN and LSTM models 

integrated with edge computing to utilize local edge information in citrus fruit disease 

detection effectively. Their model successfully distinguished between two 

characteristics of citrus disease—pruning and non-pruning—with detection accuracies 

of 97.18% and 98.25%, respectively. Deep learning not only significantly enhances 

accuracy in fruit and vegetable detection tasks but also simplifies the data processing 

workflow. For instance, through the application of deep learning models, various types 

of fruit and vegetable data, including those with irregular shapes, diverse colors, and 

different sizes, can be effectively processed (Ukwuoma et al., 2022).
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The application of deep learning technology extends beyond a single type of fruit 

and vegetable, encompassing quality analysis across a diverse range of products, from 

root vegetables to fruits. Given the similarities among various fruits and challenges 

posed by factors such as illumination and background changes, (Hussain et al., 2022) 

introduced a deep dilated Convolutional Neural Network within a deep learning 

framework to automatically detect and identify fruits and vegetables in challenging 

practical scenarios, achieving a detection accuracy of 96%. Therefore, (Xu et al., 2023) 

developed a hybrid fruit image classification framework called the Attention-based 

Densely Connected Convolutional Network with Convolutional Autoencoder (CAE-

AND). This framework employs a convolutional autoencoder for pre-training images 

and combines attention-based DenseNet for feature extraction. Compared to the DCNN 

model, CAE-AND integrates an attention mechanism with a dense connection structure, 

enabling it to intensively learn and utilize key features in images, thereby enhancing 

classification accuracy while maintaining computational efficiency. Additionally, 

CAE-AND demonstrates improved performance in handling complex scenes and 

varied fruit images under conditions of significant noise or uneven illumination. 

Current research progress indicates that deep learning has broad applicability in 

multiple fields, including quality detection, disease prediction, and nutrient 

composition analysis. The adoption of these technologies not only facilitates real-time 

detection and analysis but also significantly enhances production line efficiency and 

product quality stability.
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