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Abstract

Continuous manufacturing can be seen as a promising shift in the pharmaceutical industry, offering benefits such as reduced

costs and improved product quality. However, the multistage nature of continuous tablet manufacturing demands a deeper

understanding of the complex interactions between process parameters, material attributes, and final product quality. This

study aims to address this challenge by developing a novel, data-driven modelling framework to predict key critical quality

attributes, including particle size distribution, moisture content, and tablet tensile strength across the processing stages of a

pilot-scale continuous tablet manufacturing line. A sequential modelling approach was employed, integrating Random Forest

and Gradient Boosting Machines to model each processing stage. These models were sequentially trained and interlinked to

holistically capture process–material interactions across granulation, drying, milling, and tabletting stages. To manage error

propagation between stages, Gaussian Mixture Models were incorporated for error characterisation and uncertainty reduction.

The results showed that the proposed framework captured the non-linear interactions between processing parameters and

the quality attributes. The incorporation of GMMs was influential in quantifying uncertainty within each process model,

resulting in a final estimation of tablet tensile strength with an R2 value of 0.90 using the integrated Random Forest model.

This framework demonstrated considerable improvement in the predictive performance of the continuous manufacturing

processes modelling through the integration of machine learning models and an uncertainty-aware strategy. The predictive

tool is intended to support the Quality by Design (QbD) concept through systematic design space exploration and process

understanding of the pharmaceutical continuous manufacturing.

Keywords Continuous manufacturing · Pharmaceutical manufacturing · Pilot plant scale · Predictive modelling ·

Machine learning · Gaussian mixture models · Quality by design (QbD)
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Introduction

Continuous manufacturing is recognised as a transformative

approach in pharmaceutical industry due to its advantages

in operational cost reduction,improved efficiency, and con-

sistent product quality [1, 2]. Traditionally, the processes of

developing oral dosages such as tablets operate in a batch-

oriented manner, where each unit operation such as mixing,

granulation, drying, and tabletting is performed separately

with manual intervention. In contrast, continuous manu-

facturing integrates these operations into an interconnected

chain of processes in which materials are autonomously

processed without intervention for feeding or discharge. In

recent years,the continuous manufacturing for drug products

has progressed considerably with growing regulatory support

and and industrial commitment facilitated by frameworks

such as Quality by Design (QbD) and ICH Q13 guidelines
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which offer both scientific foundation and implementation

guidance [3–5]. A number of commercial drug products man-

ufactured using continuous processes have since received

regulatory approval from agencies such as the Food and Drug

Administration (FDA) and European Medicines Agency

(EMA) [6–8]. While continuos manufacturing offers tangi-

ble benefits, it is still considered as complex and not fully

understood [5, 9, 10]. These complexities lie in the inher-

ent multivariate nature of pharmaceutical manufacturing,

which often involves the handling of particulate materials

throughout multiple processing units resulting in complex

interactions between these particulates and unit operation

process parameters [10, 11]. In addition, the multistage struc-

ture of such a manufacturing process is still lacking an

efficient process control strategy. For example, the variations

resulted by a particular processing stage may be caused by

multiple sources of variations introduced by both the cur-

rent and preceding processing units resulting in a challenging

control action and long-time delays [1, 10, 12]. Addressing

these complexities is particularly crucial in order to reduce

variations in tablet manufacturing and ensuring consistent

quality in the final product. Predictive process models play

a significant role in addressing the challenges of continu-

ous manufacturing of pharmaceutical tablets [5, 9, 13, 14].

They can enhance process understanding and control by pre-

dicting the processes outcomes based on their operational

data.

There are several modelling approaches that deemed to

be potential tools for revealing and understanding the com-

plexity associated with continuous pharmaceutical tablet

manufacturing such as mechanistic models, data-driven mod-

els, and hybrid models [5, 9, 14]. However, the behaviour

of the particulate processes during continuous manufactur-

ing involves complex multi-scale phenomena spanning from

particles interactions to equipment-scale dynamics, creating

challenges for comprehensive process modelling [11]. Flow-

sheet modelling represents a mechanistic approach where

continuous manufacturing processes can be integrated and

simulated using network of mathematical models [15–18].

While technically rigorous and providing valuable insights,

flowsheet models often rely on constitutive equations derived

from physical and chemical principles which are not always

available. For instance, the description of the particle size dis-

tribution using Population Balance Models (PBM) requires

detailed specification of subprocess parameters such as

nucleation, growth, breakage, and aggregation in granula-

tion processes which often need to be empirically estimated

[16, 17]. Consequently, accurate estimation of these rate

processes is critical for maintaining flowsheet model perfor-

mance; otherwise, predictive capability may degrades due

to the parameter uncertainty [9, 16]. This challenge is fur-

ther compounded in plant-wide manufacturing scenarios. As

the number of unit operations parameters increases, so too

does the complexity of parametrisation, making plant-wide

flowsheet models computationally intensive and requiring

extensive calibration effort [9, 16, 18].

Data driven models, however, can capture complex inter-

dependencies across particulate pharmaceutical processes

without requiring mechanistic details [14]. These mod-

els directly utilise real process data generated either from

actual operational plants or structured design of experi-

ments to learn complex, and nonlinear relationships between

process variables and quality attributes. Furthermore, they

have emerged as valuable tools in pharmaceutical man-

ufacturing, complementing the Quality by Design (QbD)

paradigm emphasised by regulatory agencies [3, 5, 11].

Data driven models offer potential advantages including

computational efficiency, adaptability, and reduced model

maintenance requirements compared to mechanistic mod-

els [14, 19]. In addition, these models are well recognised

for pharmaceutical processes optimisation and controls [20,

21]. These models, while compelling for pharmaceutical

applications, face deployment challenges that impact their

predictive performance. These challenges include acquiring

comprehensive and representative training datasets, selecting

appropriate model algorithm, and ensuring generalisability

beyond training conditions [14, 19, 20]. The complexity of

modelling of pharmaceutical tablet processes has thus shifted

from constitutive models parameter determination to data

mining and statistical validation areas.

Within this context, a solution to model the processes

of continuous manufacturing of pharmaceutical tablets can

be achieved with the help of machine learning techniques.

Machine learning algorithms have evolved to autonomously

identify complex patterns and draw inferences from data [22].

The application of machine learning in pharmaceutical tablet

manufacturing has been explored in various studies [23–26].

These studies contribute with a unique insight into the com-

plexities associated with different manufacturing processes

of oral solid dosage forms. For example, the authors in [24]

evaluated the capability of machine learning models such as

Ridge regression and Random Forest to reveal critical qual-

ity attributes of a commercial pharmaceutical tablet product

based on historical process data. Furthermore, Bekaert et al.

[25] investigated the interactions between various pharma-

ceutical material characteristics and operational variables in a

continuous direct compression line, focusing on their effects

on tablet physical properties. They employed Partial Least

Squares (PLS) regression to develop a predictive model that

could identify optimal process configurations based on blend

characteristics. A recent study made by Al Alaween et al.

for the development of serial of artificial neural networks

(ANNs) for modelling the continuous tabletting line. Their

study focused on predicting tablet tensile strength based on

observational data from the milling machine and tablet press

within the manufacturing line [27].
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While these studies demonstrate significant progress in

utilising machine learning for the prediction and optimisa-

tion of tablet manufacturing processes, they also highlight

the multifaceted challenges inherent in the field. In fact,

the multivariate nature of the continuous manufacturing of

pharmaceutical tablets leads to complex patterns that may

be challenging to predict [11, 13]. Additionally, since the

materials are continuously processed through multiple units,

modelling each stage separately may be insufficient to under-

stand the interactions associated with each process stage. For

instance, some studies relied on batch processes, where the

outputs do not adequately reflect the patterns of continuous

manufacturing [24]. Although other studies have explored

the use of continuous manufacturing lines for modelling

purposes, their models often fell short in capturing the com-

plexity of such systems. For example, the PLS algorithm used

in [25] assumes linearity across all processes involved, which

is not reflective of the inherently complex nature of continu-

ous manufacturing processes. Additionally, the development

of ANN-based models proposed in [27] were constrained by

extremely small dataset, potentially limiting the model relia-

bility due to overfitting and lack of generalisability. However,

none of these studies have addressed the fully interconnected

process stages across the manufacturing line, where interac-

tions between process variables and material characteristics

can be traced within fully interconnected data driven mod-

elling paradigm. Additionally, the availability of diverse and

comprehensive process datasets, which could be systemati-

cally utilised to develop a holistic data-driven model, has not

been explored.

This research study introduces a novel plant-wide mod-

elling framework for the continuous manufacturing of phar-

maceutical tablets, based on pilot plant data, aiming to

enhance process understanding and control of the intercon-

nected multistage processes. In an earlier study, a multistage

modelling framework using machine learning techniques

was developed to predict granule moisture content in a con-

tinuous pharmaceutical tablet manufacturing line [23]. The

study focused on integrating multiple unit operations, includ-

ing twin screw granulation and fluidised bed drying, to

address the complex interactions within these processes that

cause variability in critical quality attributes, such as gran-

ule moisture content, which eventually affects the tablet’s

physical profile. In this study, machine learning models were

developed for each critical unit operation within the con-

tinuous tabletting pilot plant line. These models were then

sequentially integrated, with the output of each model serv-

ing as the input for the subsequent stage, culminating in the

prediction of the final process outcome. The inclusion of all

processing stages within this sequential modelling frame-

work not only captured the individual complexities between

the process stages but also facilitated the propagation of their

effects throughout the entire continuous manufacturing line.

This approach was achieved by utilising machine learning

models such as Random Forest (RF) and Gradient Boosting

Machines (GBM) due to their ability to capture complex,

and non-linear process patterns while remaining computa-

tionally efficient [28]. Additionally,through this sequential

design, the ML models were further integrated with Gaus-

sian Mixture Models (GMMs) in order to to characterise

their predictions uncertainties caused by processes variability

and deviations, ultimately enabling uncertainty-aware model

refinement. Moreover,the modelling development strategy is

supported by efficient experimental work that strategically

involves manipulating critical process parameters to produce

diverse data observations. These observations, related to crit-

ical material attributes, were collected, analysed, and utilised

from the pilot plant to ensure consistent modelling based on

real data.

The scientific contribution of this research lies in the prac-

tical implementation of a plant-wide modelling framework

designed to holistically represent the continuous manufac-

turing of pharmaceutical tablets. Consequently, the resulting

predictive platform facilitates the estimation of intermedi-

ate critical material attributes (CMAs) across key processing

stages including granulation, drying, and milling, as well as

final critical quality attributes (CQA) at the tablet press stage,

based on the critical process parameters (CPPs) associated

with the continuous tabletting line. Thus, the primary objec-

tive of this modelling framework is to develop a data-driven

tool that enables systematic exploration and understanding

of the operational design space of the continuous manufac-

turing line, without necessitating physical experimentation.

It achieves this by predicting the impact of the multivari-

ate process interactions on the tablet’s physical profile under

an uncertainty-aware strategy. Additionally, this framework

is aligned with regulatory compliance under the Quality by

Design (QbD) paradigm, facilitating comprehensive identi-

fication and control of critical sources of variability. Within

this framework, the proposed modelling approach is intended

to contribute to the broader scientific efforts supporting and

complementing ongoing initiatives to advance continuous

processing technologies in pharmaceutical manufacturing [5,

10].

Methodology

ExperimentalWork

This research was conducted on a powder-to-tablet manu-

facturing pilot plant available at the University of Sheffield

as shown in Fig. 1. The pilot plant comprises a Continuous

tabletting Line (CTL) known as Consigma25 (GEA Pharma

Systems, Collette™, Wommelgem, Belgium)which includes
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Fig. 1 Continuous Tabletting Line (CTL)

a continuous powder processing line and a continuous rotary

tablet press. The continuous powder processing line encom-

passes a series of interconnected processing stages, including

a loss-in-weight feeder, twin screw granulator, segmented

fluidised bed dryer, conical milling machine, and helical rib-

bon blender, all of which collaboratively process the powders

into granules Fig. 1(a). The rotary tablet press as shown in

Fig. 1(b) is directly linked to the continuous powder pro-

cessing line, effectuating the transformation of the produced

granules into tablets in continuous, and high speed mecha-

nism.

The development of predictive models for the Continuous

Tabletting Line requires comprehensive and representative

datasets that can be effectively utilised by machine learn-

ing algorithms. However, generating such datasets presents

challenges due to the complexity of the CTL’s integrated

operations, especially when multiple process parameters

are manipulated across several unit operations to explore

relationships within and between processing stages. This

may necessitates an experimental design capable of captur-

ing higher-order interactions, yet such comprehensiveness

may be expensive in terms of materials, time, and opera-

tional resources. To address this, an efficient experimental

design based on Taguchi Orthogonal Arrays was adopted in

this study to provide representative data that can be read-

ily utilised by machine learning algorithms [29]. The main

advantage of such a technique is the systematic and bal-

anced operation of the CTL line to provide diverse and

informative data with minimal experimental burden. This

strategy involved manipulating seven critical process param-

eters related to multiple processing units within the CTL. For

each identified process parameters, three levels were delib-

erately selected to achieve a diverse range of effects on the

resultant material attributes, particularly those concerning the

physical characteristics of the tablet such as granules particle

size, moisture content, and tablet tensile strength. This has

resulted in a final design required only 81 experimental runs.

Table 1 shows the process parameters for each processing

stage within the CTL and their range levels to be main-

tained across the experimental runs. It is worth to note that

the 81 experimental runs were conducted within a systematic

research framework that aimed to balance the requirements of

Table 1 The process parameters

utilised for data collection and

process operation of the CTL

Unit Operation Process Parameter Parameter Level

Twin Screw Granulator (TSG) L/S Ratio 0.1, 0.2, 0.3

Screw Speed (rpm) 400, 600, 800

Fluidised Bed Dryer (FBD) Drying Temperature (°C) 50, 60, 70

Drying Time (s) 500, 600, 700

Inlet Air Flow (m3 h−1) 300, 350, 400

Milling Machine (MM) Milling Mesh Size (mm) 0.99, 1.4, 1.57

Tablet Press (TP) Compaction Force (kN) 5, 10, 15
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data-driven modelling with practical constraints. For exam-

ple, this selected design enabled the efficient coverage of

the multivariate interactions across the CTL’s unit operations

through minimised experimental runs compared to more

exhaustive designs, such as full factorial. This allowed for the

development of predictive models across the CTL’s unit oper-

ations while maintaining material and operational efficiency.

The selection of these process parameters and their levels was

based on initial screening tests indicating their local sensi-

tivity to the material physical characteristics. In addition, the

material attributes, including the particle size distribution of

the granulation process, and both the particle size distribution

and the moisture content after drying and milling processes,

were assessed in this study due to their measurable impact on

the final tablet physical profile. In addition, the tablet phys-

ical profile, such as the tensile strength, was also evaluated

after tabelting process. Within each of these runs, a batch of

20 tablets was produced as the final process outcomes, cul-

minating in a substantial total of 1620 tablets across all runs.

This dataset formed the foundation for training the sequential

machine learning models that underpin the plant-wide pre-

dictive modelling framework proposed in this study. Figure 2

is a block diagram demonstrating the methodological flow

of multistage processes involved in this study. The following

sections discuss a detailed overview on the systematic collec-

tion of processes data across the continuous tabletting Line

and the steps involved in developing the predictive models.

Material Preparation

In this study, a powder blend of three pharmaceutically

relevant materials was utilised. Alpha-lactose monohydrate

(Pharmatose 200M) constituted 72% w/w as the bulk, micro-

crystalline cellulose (Pharmacel 101) accounted for 24%

w/w as an excipient, and polyvinylpyrrolidone (Povidone

K30) served as a binder at 4% w/w. These materials are

pharmaceutically suitable for pilot-scale operations and thus

enabled the development of a predictive model based on

process–material complex interactions across the CTL. A

total powder blend mass of 7.5 kg was mixed in a tumbler

mixer (INVERSINA 20L) for 10 minutes to ensure unifor-

mity before being transferred to the loss-in-weight (LIW)

feeder hopper, which supplied a consistent mass flow to the

granulation unit.

Process Operation and Data Collection

In this study, the Consimga-25 continuos tabletting line pilot

plant as shown in Fig. 1 was utilised for data collection

and processes operation including the Twin Screw Granu-

lator (TSG), Fluidised Bed Dryer (FBD), Milling Machine

(MM), and the Tablet Press (TP). Pre-experimental cali-

brations were initially conducted for the utilised process

operations. Starting from the continuous powder process-

ing line, the wet granulation process was initiated using the

Fig. 2 The multistage processes of continuous tabletting line

123
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Fig. 3 The Twin Screw Granulator (TSG) configuration showing conveying elements (CE) and kneading elements (KE)

TSG. The TSG consists of two intermeshing, co-rotating

screws that convey and compact the powder blend along

their length during rotation [30]. Each screw had a diam-

eter of 20 mm with a corresponding L/D ratio of 25:1.

The screws were configured using a combination of convey-

ing and kneading elements designed to facilitate consistent

powder transport, liquid binder distribution, and granule for-

mation. As shown in Fig. 3, the configuration began with

three consecutive forward-conveying segments with a total

length of 350 mm. These elements were positioned directly

under the feed inlet in order to convey the powder blend into

the downstream granulation region. The granulation region

consisted of two kneading blocks, each comprising six discs

staggered at 60◦, and separated by a 37.5 mm forward-

conveying elements. As the powder was conveyed forward,

deionised water, serving as a liquid binder, was introduced via

a peristaltic pump through an injection port located directly

above this region. The binder was distributed along the screw

length, and agglomeration was facilitated within the knead-

ing sections, where shear and compaction forces promoted

granule formation. A final conveying section was placed after

the second kneading block to transport the wet mass toward

discharge. It is worth mentioning that the TSG configuration

remained constant across all experimental runs. In TSG, two

critical process parameters were manipulated: the liquid feed

rate, and the twin screw speed, while the material feed rate

was fixed at 166 g/m as shown in Table 1. Moreover, the

granulator was directly connected to the FBD with six cells,

each cell were filled with wet granules for a duration of 180

s. The wet granules were exposed to drying air introduced

at the FBD base. Here, drying occurred semi-continuously

and individually per cell, enabling heat and mass transfer

between the drying air and granules. Three FBD process

variables were manipulated: airflow rate, drying temperature,

and drying time as shown in Table 1. To maintain consis-

tency, three cells were continuously processed per run, with

the first cell disregarded to ensure stability. After each drying

cycle, the cell was discharged and granules passed over inline

Near-Infrared Spectroscopy (NIR) probe for moisture con-

tent measurement [31]. Thus, the average moisture content

of the latter two cells was recorded. Post-drying, the granules

were milled via a conical milling machine to de-agglomerate

any clumped granules, achieving uniform particle size distri-

bution. In this stage, three different mesh screen sizes were

utilised as critical process parameters as shown in Table 1,

while milling time and milling speed were kept constant at

100 s and 1000 rpm respectively. The resultant milled gran-

ules were then transferred to a ribbon blender where 0.6%

w/w magnesium stearate was added before tablet compres-

sion. Finally, the continuous rotary tablet press was used to

compress the milled granules into tablets. Here, three levels

of compaction forces were manipulated as critical process

parameters of the rotary tablet press as shown in Table 1.

Moreover, the turret speed was maintained at 20 rpm. Dur-

ing each processing run, 20 tablets were randomly sampled

for the analysis of their physical properties such as diameter,

thickness, and breaking force using semi-automated tablet

testing unit (LAB.line P4). Hence, the results for each run

were averaged, and the tensile strength of the tablets was

calculated. The tensile strength was determined using an

equation that incorporates the tablets’ physical properties,

including breaking force, diameter, thickness, and a constant

value for the convex cap related to the tablet press punch cap

depth [32, 33], as follows:

σ =
10F

π D2
(

2.84 H
D

−

(

0.126 H
H−2Hcap

)

+

(

3.15
H−2Hcap

D

)

+ 0.01
)

(1)

Where:

• F is the breaking force of the tablet,

• D is the diameter of the tablet,

• H is the tablet thickness,

• Hcap is the punch cap depth (Hcap = 1.21 mm).

Particle Size Distribution Analysis

In this study, particle size distribution (PSD) analysis was

conducted following granulation, drying, and milling. Sam-

ple collection was performed offline and included wet, dried,
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and milled granules, which were periodically extracted for

characterisation using a dynamic image analyser (Camsizer

X2). The procedure for collecting a representative and an

accurate PSD analysis at each powder processing unit was

carefully conducted. For example, after granulation, the

wet granules were collected from the twin-screw granula-

tor (TSG) outlet after steady-state conditions were reached,

thereby avoiding variability associated with process tran-

sients. For each experimental run, between 40 to 50 grams

of granule samples were taken using a collection tray. The

collected granules were then left to dry for 48 hours at ambi-

ent conditions to allow moisture stabilisation. In addition,

another round of sampling was performed following the dry-

ing and milling stages which were collected and then directly

utilised for PSD measurement, as shown in Fig. 2. Prior to any

measurement, all samples were split using a sample splitter,

which partitioned the material into two symmetrical subsam-

ples to ensure representativeness across the bulk granule mass

[34]. These steps ensured that the samples were as represen-

tative of the bulk as possible and that sources of sampling

bias such as granule inhomogeneity during transient process

states and process instability were systematically minimised.

To assess the size of the granules, each sample was then inde-

pendently analysed by feeding them into the dynamic image

analyser (Camsizer X2), where they passed through high-

resolution cameras that automatically captured images of the

particles. From these images, the equivalent spherical diame-

ter of each particle was measured. This involved categorising

particles into specific size classes each defined by a size inter-

val. In this study, the PSD for each measured sample was

represented using 20 size classes where each class indicates

the volume fractions of particles falling within its specific size

interval measured in millimetres. Furthermore, in order to

aid the visual presentation of the PSDs, they were smoothed

using cubic spline interpolation [34, 35]. This method was

applied to generate smooth and continuous curves from the

discrete size class data without altering the original mea-

sured fractions. Furthermore, similar steps were also applied

to generate cumulative size distributions in order to facili-

tate the graphical extraction and comparison of particle size

percentiles, such as D10, D50, and D90. These parameters

summaries the representation of the PSD shape [34].

Data-DrivenModelling Framework

The primary objective of this study is to develop a plant-

wide modelling framework based on operational data of the

state of the art continuous tabletting line (CTL). Ultimately,

this work aims to establish a sequential modelling approach

capable of accurately predicting the final quality attributes

of pharmaceutical tablets—specifically, tensile strength—by

integrating all interconnected critical process operations

within the continuous manufacturing process, from powder

to tablet. The sequential modelling strategy adopted in this

study is designed as a multistage approach, where each unit

operation within the CTL is represented by a distinct predic-

tive model. In the CTL, critical unit operations including,

twin screw granulation(TSG), fluidised bed drying(FBD),

milling machine(MM), and tablet press(TP), are intercon-

nected forming a continuous multistage process. The output

of each processing stage serves as an input for the subsequent

stage. This framework integrates ensemble-based machine

learning (ML) algorithms to effectively represent each pro-

cessing stage within the CTL. ML models were trained and

interlinked to capture the relationship between these stages,

thereby ensuring that variations arising from each process

stage propagate to subsequent stages. This propagation of

process variations through interconnected models reflects the

multivariate nature of continuous manufacturing for allow-

ing the integration of each processing stage behaviour into

the final process outcome. Hence, the predictability of such

system will be reinforced by modelling variability within all

the subsequent stages where their effects can be traced and

indicated through the sequential modelling stages.

Two ensemble-based ML algorithms were employed to

model the complexities of the CTL. Ensemble modelling is

a machine learning technique that combines multiple mod-

els with the same modelling objective in order to improve

the predictive performance compared to a single model [22].

In this study, Random Forest (RF) and Gradient Boosting

Machines (GBM) algorithms were chosen for their ability

to capture intricate relationships among process parameters,

material attributes, and final output characteristics based on

their ensemble learning mechanism [22, 26]. Moreover, due

to their non-parametric nature, these models are flexible in

adapting to diverse data distributions across stages making

them well-suited for multistage process modelling [36, 37].

RF is an ensemble learning method used to constructs mul-

tiple regression trees using bootstrap sampling, where each

tree is trained on a randomly drawn subset of the process

data with replacement [36]. Each regression tree indepen-

dently partitions the feature space by recursively splitting the

data that considers different features at each split which can

minimise the prediction error. By combining these trees, and

averaging their predictions, the RF will effectively improve

the overall prediction stability with reduced variance [22].

Moreover, GBM is an ensemble learning technique that

utilises the boosting algorithm [37]. GBM constructs a series

of weak models (e.g. regression trees), where each model is

trained on the process data. Unlike the RF, GBM builds mod-

els iteratively in a way that each trained model attempts to

correct the errors of the previous models gradually improv-

ing the overall prediction. This sequential correction process

is driven by a gradient-based optimisation algorithm which
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utilises a differentiable loss function to minimise the squared

error resulting in highly effective learning method for com-

plex process data [28]. Both ML algorithms were utilised in

this study to assess their predictive performance in deter-

mining the tensile strength of tablets. Their results were

independently evaluated to compare their effectiveness in

modelling the CTL. The Python programming language was

primarily utilised to develop the models using the scikit-learn

library [38]. The following sections describe the stepwise

development of this plant-wide modelling framework, which

provides a novel modelling approach for the continuous man-

ufacturing of pharmaceutical tablets.

Plant-Wide Modelling Framework Development

The plant-wide modelling approach adapted in this study

integrated ML models for processing stage into a holistic

predictive framework. In the CTL, the first three unit opera-

tions such as, TSG, FBD, and MM, are primarily responsible

for pharmaceutical powder processing. These units continu-

ously process pharmaceutical powders in sequential stages,

refining their physical characteristics to be readily utilised

for tablet compression process. Within the Quality by Design

(QbD) framework, particle size distribution (PSD) is consid-

ered a critical material attributes (CMA) [3]. The importance

of the powder processing operations lies in their collective

impact on the PSDs, which in turn affects subsequent pro-

cessing stages. For example, variations in PSDs may arise

due to the impact of critical process parameters (CPPs) across

different unit operations. In addition to PSD, moisture con-

tent is also classified as a CMA [3], as it determines the

remaining liquid binder content in the material post-drying,

subsequently impacting granule properties and tablet perfor-

mance. While these are typically classified as critical quality

attributes (CQAs), they are treated here as CMAs to reflect

their function as inputs to downstream processes [3]. Under-

standing these material attributes effects in conjunction with

the CPPs of the CTL should lead to a holistic insight into

tablet tensile strength prediction, which is considered as CQA

[3]. Thus, in this study, a sequential modelling framework

incorporating ML models was developed to predict the inter-

mediate CMAs such as PSD and moisture content based

on continuous powder processing operations. The predicted

CMAs were then utilised as inputs for a subsequent ML

model dedicated to the final tabletting stage, where tensile

strength was ultimately predicted based on these intermediate

attributes and tablet press process parameters. The frame-

work is structured into three key predictive models as shown

in Fig. 4: (1) PSD prediction based on continuous powder

processing units, (2) moisture content prediction based on

TSG and FBD units, and (3) Tablet Tensile Strength predic-

tion based on the predicted PSD, and moisture content as

material input features, and tablet press operational param-

eters. All of these models were developed through a series

of steps including data pre-processing and scaling, models

training, and evaluation [22]. For instance, the collected pro-

cesses data mentioned in “Experimental Work” section were

partitioned into input features and target outputs for each

Fig. 4 Plant-wide modelling framework for the continuous tabletting line
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processing stage within the CTL. The input features rep-

resents operational variables and material attributes, while

target outputs refers to the process outputs to be predicted,

and then utilised as input for the subsequent process model

as summarised in Table 2. To ensure consistency across

all stages, all input features were scaled using min-max

scaling. Models training was conducted using a five-fold

cross-validation approach. Finally, the performance of the

trained models was assessed by calculating evaluation met-

rics, including the Root Mean Squared Error (RMSE) and the

coefficient of determination (R2), to quantify and illustrate

their predictive accuracy and generalisation ability within a

10% error bands. The following sub-sections discuss each

modelling framework and the associated modelling process.

Particle size distributions(PSDs) Model

In this study, PSDs were sequentially measured and modelled

across the three continuous powder processing units such as

TSG, FBD, and MM under varying process conditions, as

detailed in “Particle Size Distribution Analysis” section. The

motivation for estimating the complete PSD lies in obtain-

ing a comprehensive view of how CPPs influence powder

behaviour across the full range of particle size fractions. For

instance, it enables the detailed tracking of variations in fine,

median, and coarse fractions in response to different process-

ing conditions. While key percentiles such as D10, D50, and

D90 are commonly used to characterise PSDs, predicting the

entire distribution also allows for the derivation of additional

statistical features, including spread, skewness, and distribu-

tional shapes [34]. However, modelling PSDs is complex, as

they represent distributions of volume fractions across mul-

tiple size classes, each corresponding to the proportion of

particles within a specific size interval. In order to solve this,

a multiple-input, single-output (MISO) modelling strategy

was adopted in this research where independent ML mod-

els, including RF and GBM, were developed for each size

class. For example, a single ML model was trained to pre-

dict the particle size fraction corresponding to a specific size

class as a function of powder processing stage parameters.

Hence, the challenge of modelling the entire PSD profile

was addressed in this research by treating each size class

as an independent target variable. Specifically, for m size

classes, m independent ML models were trained, each pre-

dicting the volume fraction of particles within its respective

size class based on process parameters from TSG, FBD, and

MM. Since 20 size classes were defined to represent the PSDs

within each process stage, 20 individual models were devel-

oped using ensemble ML algorithms. Once the size fractions

across all classes were predicted, they were reassembled to

reconstruct the complete PSD profile. Each estimated frac-

tion is then normalised by dividing it by the total sum of all

predicted fractions. Furthermore, the predicted PSDs were

smoothed to support visual comparison with measured PSDs,

each predicted distribution was smoothed using cubic spline

interpolation [34, 35]. Finally, to facilitate the extraction of

key percentiles, the predicted frequency distributions were

converted into cumulative distributions for the extraction

of D10, D50, and D90. Moreover,the predicted D50 values,

together with the corresponding process parameters, were

sequentially integrated as input features for the subsequent

ML model. It is worth emphasising that the choice of a MISO

strategy was driven by the necessity of providing an efficient

and comprehensive plant-wide modelling framework with

reduced computational effort and less modelling complexity.

While the entire PSD distribution may indeed be modelled

simultaneously using a MIMO strategy (such as ANNs),

the resulting model may be computationally expensive and

highly complex, owing to the network architectures and the

Table 2 Table of each unit operation used for model development as well as their related input features and process outcome

Processing Stage Process Parameter Material Attributes Process Outcome

(Input) (Input) (Output)

TSG L/S Ratio Wet Granule Size (D50)

Screw Speed

FBD Drying Time Wet Granule Size (D50) Dried Granule Size (D50)

Drying Temperature

Air Flow Rate

MM Milling Mesh Size Dried Granule Size (D50) Milled Granule Size (D50)

TSG-FBD L/S Ratio Moisture Content (MC) %

Drying Time

Drying Temperature

Air Flow Rate

TP Compaction Force Milled Granule Size (D50) Tablet Tensile Strength (MPa)

Moisture Content (MC) %
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learning algorithms that demand more time and effort to tune

and initialise [22, 39]. The sequential modelling framework

for continuous powder processing is illustrated in Fig. 5.

Moisture Content Model

In addition to the PSD prediction, modelling framework for

predicting moisture content was developed. In this study,

GBM and RF models were employed to develop an inte-

grated predictive framework that incorporates variables from

both granulation and drying stages. While the liquid-to-solid

(L/S) ratio is directly related to the granulation process, its

influence propagates through the drying stage. Consequently,

the inclusion of L/S ratio in the drying model was essential

to capture the interactions between these processes and accu-

rately predict moisture content. In addition, the drying rates

related to the FBD were also included as input features to

predict moisture content. Thus, the operational parameters

of these two unit operations served as the input features for

predicting moisture content as depicted in Fig. 4.

Tablet Tensile Strength (T.S) Model

The development of the tablet T.S prediction model aimed

to establish a data-driven framework capable of predict-

ing T.S based on critical material attributes and process

parameters within the continuos tabletting line (CTL). Since

tablet mechanical properties are influenced by preceding

powder processing stages, the modelling framework incor-

porated three key input parameters: the moisture content of

the granules, the median particle size (D50m) from the final

powder processing stage (e.g. milling), and the tablet press

Fig. 5 PSD prediction model across the continuous powder process-

ing units. Here, testing data(e.g. the size classes) for each stage are

preserved across all folds and utilised to construct the particle size dis-

tribution in both frequency and cumulative distributions. Then, the D50

across all the PSDs were extracted to be incorporated as input feature

with the subsequent stage process parameters. These features are then

employed to predict process outputs. The resulting outputs from each

stage’s machine learning model are subsequently fed into the next mod-

elling stage
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compaction force. Given that the tablet press represents the

final operation within the continuous manufacturing process,

the inclusion of both moisture content and D50m was essen-

tial, as these attributes encapsulated the cumulative effects

of different processing conditions throughout the powder

processing line. Thus, after achieving the predictions for

intermediate material attributes, such as the median particle

size (D50m) and moisture content, they were incorporated

within the tablet T.S model development. For example, in

each fold iteration, the training subset incorporated actual

measured values of moisture content and D50m , while the

test subset utilised predicted values of these attributes from

preceding models. The predictive modelling framework for

T.S is illustrated in Fig. 4

Results and Discussions

Experimental Analysis

In this section, a detailed analysis was conducted to evalu-

ate the influence of process parameters on both the material

attributes of each processing unit and the final outcome char-

acteristics. This analysis is for elucidating the importance

of utilising these parameters in data-driven model develop-

ment. A comprehensive approach was utilised to examine

the relationships between the process variables and material

attributes related to each processing stage. By identifying and

studying the relationships between these process variables

and the resulting tablet characteristics, their critical impor-

tance can be confirmed and effectively integrated into the

model development process.

Twin Screw Granulation Analysis

In granulation, the liquid-to-solid (L/S) ratio has a signifi-

cant impact on the growth of granules and the distribution

of particle sizes (PSD). The frequency distribution of gran-

ules at different L/S ratios is depicted in Fig. 6(a). At the

lowest L/S ratio, the prevalence of granules tends to be char-

acterised by small size, which is a result of the low wetting

condition. As the L/S ratio increases, the granule distribution

broadens, resulting in larger and coarser granules as in the

case of L/S=0.3. Furthermore, the cumulative PSD plots in

Fig. 6(b) illustrate the percentage of granules below a certain

size. These cumulative distribution plots can be utilised to

extract percentile values such as (D10, D50, D90) in order

to measure the quantitative impacts of varying L/S ratios

[34, 40]. For instance, when the L/S ratio is low (L/S=0.1),

the D50 of the granule distribution indicates that 50% of the

granules are less than 160 micrometers, which corresponds to

fine to medium granules. At a moderate L/S ratio (L/S=0.2),

approximately 50% of the granules exhibit an increase in size

to approximately 540 micrometres, indicating the presence of

medium to large granules. At a high L/S ratio (L/S=0.3), the

median particle size D50, is approximately 1780 microme-

tres, suggesting the presence of larger and coarser granules.

Thus, L/S ratios have a critical impact on the subsequent

tablet manufacturing units, as the downstream processes will

react differently to the different sizes of granules produced.

Fluidised Bed Dryer Analysis

The fluidised bed drying process is notably complex due

to the interconnected effects of drying conditions(e.g. dry-

Fig. 6 Granule size distributions of twin screw granulation related to different L/S ratios
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ing time, drying temperature and air flow rate), the initial

L/S ratio, and the variations in granule size distribution fol-

lowing granulation. In particular, the L/S ratio has a pivotal

influence on the moisture content of the granules, which

subsequently shapes their drying characteristics and size

distribution. Figure 7 demonstrates PSD samples for dried

granules when the initial L/S ratio was set to 0.1, where

moisture contents were fairly uniform (ranging from 4.8%

to 5.5%) and the distributions were relatively narrow, con-

centrated around the median particle sizes (D50). A slight

shift toward larger granules was observed in samples with

higher moisture levels. When the initial L/S ratio was further

increased to 0.3, moisture contents rose more sharply (5.8%

to 9.8%), accompanied by broader particle size distributions.

These observations indicate that L/S ratios intensify the non-

uniform nature of the drying process, underlining how tightly

coupled drying conditions are with the initial moisture con-

tent of the granules.

Milling Machine Analysis

After drying, the granules were milled using a cone milling

machine equipped with different mesh sizes to achieve uni-

form particle size distributions. Samples of these dried and

milled particles were collected to examine their size reduc-

tion behaviour in relation to the mesh size and their final

moisture content. Figure 8 shows the particle size distribu-

tions of milled granules related to different Moisture Content,

processed through conical milling machine mesh sizes of

0.99 and 1.4 mm post-drying. At low moisture contents (e.g.

5% or less), the milled granules exhibit a relatively uniform

size distribution across all mesh sizes, concentrated around

smaller particle sizes. Conversely, at higher moisture content

levels (e.g. 6% or above), there is a broader distribution in

the particle size, with a notable shift towards larger particles.

Thus, the narrower distributions at lower moisture content

highlight the criticality of drying stage process in achieving

a uniform particle size distribution before tablet compression.

Tablet Press Analysis

The rotary tablet press is considered the final stage within

CTL, in which the granulated powder blend is processed into

tablets as the final product. Tablet tensile strength is consid-

ered the final quality outcome to be analysed according to the

moisture content in which it regarded as a key condition of

the processed particulate material influencing the behaviour

of tabletting process stage. The interactions between the

compaction force and the tablet tensile strength under dif-

ferent ranges of moisture contents are illustrated in Fig. 9.

It can be seen that tensile strength generally increases as

compaction force increases, resulting in stronger tablets. For

instance, at low to moderate moisture content, the increase

in tablet tensile strength is gradual and exhibits less variabil-

ity. This is crucial for achieving specific hardness levels to

ensure tablet strength within a defined range. However, for

high moisture content ranges, the produced tablets produced

exhibited reduced tensile strengths and greater variability,

Fig. 7 Granule Size Distributions after Fluidised Bed Drying related to different Moisture Contents
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Fig. 8 Granule size distributions after milling process related to different moisture content and milling mesh sizes

Fig. 9 Effect of compaction force on tensile strength across different moisture content ranges. Each subplot represents a distinct moisture content

range. Box plots illustrate the distribution of tensile strength at varying compaction forces
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despite the increase in compaction force. This non-linearity

suggests that once a certain moisture level is reached, further

increases in compaction force do not yield a proportional rise

in tablet tensile strength. Despite the fact that the granules

were dried under different conditions, those with a higher

moisture content may have remained only partially dried. For

example, according to the experimental design, there were

instances where the drying conditions were highly aggres-

sive, which might have led to generally acceptable moisture

levels for granules with a high L/S ratio. Nevertheless, cer-

tain batches could have been less thoroughly dried, thereby

contributing to the plateau effect. This is evident because

the notable variability observed in tablet tensile strength at

high moisture content can be attributed to multiple samples

having experienced different drying conditions, which may

have either increased sensitivity or reduced responsiveness

to compaction force. Thus, the variability in tablet tensile

strength, especially at initial higher L/S ratios, underscores

the impact of drying conditions on the moisture content of

granules, thereby influencing the final process outcome.

While these experimental results identified the sensitiv-

ity of the process parameters on the quality attributes, their

utility remains limited and localised to the individual pro-

cess stages within the CTL. For example, the complexity of

the CTL arises from the sequential nature of integrated pro-

cessing stages. Each stage not only individually influences

the material attributes but also propagates these influences

downstream, therefore compounding the complexity as mate-

rials progress through subsequent unit operations. Hence,

the plant-wide modelling approach presented in this study is

intended to complement and extend these empirical insights

by enabling a system-level integration of the multistage pro-

cesses of the CTL through the development of the sequential

ML models in order to capture such complexity between

these multivariate interactions on the final product attribute

such as the tablet tensile strength.

Plant-WideModelling Framework Results

In this study, a plant-wide modelling framework for the

continuous manufacturing of pharmaceutical tablets was

developed in a sequential manner using machine learning

models, including Gradient Boosting Machines (GBM) and

Random Forest (RF). Each processing stage was trained

using relevant training data, and the predicted output for each

stage—based on the testing set—was used as an input for the

subsequent stage. It is important to emphasise that the mod-

elling strategy was designed to capture variations attributable

to the manipulation of critical process variables across the

CTL without the inclusion of raw material properties. Specif-

ically, the twin screw granulator (TSG) utilised powder blend

with fixed material type sourced from a single manufacturer,

following a standardised preparation and mixing as described

in “Material Preparation” section. Nevertheless, intermediate

material attributes such as granule particle size distribution

(PSD) and moisture content were measured at each relevant

stage and subsequently integrated as inputs to downstream

models. This enabled indirect characterisation of material-

process interactions within the modelling framework, while

maintaining a focus on operational-level variability. The fol-

lowing sections discuss the results related to the development

and evaluation of the plant-wide model.

Particle Size Distribution Predictions

In PSD predictions, the process parameters for the continu-

ous powder process line including TSG,FBD and MM were

used as input features, in conjunction with the D50 values of

the process units’ PSDs, for model training. Each model pre-

dicted the fraction of particles corresponding to a specific size

class. Given that the PSD represents a continuous distribu-

tion, the predicted fraction values across all size classes were

aggregated to reconstruct the full frequency distribution. A

direct comparison between the predicted and measured PSD

curves was conducted to evaluate the accuracy of the mod-

els predictions. Figure 10 presents this comparison for a

representative particle sample collected at the final stage of

the continuous powder processing line, specifically from the

milling unit. While all predicted PSDs were utilised for eval-

uation, a single example is provided here to illustrate how

the (GBM) model captures the overall distribution trend.

The results indicate that the predicted PSD closely aligns

with the measured PSD, effectively capturing the overall

shape and key distribution characteristics. However, devi-

ations were observed across multiple size classes, where

the predicted fractions exhibited minor deviations relative

to the actual measured values. These small deviations can be

attributed to the uncertainty related to the inherent variabil-

ity in the PSD data. Moreover, the non-linear relationships

between process parameters and particle size fractions may

further complicate the models predictive performance. This

is particularly pronounced when each size class was mod-

elled separately, potentially missing out on shared non-linear

interactions across size classes. Despite this, the overlay

of the predicted and actual PSD curves demonstrated that

the developed models effectively captured the overall dis-

tribution shape, with deviations occurring predominantly in

specific size fractions rather than across the entire range. To

further assess predictive performance, cumulative distribu-

tion plots were generated based on both the predicted and

measured PSD. Figure 10 illustrate these cumulative PSD

curves, where the two distributions were used to extract key

particle size percentiles, including D10, D50, and D90. As the

primary objective of this modelling framework was to ensure
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Fig. 10 Comparison of Actual and Predicted Particle Size Distribu-

tion (PSD) for the Milling Machine Model. a) The figure shows the

Frequency Distribution, comparing actual (red curve) and predicted

(dashed blue curve) data. b) The figure presents the cumulative dis-

tribution of actual and predicted PSDs, respectively, highlighting the

extraction of the key percentiles (D10, D50, D90)

reliable predictions of the D50 percentile, a broader evalua-

tion was conducted by comparing predicted D50 values with

their corresponding measured D50 values across all the pow-

der processing units within the continuous processing line.

Table 3 summarises the performance metrics for each

powder processing stage related to the extracted key per-

centiles from the predicted PSDs. As detailed, each process

stage model within the sequential framework was evaluated

for its training and testing data according to the predicted key

percentiles. In general, all process models showed acceptable

model performances on the training data as indicated by the

evaluation metrics for every key percentile values. However,

as the sequential modelling progressed, a decline in the pre-

dictive performance was observed in the subsequent process

models after the granulation stage. This decline was indi-

cated by the decreasing R2 values in unseen data for both

ML algorithms. To illustrate this further, Fig. 11 presents

the ML models performance at the final stage of the powder

processing units, evaluating both RF and GBM models on

the predicted D50 percentile using training and testing data.

Both models achieved reasonable prediction performance

on the training dataset is indicated by both the Gradient

Boosting Machine (GBM) and Random Forest (RF) mod-

els by R2 of 0.90 and a RMSE of 0.02 mm. While there are

minor deviations from the actual line approximately between

0.40 to 0.50 mm, majority of the predictions were follow-

ing the actual line indicating adequate fit. However, it can

be observed that neither model fully captured the variability

Table 3 Evaluation Metrics for GBM and RF Models

Process Stage Evaluation GBM RF

D10 D50 D90 D10 D50 D90

Train Test Train Test Train Test Train Test Train Test Train Test

TSG (R2) 0.88 0.82 0.98 0.96 0.98 0.96 0.99 0.79 0.96 0.94 0.98 0.96

RMSE 0.08 0.09 0.1 0.13 0.14 0.18 0.02 0.11 0.13 0.16 0.11 0.16

FBD (R2) 0.81 0.74 0.96 0.62 0.98 0.90 0.61 0.23 0.93 0.35 0.97 0.85

RMSE 0.01 0.01 0.02 0.08 0.06 0.17 0.01 0.01 0.03 0.11 0.09 0.21

MM (R2) 0.81 0.22 0.90 0.51 0.88 0.43 0.81 0.20 0.90 0.34 0.89 0.46

RMSE 0.007 0.013 0.021 0.045 0.056 0.13 0.007 0.014 0.021 0.053 0.057 0.124
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Fig. 11 The final model performance of the median particle size (D50m ) predictions after the extraction of key percentiles. a) Training performance

of GBM, b) Training performance of RF, c) Testing performance of GBM, and d) Testing performance of RF

inherent in sequential process models, as indicated by the

noticeable decrease in R2 values within the testing dataset.

For instance, both RF and GBM models achieved R2 val-

ues of 0.51 and 0.34 respectively, indicating that a majority

of the D50 values’ variability was not fully captured within

the predicted PSDs. In addition, both models showed RMSE

values of approximately 0.05, indicating that on average, the

predictions deviate by 0.05 mm from the actual D50 values’.

Nevertheless, the inconsistency of the predictions falling out-

side the 10% error bands in the scatter plots indicates that both

models struggle with uncertainty across the D50 range. This

performance inconsistency reveals areas where the models
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produce less reliable predictions. Furthermore, the uncer-

tainty may also be attributed to the cumulative impact of

prediction errors, wherein inaccuracies at one stage propa-

gate through the sequential modelling framework, affecting

subsequent models performance. While the initial results for

predicting overall PSDs were promising, the performance

was ultimately affected by the multi-stage nature of the pro-

cesses, which reflects the inherent complexities of continuous

manufacturing of pharmaceutical tablets. This decline in

accuracy underscores the necessity of error mitigation strate-

gies between interconnected process models.

Moisture Content Prediction Results

In addition to PSD prediction, the predictive performance

for moisture content was also evaluated based on process

conditions in twin-screw granulation (TSG) and fluidised

bed drying (FBD). The GBM and RF models exhibited

acceptable generalisation performance in predicting mois-

ture content. Both models effectively captured the underlying

complexities associated with process parameters and result-

ing moisture content, as reflected in Fig. 12. The predictive

performance of moisture content, as modelled by GBM and

RF, was directly influenced by the input features of TSG and

FBD, which exhibit nonlinear relationships but are less com-

plex than PSD prediction. For instance, both models achieved

(R2) value of 0.94 and RMSE of 0.25 and 0.26 on unseen

data. The predictive performance of both models followed a

similar pattern, with GBM slightly outperforming RF. While

these results indicate that moisture content prediction is less

complex compared to PSD prediction, it is still affected by

uncertainty. For example,the scatter plots in Fig. 12 present

few instances where the predicted moisture content values

slightly exceeded the 10% error margin. While such devia-

tions do not necessarily impact the overall performance, they

may result from model uncertainty and be influenced by pro-

cesses variations.

Tablet Tensile Strength Prediction Results

In the final stage of the plant-wide modelling framework,

the predictive performance of final tensile strength (T.S),

incorporating predictions from both PSD and moisture con-

tent(MC) models, was assessed. Both RF and GBM models

were provided with predicted material attributes (e.g. D50m

and MC) alongside compaction force from the tablet press.

Figure 13 presents the predictive performance results for both

algorithms on the training and testing datasets for the tablet

tensile strength. It can be seen that both models exhibited

strong predictive capability on the training data, achieving

R2 values of 0.94 and 0.96 for the GBM and RF models

and RMSE OF 0.12 and 0.11, respectively. The predicted

tablet tensile strength values were closely aligned with the

actual measurements, with the majority of data points falling

within the±10% error bands. Minor deviations from the ideal

prediction line were observed particularly at lower tensile

Fig. 12 The models performance of Moisture Content Predictions based on A) GBM model performance and B) RF model performance
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Fig. 13 The models performance of Tablet Tensile Strength Predictions based on a) Training performance of GBM, b) Training performance of

RF, c) Testing performance of GBM, and d) Testing performance of RF
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strength values. The models demonstrated low to moderate

performance on the testing sets across all the folds, with R2

values of 0.70 and 0.71 for GBM and RF, respectively. While

these values seem moderate, they are still affected by uncer-

tainty in the predicted data. For example, GBM captures 70%

of the variance in the actual data, but the majority of its

predictions deviate from the actual line by RMSE of 0.29

MPa. These deviations can also be observed in RF, where its

predictions deviate from the actual line by RMSE of 0.29

MPa. The limitations in predictive accuracy suggest that,

while ML approaches are powerful, they were unable to fully

capture the multivariate dependencies between D50m , MC,

and T.S, particularly in the presence of accumulated sys-

tematic errors. The observed model inaccuracies may stem

from process-material interactions or random noise, and the

models may struggle to distinguish between these sources

of variation. Thus, these findings underscore the necessity

of uncertainty-aware modelling techniques, as conventional

ML models alone may be insufficient for maintaining pre-

dictive reliability across all stages of pharmaceutical tablet

manufacturing.

While the predictive performance observed in Figs. 11

and 13 may be attributed to the multivariate and non-linear

nature of the process data, the ML models may have been

constrained in their capacity to fully capture the underly-

ing relationships between input features and target outputs

across the multistage processes of the CTL. Additionally,

random noise due to the process variability may have fur-

ther impaired training effectiveness. To mitigate these effects,

model development followed systematic procedures to pre-

serve predictive performance [22]. For instance, to ensure

measurement integrity, pre-experimental calibrations were

conducted on the unit operations to promote operational con-

sistency across process conditions. Samples were collected

and analysed in duplicate, with averaged readings used to

minimise potential measurement bias, as detailed in “Experi-

mental Work” section. In terms of data preparation and model

validation, input features were scaled using min-max scaling

to ensure uniform feature ranges, and a 5 folds cross valida-

tion strategy was applied across the entire process datasets

for consistent training and evaluation. In addition, both ML

algorithms utilised in this study were configured to cap-

ture the underlying complexity of process interactions while

avoiding overfitting to processes noise. This was achieved

through systematic tuning of model parameters such as the

number of estimators and tree depth, with the learning rate

additionally adjusted for the GBM model to ensure overall

stability in model development. As shown in Table 3, the

models achieved moderate to high training R2 values across

the continuous powder processing stages of the CTL. This

reflects an appropriate compromise between model complex-

ity and generalisability within the constraints of plant-wide

sequential modelling. However, as the sequence of models

progresses towards the final processing stage model, a decline

in performance is observed. This degradation in predictive

performance observed in testing folds within the sequen-

tial stages remains a limitation, underscoring the inherent

complexity and variability of continuous manufacturing. The

systematic model development steps contributed to achieving

stable performance across the sequential models. While not

optimal, they nonetheless show moderate predictive capabil-

ity of the ML models for such a type of complex systems.

Uncertainties Reduction for Process Model
Robustness

In order to improve the accuracy of the processes mod-

els predictions, the integration of Gaussian Mixture Models

(GMMs) was undertaken across the utilised machine learning

(ML) models within each processing stage. The motivation

behind this approach arises from the recognition that pre-

diction errors often contain complex patterns and hidden

interactions that the primary machine learning models may

not fully capture due to the inherent variability and non-

linearity of the processes involved. For instance, since the

sequential modelling approach was employed, in which the

predicted outputs from one stage were used as inputs for

the subsequent stage, this sequential dependency implied

that any uncertainties in the initial stage models propagated

through the entire modelling chain, potentially degrading

the overall predictive performance of the plant-wide model.

To address these challenges, in this study, GMMs were

employed to characterise the structure of each ML model

residuals (i.e., the errors between predicted and actual val-

ues) with the aim of capturing systematic patterns through

probabilistic inference from the conditional error distribu-

tions [27, 39, 41]. This approach provides systematic method

for refining and enhancing the predictive accuracy of primary

machine learning models by adjusting their errors. Here, the

GMM represents the error data distribution as a weighted

sum of pre-defined gaussian components, each with its own

mean, covariance, and mixing coefficient (weight) [41]. The

probability density function of the error data, represented as

GMM, is as follows [39]:

p(xe) =

J
∑

j=1

π jN (xe|μ j , � j ) (2)

Where:

• xe: The error data consisting of relevant input features

and residual errors vector.

• J : The total number of Gaussian components used to

approximate the distribution in the GMM.
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• π j : The mixing coefficient for the j-th Gaussian com-

ponent representing the probability that a data error was

generated from component, satisfying:

J
∑

j=1

π j = 1 π j > 0,

• N (xe|μ j , � j ): The multivariate probability function

given by:

N (xe|μ j , � j ) =
e

[

− 1
2 (xe−μ j )

⊤�−1
j (xe−μ j )

]

(2π)d/2|� j |
1/2

(3)

Where:

– μ j : the mean of the j-th Gaussian component,

– � j : the covariance of the j-th Gaussian component,

– d: the dimensionality of xe.

In this research, the error data were constructed using the

residuals from the primary machine learning models along

with a subset of relevant input features corresponding to each

process stage model. Hence, a feature selection strategy was

employed to identify the most relevant input variables for

error modelling. The selection process was based on the cor-

relation between input features and residual errors, ensuring

that only the most correlated variables were incorporated into

the GMM error modelling framework. This was necessary

in order to ensures that the GMM will not be affected by

high data dimensionality, which could introduce unnecessary

complexity and reduce model performance.

Once the error dataset was constructed, it served as train-

ing data for developing the GMM in order to identify hidden

distributions each represented by a Gaussian component.

Because the optimal number of Gaussian components J was

unknown, a maximum value Jmax was specified, and can-

didate GMMs with J = 1, 2, . . . , Jmax were considered.

Each GMM model was initialised using a K-means clus-

tering algorithm to estimate suitable starting values for its

parameters � = {π j , μ j , � j }. With these initial parame-

ters, the Expectation-Maximisation (EM) algorithm was then

employed to refine the estimates by maximising the log-

likelihood [41]. EM is a two-step iterative algorithm utilised

for parameter estimation in probabilistic models [39, 42]. In

the E-step, the probability that each data point xe,n belongs

to component j was computed:

γnj =
π jN (xe,n|μ j , � j )

∑J
k=1 πkN (xe,n|μk, �k)

(4)

In the M-step, the GMM parameters were updated to max-

imise the log-likelihood based on the computed probabilities

from E-step:

μ j =

∑N
n=1 γnj xe,n
∑N

n=1 γnj

,

� j =

∑N
n=1 γnj (xe,n − μ j )(xe,n − μ j )

⊤

∑N
n=1 γnj

,

π j =
1

N

N
∑

n=1

γnj .

The EM algorithm was iterated until the estimated param-

eters had converged to an optimal solution. Consequently,

the Bayesian Information Criterion (BIC) was computed for

each GMM candidate [41]. This criterion assists in selecting

the optimal GMM by finding a balance between the model’s

goodness of fit and its complexity. As a result, the GMM

model with the lowest BIC was selected to be used for refin-

ing the primary ML model predictions. This chosen GMM

was utilised to reduce the prediction uncertainty through

error correction. For any new input data point, the probabil-

ities of this point belonging to each Gaussian component in

the GMM were calculated. These probabilities measure how

likely that the error pattern resulted from a particular process

model input conditions matches the patterns characterised

by each component of the GMM. Using these probabilities

as weights, a conditional error was computed by taking a

weighted average of the component means. By adding this

conditional error term to the primary model’s predictions, a

refined output was obtained that accounts for the structured

error patterns identified by the GMM. Figure 14 illustrates

this integration strategy for the sequential modelling frame-

works for Powder Processing units.

Integration of GMMs with Machine Learning Models Results

Within a sequential framework, Gaussian Mixture Models

(GMMs) were integrated with the machine learning algo-

rithms employed in this research study, leading to notable

improvements in modelling performance and a reduction

in prediction errors. GMMs were utilised to capture the

error between actual and predicted data at each process-

ing stage. Through this approach, residuals were clustered

into distinct distributions, allowing for the quantification of

uncertainty under varying conditions. To evaluate error prop-

agation across sequential models, an analysis was conducted

to track prediction errors at each stage using error propaga-

tion plots. This assessment was based on Root Mean Square

Error (RMSE) values for each model representing a distinct
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Fig. 14 PSD sequential modelling approach using GMMs for error

modelling. Here, the D50 across all the predicted PSDs were extracted

to be incorporated for error evaluations with actual data. The errors of

these predictions are then correlated with relative input features and then

modelled using GMMs. The GMMs outputs are subsequently employed

to refine the predictions from all involved machine learning models. The

resulting refined outputs from each stage’s GMM are subsequently fed

into the next modelling stage

processing stage. RMSE quantifies the average magnitude of

the deviation between predicted and actual values. However,

since RMSE values are scale-dependent and each stage oper-

ates on a different unit scale, normalisation was necessary.

This normalisation process facilitated a more interpretable

measure of error that remained independent of the actual

value magnitudes. Thus, the Normalised Root Mean Square

Error (NRMSE) was computed by [43]:

NRMSE =
RMSE

Standard deviation of actual values

NRMSE provides a standardised approach to assessing

error accumulation, indicating how relative error evolves

across different stages. This method scales RMSE relative to

inherent data variability, offering insights into the extent to

which model prediction errors exceed natural variation in the

actual data. For instance, NRMSE value close to 0 suggests

adequate predictive performance, whereas NRMSE values

exceeding 1 indicate poor performance, as prediction errors

exceed expected variability. Hence, by comparing NRMSE

values before and after the application of GMMs, it was pos-

sible to assess whether the GMM effectively captured the

underlying hidden pattern and reduced the prediction error.

The total computational time required for executing the

plant wide modelling was recorded for both ML models

each incorporating the GMM. For GBM-GMM model, the

complete process was executed in 27.7 seconds, whereas

RF-GMM model achieved the same in 60.5 seconds. These
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timings reflect the overall computational efficiency from

model initialisation to completion. In addition, the sequential

predictive performance in terms of error propagation across

the process models was analysed. Figure 15 presents the

error propagation plots of GBM and RF algorithms, both

individually and when integrated with GMMs. When GBM

and RF were employed independently to model each pro-

cessing stage sequentially, error propagation was observed

to commence relatively at the first processing stage Twin

Screw Granulation (TSG) and continued to escalate through

to the Tablet Press (TP) stage as indicated by the increas-

ing NRMSE magnitudes. This pattern suggests that certain

unit operations introduce more variability in intermediate

material properties, which becomes more challenging for the

models to capture. This propagation effect was particularly

pronounced in the TP stage, where prediction errors impacted

the accurate predictions of the tablet tensile strength. In

contrast, substantial improvements were observed when

GMMs were integrated with both algorithms. The GMM ver-

sions of each model tend to exhibit lower NRMSE values

than the corresponding individual implementations, indicat-

ing improved predictive accuracy. For example, Fig. 15(a)

illustrates the error propagation trends associated with the

GBM-GMM integrated model, where a decline in NRMSE

was evident from the third stage onwards. Similarly, the

RF-GMM based model has showed a outstanding improve-

ment in the overall prediction as shown in Fig. 15(b), where

the TP stage exhibited an overall error reduction of 27%.

Furthermore, the model performance plots for tablet tensile

strength prediction, presented in Fig. 16, illustrate the impact

of GMM integration on both GBM and RF models. For GBM,

integrating GMM resulted in an increase in R2 to 0.86, along

with an RMSE of 0.20 MPa, indicating that the majority

of predictions fall within the 10% error band. Similarly, the

RF model exhibited notable improvements when augmented

with GMM, achieving an R2 value of 0.90 and an RMSE

of 0.17 MPa, signifying closer alignment of predicted values

with actual data while maintaining consistency within the

10% error bands. It is worth emphasising that while GBM

and RF serve as the primary predictive models capturing

complex, non-linear relationships among critical material-

process parameters, and final quality attribute, GMMs were

specifically employed to model residual errors produced by

these primary models. The integration of GMM complements

the ML predictions by explicitly addressing prediction uncer-

tainties through the probabilistic characterisation of residual

errors. The fundamental rationale underpinning the effective-

ness of GMM lies in its capacity to represent complex error

distributions via multiple Gaussian components, systemati-

cally accounting for structured errors and reducing predictive

uncertainty across the CTL data. Hence, despite limitations

in predictive performance noted in Figs. 11 and 13, the

integrated framework effectively leverages the predictive

strengths of ML models and the probabilistic error-handling

capability of GMM. For instance, the RF-GMM based model

Fig. 15 The plots show error propagation through process stages with GBM and RF alone (blue squares) and when GMMs is integrated (yellow

diamonds)
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Fig. 16 The performance of GBM and RF models on unseen accumulated process stages data after the integration of error modelling approach

using GMMs

performance in Fig. 16 demonstrates reduced prediction

dispersion and adheres more closely to the actual tablet

tensile strength line, compared to the RF model predictions

illustrated in Fig. 13. This is because the GMM refines the

model predictions at each process stage to improve the final

prediction of the final tensile strength. Similarly, the GBM-

GMM model followed a similar performance in mitigating

the uncertainty presented by the primary model, aiming

to improve the overall predictions. Nonetheless, deviations

beyond the error bands within both integrated models per-

sist. This may be attributed to the uncertainties resulting

from process variability and complex process interactions,

which could not be fully captured or explained by either

model. Furthermore, limitations inherent in the ML model

approaches constrain their ability to mitigate such uncertain-

ties without further refinement, expanded training datasets,

or more advanced modelling strategies. The overall enhance-

ment in predictive accuracy underscores the effectiveness of

GMMs in refining model predictions and mitigating error

propagation across sequential stages, implying that GMM

integration reduces predictive uncertainty across the entire

manufacturing chain. Incorporating GMM to model errors

between process stages reveals hidden patterns, thus lead-

ing to lower overall error propagation and more consistent

predictions of end-product quality.

Conclusion

Advancements in modelling the continuous manufacturing of

pharmaceutical tablets have been presented in this research.

A comprehensive study was conducted on a pilot plant

manufacturing line, to show how process parameters sys-

tematically influence each processing stage and the final

product, highlighting the complexity of multivariate sys-

tems. This resulted in a representative dataset that facilitated

the development of a plant-wide modelling framework in

which all the utilised processing stages of the continuous

tabletting line were sequentially integrated to form a plant-

wide model from powder to tablet using machine learning

techniques. Due to the complex behaviour of multivari-

ate processing systems and their inherent variability, this

sequential framework integrated GMMs to capture the varia-

tions between processing stages, enhancing model predictive

performance. As a result, remarkable improvements in pre-

dictive accuracy were achieved, with R2 value of 0.90 using

the Random Forest model. The findings provide a pow-

erful tool for implementing Quality by Design (QbD) in

the pharmaceutical industry, revealing intricate process pat-

terns and dependencies. This modelling framework for the

continuous manufacturing of pharmaceutical tablets under-

scores the necessity of incorporating all critical processing
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stages that sequentially transform powder into tablets. The

inclusion of these interconnected stages enables the tracking

and modelling of process variations that may arise between

process stages. Consequently, this comprehensive approach

facilitates the development of predictive tool that functions

as an experimentation platform enabling systematic explo-

ration and interpretation of the operational design space

without the need for physical operation. While the developed

plant-wide modelling framework has demonstrated promis-

ing results, certain limitations should be acknowledged. For

example, the developed modelling framework focused on

operational-level variability under fixed raw material, yet the

framework could be extended to incorporate raw material

attributes for broader applicability. The pilot-plant dataset,

though comprehensive, may not encompass the full range

of possible process variations. Although the integration of

GMMs has improved the primary ML models predictive

capabilities and reduced error propagation across stages,

some degree of residual uncertainty remains. Hence, future

research will focus on the utilisation of more advanced

modelling algorithms particularly those that offer enhanced

learning capabilities, inherently address uncertainty, and

facilitate interpretability such as Fuzzy Inference Systems.

These advancements are expected to contribute towards the

development of holistic models capable of identifying com-

plex patterns and providing explanations of the multivariate

process interactions within the continuous tablet manufac-

turing. In conclusion, this study lays the groundwork for

more promising predictive modelling in the continuous man-

ufacturing of pharmaceutical tablets, offering a path toward

optimised and controlled pharmaceutical manufacturing pro-

cesses in line with a ‘right-first-time’ concept.
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