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Abstract

We study the propagation of slow magnetosonic waves in coronal magnetic loops. In our

study we take nonlinearity and loop cooling into account. We use the small beta approx-

imation and neglect the effect of magnetic field perturbation on the wave propagation. In

accordance with this we assume that the tube cross-section does not change. We also ne-

glect the equilibrium plasma density variation along and across the tube. As a result the

equations of magnetohydrodynamics reduce to purely one-dimensional gasdynamic equa-

tions that includes the effect of viscosity and thermal conduction. We assume that the per-

turbation amplitude is sufficiently small and use the reductive perturbation method to derive

the generalised Burgers’ equation describing the evolution of initial perturbations. First we

study a case with weak dissipation and drop the term describing it. When there is no cooling

the evolution of the initial perturbation results in a gradient catastrophe. However strong

cooling can prevent it. Then we solve the full equation numerically assuming that the tem-

perature decreases exponentially. We fix the initial perturbation amplitude and then study

the dependence of perturbation evolution on the cooling time. The main result that we ob-

tain is that moderate cooling decelerates the wave damping. This effect is related to the fact

that the dissipation coefficients are proportional to the temperature in 5/2 power. As a result

they decrease fast because of plasma cooling. However strong cooling can cause perturba-

tion damping on its own.
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1. Introduction

At present it is well known that the solar atmosphere is highly imhomogeneous and dy-

namic (e.g. Vaiana, Krieger, and Timothy 1973; Schrijver et al. 1999). Observations show

that waves and oscillations are always present in the solar atmosphere (e.g. Wang et al. 2003;

Okamoto et al. 2007; Jess et al. 2009; Morton et al. 2012; Keys et al. 2018; Jafarzadeh et al.

2024), (see also the reviews by Nakariakov and Verwichte 2005; Zaqarashvili and Erdélyi

2009; Mathioudakis, Jess, and Erdélyi 2013; Wang et al. 2021). In particular the Ultraviolet

Coronagraph Spectrometer onboard the Solar Heliospheric Observatory (SOHO/UVCS)

detected propagating disturbances in coronal plumes (Ofman et al. 1997; Ofman, Nakari-

akov, and Sehgal 2000; Ofman et al. 2000). They were interpreted as slow magnetosonic

waves (Ofman, Nakariakov, and DeForest 1999). Later similar disturbances were observed

in coronal loops by the Transition Region and Coronal Explorer (TRACE) (Nightingale, As-

chwanden, and Hurlburd 1999; Schrijver et al. 1999; McEwan and De Moortel 2006). Stand-

ing and reflected propagating waves have been observed by the Soft X-ray Telescope (SXT)

onboard Yohkoh and the Solar Ultraviolet Measurement Emitted Radiation (SUMER) spec-

trum onboard SOHO (Wang et al. 2003; Taroyan et al. 2007) in hot coronal loops.

One important feature that can affect the properties of waves and oscillations in the solar

corona is the temperature evolution of coronal plasma. There has been many observations

showing that there are various scenarios of temperature evolution (e.g. Winebarger, War-

ren, and Seaton 2003; Nagata et al. 2003; López Fuentes, Klimchuk, and Mandrini 2007;

Aschwanden and Terradas 2008; Viall and Klimchuk 2012; Li et al. 2015). Both kink (Mor-

ton and Erdélyi 2009; Ruderman 2011a,b; Ruderman, Shukhobodskiy, and Erdélyi 2017)

and sausage (Al-Ghafri and Erdélyi 2013; Al-Ghafri et al. 2014; Al-Ghafri 2015) in cooling

coronal loops have been studied in the linear approximation.

Propagation of slow nonlinear waves in coronal loops and plumes has been studied by

Nakariakov et al. (2000), Ofman, Nakariakov, and Sehgal (2000), and Ofman et al. (2000).

These authors derived the equation describing the spatial evolution of nonlinear waves that

takes into account the effects of viscosity, thermal conduction, and gravitational stratifica-

tion. The analytical results have been compared with the direct numerical modelling. Sub-

sequently standing slow nonlinear waves in coronal loops have also been studied both nu-

merically as well as analytically (Ofman and Wang 2002; Mendoza-Briceño, Erdélyi, and

Sigalotti 2004; Sigalotti, Mendoza-Briceño, and Luna-Cardozo 2007; Verwichte et al. 2008;

Ruderman 2013).

We aim to study the same problem as that investigated by Al-Ghafri and Erdélyi (2013),

however taking the effect of nonlinearity into account. The article is organised as follows:

In the next section we describe the equilibrium state and present the governing equations.

In Section 3, we derive the equation governing the time dependence of the plasma velocity.

In Section 4, we study the joint effect of nonlinearity and equilibrium temperature variation

in the approximation of ideal plasma where the effects of viscosity and thermal conduction

are neglected. In Section 5, we present the results of numerical solution of the initial value

problem for the equation derived in Section 3. Section 6 contains the summary of the results

and our conclusions.

2. Equilibrium State and Governing Equations

We study slow propagating waves in hot coronal loops with the temperature T ≳ 6 MK. In

these hot loops the atmospheric scale height exceeds 300 Mm. Hence, we can safely neglect
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the density variation along a loop if the height of the loop apex point is smaller than or of

the order of 100 Mm. The plasma number density in hot loops is usually not higher than

1015 m−3. Then, for T ≤ 10 MK, the plasma pressure does not exceed 0.23 Nm−2. Using

this result we find that the plasma beta is smaller than 0.6 when B ≳ 10−3 Tesla = 10 G.

Although this value of plasma beta is not small it is still less than unity. If B = 20 G then we

obtain plasma beta equal to 0.15, which is much smaller than unity. In accordance with these

estimates we use the low-beta plasma approximation and neglect the magnetic field pertur-

bation when studying the slow waves in hot coronal loops. This approximation greatly sim-

plifies the analysis because this enables us to neglect the variation of the loop cross-section

and the equilibrium quantities in the directions perpendicular to the loop axis. Neglecting in

addition the loop curvature we can describe the slow waves by one-dimensional hydrody-

namic equations (Priest 1982; Goedbloed and Poedts 2004)

∂ρ

∂t
+

∂(ρu)

∂x
= 0, (1)

∂u

∂t
+ u

∂u

∂x
= −

1

ρ

∂p

∂x
+

1

ρ

∂

∂x
ρν

∂u

∂x
, (2)

∂T

∂t
+ u

∂T

∂x
+ (γ − 1)T

∂u

∂x
=

∂

∂x
κ

∂T

∂x
+ Q(ρ,T ), (3)

p =
kB

m
ρT . (4)

Here u is the velocity, ρ the density, p the pressure, T the temperature, γ the ratio of

specific heats, kB the Boltzmann constant, m the mean mass for particle (m ≈ 0.6mp in the

solar corona, where mp is the proton mass), ν the kinematic viscosity, κ the coefficient of

thermal conduction, and Q(ρ,T ) the generalised heat-loss function. Using the expression

for the viscosity tensor and heat flux in a fully ionised plasma given by Braginskii (1965)

we obtain

ν =
4η0

3ρ
, κ =

(γ − 1)mk∥

ρkB

, (5)

where η0 is the first viscosity coefficient in the Braginskii’s expression for the viscosity ten-

sor, and k∥ the thermal conductivity parallel to the magnetic field. The latter two quantities

are given by (Braginskii 1965)

η0 ≈ nkBT τp, (6)

and (e.g. Spitzer 1962; Priest 1982)

k∥ ≈ 10−11T 5/2 W m−1 K−1, (7)

where n = ρ/mp is the electron number density and τp the proton collision time. It is given

by the approximate expression

τp ≈ 1.66 × 107 T 3/2

n lnΛ
s, (8)

where Λ is the Coulomb logarithm and the number density n is measured in m−3. For typical

conditions in hot loops lnΛ ≈ 20, and τp is approximately between 10 and 25 s.
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The system of Equations 1 – 4 is the same as was used by Ruderman (2013), and almost

the same as was used by Ofman and Wang (2002). The only difference from the latter is that

we neglected the term describing the viscous heating in the energy Equation 4. The reason

for this is that this term is quadratic with respect to u, while, in what follows, we linearise the

dissipative terms. We assume that the unperturbed density is constant, while the unperturbed

plasma pressure depends on time and it is proportional to the unperturbed temperature. The

assumption that the density does not vary along a hot loop with the temperature of the order

of or higher than 6 MK seems reasonable because in this case the atmospheric scale height

is much higher than the height of the loop apex. It also seems reasonable to assume that the

density does not change with time when the temperature remains high enough, say above 3

or 4 MK. However when it drops below this value the plasma pressure cannot support the

almost constant density in the loop. The plasma in the loop starts to flow in the direction of

chromosphere. As a result the density will vary along the loop. Hence, although below we

consider the temperature decrease about four times the obtained results can be considered

reliable only for the temperature decrease of about two times, while the results obtained for

lower values of the temperature should be taken with caution.

The assumption that the unperturbed density is constant implies that the unperturbed

quantities are related by

p0(t) =
kB

m
ρ0T0(t). (9)

We also assume that the unperturbed velocity is zero. The variation of the unperturbed tem-

perature is described by

dT0

dt
= Q(ρ0, T0). (10)

3. Derivation of the Governing Equation for the Velocity

To derive the governing equation we use the Reductive Perturbation method (Kakutani et al.

1968; Taniuti and Wei 1968). Following Ruderman (2013) we assume that the dissipation

is weak and introduce the scaled coefficients ν̄ = ϵ−1ν and κ̄ = ϵ−1κ , where ϵ ≪ 1. Below

we consider either spatially periodic initial perturbations with the period L, or perturbations

with finite length L. Then the characteristic time of the problem is L/c0, where c0 is the

characteristic value of the sound speed. We assume that the characteristic time of variation

of the plasma temperature and pressure is ϵ−1(L/c0). In accordance with this we introduce

the “slow” time t1 = ϵt . Hence, p0 and T0 are the functions of t1. We also assume that the

oscillation amplitude is relatively small and neglect the effect of perturbations on ν and κ .

Then it follows from Equations 5 – 8 that

ν = ν0

(︃

T0(t1)

T00

)︃5/2

, η = η0

(︃

T0(t1)

T00

)︃5/2

, (11)

where ν0, η0, and T00 are the values of ν, η, and T0 at t = 0. While the variation of the per-

turbation shape occurs on the slow time, there is also fast motion described by the “normal”

time t , so there are two times, normal and slow. To describe this two-time evolution of the

system in geometrical optics all perturbations are taken in the form w(t1) exp(iϵ−1Θ(t1)),
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where Θ(t1) is eikonal. By analogy with the geometrical optics we introduce

X = ϵ−1

∫︂ t1

0

c(t ′)dt ′, c2(t) =
γp0(t)

ρ0

, (12)

where c(t) is the unperturbed sound speed. Below we consider waves propagating in the

positive x-direction. In accordance with this we assume that perturbations of all variables

depend on ξ = x − X and t1. Using the new variables we transform Equations 1 – 4 to

c
∂ρ

∂ξ
−

∂(ρu)

∂ξ
= ϵ

∂ρ

∂t1
, (13)

c
∂u

∂ξ
− u

∂u

∂ξ
−

1

ρ

∂p

∂ξ
= ϵ

∂u

∂t1
− ϵν̄

∂2u

∂ξ 2
, (14)

c
∂T

∂ξ
− u

∂T

∂ξ
− (γ − 1)T

∂u

∂ξ
= ϵ

∂T

∂t1
− ϵκ̄

∂2T

∂ξ 2
. (15)

Equation 4 remains unchanged. When deriving Equation 15 we took Q(ρ,T ) ≈ Q(ρ0, T0),

that is we neglected the variation of the generalised heat-loss function related to the den-

sity and temperature perturbation. If we take this variation into account then we arrive at

the thermal misbalance problem in a cooling plasma. This problem was studied by many

authors in a plasma with the constant unperturbed temperature (e.g. Kolotkov, Duckenfield,

and Nakariakov 2020; Kolotkov, Zavershinskii, and Nakariakov 2021; Kolotkov and Nakari-

akov 2022; see also review by Nakariakov et al. 2024). We postpone studying the thermal

misbalance problem in a cooling plasma till future research.

We look for the solution to the system of Equations 4 and 13 – 15 in the form of expan-

sions

f = f0 + ϵf1 + ϵ2f2 + · · · , (16)

where f represents any of quantities u, ρ, p and T . The first term, f0, corresponds to the

unperturbed state. We note that u0 = 0, ρ0 = const, while p0 and T0 are functions of t1.

3.1. First Order Approximation

Substituting Equation 16 in Equations 4 and 13 – 15 and collecting the terms of the order of

ϵ yields

c
∂ρ1

∂ξ
− ρ0

∂u1

∂ξ
= 0, (17)

c
∂u1

∂ξ
−

1

ρ0

∂p1

∂ξ
= 0, (18)

c
∂T1

∂ξ
− (γ − 1)T0

∂u1

∂ξ
= 0, (19)

p1 =
kB

m
(ρ0T1 + T0ρ1). (20)
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Using Equations 17 – 19 we obtain

ρ1 =
ρ0

c
u1, p1 = cρ0u1, T1 = (γ − 1)

T0

c
u1. (21)

We note that in accordance with Equation 10 the term ∂T0/∂t1 does not appear in Equa-

tion 19.

Using the relation c2 = γ kBT0/m we can verify that the relations given by Equation 21

satisfy Equation 20.

3.2. Second Order Approximation

In the second order approximation we collect the terms of the order of ϵ2 in Equations 4 and

13 – 15. Then using Equations 9 and 17 – 19 we obtain

c
∂ρ2

∂ξ
− ρ0

∂u2

∂ξ
=

2ρ0

c
u1

∂u1

∂ξ
+ ρ0

∂(u1/c)

∂t1
, (22)

c
∂u2

∂ξ
−

1

ρ0

∂p2

∂ξ
=

∂u1

∂t1
− ν̄

∂2u1

∂ξ 2
, (23)

c
∂T2

∂ξ
− (γ − 1)T0

∂u2

∂ξ
= (γ − 1)

(︃

γ T0

c
u1

∂u1

∂ξ
+

∂(T0u1/c)

∂t1
−

κ̄

c
T0

∂2u1

∂ξ 2

)︃

, (24)

p2 −
kB

m
(ρ0T2 + T0ρ2) =

p0

c2
(γ − 1)u2

1. (25)

Eliminating u2, ρ2, p2, and T2 from Equations 22 – 25 we obtain the equation describing the

evolution of u1:

2
∂u1

∂t1
+ (γ + 1)u1

∂u1

∂ξ
−

(︃

ν̄ +
(γ − 1)κ̄

γ

)︃

∂2u1

∂ξ 2
−

2 − γ

γ c

dc

dt1
u1 = 0. (26)

Returning to the original variables and using the approximate relation u ≈ ϵu1 we transform

this equation to

∂u

∂t
+ c

∂u

∂x
+

γ + 1

2
u

∂u

∂x
− Γ

∂2u

∂x2
−

2 − γ

2γ c

dc

dt
u = 0, (27)

where

Γ =
ν

2
+

(γ − 1)κ

2γ
. (28)

Below we impose the condition that u either tends to zero as |x| → ∞ sufficiently fast, of it

is a periodic function of x. Multiplying Equation 27 by 2u and integrating with respect to x

we obtain

d

dt
c1−2/γ

∫︂

u2 dx = −2Γc1−2/γ

∫︂ (︃

∂u

∂x

)︃2

dx, (29)
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where the integrals are taken either over the interval (−∞,∞) or over the period of u with

respect to x. When Γ = 0 we obtain

c1−2/γ

∫︂

u2 dx = const. (30)

Since the equilibrium quantities vary with time the energy of perturbation is not conserved.

However when Γ = 0 the energy variation is only due to changing of the equilibrium quan-

tities, while when Γ ≠ 0 the energy also decreases due to the energy dissipation. Hence,

Equation 30 can be considered as the modified energy conservation law.

We impose the initial condition

u = ϕ(x) at t = 0. (31)

4. Solution for Weak Dissipation

In this section we consider the case of weak dissipation. We start the analysis with introduc-

ing the dimensionless variables:

y =
1

L

(︃

x −

∫︂ t

0

c(t ′)dt ′
)︃

, τ =
u0t

L
, U =

u

u0

, C =
c

c0

, R =
u0L

Γ0

, (32)

where c0 = c(0), Γ0 = Γ(0), L is the characteristic spatial length, and u0 is the characteristic

value of u. For example we can take u0 equal to the maximum value of |u|. In these variables

Equation 27 is transformed to

∂U

∂τ
+

1

2
(γ + 1)U

∂U

∂y
−

C5

R

∂2U

∂y2
−

2 − γ

2γC

dC

dτ
U = 0. (33)

When deriving this equation we used Equation 5 and the relation T0/T00 = c2/c2
0 . Weak

dissipation corresponds to R ≫ 1. In this case we can neglect the third term in Equation 33

and reduce it to

∂U

∂τ
+

1

2
(γ + 1)U

∂U

∂y
−

2 − γ

2γC

dC

dτ
U = 0. (34)

The equation of characteristics of this equation is defined by

dy

dτ
=

γ + 1

2
U. (35)

Let y = y(τ) be the equation of a characteristic. On this characteristic U = U(τ, y(τ )).

Then the variation of U along this characteristic is described by

dU

dτ
=

2 − γ

2γC

dC

dτ
U. (36)

The solution to this equation is

U(τ, y(τ )) = U0C
2−γ
2γ , (37)



   85 Page 8 of 18 M.S. Ruderman et al.

where U0 is the value of U at τ = 0. The initial condition given by Equation 31 is trans-

formed in the dimensionless variables to

U(τ, y(τ )) =
ϕ(x)

u0

≡ Φ(y(τ)) at τ = 0. (38)

It follows from Equations 37 and 38 that U0 = Φ(y0), where y0 = y(0). Using this result we

transform Equation 37 to

U(τ, y(τ )) = Φ(y0)[C(τ)]
2−γ
2γ . (39)

Substituting this result in Equation 35 we obtain that the equation of the characteristic satis-

fying y0 = y(0) is

dy

dτ
=

γ + 1

2
Φ(y0)[C(τ)]

2−γ
2γ . (40)

Integrating this equation we obtain that the equation of this characteristic is

y = y0 +
γ + 1

2
Φ(y0)

∫︂ τ

0

[C(τ ′)]
2−γ
2γ dτ ′. (41)

To calculate the value of U at point (τ, y) we must find such a value of y0 that the char-

acteristic starting at y0 contains this point. As a result we obtain y0(τ, y). Substituting this

function in Equation 39 we obtain

U(τ, y) = Φ(y0(τ, y))[C(τ)]
2−γ
2γ . (42)

However this expression can be only obtained if Equation 41 determines y0 as a single-

valued function of τ and y. The derivative of the right-hand side of Equation 41 with respect

to y0 is

D(τ, y0) = 1 +
γ + 1

2

dΦ(y0)

dy0

∫︂ τ

0

[C(τ ′)]
2−γ
2γ dτ ′. (43)

We see that D(0, y0) = 1 > 0. Then there are two possibilities. If D(τ, y0) > 0 for any

τ > 0 then there is the single-valued solution to Equation 41 determining y0(τ, y) and,

consequently, there is the solution to the initial value problem to Equation 33 given by

Equation 42 for τ > 0.

However, when D(τ, y0) > 0 only for τ < τc while D(τc, y0) = 0, then there is the single-

valued solution to Equation 41 determining y0(τ, y) only for τ < τc and, consequently, there

is the solution to the initial value problem to Equation 33 given by Equation 42 only for

τ < τc . Differentiating Equation 41 yields

∂y0

∂y
=

1

D(τ, y0)
. (44)

Using this result we obtain

∂U

∂y
= [C(τ)]

2−γ
2γ

1

D(τ, y0)

dΦ(y0)

dy0

. (45)
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Figure 1 Dependence of τc on

α. The vertical dashed line shows

the value of αc = 40/3.

It follows from this equation that |∂U/∂y| → ∞ as τ → τc . This phenomenon is called

a gradient catastrophe that is previously studied, for example, in nonlinear acoustics (e.g.

Rudenko and Soluyan 2001), hydrodynamics (e.g. Landau and Lifshitz 1987; Ruderman

2019), and in the general theory of waves (e.g. Whitham 1974). It particular, it was shown

that at τ = τc a shock in the perturbation starts to form.

To give an example we take

Φ(y) =

⎧

⎪

⎨

⎪

⎩

0, y < 0,

siny, 0 ≤ y ≤ π,

0, y > π,

(46)

C(τ) = e−ατ . (47)

This sound speed variation corresponds to the temperature varying as e−2ατ . Positive val-

ues of α correspond to cooling of the coronal loop plasma, and negative values to heating.

Substituting Equations 46 and 47 into Equation 43 yields

D(τ, y0) = 1 +
γ (γ + 1)

α(2 − γ )

(︂

1 − e
−

2−γ
2γ

ατ
)︂

cosy0. (48)

This expression is valid for 0 ≤ y ≤ π . It is straightforward to see that the sign of the second

term on the right-hand side of Equation 48 coincides with the sign of cosy0. Then it follows

that the second term takes minimum when y0 = π . After that we immediately find that

τc = −
2γ

α(2 − γ )
ln

(︃

1 −
α

αc

)︃

, αc =
γ (γ + 1)

2 − γ
. (49)

It is proved in Appendix A that τc is a monotonically increasing function of α. When α → αc

we have τc → ∞. The dependence of τc on α is shown in Figure 1. For α > αc we obtain

D(τ, y0) > 0 for any τ > 0 and the gradient catastrophe does not occur. Hence, we see that

sufficiently strong cooling can prevent the gradient catastrophe. However for this cooling

must be very strong since αc = 40/3 for γ = 5/3. The result that strong cooling can prevent

the gradient catastrophe has a simple explanation. If we neglect nonlinearity then the shape

of perturbation does not change and the solution has the form U = A(τ)Φ(y). Substituting
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Figure 2 Dependence of U on y for various values of α. In the upper panes as well as in the left lower panel

the dotted, dashed, and solid lines correspond to τ = 0, τ = τc/2, and τ = τc . In the right lower panel the

dotted, dashed, and solid lines correspond to τ = 0, τ = 0.025, and τ = 0.05.

this expression and Equation 47 into Equation 30 transformed to the dimensionless variables

yields

A(τ) = e
−

2−γ
2γ

ατ
. (50)

We see that the perturbation amplitude decreases when α > 0. When cooling is strong the

amplitude attenuation prevents the gradient catastrophe.

Using Equation 47 we obtain from Equations 41 and 42

y = y0 +
γ (γ + 1)

α(2 − γ )
Φ(y0)

(︂

1 − e
−

2−γ
2γ

ατ
)︂

, (51)

U(τ, y) = Φ(y0(τ, y))e
−

2−γ
2γ

ατ
. (52)

We consider Equations 51 and 52 for τ < τc . It follows from Equation 46 that y0 = y is

a solution to Equation 51 when y ≤ 0 and y ≥ π for any τ . Since for τ < τc the solution

to Equation 51 for given y and τ is unique it follows that there are no other solutions to

Equation 51 for y ≤ 0 and y ≥ π . Then it follows from Equation 52 that U = 0 for y ≤

0 and y ≥ π . Equation 51 was solved numerically and the solution was substituted into

Equation 52.

The evolution of U with time is shown in Figure 2 for various values of α. In this figure

the evolution of the perturbation is shown up to the instance of gradient catastrophe for the

cases when the temperature increases (α = −1), the temperature does not change (α = 0),

and the temperature decreases (α = 1). Since αc < 14 the right lower panel in Figure 2

corresponds to the case where the gradient catastrophe does not occur. Since τc ≈ 0.72 for

α = −1 and τc ≈ 0.78 for α = 1 the loop temperature increases approximately four times in

the first case and decreases approximately five times in the second case when τ varies from

0 to τc. In accordance with this estimate we chose to show the evolution of U for τ varying

from 0 to 0.05 because the loop temperature decreases approximately four times for α = 14

and τ = 0.05.

We can see in Figure 2 that the loop heating causes the increase of the perturbation

amplitude, while the loop cooling causes its decrease. However the effect is very weak.
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Now we discuss the results obtained in this section using the dimensional variables. The

temperature in a cooling coronal loop is given by

T0(t) = T00e−t/tcool , tcool =
L

2|α|u0

. (53)

Taking T00 = 6 MK yields c0 ≈ 370 km s−1. Next we take L = 40 Mm = 4 × 107 m and the

amplitude of the initial velocity perturbation equal to 10% of the sound speed, that is u0 =

37 km s−1. Then we obtain tcool ≈ (540/|α|) s. This gives tcool ≈ 540 s for |α| = 1, which is a

sufficiently realistic value of cooling time. On the other hand, tcool ≈ 38.6 s for α = 14, so the

cooling time needed to prevent the gradient catastrophe for u0 = 37 km s−1 is unrealistically

small. To obtain tcool = 500 s for α = 14 we must take an extremely small value of u0 ≈

2.86 km s−1, which is about 0.77% of the initial sound speed. It is not surprising that for

such a small velocity amplitude the nonlinearity does not affect the wave evolutions as is

seen in the bottom right panel in Figure 2.

Introducing tc = Lτc/u0 we obtain that it is equal to 782 s for α = −1, to 811 s for α = 0,

and to 843 s for α = 1. We take τ = 0.05 for α = 14 that corresponds to 700 s. The loop

temperature increases by more than 4 times for tc = 782 s corresponding to α = −1, and

decreases by almost 5 times for tc = 843 s corresponding to α = 1.

We can see from our analysis that cooling alone cannot cause substantial decrease of

nonlinear perturbations. Strong damping will only start after the formation of a shock in

the wave profile that occurs at τ = τc . However, before that happens viscosity and thermal

conduction will start to work. This scenario is studied in the next section.

5. Numerical Solution of Equation 33

Substituting Equation 47 into Equation 33 yields

∂U

∂τ
+

1

2
(γ + 1)U

∂U

∂y
+

e−5ατ

R

∂2U

∂y2
+

α(2 − γ )

2γ
U = 0. (54)

The initial value problem was solved numerically with the initial condition given by Equa-

tion 46. In our numerical study we used γ = 5/3.

We use the same representative values of parameters as in the previous section. However

while in the previous section we had only one parameter, α, now we have the second pa-

rameter, R, and we need to choose realistic values for this parameter. For this we need to

estimate the value of Γ0. It follows from the definition of Γ that Γ0 = 0.5ν0 + 0.2κ0. Taking

T00 = 6 MK and n0 = 1015 m−3 we obtain ν0 ≈ 8×1011 m2 s−1 and κ0 ≈ 2.55×1013 m2 s−1.

Using these numbers yields Γ0 ≈ 5.4 × 1012. Then we obtain R ≈ 0.274. We only consider

the effect of cooling and take α = 1 and 14. To display the effect of cooling we also consider

α = 0.

The results of numerical solution of Equation 54 are presented in Figure 3. The upper

panel corresponds to the case when there is no cooling. We see that the initial perturbation

damps due to viscosity and thermal conduction while there is almost no nonlinear distortion

of the perturbation profile. It is not surprising because R ≈ 0.274 ≪ 1 and dissipation sub-

stantially dominates nonlinearity. We also notice the diffusion of perturbation beyond the

interval [0,L] caused by dissipation.

The middle panel corresponds to the case when there is cooling. We can see that the

evolution of the initial perturbation shown in this panel is quite different from that shown
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Figure 3 Dependence of U on y

for various values of α obtained

by solving Equation 54. In the

upper and middle panels the

dotted, dashed, and solid lines

correspond to τ = 0, τ = τc/2,

and τ = τc . In the lower panel the

dotted, dashed, and solid lines

correspond to τ = 0, τ = 0.375,

and τ = 0.75. The small-dotted

line in the middle panel shows

the solution to the linearised

Equation 68 for τ = τc .

in the upper panel. Hence we conclude that the effect of cooling is sufficiently strong. The

main reason for this is that the coefficient at the third term in Equation 54 decreases with

time due to cooling. It decreases almost 50 times at τ = τc in comparison with its initial

value. As a result cooling decelerates the wave damping. We also see that there is some

nonlinear distortion of the perturbation profile. To make this even more clear we plot the

profile calculated using the solution to the linear problem given by Equation 68. We observe

that the solid curve is different from the small-dotted curve. In contrast, a similar comparison

for the upper panel does not show practically any difference between the results obtained

using linear and nonlinear description. We again notice the diffusion of perturbation beyond

the interval [0,L].
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Finally, we discuss the results presented in the lower panel in Figure 3. As we have

already pointed out in the previous section the cooling time corresponding to the values

of L, T0, and u0 taken in our calculations is completely unrealistic for α = 14. Hence,

the results obtained in this case are only interesting from the theoretical point of view, but

cannot be applied for interpretation of observational results. The coefficient at the third

term describing dissipation is decreasing very fast, so the third term can be neglected. This

conclusion is also supported by the fact that the perturbation almost does not diffuse beyond

the interval [0,L]. We see that there is some nonlinear distortion of the perturbation profile.

If we also neglect the nonlinear term and only keep the first and last terms in Equation 54

then the solution to the reduced equation is U = U0 exp(−(ατ(1/γ − 1/2)). Although this

solution does not account for the nonlinear distortion, it sufficiently accurately describes the

amplitude variation with the time. Hence, the decrease of the wave amplitude observed in

the lower panel in Figure 3 is almost solely due to cooling.

The main conclusion that we can make on the bases of the numerical results presented

in the upper and middle panels in Figure 3 is that moderate cooling decelerates the wave

dumping due to viscosity and thermal conduction. However, the result obtained for α = 14

shows that strong cooling can cause the wave damping on its own.

6. Summary and Conclusions

In this article we studied nonlinear propagating slow sausage waves in a cooling coronal

magnetic loop. We used the simplest model of a coronal loop as a straight magnetic tube

with a circular cross-section. We also used the cold plasma approximation and neglected

the density variation in the tube. As a result the problem reduced to studying propagation of

sound waves in a cooling plasma. Using the reductive perturbation method we derived the

equation governing the time evolution of the perturbation velocity. When there is no cooling

this equation is Burgers’ equation. Hence the governing equation can be called the modi-

fied Burgers’ equation. We then introduced dimensionless variables. In these variables the

governing equation, which is Equation 33, contains only one dimensionless parameter, R,

and one arbitrary function, C(τ), related to the temperature dependence on time. Parameter

R determines the relative importance of nonlinearity and dissipation. When R ≪ 1 we can

neglect the effect of nonlinearity and use the linear approximation. On the other hand, when

R ≫ 1 we can neglect dissipation.

We solved the modified Burgers’ equation for a particular perturbation given by Equa-

tion 46 assuming that the temperature decreases exponentially. This problem contains the

second dimensionless parameter α. This parameter is defined as α = L/u0tcool, where L is

the length of initially perturbed region, u0 the amplitude of the initial perturbation, and tcool

the cooling time, which is the time during which the temperature decreases e-times. We also

considered the coronal loop heating corresponding to α < 0.

First we assumed that R ≫ 1 and neglected the third term in Equation 54. The most

important result that we obtained is that for moderate values of α the nonlinear evolution

of the initial perturbation results in a gradient catastrophe. However, when α > αc , where

αc = 40/3 for γ = 5/3, a gradient catastrophe does not occur. The condition α > αc can be

written as tcool < L/αcu0. We see that a sufficiently strong cooling with small cooling time

prevents the gradient catastrophe for any fixed perturbation length L and the initial pertur-

bation amplitude u0. An inspection of Figure 2 shows that cooling reduces the oscillation

amplitude, but this effect is quite weak.
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Next we considered the case where R ≲ 1 and solved Equation 54 with the same initial

condition given by Equation 46. We took typical values of dissipative coefficients at the ini-

tial time, so Γ0 was fixed. We also fixed L and u0, so R was fixed and approximately equal

to 0.274. Hence the only variable dimensional quantity was the cooling time tcool. In accor-

dance with Equation 53 tcool is proportional to α−1. We obtained quite realistic value of tcool

for α = 1 and unrealistically small value for α = 14. First effect related to the account of

dissipation is the perturbation damping. Next, dissipation causes diffusion of perturbation

beyond the initially perturbed interval [0,L]. We compared the results obtained by solv-

ing Equation 54 with those obtained using the linear approximation. The results practically

coincide for α = 0, which is not surprising taking into account that R is quite small. The

real difference between the results given by linear and nonlinear theories is seen for α = 1.

This result is related to the fact that the coefficient at the term in Equation 54 describing

dissipation decreases due to cooling. In particular, it decreases by about 50 times during

the evolution time of the perturbation. When α = 0 there is no cooling and the perturba-

tion amplitude decreases by about three times during the evolution time. However, when

α = 1 it decreases by less than 2 times. Hence, the main effect of cooling is the reduction of

perturbation damping. This effect is the direct consequence of the fact that the dissipation

coefficients are proportional to T 5/2, where T is the temperature. However, this is only valid

for moderate strength of cooling. The result obtained for α = 14 shows that strong cooling

can cause the wave damping on its own.

Appendix A: Prove that 𝝉𝒄 is a Monotonically Increasing Function of 𝜶

We rewrite Equation 49 as

τc = −
2

x(γ + 1)
ln(1 − x), x =

α

αc

. (55)

Differentiating this expression we obtain

dτc

dx
=

g(x)

(γ + 1)x2
, g(x) = 2 ln(1 − x) +

2x

1 − x
. (56)

Next we obtain

dg

dx
=

2x

(1 − x)2
. (57)

We see that dg/dx < 0 for x < 0 and dg/dx > 0 for x > 0. This implies that g(x) takes

minimum at x = 0. Since g(0) = 0 it follows that g(x) > 0 for x ≠ 0. This result implies

that τc is a monotonically increasing function of x.

Appendix B: Solution of Initial Value Problem to Linearised
Equation 33

In this section we assume that R ≪ 1. In this case we can neglect the second term on the left-

hand side of Equation 33 in comparison with the third term and obtain the linear equation

that reads

∂U

∂τ
−

C5

R

∂2U

∂y2
−

2 − γ

2γC

dC

dτ
U = 0. (58)
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Using the variable substitution

U = C
2−γ
2γ W, θ =

∫︂ τ

0

C5(τ ′)dτ ′, (59)

we reduce Equation 58 to

∂W

∂θ
=

1

R

∂2W

∂y2
. (60)

We impose the initial condition

W = W0(y) at θ = 0. (61)

The solution to Equation 59 subjected to this initial condition is given by (Polyanin 2002)

W(θ,y) =
1

2

√︃

R

πθ

∫︂ ∞

−∞

W0(z) exp

(︃

−
(y − z)2R

4θ

)︃

dz. (62)

First we take W0(y) = siny. Then after some algebra we obtain

∫︂ ∞

−∞

W0(z) exp

(︃

−
(y − z)2R

4θ

)︃

dz = 2 siny

∫︂ ∞

0

cos z exp

(︃

−
z2R

4θ

)︃

dz. (63)

Then using the relation (Prudnikov, Brychkov, and Marichev 1992)

∫︂ ∞

0

e−ax2

cos(bx)dx =

√︃

π

4a
e−b2/4a (64)

we obtain

W(θ,y) = e−θ/R siny. (65)

Now we use the expression for C(τ) given by Equation 47 to obtain

θ =
1 − e−5ατ

5α
. (66)

Using this result we obtain from Equations 59 and 65

U(τ, y) = A(τ) siny, A(τ) = exp

(︃

−
2 − γ

2γ
ατ −

1 − e−5ατ

5αR

)︃

. (67)

When τ → ∞ the temperature tends to zero that does not make any physical sense. Hence,

we take τ ≤ 0.8α−1 since the temperature decreases e2 ≈ 5 times at τ = 0.8α−1. Depending

on the values of α cooling can either accelerate or decelerate the wave damping. However if

we take γ = 5/3 and R = 0.274 as in Section 5 then we obtain A(0.8α−1) ≈ 0.067 for α =

0, while A(0.8α−1) ≈ 0.47 for α = 1. We see that in this case cooling strongly decelerates

the wave damping. This effect is related to strong decrease of the coefficient at the second

term in Equation 58 due to cooling. This term at τ = 0.8α−1 is approximately 50 times

smaller than that at τ = 0.
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Now we take W0(y) = Φ(y), where Φ(y) is given by Equation 46. We also assume that

C(τ) is given by Equation 47. Then we obtain

U(τ, y) =
1

2
e
−

2−γ
2γ

ατ

√︃

R

πθ

∫︂ π

0

sin z exp

(︃

−
(y − z)2R

4θ

)︃

dz, (68)

where θ(τ ) is defined by Equation 66.
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