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ABSTRACT: We present a new polymer informatics framework
that successfully predicts the glass transition temperature Tg of
polymers based on their chemical structure. The framework
combines ideas from group additive properties (GAP) and
quantitative structure−property relationship (QSPR) methods,
where GAP (or group contributions) assumes that submonomer
motifs contribute additively to Tg, and QSPR links Tg to the
physicochemical properties of the structure through a set of
molecular descriptors. By integrating these methodologies, our
combined QSPR−GAP framework overcomes limitations inherent
in using either method independently. We demonstrate its
application on a data set of 146 linear homo- and copolymers of
the poly(aryl ether ketone) (PAEK) family, achieving a median
root mean square error of 8 K for Tg, representing a significant improvement over standalone QSPR or GAP models. Moreover,
using a genetic algorithm, we identify two molecular descriptors that predominantly drive Tg predictions. The QSPR−GAP
framework can be readily adapted to forecast other physical properties and activity (QSAR) or transferred to other polymer families,
including conjugated and biopolymers.

■ INTRODUCTION
Polymers are remarkably versatile materials, and the combined
control of monomer chemistry and chain length allows for
superior tunability of physical properties. As a polymer melt is
cooled, the timescale τα characterizing its structural (α)
relaxation increases dramatically, and in the absence of
crystallization, the structure freezes into an amorphous solid,
a glass, at the glass transition temperature Tg.

1 Since molecular
motions are controlled by Tg, this is a key parameter for
understanding and predicting material behavior, and it is thus
essential to develop methods for accurately predicting Tg
directly from the chemical structure.
For long-chain polymers, Tg is molecular weight (M)-

independent2−5 but strongly affected both by intramolecular
dihedral barriers6,7 (chain flexibility) and intermolecular
packing effects, both of which are chemistry-specific.5

Importantly, it has been shown that the α relaxation, which
defines Tg, is linked to relaxations on a relatively ‘local’
submonomer length scale,8−14 which in turn suggests that
models that predict Tg from monomer structure should be
achievable. In this paper, we present such a model and apply it
to the poly(aryl ether ketone) (PAEK) family of polymers.
Predictive models that relate structure-based properties and

Tg and are suitable for small data sets with low chemical
variability have been proposed for polymers.5,15−21 For

instance, an approximate correlation has been found between
Tg and monomer-scale properties such as the molecular weight
per conformational (or flexible) degree of freedom of the chain
(Mϕ),

5,15−18 whereMϕ captures both chain flexibility and chain
bulkiness (reflecting molecular packing). As one example,
Schut et al.18 correlated Tg with the mass per flexible bond for
a data set divided into three polymer classes by introducing
flexible groups into both the main chain and the side chains; an
out-of-sample mean absolute error (MAE) for the Tg of ≲ 6 K
(per polymer class) was obtained. In another example, Xie et
al.19 assigned an ad-hoc mobility factor to each atom based on
the chemical group it belongs to (e.g., alkyl, phenyl, or
thiophene). The monomer’s mobility was then averaged over
the atomic contributions, followed by a regression of Tg on the
monomer mobility. For a family of 32 conjugated polymers, an
RMSE ≃ 13 K was attained for in-sample Tg predictions. These
methods are easily applicable and intuitive, e.g., by linking a
relevant physical property, such as molecular weight or volume,
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to each ‘flexible bond’, where ad-hoc rules are often introduced
to quantify the influence of different bonds. However, the

approaches are typically tailored to specific data sets and are
not generalizable to a wider set of polymer structures.20

Figure 1. QSPR−GAP analysis: predicting Tg from the polymer structure. (A) Chemical building blocks (flexible linker and aryl moieties) of the
PAEK polymer data set. (B) Quantifying the monomeric structure: a step-by-step illustration: Fragments are extracted from the repeating units
while recording their occurrences in the monomer using a count-based fingerprinting scheme. 3D molecular models are generated from the
fragments, and descriptors are computed from the 3D fragments. (C) Calculations required to obtain a predicted Tg from the descriptor and count
matrix, where an example illustrates the latter calculation on poly(ether ether ketone) (PEEK). Values of β̂i and Mi are listed in Table S5, SI.
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Conversely, a more generalizable approach is the so-called
group contribution or the group additive properties (GAP)
method.22−24 It assumes that a polymer property can be
expressed by a composition-weighted average over contribu-
tions from submonomer motifs (fragments). The fragment
contributions can be determined directly from the data by a
linear regression. van Krevelen24 applied GAP to predict
various polymer properties, such as transition temperatures;
solubility; and mechanical, optical, and electrical properties,
while Weyland et al.23 quoted in-sample MAE ≃ 10 K for
predictions of Tg. Despite their broad applicability, a
fundamental flaw of GAP models is that they cannot be used
to make predictions for polymers containing fragments outside
of the data sample.21,25,26

A method that addresses some shortcomings of GAP models
is the so-called quantitative structure−property relationship
(QSPR) approach. QSPR-based methods use molecular
descriptors,27,28 which quantify electronic, topological, or
geometric properties that are calculated from atomistic
representations of molecules. For polymers, QSPR methods
are normally applied either to the monomer21,25,29,30 or to
oligomers consisting of a few monomers,31−33 and statistical or
machine learning (ML) techniques are used to determine the
relationship between the descriptors and the investigated
property (such as Tg).

30,34,35 For QSPR methods applied to Tg
predictions, RMSEs typically vary from ≃4 to 35 K,21,25,36−38
depending on the chemical variation within the data set.
Models on larger data sets,39,40 with higher chemical variation,
typically yield prediction errors exceeding 25 K.36,41 A
significant drawback of QSPR models is that accurate
descriptor calculations can be computationally costly,
especially for large monomers or oligomers.
GAP and QSPR methods have usually been applied

separately.19−21,29 However, Hopfinger et al.26 proposed a
linear regression-based model for predicting Tg based on a
GAP-like averaging scheme, combined with associating
physical properties (conformational entropy and mass) with
individual bonds. Inspired by this approach, we suggest
extending QSPR methods to a smaller structural scale than
the monomer unit, assuming interactions between these
submonomer motifs negligibly contribute to the property of
interest.
Here, we resolve the shortcomings of both the GAP and

standard QSPR models by developing a hybrid QSPR−GAP
method: a molecule is divided into submonomer fragments for
which molecular descriptors are calculated, and various linear
regression methods are used to link Tg to the fragment
structure. The QSPR−GAP method provides more accurate
predictions than either of the standalone methods, significantly
faster descriptor calculations compared with QSPR, and
accurate predictions of polymers containing fragments outside
of the training set (where GAP fails).
We apply our new QSPR−GAP method to a data set of 146

linear homo- and copolymers of poly(aryl ether ketone)
(PAEK)�an important class of linear polymers characterized
by alternating stiff (aryls such as phenyls or biphenyls) and
flexible linker (such as ethers or ketones) moieties, as shown in
Figure 1A. The properties of PAEK polymers are highly
tunable by varying these moieties, making them suitable for a
wide range of applications including smartphone speakers,
electrical insulation, automotive gears, medical implants, and
aircraft components.42 To design PAEK polymers with
optimized properties for specific applications, reliable

structure−property relationships are essential. Recent work43
investigated a similar class of polymers (poly(aryl ethers)),
predicting Tg using a purely QSPR-based approach where
descriptors are calculated on the monomer units (referred to as
“repeat units” by the authors), achieving an RMSE of ≃17−19
K.
Our alternative QSPR−GAP method predicts Tg from the

chemical structure with an RMSE of ≃5−12 K (out-of-
sample). Moreover, by identifying the molecular descriptors
most important for predicting Tg, we reach new insights into
how the local molecular structure relates to the glass transition
temperature in polymers. Our findings offer a pathway to
predict the properties of highly complex polymer structures
using small data sets, thus circumventing the need for more
elaborate ML methods that typically require larger data sets.
Our method is readily generalizable to both a wider range of
polymer properties (such as mechanical, optical, or electrical
properties) and different classes of polymers.

■ RESULTS AND DISCUSSION
Characterization of PAEK Polymers. Our QSPR−GAP

model is applied to a data set of 77 PAEK homopolymers and
69 copolymers, sourced from both the literature and
experimental measurements conducted by Victrex R&D. We
ignore any minor effects of chain length on Tg

5 and assume
that all measured Tg ≡ Tg∞ (the long-chain limit); this limit is
reached for PAEKs with Mw ≳ 25 kg/mol.44 We note that
many of the PAEKs investigated are commercial-grade, and
although we do not have supporting molecular weight data, the
manufacturing process generally does not allow access to
molecular weights lower than this limit.
The monomer of a PAEK polymer (see examples in Figure

1,B1) is a sequence of alternating rigid aryl Ar (Figure 1,A2)
and flexible linker L (Figure 1,A1) moieties, where the
alternating arrangement

L Ar L Ar L Ar... ... ...N N1 1 2 2 (1)

is simple, yet different choices of Ar and L moieties lead to
diverse material behavior, as illustrated by the Tg range of
375−550 K for the present polymer data set (Figure S1, SI).
We divide the monomer structure into unique submonomer

“fragments” that constitute all PAEK monomers in the data set.
Many fragment choices are possible, including L−Ar, L−Ar−L,
Ar−L−Ar, or even longer sections. However, we mainly focus
on L−Ar−L since the calculation of descriptors (see details
below) requires the addition of hydrogens to the two ends of
the fragments, and L−Ar−L is the only candidate that retains
the uniqueness of the fragments once end-capped with
hydrogens (Figure S20, SI). The data set of 146 polymers
comprises 30 unique L−Ar−L fragments (Figure S3, SI), and
as two examples, Figure 1,B1 illustrates how the monomers of
poly(ether sulfone) (PES) and poly(ether biphenyl ether
ketone) (PEDEK) are divided into L−Ar−L fragments.
We also benchmark QSPR−GAP against both the pure GAP

and pure QSPR frameworks. For the GAP and QSPR−GAP
methods, each homopolymer is parametrized by its count
matrix X, where Xai is the (integer) number of occurrences of
fragment i in homopolymer a’s monomer (see the illustration
in Figure 1,B3). Correspondingly, for copolymer a, we define
Xai = ∑ξ = 1

l wξXξai , where wξ is the molecular weight fraction
of comonomer ξ and Xξai is the count of fragment i in
copolymer a’s comonomer ξ.
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For the QSPR−GAP and QSPR models, the molecular
descriptors are calculated on the submonomer fragments and
the monomer repeating units, respectively. Apart from the
starting motifs (i.e., the fragments vs the monomer repeat
units), the procedure for calculating the descriptors is identical
in both QSPR−GAP and QSPR frameworks: (i) add hydrogen
atoms to the ends of each motif, (ii) generate an energy-
minimized 3D representation of each motif (Figure 1,B5)
using the Merck Molecular Force Field (MMFF)45 via
RDKit,46 and (iii) calculate the values of molecular
descriptors using Mordred.47 Using this procedure, we
calculate m = 213 descriptors for every unique motif.
The descriptors consist of six types: 41 charged partial

surface area (CPSA) descriptors, 4 geometrical indices, 4
gravitational indices,27,28 160 3D-MoRSE descriptors,48−50 3
moment of inertia descriptors, and 1 plane of best fit (PBF)
descriptor.51 For the QSPR−GAP method, these μ = 1, 2, ..., m
descriptors encode the i = 1, ..., p fragments constituting the
descriptor matrix D, where Diμ provides the value of descriptor
μ for fragment i (see Figure 1,B6). The same μ = 1, 2, ..., m
descriptors apply to the pure QSPR method, but now they
encode the a = 1, ..., A polymers, thus constituting a polymer-
based descriptor matrix, where Daμ gives the value of descriptor
μ for polymer a. In this case, we note that copolymer
descriptors were obtained by Daμ =∑ξ = 1

l wξDξaμ , where Dξaμ is
the descriptor value μ in copolymer a’s comonomer ξ. Finally,
to maintain independence with the size of the repeating unit,
all descriptors were normalized by the mass of the repeating
unit (averaged for copolymers), resulting in the full set of
inputs for the QSPR regression models (noting that this step
only applies to the pure QSPR method).
The generation of 3D molecules and subsequent descriptor

calculations are significantly faster for the QSPR−GAP method
compared to the pure QSPR approach, with CPU times of a
few seconds compared to 140 min. The speedup is primarily
driven by two factors. First, the MMFF energy optimization
requires fewer conformational degrees of freedom for the
smaller fragment molecules compared to the entire (flexible)
repeating monomer unit. Second, the QSPR−GAP method
requires the energy optimization of 30 fragment molecules,
whereas the QSPR method requires the energy optimization of
83 unique monomeric repeating units. For the full details on
the 3D molecular optimization process; see SI Sec. S-IB.
GAP and QSPR−GAP Approaches. The predicted glass

transition temperature for the ath polymer T̂ga is represented as
a molar mass-weighted average of the estimated Tg-
contribution β̂i from each ith fragment

= =

= =
T

X M

X M
X

a i
p

ai i i

i
p

ai i i

p

ai ig
1

1 1 (2)

where i indexes the fragments (as labeled in Figure S3, SI), Mi
is the molar mass of the ith fragment, and thus X̅ai is the mass-
weighted composition of fragment i in polymer a. The polymer
Tg is thus modeled by its composition-weighted constituent
fragment contributions, βi , where βi corresponds to Tg of a
long-chain homopolymer composed entirely of the ith
fragment. Since βi is unknown, it is estimated; note that we
denote an estimated (or predicted) value by a hat .̂
We estimate βi in two different ways: (i) as a benchmark, we

use a GAP approach based simply on the identity of the
fragment or (ii) a novel combined QSPR−GAP approach
based on the molecular features of each fragment encoded in

the descriptors. In the GAP approach, the count matrix X is
molar mass-normalized (eq 9), giving the composition matrix
X̅ with elements X̅ai, and βi is estimated from the
experimentally available Tg values by ordinary least-squares
(OLS) regression against X̅ (eq 11).
In the QSPR−GAP approach, the key distinction from the

GAP method lies in the parametrization of βi (and
consequently, Tg) by a set of molecular descriptors that
encode the structure of each fragment (see the Methods
section for a detailed description of how βi is estimated). The
Tg contribution of fragment i is expressed in terms of the
values of the molecular descriptors Diμ , according to

= +
=

Di

m

i0
1 (3)

Here, the regression coefficient γμ parametrizes the influence of
molecular descriptor μ on Tg, and γ0 is a constant, both of
which are estimated by the regression methods explained
below. Since the inputs of eq 3 are physical molecular
descriptors rather than occurrences of a given fragment, the
QSPR−GAP model can also be used to predict the Tg value of
polymers that contain a jth fragment that does not exist within
the data sample.
Regression Methods. Our data set of n = 146 polymers

with corresponding Tg values was divided into p = 30 unique
L−Ar−L fragments. The benchmark GAP analysis was
performed using OLS to estimate the Tg contributions, βi, of
fragments i = 1, ..., p. For the QSPR−GAP analysis, in turn, the
information about the p = 30 fragments was encoded into m =
213 molecular descriptors, and four linear regression methods
were used to determine γ̂0 and γ̂μ (for each descriptor, μ = 1, ...,
m): principal component regression (PCR), ridge regression,
lasso regression,52 and partial least-squares (PLS) regression53

(see SI Sec. S−II for a brief discussion of each). The
benchmark QSPR models were based on descriptors derived
directly from the n = 146 polymers instead of from the p = 30
fragments. For this series of models, we applied the linear
regression methods already mentioned and an additional
nonlinear model: kernel ridge regression (KRR) with a radial
basis function (RBF) kernel (SI Sec. S−II).
These regression methods were chosen due to their

robustness against overfitting, which would otherwise occur
since the number of fit parameters in eq 3 (m + 1) exceeds the
number of observed data points (i.e., the n polymers). The
regression methods also account for the multicolinearity
among the molecular descriptors (see Figures S5 and S6, SI)
by penalizing the size of the estimated coefficients γ̂μ, resulting
in many fewer ‘effective’ regression coefficients.
As an alternative implementation of QSPR−GAP, a genetic

algorithm (GA) was applied to select the subset of mGA
descriptors (out of all m = 213 descriptors) that best predict
Tg by linear regression (see SI Sec. S−II for more details). Ten
GA models were investigated, here termed “QSPR−GAP
GAmGA” (mGA = 1, ..., 10), each resulting in different estimates
for coefficients γ0 and γμ = 1, ..., mGA, for the mGA descriptors
chosen.
Performance of the QSPR−GAP Model. To assess how

well a model generalizes to new (or unseen) data, it is essential
to perform an external validation. Often, external validation is
performed on a reserved test set used only for this purpose,
while model selection and/or tuning is performed on the
training set (the remaining part of the data set) during an
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internal validation.20,21,32,54 A drawback in selecting a
dedicated test set is possible selection bias, i.e., bias due to
random fluctuations in smaller data sets. To avoid this, we
iteratively select different test sets such that all of the data
points are eventually used in a test set. Full details of the
external and internal validations are outlined in SI Sec. S−III.
Briefly, the external validation was performed using a

repeated five-fold cross validation (five-fold CV), where the
full data set was shuffled randomly and subsequently
partitioned into five distinct subsets. A test set was iteratively
selected from the five subsets, and in each iteration, the
remaining four subsets were combined into a single training
set. Internal validation was performed on the training set at
each iteration to tune the model “hyperparameters” (e.g., the
number of principal components in PCR and PLS or the
degree of shrinkage in ridge and lasso; see SI Sec. S−II). This
procedure was repeated 10 times, leading to 50 different
training−test splits, each with a unique combination of
polymers. One important aim of this procedure is to ensure
that many test sets contain polymers with fragment IDs absent
from the training set, which enables efficient probing of the
robustness of our proposed QSPR−GAP approach. Such out-
of-training set fragment occurrences, in the following referred
to as “out-of-sample fragments”, were identified 34 times for
the 50 different training−test splits (Figure S14, SI).
Our proposed QSPR−GAP method is benchmarked against

the pure GAP and QSPR methods. As mentioned above, the
GAP models were fit using the OLS; however, the coefficients

corresponding to the out-of-sample fragments were modified a
posteriori to represent the mean of the coefficients associated
with the in-sample fragments. This ad-hoc modification was
performed to improve the robustness of the GAP model’s out-
of-sample fragment coefficient estimates, which would
otherwise be zero based on the least-squares fit. Again, the
need for this ad-hoc approach highlights the fundamental
problem with the GAP method.
Figure 2a−c displays the predicted T̂g versus experimental

Tg for a representative training−test split across the three
different methods as representative examples. In these figures,
blue circles represent the training set data, while orange stars
indicate the test set data. We include results for the QSPR
lasso model in panel (a), the QSPR−GAP lasso model in panel
(b), and the GAP L−Ar−L model in panel (c). For this
particular partition (training−test split) of the data, fragments
with i = 8 and 30 do not exist in the training set. For the GAP
model, these two out-of-sample fragments manifest as three
clear outlier polymers, which the model can not handle
(outlined orange stars in Figure 2a−c). Since these fragments
are absent in the training set, the corresponding β̂i values are
not known, and we thus set β̂8 and β̂30 to the means of the in-
sample fragment contributions, leading to the outlier polymers.
The advantages of the QSPR−GAP and QSPR approaches

become obvious when results from the same data partitions
involve the same out-of-sample fragments. The QSPR (lasso)
model in Figure 2a and QSPR−GAP (lasso) model in Figure
2b demonstrate a significantly more robust prediction than the

Figure 2. Benchmarking the QSPR−GAP model. (a−c) Comparing QSPR, QSPR−GAP, and GAP models from a single training−test split, where
four polymers (indicated by the black marker edge color) in the test set contain at least one out-of-sample (L−Ar−L) fragment: (a) QSPR lasso
model, (b) QSPR−GAP lasso model, and (c) GAP L−Ar−L model. (d) All models are compared by the distributions of their root mean square
error (RMSE) during external validation, which involves predictions of the test set for 50 different training−test splits. RMSE distributions are
represented using violin plots, where the outer envelope represents a kernel density estimation of the data (which is faintly displayed as points
within the envelope). The black centerline represents the median, while the ends mark the extrema of the data. We note that the full distribution for
the QSPR OLS goes beyond the scale and is truncated for a clearer comparison between the other models�its upper extrema extends as high as 59
K.
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GAP model for the three outlier polymers. The root mean
square error (RMSE) from the full external validation, i.e., the
results from the full 50 training−test splits, is presented in
Figure 2d for all investigated QSPR, QSPR−GAP, and GAP
models. For the GAP model, in addition to the L−Ar−L
fragment definition, we also investigated the definitions of L−
Ar and Ar−L−Ar. From 50 splits, out-of-sample fragments are
found 30 times for L−Ar, 34 times for L−Ar−L, and 40 times
for the Ar−L−Ar fragment choice. The increase in the number
of out-of-sample fragments grows with the number of available
combinations of L and Ar groups (Figure 1A).
As shown in Figure 2d, even though all investigated QSPR−

GAP models perform similarly (apart from OLS, as expected),
the lasso model is the most accurate, with a RMSE range of
≃5−12K (depending on the partitioning of training/test data)
and a median RMSE of ≃8 K. The QSPR models generally
show a weaker predictive performance compared to QSPR−
GAP, with median RMSE values ranging between 11 and 13 K
(excluding OLS), compared to 8−9 K for QSPR−GAP. Thus,
the QSPR−GAP models (PCR, ridge, PLS, and lasso) are
more robust against the outlier (out-of-sample fragment-
containing) polymers than the GAP models, and improve the
predictive performance compared to the QSPR models, as
shown in Figure 2.
Since the predictive ability (characterized by the RMSE) for

the GAP models is significantly affected by the outlier
polymers caused by out-of-sample fragments, we also
compared models for which all outliers were removed (Figure
S15, SI). We find that the predictions of the QSPR−GAP
models are slightly improved, as exemplified by an RMSE ≃5−
9 K for the lasso method, whereas the GAP models
demonstrate a highly improved RMSE of ≃5−8 K.
Interestingly, when comparing the predictive performance
with out-of-sample fragment occurrences removed, the

QSPR−GAP OLS results are identical to those of the GAP
L−Ar−L model (Figure S15, SI).
Overall, QSPR−GAP leverages the strengths of QSPR with

respect to its robustness against out-of-sample fragment-
containing polymers while achieving comparable accuracy to
GAP for polymers comprising only in-sample fragments. The
GAP model shows excellent predictive performance for
polymers containing fragments that are well represented by
the data, with the downfall that polymers comprising out-of-
sample fragments cannot conventionally be predicted.
Although the method of averaging in-sample fragment
contributions offers a solution, as demonstrated for GAP, a
more accurate approach is to use descriptors to inform these
contributions, which is what QSPR−GAP does.
When the QSPR method is applied (to an entire monomer),

the descriptors implicitly encode conformational information,
which appears to decrease predictive accuracy for Tg. In
contrast, when the descriptor calculations are focused on
submonomer fragments (characterized by minimal conforma-
tional degrees of freedom), as in QSPR−GAP, the predictive
accuracy improves. Thus, for QSPR, 3D descriptor encoding of
conformational information for the isolated monomeric unit
may introduce more error than insight, whereas the most
critical information for Tg resides at the local intrafragment
scale (with little or no conformational degrees of freedom).

■ DESCRIPTOR ANALYSIS
Identifying the Most Important Descriptors. The key

feature of the genetic algorithm models (QSPR−GAP GAmGA)
is that they explicitly select a subset of (mGA = 1, ..., 10)
descriptors that best predict Tg. This allows analysis of the
direct impact of a discrete set of optimized descriptors on Tg,
which may help develop an understanding of their physical
significance.

Figure 3. Analysis of descriptors. (a) Distributions (kernel density estimation) of the root mean square error (RMSE) for ten genetic algorithm
(GA) models, consisting of a GA-based selection of mGA = 1, mGA = 2, ... mGA = 10 optimal descriptors (from a pool of 213), followed by OLS
regression. The RMSE is determined from a fivefold cross validation repeated ten times (while randomly shuffling each time), resulting in 50
distinct training−test splits. (b) GA results for mGA = 2: from the complete set of two-descriptor combinations, we show all pairs selected at least
once. As shown, the descriptor pair Mor05m and Mor26m was selected 19 times for the 50 training−test splits. (c) Predicted (in-sample) vs
actual Tg values from an OLS regression on the full data set based only on the two descriptors Mor05m and Mor26m.
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In testing the performance of the GA models, the same
external validation consisting of a five-fold CV (repeated 10
times) is used, resulting in a total of 50 independent out-of-
sample predictions, i.e., 50 different training−test splits (SI,
Sec. S−III). The RMSE results for the 10 investigated QSPR−
GAP GAmGA models are shown in Figure 3a. Remarkably, only
a few descriptors are needed for a good prediction. The most
significant improvement in the predictive accuracy occurs
between mGA = 1 and 2, while for mGA > 2, there is no
significant improvement. Hence, only two descriptors are
necessary (for this data sample) to predict Tg with an RMSE of
≃6−15 K. Thus, in the following, we restrict our attention to
the two-descriptor model, QSPR−GAP GA2.
Figure 3b illustrates the frequency by which the GA selected

different pairs of descriptors. It is clear that one pair stands out:
Mor05m and Mor26m. From the 22,578 possible pairs arising
from 213 descriptors, this pair was selected 19 out of 50 times
(Figure 3b) from the 50 random data partitions. Descriptors
Mor05m and Mor26m belong to the 3D-MoRSE family
(Molecular Representation of Structures based on Electronic
diffraction),48−50 which describes the 3D structure of a given
fragment (or molecule) by a “form factor” based on atom-to-
atom pair distances

=
= = +

I q A A
qr

qr
( )

sin( )

l

N

k l

N

k l
kl

kl1

1

1 (4)

where k and l label specific atoms, N is the number of atoms in
the fragment, Ak and Al are weighting factors for atoms k and l,
q is the “scattering” wave vector, and rkl is the Euclidean
distance between atoms k and l.
Our descriptor set (m = 213 descriptors calculated using

Mordred) contains 160 3D-MoRSE descriptors, character-
ized by 32 different q values: 0 (Mor01), 1 Å−1 (Mor02), 2
Å−1 (Mor03), ..., 31 Å−1 (Mor32) and five different
weighting schemes for Ak and Al: unweighted (Ak = Al = 1),
atomic mass (MorXXm), van der Waals atomic volume
(MorXXv), Sanderson electronegativity (MorXXse),55 and
polarizability (MorXXp); all weighting schemes are scaled by
their value for carbon. MoRSE descriptors Mor05m and
Mor26m correspond to q = 4 Å−1 and q = 25 Å−1, where Ai is
the ratio of the mass of atom i to the mass of carbon.
The Tg contribution β̂i for fragment i can thus be accurately

estimated by

= + +I I(4) (25)i i i0 1 2 (5)

where Ii(4) and Ii(25) are calculated from the set of atoms in
fragment i and γ̂μ=0,1,2 are the regression coefficients, estimated
with an OLS regression applied to the full data sample of 146
polymers (no training−test splits); these estimates are
provided in Table 1. The predicted against experimental Tg
results are shown in Figure 3c, with an in-sample RMSE of ≃8
K.
Atomic-Level Tg Contributions. Using eqs 4 and 5, we

can express the estimated Tg contribution of fragment i as a
sum over atomic pair contributions

= +
= = +
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where π̂kl denotes the (estimated) Tg contribution given by the
pair of atoms k and l, expressed in terms of the two descriptors
Mor05m and Mor26m,
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Mk is the mass of atom k (divided by the mass of carbon), and
rkl is the distance between atom pair k,l. To determine the
fragment contribution β̂i , the π̂kl contributions are summed
over the total number of atoms Ni in the ith fragment
according to eq 6.
Function π̂kl (rkl , MkMl) is shown in Figure 4a, and at

constant rkl , π̂kl is a linear function of the product MkMl of
atomic masses, as illustrated by the color gradient, and at
constant MkMl , π̂kl is an oscillating function of the pair
distance. As rkl increases, the pair contributions π̂kl become less
relevant to the overall β̂i , with negative and positive
contributions canceling out in the summation of eq 6. Thus,
the most important contributions lie within the range rkl ≃
1.2−1.5Å.
In Figure 4b, we show four L1−Ar−L2 fragments for which

only the linker L2 differs. As discussed above, the structure of
each fragment is energy-minimized (using MMFF) and is
represented by a unique set of rkl , Mk , and Ml values. For each
of the four fragments, the function π̂kl(rkl , MkMl) is evaluated
for all atomic pairs, and the results are provided in the tiles
(also illustrated by the corresponding heat map); each tile
represents the pairwise atomic Tg contribution from atoms k
and l. The overall fragment Tg contribution β̂i results from a
sum over all atomic pair contributions π̂kl and the constant γ̂0.
Since hydrogen-containing pairs show very small Tg

contributions (as shown in Figure 4a), they are omitted for
clarity in Figure 4b. The contributions from atoms 1−7 are
very similar because these atoms represent the same molecular
structure motif (ether-linked phenyl). Hence, the sum over π̂kl
for atoms k,l = 1, ..., 7 gives contributions of Δβ̂i = 82.2, 86.5,
85.1, and 83.5 K, respectively, for the four fragments, as shown
in Figure 4b. The slight differences between these values arise
when minimizing the energy because the interatomic distances
rkl are influenced by the atoms in linker L2. The differences in
linker L2 (atoms 8+) lead to significant differences in Tg, with
contributions of Δβ̂i = 3.0, 7.8, 31.2, and 103.2 K for the four
structures. The total Tg contributions for the four fragments
are β̂i = 383, 393, 415, and 485 K, respectively, determined
using eq 6 while excluding hydrogens from the sum.
We conclude that for PAEK polymers the Tg contribution of

each fragment (βi) is very well approximated as a constant plus
a sum over all atomic pair contributions (π̂kl), where the main
contributions correspond to short atomic pair distances of
1.2−1.5 Å. The genetic algorithm identified two important 3D-
MoRSE descriptors corresponding to length scales (∼2π/q) of
1.6 and 0.3 Å (see the scale bars in Figure 4b). The former is
approximately the size of the average single C−C bond in the
data set (Figure 4a), whereas the latter corresponds to a length

Table 1. Regression Coefficients from the Best Two-
Descriptor Genetic Algorithm Model, as Estimated from the
Full Data Set of 146 Polymers (OLS)a

μ descriptor γ̂μ [K] CI (95%) L/U [K]

0 298 286/310
1 Mor05m −58 −67/−50
2 Mor26m −198 −239/−157

aUpper and lower 95% confidence intervals (CIs) are presented for
the estimated coefficients γ0 and γμ. For assumptions and diagnostics
of distributions, see the SI, Sec. S−IV.
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scale much smaller than an interatomic bond. Physically, the
reliability of MMFF would be lost at a length scale of 0.3 Å;
however, based on the figure, it is evident that it still encodes
the length differences between the types of bonds. For
example, in the zoomed inset of Figure 4a, the higher-
frequency q component in the function induces a modulation
that distinguishes between the C−C and C = C bonds.
Without the length scale at q = 25Å−1, the fit would not have
enough flexibility to appropriately capture the differences
among the S = O, C = O, C = C, C−C, ... (as labeled in the
figure). We note that regularized sparse linear regression

methods (such as lasso) applied to all 32 mass-weighted 3D-
MoRSE descriptors likely yield a model with improved
predictive accuracy and finer differentiation between bond
types.
The example shown in Figure 4b indicates that the linker

properties, such as their bulkiness, have the greatest impact on
Tg; see, for example, the high contribution from S = O (36 K)
and C = O (22 K) in Figure 4a,b. Based on these findings, we
speculate that these particular groups strongly restrict torsional
rotations and increase the chain’s stiffness, thus raising Tg. For
the glass transition in general, the interplay between packing

Figure 4. Estimated interatomic pair Tg contributions. (a) Estimated function π̂kl of pairwise atomic Tg contributions, as expressed in eq 7; π̂kl is a
function of the pair distance rkl between k and l atoms and the product MkMl , where the latter is illustrated by the color gradient. The lines
represent the estimated function π̂kl(rkl , MkMl), and the solid points represent the function evaluated for the specific atom pairs within every
polymer in the data set. The inset is a magnification of the range containing contributions from different carbon−carbon single and double bonds,
whose bond lengths (when energy-minimized) vary slightly depending on the specific fragment. (b) Four example fragment IDs that share the same
structure (in atoms 1−7) but vary by a single functional group (in atoms 8+). The pairwise contributions π̂kl are shown as colored tiles with their
values shown inside each tile. The scale bars show the length scales (1.6 and 0.3Å) corresponding to q = 4 Å−1, 25 Å−1, relative to the size of the
(planar) structures. In the sum over pair contributions (eq 6) atoms l = 1, ..., 6 and k = 2, ..., 7, where l < k (indicated by the partition) correspond
to the same structure and yield nearly the same contribution Δβ̂i ≃ 82.2−85.5 K for all four fragments. The remaining atom pairs set the fragments
apart in their summed contribution to β̂i, which varies from Δβ̂i ≃ 3.0 to 103.3 K. Atomic pair contributions including hydrogen atoms have been
ignored from the plot since they show only small contributions to β̂i (according to eq 7).

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.5c00178
Macromolecules XXXX, XXX, XXX−XXX

H

https://pubs.acs.org/doi/10.1021/acs.macromol.5c00178?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.5c00178?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.5c00178?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.5c00178?fig=fig4&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.5c00178?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and chain flexibility5,16 suggests that three-body features, such
as intramolecular angles, play an important role. In this study,
such features are likely implicitly incorporated due to the
chosen L−Ar−L motif.

■ CONCLUSIONS
We present a new method for predicting Tg from the monomer
structure in polymers. The method combines group additive
properties (GAP) with a quantitative structure−property
relationship (QSPR) approach. The GAP method assumes
that Tg can be expressed by a molar mass-weighted average
over Tg contributions from submonomer motifs (fragments),
and our QSPR−GAP model uses molecular descriptors to
relate the physical properties of these fragments to their GAP-
like Tg contributions. We apply this model to a data set of 146
linear poly(aryl ether ketone) (PAEK) homo- and copolymers,
resulting in a median root mean square error of 8 K (out-of-
sample).
Compared to the standalone GAP and QSPR methods, the

QSPR−GAP method improves robustness and accuracy in
out-of-sample Tg predictions. Furthermore, 3D descriptor
calculations for submonomer fragments are significantly faster
than in traditional QSPR approaches, which are based on
monomers (or oligomers), due to the reduction in conforma-
tional degrees of freedom.
Using a genetic algorithm, we show that only two molecular

descriptors (from a pool of 213) are necessary to predict Tg
with an RMSE of ≃6−15 K. Moreover, we identify a direct
mapping between Tg and the monomer structure through
pairwise atomic contributions.
This work offers an accurate, accessible, and broadly

applicable predictive model suitable for small data sets and
deployment on a standard laptop. The QSPR−GAP method is
transferable to other classes of polymers, both synthetic and
natural (e.g., conjugated or biopolymers), and to physical
behavior beyond the glass transition, such as mechanical,
optical, or transport properties.

■ METHODS
The number of occurrences of fragment i in polymer a is

XX( )ai ai (8)

where X is an n × p dimensional count matrix, with n rows
representing the full set of polymer IDs and p columns representing
the full set of unique fragment IDs. We normalize X by the molar
mass of the repeating unit, resulting in the mass-weighted
composition matrix

= [ ] [ ]M MX X X(diag ) (diag )1 (9)

where M p is a p-vector that enumerates the fragment molar
masses. Note that the molar mass Mi of an L−Ar−L fragment is the
molar mass of half of each L group and the full Ar group: Mi = ML di1

/2
+ MAr di

+ ML di2
/2. Since the same L groups are counted twice when

building a repeat unit structure from a given set of fragment IDs, the
product XM encompasses the molar mass of the repeating unit for all
polymers in the data set (or correspondingly the molar mass of a
copolymer’s repeating unit, averaged over its comonomer mass
fractions).
GAP Model. We used ordinary least-squares (OLS) to estimate

the p coefficients β̂i , i.e., the p-vector p, by minimizing the
residual sum of squares
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where the linear fitting function f that approximates Tga (of the ath
polymer in the training data) is given by f((X̅)a) = ∑i=1

p X̅ai βi ≡ (X̅
β)a . The solution, i.e., the least-squares estimate of β, is given by

= TX X X( ) g
T 1 T

(11)

where the n-vector T n
g contains all n T a

g values in the training
sample. Note that each estimated coefficient β̂i corresponds to the
predicted glass transition temperature of a polymer solely comprising
fragment i as its repeating monomer.
An out-of-sample prediction of the glass transition temperature for

a polymer b with fragment composition X̅bi (given all i = 1, ..., p) can
now be determined as

=
=

T X
b

i

p

bi ig
1 (12)

Predictions of Tgb are restricted to polymers consisting of fragments
whose contributions βi have already been estimated from eq 11,
meaning that GAP predictions are chemically constrained to polymers
consisting of fragments within the set {1, ..., p}.
QSPR−GAP Model. The QSPR−GAP model contains a descriptor

matrix Diμ , which encodes the chemical and physical properties of the
ith fragment ID in terms of μ = 1, ..., m descriptor values

DD( )i i (13)

We then express each fragment Tg contribution βi as a linear
combination of the m descriptors

= +
=

Di

m

i0
1 (14)

where the (m+1)-vector +m( 1) contains the regression
coefficients. The zeroth column index is included in the matrix D
as Di0 = 1 for all fragments i = 1, ..., p to accommodate the constant
term γ0; therefore,

× +D p m( 1).
The methods used to estimate γ include (1) principal component

regression, (2) ridge regression, (3) lasso regression, and (4) partial
least-squares regression and are discussed further in the SI, Sec. S−II.
However, to illustrate the application of the QSPR−GAP model in its
simplest form, we discuss the genetic algorithm (GA) model here.
The GA uses concepts analogous to evolution to select an optimal

subset (mGA ≤ 10) from a total of 213 potential descriptors. The
descriptors chosen will have the greatest influence on Tg and, once
selected, are included in the function
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(since ∑i=1
p X̅ai = 1), followed by a least-squares minimization

=
=

T f X Darg min ( (( ) , ))
a

n
a

a
1

g
2

l
mooo
nooo

|
}ooo
~ooo (16)

yielding the solution

= TD X XD D X( ) g
T T 1 T T

(17)

Once the coefficients γ are estimated from the training data, the
estimated Tg contribution of any new fragment j is given by

= +
=
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(18)
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which may include fragments that are not in the original data sample.
An out-of-sample predicted glass transition temperature for a new

polymer b given fragment compositions X̅bj (for all j = 1, ..., q) and
molecular descriptors Djμ (for all μ = 1, ..., mGA) is

= +
= =

T X Db

j

q m

bj jg 0
1 1

GA

(19)

noting that if {1, ..., p} is the set of in-sample fragments, then {1, ..., q}
is the set of in-sample and out-of-sample fragments, where {1, ..., p} ⊆
{1, ..., q}.
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