UNIVERSITY OF LEEDS

This is a repository copy of Self-healing carboxymethyl chitosan hydrogel with anthocyanin for monitoring the spoilage of flesh foods.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/228239/</u>

Version: Accepted Version

Article:

Ding, F., Fu, L., Huang, X. et al. (3 more authors) (2025) Self-healing carboxymethyl chitosan hydrogel with anthocyanin for monitoring the spoilage of flesh foods. Food Hydrocolloids, 165. 111270. ISSN 0268-005X

https://doi.org/10.1016/j.foodhyd.2025.111270

This is an author produced version of an article published in Food Hydrocolloids, made available under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Food Hydrocolloids

Self-healing carboxymethyl chitosan hydrogel with anthocyanin for monitoring the spoilage of flesh foods --Manuscript Draft--

Manuscript Number:	FOODHYD-D-24-04020
Article Type:	Research paper
Keywords:	Smart packaging; Carboxymethyl chitosan; Hydrogel; Anthocyanin; Biodegradability
Corresponding Author:	Fuyuan Ding Jiangsu University Zhenjiang, China
First Author:	Fuyuan Ding
Order of Authors:	Fuyuan Ding
	Lin Fu
	Xiaowei Huang
	Jiyong Shi
	Megan Povey
	Xiaobo Zou
Abstract:	Self-healing hydrogels prepared with biopolymers have been widely applied in various engineering fields. In this study, carboxymethyl chitosan (CMC) hydrogels have been prepared and applied in smart food packaging fields. The carboxymethyl chitosan hydrogels were fabricated through crosslinking method with oxidized alginate (ADA). The concentration of oxidized alginate has greatest impact on the physicochemical properties of the hydrogels. Due to the dynamic properties of Schiff base linkages and hydrogen bonds, the hydrogel demonstrated self-healing and 3D printing properties. Higher concentrations of oxidized alginate result in weaker self-healing ability of the hydrogels. The anthocyanin (An) in the hydrogel exhibited a color change when exposed to acidic and basic gases, making the hydrogel potentially useful for smart indicators. These intelligent indicators can be used to detect the freshness of chicken, pork and fish. In addition, the hydrogel showed excellent biodegradable properties and can be degraded in lake, soil and simulated seawater. The self-healing, biodegradable and pH sensitive hydrogels has the potential to be applied in smart food packaging.
Suggested Reviewers:	Ubonratana Siripatrawan Chulalongkorn University Ubonratana.S@chula.ac.th
	Lingyun Chen University of Alberta lingyun.chen@ualberta.ca
	Yixiang Wang Universite McGill yixiang.wang@mcgill.ca
	Juan Du Singapore Institute of Technology du.juan@singaporetech.edu.sg

Dear Editor

I am writing to submit our manuscript entitled "Self-healing carboxymethyl chitosan hydrogel with anthocyanin for monitoring the spoilage of flesh foods" for consideration as a Research Article in Food Hydrocolloids.

In this work, we developed novel carboxymethyl chitosan (CMC) hydrogels crosslinked with oxidized alginate (ADA), designed for application in smart food packaging. The hydrogels exhibit self-healing properties, excellent biodegradability and 3D printable properties. The anthocyanin (An) in the hydrogel provides a visual indication of food freshness through color changes when exposed to acidic or basic gases. This pH-responsive behavior makes the hydrogel particularly suitable for intelligent packaging. The hydrogels can be used as smart indicators to monitor the freshness of perishable food items such as chicken, pork, and fish. In addition, the hydrogels were found to degrade effectively in natural environments such as lake water, soil, and simulated seawater, making them environmentally friendly alternatives in packaging technology.

We believe that our findings will contribute to the growing field of sustainable food packaging solutions. Thank you for your time and consideration. We look forward to your feedback.

Sincerely yours Fuyuan Ding

- CMC hydrogels showed self-healing and 3D-printable properties
- pH-sensitive hydrogels can be used to detect freshness of flesh foods
- Hydrogels are biodegradable in lake water, soil, and simulated seawater
- Oxidized alginate concentration affects hydrogels' physicochemical traits

TOC Figure

1	Self-healing carboxymethyl chitosan hydrogel with anthocyanin for monitoring the spoilage
2	of flesh foods
3	
4	Fuyuan Ding ^{*,a} , Lin Fu ^a , Xiaowei Huang ^a , Jiyong Shi ^a , Megan Povey ^{*,b} , Xiaobo Zou ^{*,a}
5	
6	^a International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing,
7	Joint Laboratory of China-UK on Food Nondestructive Sensing, School of Food and Biological
8	Engineering, Jiangsu University, Zhenjiang, 212013, China
9	^b School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
10	
11	*Corresponding author:
12	Email: <u>dingfuyuan@ujs.edu.cn;</u> (F. Ding)
13	Email: M.J.W.Povey@food.leeds.ac.uk; (M. Povey)
14	Email: <u>Zou_xiaobo@ujs.edu.cn;</u> (X. Zou)
15	
16	Abstract
17	Self-healing hydrogels prepared with biopolymers have been widely applied in various
18	engineering fields. In this study, carboxymethyl chitosan (CMC) hydrogels have been prepared and
19	applied in smart food packaging fields. The carboxymethyl chitosan hydrogels were fabricated
20	through crosslinking method with oxidized alginate (ADA). The concentration of oxidized alginate
21	has greatest impact on the physicochemical properties of the hydrogels. Due to the dynamic
22	properties of Schiff base linkages and hydrogen bonds, the hydrogel demonstrated self-healing and

23	3D printing properties. Higher concentrations of oxidized alginate result in weaker self-healing
24	ability of the hydrogels. The anthocyanin (An) in the hydrogel exhibited a color change when
25	exposed to acidic and basic gases, making the hydrogel potentially useful for smart indicators. These
26	intelligent indicators can be used to detect the freshness of chicken, pork and fish. In addition, the
27	hydrogel showed excellent biodegradable properties and can be degraded in lake, soil and simulated
28	seawater. The self-healing, biodegradable and pH sensitive hydrogels has the potential to be applied
29	in smart food packaging.
30	
31	Keywords: Smart packaging; Carboxymethyl chitosan; Hydrogel; Anthocyanin; Biodegradability
32	
33	1. Introduction
34	Hydrogels are three-dimensional (3D) structures comprising a crosslinked polymeric network
35	which have been widely used in tissue engineering, environmental and drug delivery fields due to
36	the high-water content, soft nature, and high porosity of this material (Chirani, Yahia, Gritsch, Motta
37	Chirani, & Farè, 2015). Specifically, those biopolymer derived hydrogels with excellent
38	biocompatibility and biodegradability showed great potential in different engineered fields (Muir &
39	Burdick, 2020; Patel & Thareja, 2022). Chitosan is a widely used biopolymer which can be
40	fabricated into different kinds of hydrogels (Ding, Nie, Deng, Xiao, Du, & Shi, 2013; Yan, Ding,
41	Bentley, Deng, Du, Payne, et al., 2013). Carboxymethyl chitosan is one of the most important
42	derivatives of chitosan (Ding, Hu, Lan, & Wang, 2020). Carboxymethyl chitosan hydrogel can be
43	prepared through chemical or physical methods (Upadhyaya, Singh, Agarwal, & Tewari, 2013). For
44	instance, carboxymethyl chitosan hydrogel fabricated through chelation showed excellent

45	antibacterial properties and high toughness and has the potential to be applied in food packaging (Z.
46	Lin, Bi, Du, Zhang, Fu, Fu, et al., 2023). Carboxymethyl chitosan hydrogel crosslinked by Schiff
47	base linkage showed excellent self-healing properties and can be applied in various fields (Lou,
48	Tian, Deng, Wang, & Jiang, 2020; Yin, Song, Chen, Huang, & Huang, 2022).
49	Self-healing polymeric hydrogels are an innovative type of material developed in the last two
50	decades (Ding, Li, Du, & Shi, 2018) and have been widely used in the fields of tissue engineering
51	and drug delivery (Guadagno, Vertuccio, Barra, Naddeo, Sorrentino, Lavorgna, et al., 2021). Their
52	self-healing properties endow them with 3D printing properties which expand their application
53	(Gopalakrishnan & Mishra, 2023). However, self-healing polymeric materials have rarely been
54	applied as food packaging materials (K. Huang & Wang, 2022; Lai, 2023) despite their ability to
55	extend the functionality of packaging and maintain its integrity (Ding, Wu, Wang, Xiong, Li, Li, et
56	al., 2015). Coatings made from chitosan and alginate showed self-healing properties and can be
57	used as anti-fog packaging (Hu, Chen, Lan, Ren, Wu, Liu, et al., 2018). Multilayer films prepared
58	with chitosan and carboxymethyl cellulose showed self-healing properties and can be used to extend
59	the shelf-life of lemon (Sultan, Hafez, & Saleh, 2022). Multifunctional waterborne polyurethane
60	films with self-healing properties can be used as smart packaging to monitor the freshness of shrimp
61	(Sai, Zhang, Qu, Wang, Zhu, Bai, et al., 2022). Such self-healing polymeric materials showed great
62	promise in food packaging.
63	Here, we prepared a hydrogel with carboxymethyl chitosan (CMC), oxidized alginate (ADA)
64	and anthocyanin (Scheme 1). The amino groups in carboxymethyl chitosan can be crosslinked with
65	aldehyde groups in the oxidized alginate through a Schiff base linkage (Shen, Wang, Wang, Meng,

66 & Zhao, 2021; Yin, Song, Chen, Huang, & Huang, 2022). The anthocyanin can be attached to the

67	carboxymethyl chitosan and oxidized alginate chains via electrostatic interaction and hydrogen
68	bonds (Cao, Wang, Wang, Lin, Niu, Guo, et al., 2023; F. Wang, Xie, Tang, Hao, Wu, Sun, et al.,
69	2023). Dynamic hydrogen bonds and Schiff base linkages confer self-healing properties to the
70	hydrogel without any stimulus (Gopalakrishnan & Mishra, 2023; Shen, Wang, Wang, Meng, & Zhao,
71	2021). The anthocyanin in the hydrogel showed pH sensitive properties which endows them with
72	potential application in smart packaging fields (X. Zhang, Chen, Dai, Cui, & Lin, 2024). The
73	creativity and significance of the present work on hydrogels are as follows: (1) Methods of
74	preparation are mild and toxic solvent free which is critical for the hydrogels to be applied in food
75	packaging field. (2) They show excellent self-healing properties which can be potentially applied as
76	bio-ink in 3D food printing. (3) They show rapid color response to the acidic and basic gases which
77	endow the hydrogels with the ability to detect the freshness of different meats. Self-healing
78	carboxymethyl chitosan hydrogel with biodegradability and color response to different pHs can
79	potentially be applied in smart packaging.
80	Scheme 1
81	
82	2. Material and methods
83	2.1 Materials
84	Carboxymethyl chitosan (CMC) was purchased from Macklin Co., Ltd. (Shanghai, China).
85	The molecular weight is 120 kDa. The degree of carboxymethyl group in the modified chitosan is
86	0.8 tested by titration. Sodium alginate, sodium periodate, ethylene glycol, ethanol, acetic acid,
87	ammonium hydroxide, phosphate buffer saline (PBS), dibasic sodium phosphate and sodium
88	dihydrogen phosphate were bought from China National Pharmaceutical Group Corp. Purple sweet

89 potato, salmon, chicken and pork were purchased from a local grocery store (Zhenjiang, China).

90 Deionized water was used in all experiments.

91

92 2.2 Preparation of oxidized alginate

93 The oxidized alginate (ADA) with an oxidation degree about 50% was prepared according to our previous reported method (Ding, Dong, Wu, Fu, Tang, Zhang, et al., 2022). Briefly, 10 g sodium 94 95 alginate and 5.4 g sodium periodate were mixed with 300 mL water and then stirred at 25°C in the 96 dark. After 5 hours, 3.5 mL ethylene glycol was added and stirred for another 0.5 hours to remove 97 unreacted sodium periodate. After that, the solution was mixed with 300 mL ethanol and white precipitate was obtained through filtration. Finally, the filtrate was lyophilized under vacuum and 98 99 the oxidized sodium alginate was obtained. The degree of oxidation was obtained according to the 100 reported method and was about 47%.

101

102 **2.3 Extraction of anthocyanin**

Purple sweet potato was washed and peeled and then dried at 60 °C. The potato was made into powder by grinding. The powder (50.0 g) was then mixed with 50% ethanol (500 mL) and the mixture was placed in a thermostatic water bath at 60°C for 3 hours. After 3 hours, the ethanol was removed in a rotary evaporator (RE-200B, Shang Hai Yarong Biotechnology, China) to obtain anthocyanin concentrate which was then lyophilized under vacuum to obtain anthocyanin extract. We determined the anthocyanin content by the extinction coefficient method. 1 mL

anthocyanin concentrate was firstly mixed with 10 mL buffer solution (pH 1.0 and pH 4.5), and then

110 the mixture was put into a quartz cuvette. Next, the absorbance of the mixture was measured at 525

111 nm and 700 nm. The content of anthocyanin was calculated by the following formula:

112
$$W(\text{mg/L}) = A \cdot DF \cdot M \times 103/(\varepsilon \cdot L)$$

113 Where W is the content of anthocyanin, A is the absorbance, $A = (A_{525nm}-A_{700nm})_{pH1.0} - (A_{525nm}-A_{700nm})_{pH1.0}$

- 114 A_{700nm})_{pH4.5}, DF is the dilution factor (10), M is the molecular weight of cyanidin-3-o-glucoside
- 115 (484.84 g/mol), ε is the extinction coefficient of cyanidin-3-o-glucoside (26900), L is the optical

116 path (1 cm). After analysis, the anthocyanin content was 123.38 mg/L.

117

118 **2.4 Preparation of the composite hydrogels**

119 Carboxymethyl chitosan solution with a concentraiton of 7 wt% was prepared in deionized 120 water. The oxidized alginate solution with a concentration of 5.0 wt% was also prepared in deionized 121 water. Then, the CMC solution contained anthocyanin (0.75 wt%) was mixed with ADA solution 122 according to the dry weight of CMC vs ADA as 1:0.1, 1:0.2, 1:0.3 and the hydrogel was coded as 123 hydrogel-1, hydrogel-2, hydrogel-3. In addition, the hydrogel with different amount of anthocyanin 124 (0.0 wt%, 0.75 wt%, 1.50 wt%, 2.25 wt% against the dry weight of CMC) was prepared and coded 125 as hydrogel-4, hydrogel-2, hydrogel-5, hydrogel-6.

126

127 **2.5 Characterization of the hydrogel**

128 The formation of the hydrogel was investigated by the bottle inversion method. The mixture 129 of CMC, ADA and dye was prepared and placed in a glass bottle. After 20 min, the glass bottle was 130 inverted. The state of the hydrogel in the glass bottle was observed and recorded by a digital camera. 131 Fourier-transform infrared spectroscopy (FT-IR) spectra of CMCS, ADA, anthocyanin and gel 132 were recorded on an infrared spectrometer (Nicolet iS50, Thermo Nicolet Inc., USA) by the KBr 133 method from 400 to 4000 cm⁻¹ at several scans of 32 and a resolution of 4 cm⁻¹.

134	The thermal properties of hydrogels were carried out by using a thermal gravimetric analyzer
135	(TA, TGA 550, USA). 5 mg lyophilized hydrogel was put into a sealed aluminum pot and heated
136	from 0°C to 800°C at the rate of 10 °C/min in the nitrogen gas environment.
137	X-ray diffraction (XRD) spectra of CMCS, ADA, anthocyanin and lyophilized hydrogel were
138	analyzed by an X-Ray diffractometer (D8 ADVANCE Bruker, Germany) furnished with a Cu Ka
139	radiation source ($\lambda = 1.5406$ Å) with an angular range of 5° to 90° with steps of 5° (2 θ)/min $_{\circ}$
140	A scanning electron microscope (SEM) (Ultra, Carl Zeiss AG, Germany) was used to observe
141	the surface and cross-section of hydrogel at an accelerating voltage of 7 kV. Before test, the hydrogel
142	was lyophilized for 2 days. Then, the dried gel was cut, and the samples were coated with gold.
143	Rheological characteristics of hydrogel (height of 1 mm) was analyzed by a rheometer
144	(RS6000, Malvern Instruments) with a 40 mm flat plate, at 25 °C, a frequency of 1 Hz, and a strain
145	of 1%. Silicone oil was applied to avoid solution volatilization.
146	Mechanical characteristics of hydrogel (length of 40 mm and width of 10 mm) were analyzed
147	using a TA.XT2i (Stable Microsystems) texture analyzer. The strain rate was set to 2 mm/s. The
148	breaking elongation of hydrogel and tensile strength of hydrogel were calculated using the following
149	formula.
150	δ (%) = (L_1/L_0) × 100 %
151	$R_{\rm m} ({\rm mPa}) = F/(w \cdot h)$

152 Where δ is elongation at break of hydrogel; L_1 is breaking length (mm); L_0 is original length (mm); 153 R_m is tensile strength; F is maximum tensile force (N); w is width (mm) and h is thickness (mm). 154

2.6 Self-healing properties of the hydrogel

156	The hydrogel was formed in a cylindrical container. The prepared hydrogel was cut from the
157	middle and then put back into the container so that the two cutting surfaces were contact closely.
158	After 2 hours, the hydrogel was stretched by two tweezers, and self-healing of the hydrogels was
159	recorded by a digital camera.
160	A rheological test to characterize the self-healing properties of hydrogel was performed on a
161	rheometer (RS6000, Malvern Instruments) with a 40 mm flat plate. The temperature was set to 25 °C,
162	the frequency was 1 Hz, and the strain was 1%. Silicone oil was applied to avoid volatilization of
163	the solution.
164	
165	2.7 Analysis of swelling behavior
166	The hydrogel was placed in buffer solution (pH 3.0, pH 7.4 and pH 9.5). The weight change of
167	the hydrogel was measured at designed time intervals. After the swelling of hydrogel reached
168	equilibrium, the measurement was stopped. The swelling rate was calculated using the following
169	formula.
170	$SR(\%) = (M_t - M_0)/M_0 \times 100$
171	Where SR is equilibrium swelling rate; M_t is weight at designed time intervals and M_0 is the original
172	weight.
173	
174	2.8 pH response of the hydrogels
175	The color change of the hydrogels was measured with a color meter (Konica Minolta CM-
176	2600). The hydrogel (2 cm×2 cm) was exposed to acetic acid and ammonia gas respectively for 2

177	minutes, and lightness (L), red-green value (a), yellow-blue (b), and the total color difference (ΔE)
178	were recorded. The circular response to the acetic acid and ammonia gas was also conducted. The
179	hydrogel was exposed to acetic acid or ammonia gas alternately for 2 minutes, and CIELab ΔE
180	change was measured.
181	
182	2.9 Fresh meat spoilage trial
183	50 g of grass carp, pork and chicken with uniform appearance were put into boxes at 15°C. The
184	hydrogels were used as smart indicators and placed on the top of the box. The color change of the
185	label was recorded by a digital camera and the color parameters were obtained through a color meter.
186	The pH change of the meat was recorded through a pH meter (Testo 205). The TVB-N of the meat
187	was obtained on an automatic Kjeldahl nitrogen analyzer (Hanon, K1100F, China).
188	
189	2.10 3D printing properties
190	The CMCS, ADA and anthocyanin solutions were mixed evenly, and then, the mixture was
191	placed in a syringe tube (the needle diameter is 100 μm) installed on the 3D food printer with a
192	moving speed of 0.5 mm s ⁻¹ , and extrusion pressure of 0.3 MPa. Different gel ratios and different
193	substrates (paper and bread) were used for printing. The printing effect was observed and recorded
194	by a digital camera.
195	
196	2.11 Biodegradability of the hydrogel
197	The hydrogel was placed in soil, lakes and stimulated sea water to study the biodegradable
198	properties. As to the degradation in the soil, the hydrogel was placed in a nylon fabric (500 mesh)

and buried 20 cm under the soil. The degradation of the hydrogel in lakes was conducted in Jiangsu
University campus. The degradation of hydrogel in sea water was conducted in a stimulated sea
water with a NaCl concentration of 3.5‰. The weight change of the hydrogel was recorded at
designed time intervals and the appearance of the hydrogel was recorded using a digital camera.

203

204 3. Results and discussion

3.1 Preparation of the hydrogel

206 Schiff base linkage is a dynamic bond that has been widely applied to prepare biopolymeric 207 hydrogels (Xu, Liu, & Hsu, 2019; Zhou, Chen, Guan, & Zhang, 2014). Here, we mixed two biopolymers to prepare a hydrogel through Schiff base linkage. Fig. 1 (A) shows the schematic and 208 209 digital images of the formation of hydrogels through mixing the two biopolymers. The amino groups 210 in CMC can be crosslinked by aldehyde groups in ADA to form hydrogels (Ma, Su, Ran, Ma, Yi, Chen, et al., 2020; Zhao, Feng, Lyu, Yang, Lin, Bai, et al., 2023). The anthocyanin can be attached 211 212 to the hydrogel by electrostatic interaction and hydrogen bonding. As shown in Fig. 1 (A), the 213 content of ADA in the mixture has a large influence on the gel formation properties. When the CMC 214 vs ADA was set as 1:0.1, a weak hydrogel can be prepared. Further increasing the content of ADA, 215 the gel strength was improved. The hydrogel remained static on the top of an inverted bottle when the ratio of CMC vs ADA increased to 1:0.2 and 1:0.3. This was attributed to increased Schiff base 216 217 linkage formed when content of ADA in the mixture increased (Ding, Shi, Wu, Liu, Deng, Du, et 218 al., 2017).

The formation of the hydrogel was firstly investigated by the FT-IR technology. As shown in
Fig. 1 (B), FT-IR spectra of CMC, ADA, anthocyanin, hydrogel-2 and hydrogel-4 were obtained to

221	characterize the interaction of biopolymers and the dye. In the spectrum of CMC, the peak around
222	3425 cm^{-1} was assigned to the free stretching vibration of intermolecular and intramolecular O–H.
223	The two characteristic bands at 2936 cm ⁻¹ and 2864 cm ⁻¹ were attributed to the stretching vibration
224	and bending vibration of C–H ₂ and C–H. The peak at 1623 cm^{-1} was the characteristic peak of
225	carboxyl group which corresponded to the anti-symmetrical stretching vibration absorption peak
226	(COO) (Virk, Virk, Liang, Sun, Zhong, Tufail, et al., 2024). The symmetrical stretching vibration
227	absorption peak of carboxyl group was located at 1426 cm ⁻¹ . The peak at 1062 cm ⁻¹ corresponded
228	to the C-OH stretching vibration absorption peak in carboxymethyl chitosan (Ding, Hu, Lan, &
229	Wang, 2020). After adding oxidized alginate and anthocyanin to prepare hydrogel, some changes
230	occurred in the FT-IR spectrum of hydrogel-4 and hydrogel-2. In the FT-IR spectrum of hydrogel-
231	4, the peak at 2936 cm^{-1} became sharp and the peak at 1623 cm^{-1} shifted to 1600 cm^{-1} which
232	indicated that the oxidized alginate had been successfully crosslinked with carboxymethyl chitosan.
233	The peak shift from 1623 cm ⁻¹ to 1600 cm ⁻¹ may be due to the formation of Schiff base linkage
234	between two biopolymers (Cui, Cheng, Li, Khin, & Lin, 2023; Ding, et al., 2015). The peak around
235	3425 cm^{-1} broadens which indicated that hydrogen bonds had formed between CMC and ADA
236	(Ding, et al., 2022). After adding anthocyanin to the hydrogel, the peak around 3425 cm ⁻¹ broadened
237	due to hydrogen bond formation between the two polymers and dye. Other peaks in the FT-IR
238	spectrum of hydrogel-2 showed no significant changes compared with the hydrogel-4 which may
239	be due to the low content of anthocyanin.

240 The hydrogel was further characterized by the X-ray diffraction technology. As shown in Fig. 241 1 (C), the strong peak at $2\theta = 20^{\circ}$ was the characteristic peak of CMC. The peak at around $2\theta = 23^{\circ}$

242 was the characteristic peak of oxidized alginate. In the XRD spectrum of hydrogel-4, there appeared

243a strong peak at around $2\theta = 23^{\circ}$ which demonstrated that the oxidized alginate had crosslinked with244carboxymethyl chitosan to from hydrogel. The peak at around $2\theta = 23^{\circ}$ weakened after adding245anthocyanin. This may be attributed to hydrogen bond and ionic interactions between oxidized246alginate, carboxymethyl chitosan and anthocyanin that influenced the crystal structure (Alnadari,247Al-Dalali, Pan, Abdin, Frimpong, Dai, et al., 2023; H.-L. Huang, Tsai, Lin, Hang, Ho, Tsai, et al.,2482023; Santos, Alves-Silva, & Martins, 2022).

The morphology of the hydrogel was studied by optical microscope and scanning electron microscope. The morphologies of hydrogel-2 and hydrogel-4 were recorded. As shown in Fig. 1 (D), the digital images showed that the morphologies of both hydrogel-2 and hydrogel-4 were porous structures. The morphologies were further studied by scanning electron microscope. As shown in Fig. 1 (D), the hydrogel-2 and hydrogel-4 showed a porous structure which indicated that the incorporation of anthocyanin had little effects on the morphologies of the hydrogel.

255 The effect of oxidized alginate and anthocyanin on the thermal properties of CMC were studied. 256 Fig. 1 (E) shows the thermogravimetric (TG) curves of CMC, hydrogel-4 and hydrogel-2. The 257 reduction in weight of samples between 30°C to 105°C was attributed to the evaporation of adsorbed 258 water. Decomposition of CMC, hydrogel-2 and hydrogel-4 occurred between 250°C and 500°C with 259 a rapid weight loss of about 60% which was attributed to the thermolysis of the carbohydrate. The 260 thermogravimetric differential (DTG) curve in Fig. 1 (F) gives a decomposition temperature of 261 CMC at 285.5°C. The decomposition temperature of CMC crosslinked with oxidized alginate 262 (hydrogel-4) is 265.5°C. The decomposition temperature of hydrogel was lower than the CMC due 263 to the amorphous structure of the oxidized alginate. The hydrogel with anthocyanin (hydrogel-2) 264 has similar decomposition temperature with the hydrogel-2 without dye. This may be attributed to

265 the fact that the concentration of anthocyanin in the hydrogel is low and anthocyanin is an 266 amorphous structure.

267

Fig. 1

268

269 **3.2 Self-healing of the hydrogel**

270 Due to the dynamic properties of the Schiff base linkage and hydrogen bonds, the hydrogel showed self-healing properties (J. Wang, Gao, Zhao, & Ju, 2023). As shown in Fig. 2 (A), the sliced 271 272 two semicircle hydrogels with 0.75 wt% anthocyanin healed into an integral circle hydrogel after 1 273 hour. The healed hydrogel can be stretched which demonstrated excellent self-healing ability. The self-healing properties of the hydrogel were mainly derived from the reconstruction of Schiff base 274 275 linkage and hydrogen bonds at the interface of the cut surface. The anthocyanin in the hydrogel has 276 little effect on the self-healing ability. As shown in Fig. 2 (A), the hydrogel (CMC vs ADA 1:0.2) 277 with different concentration of anthocyanin (0 wt%, 0.75 wt%, 1.5 wt%, and 2.25 wt%) can self-278 heal into an integral hydrogel and can be stretched after incubating for 1 hour. This was due to the 279 low concentration of anthocyanin in the hydrogel and hydrogen bonding is weak. The Schiff base 280 linkage in the hydrogel has a large influence on the self-healing ability of the hydrogel. As shown 281 in Fig. 2 (A), the hydrogel with CMC vs ADA as 1:0.1 and 1:0.2 can self-heal and the healed hydrogel can be stretched. However, the hydrogel prepared with CMC vs ADA as 1:0.3 possessed 282 283 poor self-healing properties. The self-healed hydrogel cannot be stretched after self-healing for 1 284 hour. More ADA in the hydrogel resulted in fewer free amino groups at the cut interface and a more 285 rigid network which decreased the self-healing ability (Ding, et al., 2015).

286 The self-healing ability of the hydrogel was then evaluated by the rheology tests. The elastic

responsive properties of hydrogel-2 were recorded. Note that since the hydrogel without 287 288 anthocyanin (hydrogel-4) had similar self-healing ability with the hydrogel-2, the elastic response 289 of hydrogel-4 had not been recorded. As shown in Fig. 2 (C), G' was slightly higher than the G'' at 290 a strain of 10% which indicated the hydrogel was a solid hydrogel state. When the strain amplitude 291 was increased to 1000% at 1.0 Hz, G' decreased and was lower than G". This indicated that the 292 hydrogel network had collapsed and turned into a sol state at high strain. Then, the hydrogel was 293 subjected to an alternatively changing amplitude of oscillatory force to investigate the elastic 294 response of the hydrogel. G' quickly recovered and was higher than G" when the strain returned to 295 10%. This was attributed to the excellent responsive properties of the hydrogel network. G' 296 increased in step with the number of experimental cycles. This may be due to the fast crosslinking 297 of CMC and ADA enhanced the mechanical properties of hydrogel.

298 The self-healing efficiency of the hydrogel with or without anthocyanin was obtained. Note 299 that the mechanical properties of the hydrogel prepared with CMC vs ADA as 1:0.1 was too weak 300 and self-healing ability of hydrogel with CMC vs ADA 1:0.3 is weak. The self-healing efficiency of 301 hydrogel-2 and hydrogel-4 was studied. The fracture stress of the origin hydrogel and the hydrogel 302 self-healed for 0.5 and 1 hour were recorded. As shown in Fig. 2 (D), the fracture stress of hydrogel-303 4 was 5.7 kPa. The fracture stress of self-healed hydrogel-4 was 5.3 kPa after healing for 30 minutes. 304 The self-healing efficiency of hydrogel-4 was about 93% which demonstrated that the hydrogel 305 possessed excellent self-healing performance. The fracture stress does not increase when the healing 306 time is further increased. The hydrogel with anthocyanin (hydrogel-2) had similar self-healing 307 efficiency as hydrogel-4 which indicated that the dye had little effect on self-healing properties. The 308 phenomenon was corresponding to the self-healing properties characterized by digital images.

309

310

311 **3.3 Mechanical property of the hydrogel**

312 The mechanical properties of the hydrogels were investigated on a TA.XT2i texture analyser. 313 The fracture stress and elongation at break (EAB) were obtained. Hydrogel-1 is too weak to be clipped on the texture analyser and data could not be obtained. As shown in Fig. 3 (A), the fracture 314 315 stress of hydrogel-4 was about 5.8 kPa when the CMC vs ADA was set to be 1:0.2. The fracture 316 stress of the hydrogel (hydrogel-2,5,6) with different concentration of anthocyanin was close to the 317 hydrogel-4 without dye. This was due to the low concentration of anthocyanin in the hydrogel and 318 the interaction between anthocyanin and the polymer was weak. The mechanical properties of 319 hydrogel were mainly influenced by the concentration of ADA in the hydrogel (Ding, et al., 2017). 320 When the CMC vs ADA was set to be 1:0.3, the fracture stress of the hydrogel enhanced. This was 321 attributed to more Schiff base linkages and hydrogen bonds formed in the higher concentration of 322 ADA. The elongation at break was about 23% regardless of the concentration of anthocyanin in the hydrogel when the CMC vs ADA was set to be 1:0.2. Enhancing the ratio of ADA to 0.3, the 323 324 elongation at break decreased to 13% which demonstrated that the hydrogel became brittle. 325 Mechanical properties of the hydrogel were then characterized by a rheology test. Since ADA 326 in the hydrogel has large effects on the mechanical properties, the concentration of ADA was studied. 327 As shown in Fig. 3 (B), the storage modulus (G') and loss modulus (G'') of the hydrogels (hydrogel-328 (1,2,3) between 0.1–100 rad/s were obtained. The storage modulus (G') was higher than the loss 329 modulus (G'') which demonstrated that the hydrogel formed and was a solid. The storage modulus

(G') was higher with higher concentration of ADA in the hydrogel at the same frequency which

- demonstrated the mechanical properties became stronger. More Schiff base linkages and hydrogen
 bonds formed when more ADA was added, and thus, the mechanical properties were enhanced.
- 333
- 334 Fig. 3
- 335

336 **3.4 Swelling property of the hydrogel**

Due to the hydrophilic nature of biopolymers in the hydrogel, the hydrogel showed excellent 337 338 swelling properties. The effects of concentration of ADA in the hydrogel was studied. As shown in 339 Fig. 4 (A), the hydrogel-1 with low concentration of ADA shrunk at pH 3.0 and dissolved at pH 7.0 and 9.5. The hydrogel-2 and hydrogel-3 also shrunk at pH 3.0. The carboxyl group was in the form 340 341 of -COOH at pH 3.0 which resulted in strong hydrogen bonds in the hydrogel network. The swelling 342 ratio of hydrogel-3 was higher than the hydrogel-2 at pH 7.0 in that more carboxyl groups in the hydrogel would absorb more water. The swelling ratio of hydrogel-3 was slightly lower than the 343 344 hydrogel-2 at pH 9.5. This may be because more ADA and deprotonation of the amino group 345 together resulted in a compact hydrogel network at pH 9.5 which hindered the penetration of water. 346 The effects of anthocyanin concentration on the swelling ratio was also investigated. As shown in Fig. 4 (C), the hydrogel with various anthocyanin concentrations (hydrogel-4,2,5,6) shrunk at pH 347 348 3.0. The hydrogel-4, hydrogel-2 and hydrogel-5 with the same ADA concentration had a similar 349 swelling ratio after 6 hours which demonstrated that the low concentration of anthocyanin had little 350 effect on the swelling behavior. When the concentration of anthocyanin increased to 2.25 wt% 351 (hydrogel-6), the swelling ratio was slightly lower than the hydrogel-4,2,5. This may be due to the 352 high concentration of anthocyanin that resulted in a rigid network and thus reduced the adsorption

353	of water. As shown in Fig. 4 (D), hydrogel-4,2,5 cannot maintain a rectangular shape after swelling
354	for 6 hours whilst hydrogel-6 was still a rectangular hydrogel. Increasing the pH to 9.5 produced
355	almost the same swelling ratio in the hydrogel-4,2,5,6 demonstrating that the anthocyanin had little
356	effect on the swelling ratio of the hydrogels at pH 9.5. The deprotonation of amino group in CMC
357	induced generation of more hydrogen bonds. This made the hydrogel network more compact and
358	lowered the swelling ratio. As shown in Fig. 4 (D), the hydrogel can retain their rectangular shape
359	after swelling for 6 hours.
360	
361	Fig. 4
362	
363	3.5 Gas responsive property of the hydrogel
364	Anthocyanin is a pH sensitive dye which has been widely used as a pH indicator to detect the
365	freshness of meat. The color responsive properties of hydrogels containing anthocyanin were
366	evaluated. The CIELAB color space $(L, a, b \text{ value})$ and digital images of the hydrogels under
367	ammonia or acetic acid gas were recorded. As shown in Fig. 5 (A), <i>a</i> value changed from -9.1 to 4.7
368	within 2 minutes under acetic acid gas which indicated that the color of the hydrogel changed from
369	greenish to reddish (S. Huang, Xiong, Zou, Dong, Ding, Liu, et al., 2019; X. Zhang, Chen, Dai, Cui,
370	& Lin, 2023). The digital images in Fig. 5 (D) shows that the color of the hydrogel changed from
371	green to red. The color change of the hydrogels under acetic acid gas was attributed to the color
372	change characteristics of anthocyanin. Further increase in the incubation time, caused a small
373	change in the a value and color of the hydrogel. This demonstrated that the hydrogel responded
374	quickly to the presence of acetic acid gas. The ΔE change of the hydrogel was also obtained. As

375 shown in Fig. 5 (A), the ΔE increased to 20 after 2 minutes exposure to the acetic acid gas which 376 indicated that the color change can be observed by naked eye. Further increasing the incubation 377 time, the ΔE change was less than 6 which indicated that the color change could hardly be observed 378 by the naked eye. The ΔE change corresponded to the changes in the digital images of the hydrogels 379 after incubation for different time intervals.

The color response of the hydrogel under ammonia gas was also obtained. As shown in Fig. 5 380 381 (B), b value and digital images of the hydrogel were recorded. b value changed from 7.0 to 24.0 382 indicating that the yellow color became deeper after exposure to ammonia gas. Further increasing 383 the incubation time, the b value exhibited a small change which demonstrated that the active site in 384 the dye had been saturated with ammonia gas. In addition, the color of hydrogels changed little which corresponding to the change in b value. The change in ΔE also corresponded to the changes 385 386 in b value and digital images. ΔE increased to 17 after 2 minutes which demonstrated fast response 387 to the ammonia gas and the color change can be observed by the naked eye.

388 Cyclic exposure of hydrogel to ammonia or acetic acid gas was also performed. The value of 389 $a, \Delta E$ were measured and digital images obtained. As shown in Fig. 5 (D), the digital images showed 390 that the color of the hydrogel changed from green to red after incubation in acetic acid gas for 2 391 minutes. The value of a changed from -8.1 to 5.3 and ΔE increased to 15 which indicated that the 392 color change is obvious and can be observed by naked eye. The a and ΔE value changes 393 corresponded to the color change of the hydrogel in the digital images. The hydrogel was then 394 immediately put in the ammonia gas and incubated for 2 minutes. As shown in Fig. 5 (D), the color 395 of hydrogel turned from red to green again. The value of a changed from 5.3 to -6.4 and ΔE changed 396 from 15 to 6.6 which indicated that the color changed from reddish to greenish. The hydrogel was

397	then put in the acetic acid gas and incubated for 2 minutes. The color of hydrogel did not completely
398	change from red to green. This may be because partial ammonia gas adsorbed on the hydrogel had
399	been neutralized by the acetic acid gas. Subsequent placement in ammonia or acetic acid gas for 2
400	minutes, produced a small color change at the edge of the hydrogel. The value of a and change in
401	ΔE were also small demonstrating that the color change cannot be observed by the naked eye.
402	
403	Fig. 5
404	

405 **3.6 Freshness detection by the hydrogel sensors**

Inspired by the color change of the hydrogel in gas immersion at different pHs, the hydrogel 406 407 could be potentially used as indicator to detect the freshness of the meat. The hydrogel sensor was 408 put in a box with chicken, fish or pork at 15°C. At different time intervals, the color change of the sensors and b value change were recorded. The hydrogel was firstly used as a sensor to detect the 409 410 freshness of chicken. The pH changes of chicken and $b, \Delta E$ value change in the sensor were recorded. 411 As shown in Fig. 6 (A), the pH of chicken is about 5.5 which demonstrated that the chicken is fresh 412 (L. Lin, Mei, Shi, Li, Abdel-Samie, & Cui, 2023). After storing for 20 hours, the pH slightly 413 increased to 5.7. The b value of the hydrogel sensor increased from -0.7 to 6.4 which suggested that the color turned light yellow. The b value change corresponded with the photographs of the hydrogel, 414 415 as shown in Fig. 6 (B). The ΔE value change was 7 which was higher than 6.5, suggesting that the color change of the hydrogel sensor can be detected by the naked eye. Further increase in the storing 416 417 time caused the chicken to spoil after 68 hours. The TVB-N of the chicken was 27.8 mg/100 mg and the pH was 6.7. The TVB-N and pH changes confirmed that the chicken spoiled. The b value 418

419 of the hydrogel increased to 15.2 which demonstrated that the yellow became deeper. The ΔE value 420 increased to 16.3 and was higher than 13 which suggests that the color was totally different 421 compared to its color at the beginning (Zhai, Sun, Cen, Wang, Zhang, Yang, et al., 2022). The 422 hydrogel color changes suggest that it can potentially be used as an indicator to monitor the freshness 423 of chicken.

The hydrogel can also be used as sensor to detect the freshness of fish and pork. As shown in 424 425 Fig. 6 (C, D), the pH of the fish was 7.2 at the beginning indicating that the fish was fresh. After 20 426 hours storage, the pH slightly decreased to 7.0 and the b value of hydrogel increased to 8.9 which 427 demonstrated that the color became yellow. The ΔE value changed to 8.7 compared with the original hydrogel. After storing for 44 hours, the pH of the fish decreased to 6.7 and TVB-N of the fish was 428 429 21.6 mg/100 mg which indicated that the fish spoiled (Zhai, et al., 2022). The decrease of pH may 430 be attributed to the lactic acid produced by glycolysis and enzymatic reaction in fish. The ΔE value 431 of the hydrogel increased to 14 after 44 hours demonstrating that the color change of the hydrogel 432 can be easily observed by the naked eye. In addition, the hydrogel sensor can be used to detect the 433 freshness of pork. As shown in Fig. 6 (E, F), the pH of the pork increased with storage time. The b434 and ΔE value of the hydrogel also enhanced after storing for different time intervals. After storing for 44 hours, the pH of the pork was 6.5 and the TVB-N was 15.7 mg/100 mg which demonstrated 435 436 that the pork spoiled (J. Zhang, Zhang, Huang, Shi, Muhammad, Zhai, et al., 2023). The b and ΔE 437 value changes were obvious and the color change of the hydrogel sensor can be detected by the naked eye. The hydrogel sensor showed excellent performance for monitoring the freshness of meat 438 439 and can potentially be used as an indicator with promise in smart packaging.

441

442

443 **3.7 3D printing of the hydrogel** The hydrogel showed self-healing properties and can be potentially used as a bio-ink in 3D 444 445 printing (Rajabi, McConnell, Cabral, & Ali, 2021). The 3D printing ability of the carboxymethyl 446 chitosan hydrogel was preliminarily investigated. The hydrogels with ADA ratio of 0.2 and 0.3 were 447 too viscous to be extruded from the needle. The hydrogel with CMC vs ADA as 1:0.1 was chosen 448 as the inks. As shown in Fig. 7 (A), the hydrogel ink can be 3D printed on the white paper. The 449 printed letter "I", "C" and "G" on the paper surface was clear which demonstrated the printing 450 quality was good. The hydrogel ink can also be printed on real food. The steamed bread was chosen 451 as print substrate. As shown in Fig. 7 (B), the printed letter "H", "O" and "C" on the steamed bread 452 surface was clear. Further study may be performed to explore the detail 3D printing ability of the hydrogel ink. The self-healing carboxymethyl chitosan hydrogel can be potentially applied in 3D 453 454 food printing. 455 456 Fig. 7 457 **3.8 Degradation of the hydrogel** 458

Fig. 6

The self-healing carboxymethyl chitosan hydrogel with oxidized alginate showed biodegradable properties. The degradation is important for the hydrogel to be used as packaging materials. Herein, the biodegradation of hydrogel in soil, lake and simulated seawater was performed. The weight change and images of the hydrogels during the test were recorded. Note that

since higher ratio ADA resulted in a harder network, the hydrogels with different concentration of 463 464 ADA (hydrogel-1,2,3) were chosen to study the biodegradable properties. As shown in Fig. 8 (A), 465 the hydrogels (hydrogel-1,2,3) in the lakes quickly adsorbed the water and then degraded gradually. At day 2, though the weight of hydrogel-1 increased, the hydrogel-1 degraded into small pieces. 466 467 Hydrogel-2 also started to degrade and became irregular in shape. Hydrogel-3 swelled and maintained a rectangular shape. This was because the hydrogel with less ADA possessed a weaker 468 network. The hydrogel would easily break under the effects of microorganism and the chain 469 470 repulsion force (Ding, Ren, Wang, Wu, Du, & Zou, 2021; H. Wang, Qian, & Ding, 2018). After 471 degrading for 4 days in the lake, the hydrogel-1 totally degraded, whilst hydrogel-3 maintained its 472 shape.

473 The degradation of the hydrogel in the simulated seawater was also studied. As shown in Fig. 474 8 (B), the degradation behaviors of the hydrogels were similar to the degradation in the lakes. However, the degradation was much slower than the degradation in the lakes because no 475 476 microorganisms were presented in the simulated seawater and the salt in the solution inhibited the 477 chain repulsion force. After 40 days, hydrogel-1 degraded into small pieces and hydrogel-2,3 478 maintained their shape. The results of degradation in the soil appear in Fig. 8 (C). Degradation behavior was similar to hydrogel in simulated seawater. The weight of hydrogel increased in the 479 early stages due to gradual absorption of water. After 36 days, hydrogel-1 broke due to 480 microorganism action. Whilst hydrogel-2 and 3 maintain rectangular shape, the weight gradually 481 decreased. All in all, the hydrogels showed excellent degradable performance and had little effect 482 483 on the environment. The hydrogels can be potentially used as disposable labels with great promise in smart packaging. 484

485

486

487 4. Conclusions

In this study, we demonstrated that carboxymethyl chitosan hydrogels with anthocyanin can be 488 489 prepared through crosslinking method with oxidized alginate. The oxidized alginate can crosslink 490 with carboxymethyl chitosan through Schiff base linkages and hydrogen bonding. These dynamic 491 bonds conferred self-healing properties to the hydrogels. The concentration of oxidized alginate had 492 large effects on the physicochemical properties of the hydrogels. Higher content of oxidized alginate 493 results in a more rigid network, enhancing the mechanical properties but weakening the self-healing 494 of the hydrogels. The pH sensitive anthocyanin endowed the hydrogels with potential ability to 495 detect the freshness of different meats of chicken, fish and pork. The hydrogels showed excellent 496 degradable properties and can be decomposed in the lake, soil and simulated seawater. In addition, the self-healing hydrogel can be used as bio-ink applied in 3D printing. The biodegradable and 497 498 acidic or basic gas responsive hydrogels can be potentially used as disposable labels applied in 499 intelligent food packaging.

Fig. 8

500

501 **CRediT authorship contribution statement**

Fuyuan Ding: Conceptualization, methodology, writing-original draft, funding acquisition,
formal analysis, visualization. Lin Fu: Investigation, writing-original draft. Xiaowei Huang:
Review & editing. Jiyong Shi: Review & editing. Megan Povey: Review & editing. Xiaobo Zou:
Supervision, Review & editing.

507	Declaration of competing interest
508	The authors declared that they have no conflicts of interest to this work.
509	
510	Data availability
511	Data will be made available on request.
512	
513	Acknowledgements
514	This research has been supported by the China National Key R&D Program during the 14th
515	Five-year Plan Period (Grant No. 2023YFE0105500). Project Funded by Youth Talent Cultivation
516	Program of Jiangsu University and Jiangsu University for Senior Intellectuals (No. 20JDG18).
517	Project Funded by Special Funds for Jiangsu Province Science and Technology Plans (BZ2024029).
518	
519	References
520	Alnadari F. Al-Dalali S. Pan F. Abdin M. Frimpong F. B. Dai 7. Al-Dherasi A. & Zeng X.
521	(2023). Physicochemical Characterization. Molecular Modeling, and Applications of
522	Carboxymethyl Chitosan-Based Multifunctional Films Combined with Gum Arabic and
523	Anthocyanins. Food and Bioprocess Technology, 1-19. https://doi.org/10.1007/s11947-
524	023-03122-0.
525	Cao, S., Wang, S., Wang, Q., Lin, G., Niu, B., Guo, R., Yan, H., & Wang, H. (2023). Sodium
526	alginate/chitosan-based intelligent bilayer film with antimicrobial activity for pork
527	preservation and freshness monitoring. <i>Food Control, 148</i> , 109615.
528	https://doi.org/10.1016/j.foodcont.2023.109615.
529	Chirani, N., Yahia, L., Gritsch, L., Motta, F. L., Chirani, S., & Farè, S. (2015). History and applications
530	of hydrogels. Journal of biomedical sciences, 4(02), 1-23. https://doi.org/10.4172/2254-
531	<u>609X.100013</u> .
532	Cui, H., Cheng, Q., Li, C., Khin, M. N., & Lin, L. (2023). Schiff base cross-linked dialdehyde β -
533	cyclodextrin/gelatin-carrageenan active packaging film for the application of carvacrol on

- 534 ready-to-eat 108744. foods. Food Hydrocolloids, *141*, 535 https://doi.org/10.1016/j.foodhyd.2023.108744. 536 Ding, F., Dong, Y., Wu, R., Fu, L., Tang, W., Zhang, R., Zheng, K., Wu, S., & Zou, X. (2022). An oxidized
- 537 alginate linked tough conjoined-network hydrogel with self-healing and conductive

- properties for strain sensing. *New Journal of Chemistry*, *46*(24), 11676-11684.
 https://doi.org/10.1039/D2NJ02006H.
- 540 Ding, F., Hu, B., Lan, S., & Wang, H. (2020). Flexographic and screen printing of carboxymethyl
 541 chitosan based edible inks for food packaging applications. *Food Packaging and Shelf Life*,
 542 *26*, 100559. <u>https://doi.org/10.1016/j.fpsl.2020.100559</u>.
- 543 Ding, F., Li, H., Du, Y., & Shi, X. (2018). Recent advances in chitosan-based self-healing materials.
 544 *Research on Chemical Intermediates, 44*, 4827-4840. <u>https://doi.org/10.1007/s11164-</u>
 545 <u>018-3339-7</u>.
- 546 Ding, F., Nie, Z., Deng, H., Xiao, L., Du, Y., & Shi, X. (2013). Antibacterial hydrogel coating by
 547 electrophoretic co-deposition of chitosan/alkynyl chitosan. *Carbohydrate polymers, 98*(2),
 548 1547-1552. https://doi.org/10.1016/j.carbpol.2013.07.042.
- 549 Ding, F., Ren, P., Wang, G., Wu, S., Du, Y., & Zou, X. (2021). Hollow cellulose-carbon nanotubes
 550 composite beads with aligned porous structure for fast methylene blue adsorption.
 551 *International journal of biological macromolecules, 182*, 750-759.
 552 <u>https://doi.org/10.1016/j.ijbiomac.2021.03.194</u>.
- 553 Ding, F., Shi, X., Wu, S., Liu, X., Deng, H., Du, Y., & Li, H. (2017). Flexible polysaccharide hydrogel
 554 with pH-regulated recovery of self-healing and mechanical properties. *Macromolecular*555 *Materials and Engineering, 302*(11), 1700221. <u>https://doi.org/10.1002/mame.201700221</u>.
- Ding, F., Wu, S., Wang, S., Xiong, Y., Li, Y., Li, B., Deng, H., Du, Y., Xiao, L., & Shi, X. (2015). A dynamic
 and self-crosslinked polysaccharide hydrogel with autonomous self-healing ability. *Soft Matter, 11*(20), 3971-3976. <u>https://doi.org/10.1039/C5SM00587F</u>.
- Gopalakrishnan, K., & Mishra, P. (2023). Self-Healing Polymer a Dynamic Solution in Food Industry:
 a Comprehensive Review. *Food Biophysics*, 1-17. <u>https://doi.org/10.1007/s11483-023-</u>
 09780-z.
- Guadagno, L., Vertuccio, L., Barra, G., Naddeo, C., Sorrentino, A., Lavorgna, M., Raimondo, M., &
 Calabrese, E. (2021). Eco-friendly polymer nanocomposites designed for self-healing
 applications. *Polymer, 223*, 123718. <u>https://doi.org/10.1016/j.polymer.2021.123718</u>.
- Hu, B., Chen, L., Lan, S., Ren, P., Wu, S., Liu, X., Shi, X., Li, H., Du, Y., & Ding, F. (2018). Layer-bylayer assembly of polysaccharide films with self-healing and antifogging properties for
 food packaging applications. *ACS Applied Nano Materials, 1*(7), 3733-3740.
 <u>https://doi.org/10.1021/acsanm.8b01009</u>.
- Huang, H.-L., Tsai, I.-L., Lin, C., Hang, Y.-H., Ho, Y.-C., Tsai, M.-L., & Mi, F.-L. (2023). Intelligent
 films of marine polysaccharides and purple cauliflower extract for food packaging and
 spoilage monitoring. *Carbohydrate polymers, 299*, 120133.
 https://doi.org/10.1016/j.carbpol.2022.120133.
- Huang, K., & Wang, Y. (2022). Recent advances in self-healing materials for food packaging. *Packaging Technology and Science, 36*(3), 157-169. <u>https://doi.org/10.1002/pts.2701</u>.
- Huang, S., Xiong, Y., Zou, Y., Dong, Q., Ding, F., Liu, X., & Li, H. (2019). A novel colorimetric indicator
 based on agar incorporated with Arnebia euchroma root extracts for monitoring fish
 freshness. *Food Hydrocolloids, 90*, 198-205.
 https://doi.org/10.1016/j.foodhyd.2018.12.009.
- Lai, W.-F. (2023). Design and application of self-healable polymeric films and coatings for smart
 food packaging. *npj Science of Food, 7*(1). <u>https://doi.org/10.1038/s41538-023-00185-3</u>.
- Lin, L., Mei, C., Shi, C., Li, C., Abdel-Samie, M. A., & Cui, H. (2023). Preparation and characterization

582 of gelatin active packaging film loaded with eugenol nanoparticles and its application in 583 chicken preservation. Food Bioscience. 53. 102778. 584 https://doi.org/10.1016/j.fbio.2023.102778. 585 Lin, Z., Bi, S., Du, G., Zhang, Y., Fu, H., Fu, L., Xu, C., & Lin, B. (2023). Self-Reinforced and 586 Antibacterial Zn2+@ Vanillin/Carboxymethyl Chitosan Film for Food Packaging. ACS 587 Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.3c03109. 588 Lou, C., Tian, X., Deng, H., Wang, Y., & Jiang, X. (2020). Dialdehyde-β-cyclodextrin-crosslinked 589 carboxymethyl chitosan hydrogel for drug release. Carbohydrate polymers, 231, 115678. 590 https://doi.org/10.1016/j.carbpol.2019.115678. 591 Ma, L., Su, W., Ran, Y., Ma, X., Yi, Z., Chen, G., Chen, X., Deng, Z., Tong, Q., & Wang, X. (2020). 592 Synthesis and characterization of injectable self-healing hydrogels based on oxidized 593 alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan. International 594 journal of biological macromolecules, 165. 1164-1174. 595 https://doi.org/10.1016/j.ijbiomac.2020.10.004. 596 Muir, V. G., & Burdick, J. A. (2020). Chemically modified biopolymers for the formation of 597 biomedical hydrogels. Chemical *121*(18), 10908-10949. reviews, 598 https://doi.org/10.1021/acs.chemrev.0c00923. 599 Patel, P., & Thareja, P. (2022). Hydrogels differentiated by length scales: A review of biopolymer-600 based hydrogel preparation methods, characterization techniques, and targeted 601 European Journal, 110935. applications. Polymer *163*, 602 https://doi.org/10.1016/j.eurpolymj.2021.110935. 603 Rajabi, M., McConnell, M., Cabral, J., & Ali, M. A. (2021). Chitosan hydrogels in 3D printing for 604 biomedical applications. Carbohydrate polymers, 260, 117768. 605 https://doi.org/10.1016/j.carbpol.2021.117768. 606 Sai, F., Zhang, H., Qu, J., Wang, J., Zhu, X., Bai, Y., & Ye, P. (2022). Multifunctional waterborne 607 polyurethane films: Amine-response, thermal-driven self-healing and recyclability. 608 Applied Surface Science, 573, 151526. https://doi.org/10.1016/j.apsusc.2021.151526. 609 Santos, L. G., Alves-Silva, G. F., & Martins, V. G. (2022). Active-intelligent and biodegradable 610 sodium alginate films loaded with Clitoria ternatea anthocyanin-rich extract to preserve 611 and monitor food freshness. International journal of biological macromolecules, 220, 866-612 877. https://doi.org/10.1016/j.ijbiomac.2022.08.120. 613 Shen, Y., Wang, Z., Wang, Y., Meng, Z., & Zhao, Z. (2021). A self-healing carboxymethyl 614 chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for 615 glucose detection. Carbohydrate polymers, 274, 118642. 616 https://doi.org/10.1016/j.carbpol.2021.118642. 617 Sultan, M., Hafez, O. M., & Saleh, M. A. (2022). Quality assessment of lemon (Citrus aurantifolia, 618 swingle) coated with self-healed multilayer films based on chitosan/carboxymethyl 619 cellulose under cold storage conditions. International journal of biological 620 macromolecules, 200, 12-24. https://doi.org/10.1016/j.ijbiomac.2021.12.118. 621 Upadhyaya, L., Singh, J., Agarwal, V., & Tewari, R. P. (2013). Biomedical applications of 622 carboxymethyl chitosans. Carbohydrate polymers, *91*(1), 452-466. 623 https://doi.org/10.1016/j.carbpol.2012.07.076. 624 Virk, M. S., Virk, M. A., Liang, Q., Sun, Y., Zhong, M., Tufail, T., Rashid, A., Qayum, A., Rehman, A., 625 Ekumah, J. N., Wang, J., Zhao, Y., & Ren, X. (2024). Enhancing storage and gastroprotective

viability of *Lactiplantibacillus* plantarum encapsulated by sodium caseinate-inulin-soy
protein isolates composites carried within carboxymethyl cellulose hydrogel. *Food Research International, 187*, 114432. <u>https://doi.org/10.1016/j.foodres.2024.114432</u>.

- Wang, F., Xie, C., Tang, H., Hao, W., Wu, J., Sun, Y., Sun, J., Liu, Y., & Jiang, L. (2023). Development,
 characterization and application of intelligent/active packaging of chitosan/chitin
 nanofibers films containing eggplant anthocyanins. *Food Hydrocolloids, 139*, 108496.
 https://doi.org/10.1016/j.foodhyd.2023.108496.
- Wang, H., Qian, J., & Ding, F. (2018). Emerging chitosan-based films for food packaging
 applications. *Journal of agricultural and food chemistry, 66*(2), 395-413.
 https://doi.org/10.1021/acs.jafc.7b04528.
- Wang, J., Gao, Q., Zhao, F., & Ju, J. (2023). Repair mechanism and application of self-healing
 materials for food preservation. *Critical Reviews in Food Science and Nutrition*, 1-11.
 https://doi.org/10.1080/10408398.2023.2232877.
- Ku, J., Liu, Y., & Hsu, S.-h. (2019). Hydrogels based on Schiff base linkages for biomedical applications. *Molecules*, *24*(16), 3005. <u>https://doi.org/10.3390/molecules24163005</u>.
- Yan, K., Ding, F., Bentley, W. E., Deng, H., Du, Y., Payne, G. F., & Shi, X.-W. (2013). Coding for
 hydrogel organization through signal guided self-assembly. *Soft Matter, 10*(3), 465-469.
 https://doi.org/10.1039/C3SM52405A.
- Yin, H., Song, P., Chen, X., Huang, Q., & Huang, H. (2022). A self-healing hydrogel based on
 oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing
 material. *International journal of biological macromolecules, 221*, 1606-1617.
 https://doi.org/10.1016/j.ijbiomac.2022.09.060.
- Zhai, X., Sun, Y., Cen, S., Wang, X., Zhang, J., Yang, Z., Li, Y., Wang, X., Zhou, C., & Arslan, M. (2022).
 Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant
 volatile amines sensor for intelligent food packaging. *Food Hydrocolloids, 133*, 107989.
 https://doi.org/10.1016/j.foodhyd.2022.107989.
- Zhang, J., Zhang, J., Huang, X., Shi, J., Muhammad, A., Zhai, X., Xiao, J., Li, Z., Povey, M., & Zou, X.
 (2023). Study on cinnamon essential oil release performance based on pH-triggered
 dynamic mechanism of active packaging for meat preservation. *Food Chemistry*, 400,
 134030. <u>https://doi.org/10.1016/j.foodchem.2022.134030</u>.
- Zhang, X., Chen, X., Dai, J., Cui, H., & Lin, L. (2023). A pH indicator film based on dragon fruit peel
 pectin/cassava starch and cyanidin/alizarin for monitoring the freshness of pork. *Food Packaging and Shelf Life, 40*, 101215. <u>https://doi.org/10.1016/j.fpsl.2023.101215</u>.
- Zhang, X., Chen, X., Dai, J., Cui, H., & Lin, L. (2024). Edible films of pectin extracted from dragon
 fruit peel: Effects of boiling water treatment on pectin and film properties. *Food Hydrocolloids, 147*, 109324. <u>https://doi.org/10.1016/j.foodhyd.2023.109324</u>.
- Zhao, L., Feng, Z., Lyu, Y., Yang, J., Lin, L., Bai, H., Li, Y., Feng, Y., & Chen, Y. (2023). Electroactive
 injectable hydrogel based on oxidized sodium alginate and carboxymethyl chitosan for
 wound healing. *International journal of biological macromolecules, 230*, 123231.
 <u>https://doi.org/10.1016/j.ijbiomac.2023.123231</u>.
- Zhou, L., Chen, M., Guan, Y., & Zhang, Y. (2014). Multiple responsive hydrogel films based on
 dynamic Schiff base linkages. *Polymer Chemistry*, 5(24), 7081-7089.
 <u>https://doi.org/10.1039/C4PY00868E</u>.

670 Figure captions

- 671 Scheme 1 Schematic illustrating preparation and application of the self-healing carboxymethyl
 672 chitosan hydrogel.
- 673

674	Fig. 1. (A) Illustration of the preparation of carboxymethyl chitosan hydrogel containing
675	anthocyanin through crosslinking with oxidized alginate; (B) FT-IR spectra of carboxymethyl
676	chitosan, oxidized alginate, anthocyanin and the prepared hydrogel without anthocyanin
677	(hydrogel-4) and with anthocyanin (hydrogel-2); (C) XRD pattern of carboxymethyl chitosan,
678	oxidized alginate; (D) SEM images of the prepared hydrogel without anthocyanin (hydrogel-4)
679	and with anthocyanin (hydrogel-2); (E, F) TG and DTG curves of carboxymethyl chitosan, the
680	prepared hydrogel without anthocyanin (hydrogel-4) and with anthocyanin (hydrogel-2).
681	
682	Fig. 2. Photographs demonstrating the preparation and the effects of concentration of oxidized
683	alginate and anthocyanin on; (A) The self-healing properties of the carboxymethyl chitosan
684	hydrogels; (B) schematic illustration of self-healing process of the carboxymethyl chitosan
685	hydrogels; (C) Elastic responsive properties of self-healing hydrogel-2 characterized by
686	rheometer; (D) Self-healing efficiency of the prepared hydrogels without anthocyanin (hydrogel-
687	4) and with anthocyanin (hydrogel-2).
688	
689	Fig. 3. (A) Mechanical properties of the hydrogels tested on a TA.XT2i texture analyser; (B)
690	storage and loss modulus of hydrogel (hydrogel-1,2,3) characterized by oscillatory rheometry
691	between 0.1–100 rad/s.

692	Fig. 4. (A, B) The effects of concentration of oxidized alginate on the swelling properties of the
693	hydrogels (hydrogel-1,2,3); (C, D) The effects of concentration of anthocyanin on the swelling
694	properties of the hydrogels (hydrogel-2,4,5,6).
695	
696	Fig. 5. (A) The value of a and change in ΔE of hydrogel-2 in acetic acid gas under different time
697	intervals; (B) the value of b and change in ΔE of hydrogel-2 in ammonia gas under different time
698	intervals; (C) the value of a and change in ΔE of hydrogel-2 in repetitive ammonia and acetic acid
699	gas immersions; (D) photographs of the hydrogel-2 in ammonia or acetic acid gas at various time
700	intervals.
701	
702	Fig. 6. (A) The ΔE , b value of the hydrogel and pH change of the chicken after storing at 15°C for
703	different times; (B) the color response of the hydrogel-2 to the spoilage of chicken at different
704	time intervals; (C) ΔE , b values of the hydrogel and pH change of the fish after storing at 15°C for
705	different times; (D) the color response of the hydrogel-2 to the spoilage of fish; (E) ΔE , b values
706	and pH change of the pork after storing at 15°C for different times; (F) color response of the
707	hydrogel-2 to the spoilage of pork.
708	
709	Fig. 7. (A) 3D printing of hydrogel-1 into letter "I C G" on white paper. (B) 3D printing of letters
710	"H O C" in hydrogel-1 on steamed bread.
711	
712	Fig. 8. The photographs and weight change over time for hydrogel-1,2,3 after decomposing (A) in

713 the lake; (B) in simulated seawater and (C) soil.

714 Scheme 1

717 Fig. 1

718

719 Fig. 2

731 Fig. 5

733 Fig. 6

735 Fig. 7

736

738 Fig. 8

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Fuyuan Ding

School of Food and Biological Engineering, International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Joint Laboratory of China-UK on Food Nondestructive Sensing, Jiangsu University, Zhenjiang, 212013, China

CRediT authorship contribution statement

Fuyuan Ding: Conceptualization, methodology, writing-original draft, funding acquisition, formal analysis, visualization. Lin Fu: Investigation, writing-original draft. Xiaowei Huang: Review & editing. Jiyong Shi: Review & editing. Megan Povey: Review & editing. Xiaobo Zou: Supervision, Review & editing.