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ABSTRACT

Background: Histidine- containing dipeptides (HCDs) have been reported to have anti- inflammatory and antidiabetic prop-

erties. Yet, no previous reviews have examined the impact of HCDs on Type 2 diabetes (T2D) risk factors (e.g., obesity) and 

progression (e.g., microvascular and macrovascular complications). In this scoping review, we aimed to thoroughly examine the 

evidence on the effects of HCDs, particularly carnosine, which is the most studied HCD, on T2D risk factors and complications 

and the underlying mechanisms of action.

Methods: We systematically searched Ovid- Medline, Embase, CINAHL, Scopus, Web of Science, and Cochrane Library from 

inception to December 2023. We included experimental studies (animal models and cell studies), observational studies, and rand-

omized controlled trials (RCTs) investigating the mechanism of action of HCDs and the effects of supplementation in individuals 

with obesity and/or T2D.

Results: The primary literature search yielded 10,973 articles and 121 studies were eligible for inclusion. HCDs have been shown 

to mitigate inflammation and improve lipid profile and glycemic control in obesity and T2D with or without microvascular and 

macrovascular complications. However, most studies are experimental, focusing on elucidating the potential mechanisms of 

action of HCDs, with limited observational data or RCTs of individuals with obesity and/or T2D. No RCTs have investigated 

the effects of HCDs in individuals with neuropathy, retinopathy, cerebrovascular disease, and cardiovascular disease within a 

diabetic context.

Conclusions: Although the existing evidence, predominantly from preclinical studies, generally supports the use of HCDs for 

improving cardiometabolic health, further human studies, especially RCTs with adequately powered sample sizes, are needed.

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial- NoDerivs License, which permits use and distribution in any 

medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.

© 2025 The Author(s). Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.
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1   |   Introduction

Type 2 diabetes (T2D) is an increasingly important public 
health concern, with its worldwide prevalence tripling from 
151 million in 2000 to 537 million in 2021 [1]. By 2045, the 
total number of individuals with T2D is expected to rise by 
46% if effective prevention and treatment measures are not 
implemented [1]. Most individuals with T2D have concomi-
tant overweight or obesity, which are critical modifiable risk 
factors for T2D development and progression [2]. The two 
main features of T2D are insulin resistance and pancreatic 
β- cell dysfunction, both of which are exacerbated by obesity 
[3]. Insulin resistance plays a substantial role in atheroscle-
rotic cardiovascular disease (ASCVD), which is a major cause 
of morbidity and mortality among patients with T2D [4]. 
ASCVDs associated with T2D, including coronary artery dis-
ease and stroke, are the major causes of mortality for at least 
50% of patients with T2D [5, 6]. Given the high incidence of 
obesity, T2D, and ASCVD, preventive approaches to reduce 
the burden of these diseases should be prioritized.

Although glycemic control and weight management have long 
been targeted in T2D management, the treatment of T2D re-
mains challenging due to the side effects of antidiabetic med-
ications and the challenges associated with lifestyle changes 
[7]. Conventional medications for T2D management including 
insulin, sulfonylureas, and thiazolidinediones, tend to contrib-
ute to additional weight gain [8]. Despite achieving good glyce-
mic control using these glucose- lowering agents, about half of 
individuals with T2D die of ASCVD [9, 10]. Newer medications 
such as sodium- glucose cotransporter- 2 (SGLT2) inhibitors and 
glucagon- like peptide- 1 (GLP- 1) analogs produce weight loss 
and reduce ASCVD incidence [11–13] but have important side 
effects. Bariatric surgeries including sleeve gastrectomy and 
Roux- en- Y gastric bypass are effective in diabetes remission and 
losing weight [14]. However, long- term efficacy and safety data 
are lacking, and surgical risk and cost- effectiveness need to be 
considered. Lifestyle modification and subsequent weight loss 
have remained the cornerstone of treatment for obesity, T2D, 
and its associated complications [15]. Although effective, these 
treatments face several challenges associated with sustaining 
lifestyle changes, including adherence difficulties at the popu-
lation level, socioeconomic factors, lack of motivation, and envi-
ronmental factors. Therefore, there is an urgent need for novel 
approaches that are safe, cost- effective, and easy to implement 
on a broad scale.

Histidine- containing dipeptides (HCDs) have shown some 
promise in mitigating diabetes- related risk factors and com-
plications [16]. One HCD of interest is carnosine, also known 
as β- alanyl- L- histidine, which was discovered during a study 
performed by Gulewitsch and Amiradžibi [17] at Charkow 
University in Ukraine and was extracted from Liebig's meat 
extract in 1900. This naturally occurring dipeptide is synthe-
sized from β- alanyl (formed by uracil and thymine degrada-
tion in the liver) and L- histidine (derived entirely from diet), 
with the reaction catalyzed by the enzyme carnosine synthe-
tase 1 (CARNS1) [18, 19]. Carnosine is highly abundant in 
meat, particularly red meat, and its methylated derivatives 
(anserine and ophidine/balenine) are present in skeletal and 
cardiac muscles [18, 20]. Homocarnosine is another HCD 

that is brain- specific in the mammalian nervous system and 
is made of γ- aminobutyric acid (GABA) and L- histidine [21]. 
Carnosine levels in the human body depend on several fac-
tors, with aging, female gender, and vegetarianism linked to 
decreased muscle carnosine levels [22–24]. Considering the 
diversity of human dietary habits and the aforementioned 
factors, most humans would likely benefit from dietary sup-
plements as the most effective means to achieve and sustain 
higher carnosine levels [25].

Mechanisms of action of carnosine include anti- inflammatory, 
antioxidant, and anti–advanced glycation end product (AGE) 
properties [26, 27], as well as the ability to modify the energy 
metabolism of immune cells [28, 29]. Given its promising 
therapeutic function, carnosine has been studied in numerous 
experimental models of disease including obesity, T2D, and 
cardiovascular disease (CVD) [16, 24, 30–37]. However, to our 
knowledge, there has been no previously published evidence 
synthesis examining the impact of HCDs on T2D risk factors 
and complications. As the body of evidence around HCDs 
continues to expand, there is an increasing need to synthesize 
the research and identify areas where knowledge gaps exist 
[38–40]. To this end, we conducted a systematic scoping re-
view to synthesize all available evidence from experimental, 
animal, and human studies examining the effects of carnosine 
and other HCDs on T2D risk factors (obesity, poor glycemic 
control, cardiovascular risk measures [e.g., dyslipidemia and 
hypertension], inflammation, and oxidative stress), as well as 
microvascular and macrovascular complications, and to iden-
tify relevant knowledge gaps.

2   |   Materials and Methods

2.1   |   Study Protocol and Registration

This review is reported in accordance with the updated 2020 
Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) guidelines [41]. The protocol was registered 
a priori on open science framework (OSF) (registration number: 
https:// doi. org/ 10. 17605/  OSF. IO/ 8XQPU ).

2.2   |   Search Strategy

A comprehensive systematic literature search was conducted 
from inception to April 2023 and then updated in December 2023 
across the following electronic databases: Ovid/Medline, Embase, 
CINAHL, Scopus, Web of Science, and Cochrane Library. The fol-
lowing keywords were used in the primary searches: “carnosine” 
OR “beta alanyl histidine” OR “anserine” OR “beta alanyl 3 meth-
ylhistidine” OR “ophidine” OR “beta- alanine” OR “3 aminopropi-
onic acid” OR “N- Acetyl- Carnosine” OR “N- Acetyl- L- Carnosine” 
OR “beta alanyl l histidine” OR “beta- ala- his” OR “l histidine 
beta alanyl” OR “l alpha alanyl l histidine” OR “histidine” OR 
“balenine.” The search terms were also translated into the appro-
priate subject terms used in the six literature databases. Details of 
the search strategy are presented in Table S1. Broad search terms 
were used intentionally to capture the maximum number of rel-
evant articles. The search string did not include limits on time 
frame, setting, or language; however, non- English papers were 
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excluded at the subsequent screening stage. In addition, a manual 
search of the reference lists of relevant studies was performed to 
identify additional studies.

2.3   |   Study Selection

The Population, Intervention, Comparison, Outcomes, and Study 
(PICOS) design framework was used to determine the eligibility 
of articles, as outlined in Table 1. Briefly, we included studies of 
any design as well as meta- analyses, which examined the effects 
of carnosine on T2D risk factors or complications in any popula-
tion. Exclusion criteria were as follows: (1) studies investigating 
the effect of HCDs in combination with other active components 
(other combined interventions such as diet and/or exercise were 
included if the intervention was delivered in the same way to both 
groups); (2) studies not evaluating an outcome of interest for the 
present systematic scoping review; and (3) non- English papers, 
non–peer- reviewed literature, narrative reviews, systematic re-
views without meta- analyses, letters, commentaries, editorials, 
book chapters, conference abstracts, and case reports.

A systematic review management software (Covidence; Veritas 
Health Innovation Ltd.) was used to manage all the papers from 
the searches and subsequent screening. After removing du-
plicates, title and abstract screening was performed for all the 
identified studies by two independent reviewers (S.S. and R.K.). 
Then, a full- text review was performed to identify studies that 
satisfied all the eligibility criteria. Any discrepancies regarding 
the eligibility of the studies were resolved by a third reviewer 
(A.M.) to reach consensus.

2.4   |   Data Extraction and Synthesis

Two independent reviewers (S.S. and R.K.) extracted data 
from eligible articles using a predefined data extraction form. 
Descriptive information was extracted from all articles includ-
ing authors and year of publication, country, study design, 
population and sample size, intervention/exposure regimens 
or definitions, outcome measures, and key findings, as well 
as corroborating data where relevant. Additional information 
also extracted from articles included the mechanisms by which 
HCDs exerted anti- inflammatory, antioxidant, and anti- AGE 
properties.

3   |   Results

3.1   |   Study Selection

The process of study selection is shown in Figure  1. The pri-
mary literature search yielded 10,973 studies, and an additional 
4458 were identified in the updated search. A total of 6479 du-
plicates were removed and 8952 were assessed by title and ab-
stract. Of these, 1567 were eligible for full- text review of which 
1446 records were excluded. No additional studies were identi-
fied via manual checking of reference lists of relevant studies or 
reviews. Thus, a total of 121 studies were eligible for inclusion 
in this review. We excluded any mixed interventions provided 
with HCDs, as we could not isolate the sole effects of HCDs 
[24, 32, 42–49]. The 121 included studies were published be-
tween 1994 and 2023 and consisted of 90 experimental studies 
(68 animal models and 22 cell studies), 17 observational studies, 
10 randomized controlled trials (RCTs) (reported in 19 papers), 
and four systematic reviews with meta- analyses.

3.2   |   Effects of HCDs on Obesity- Related Outcomes

Obesity is an important risk factor for T2D as well as several 
other chronic conditions, including CVD, chronic kidney disease 
(CKD), and several cancers [50]. Marked by the dysregulation 
of adipose tissue, this multifactorial and progressive disor-
der initiates an inflammatory cascade and promotes systemic 
insulin resistance [50]. In turn, obesity and its contribution to 
the dysregulation of glucose and fatty acid metabolism have 
detrimental effects on several organs including the pancreas, 
heart, arteries, and liver. The severity of these adverse effects 
is closely correlated with the degree and distribution of excess 
body weight [50, 51]. Details of the included studies related to 
the effect of HCDs on T2D risk factors, including obesity, are 
summarized in Table S2.

TABLE 1    |    PICOS criteria for inclusion of studies.

Parameters Inclusion criteria

Patient or population All the individuals and 
experimental models 

with obesity, T2D with or 
without microvascular and 

macrovascular complications

Intervention, prognostic 
factor, and exposure

Carnosine, beta- alanine, 
or related HCDs (anserine, 

NAC, etc), administered alone 
(pure) and in any form (oral, 

intravenous, or intramuscular)

Comparator (if 
appropriate)

Comparison with placebo, usual 
care, or any pharmacological 

or nonpharmacological 
intervention(s)

Outcome Those which reported outcome 
interest related to obesity, 

T2D, and its microvascular 
(retinopathy, nephropathy, and 
neuropathy) and macrovascular 

(cardiovascular disease, 
cerebrovascular disease, and 

peripheral artery disease) 
complications. Also, the studies 

evaluating mechanisms of 
action in which HCDs exerted 

anti- inflammatory, antioxidant, 
and anti- AGE properties

Study design Experimental design, 
longitudinal and cross- sectional 

studies, randomized clinical 
trials, and meta- analyses

Abbreviations: AGEs, advanced glycation end products; HCDs, histidine- 
containing dipeptides; NAC, N- acetylcarnosine; T2D, type 2 diabetes.
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3.2.1   |   Experimental Studies (In Vitro and In Vivo)

Experimental data reports some benefits of HCDs for obesity, 
though results are inconsistent. Body weight and abdominal 
obesity were significantly reduced with the use of L- carnosine 
in high- fat diet- fed rats and rats with metabolic syndrome in 
two studies [52, 53], whereas another study reported no differ-
ences in body weight between carnosine- treated and untreated 
rats with T2D [54]. Histidine supplementation suppressed 
food intake and fat accumulation in another rat study, sug-
gesting that HCDs may be beneficial in obesity management 
[55]. Similarly, knockout of carnosine dipeptidase1 (CNDP1), 
which increases carnosine levels, prevented weight gain in 
zebrafish [56], whereas cats consuming diets enhanced with 
L- carnosine gained more lean body mass compared with cats 
consuming a control diet [57]. L- carnosine supplementation is 
proposed to decrease body weight via the browning and ther-
mogenesis of adipocytes, as previously demonstrated in obese 
rats [58]. This is thought to occur via increased irisin concen-
trations, a myokine that modifies adipogenesis and promotes 
the browning of adipose tissue [58]. Based on these studies, 
targeting brown adipose tissue may be an effective strategy 
for obesity management because of its effect on energy me-
tabolism [58].

3.2.2   |   Human Studies

In line with most experimental studies, a cross- sectional study 
involving 88 participants with overweight or were obese showed 

that dietary histidine intake was inversely related to body mass 
index (BMI), waist circumference, energy intake, and prevalence 
of overweight/obesity in northern Chinese adults [59]. Similarly, 
there was an inverse relationship between histidine to protein 
intake ratio and energy intake among young women [60]. A 
higher dietary intake of histidine contributed to increased pro-
duction of histamine, which is known to play an important role 
in energy expenditure [61].

RCTs have produced mixed results, albeit with limited data. 
Histidine supplementation (4 g/day) for 12 weeks was shown 
to reduce BMI, fat mass, and nonesterified fatty acids (NEFA) 
in one trial of 92 women with obesity [62]. In another RCT, 
carnosine supplementation did not improve body weight or 
BMI in 54 participants with T2D, but reduced fat mass and 
increased fat- free mass were reported [63]. In contrast, sup-
plementation with β- alanine for 6 weeks increased the time to 
exercise exhaustion but did not change anthropometric mea-
surements in sedentary women classified as overweight [64]. 
We have also shown that 12- week carnosine supplementation 
(2 g/day) did not change body weight, BMI, and percentage 
of body fat in 30 individuals without diabetes but with over-
weight or obesity [36] and in 43 individuals with prediabetes 
and T2D [65].

3.3   |   Effects of HCDs on Glycemic Outcomes

Dysglycemia can result from insulin resistance, defective or in-
sufficient insulin secretion, or both. Insulin resistance results 

FIGURE 1    |    PRISMA flow diagram of the screening and selection process for the scoping review of the effects of carnosine and histidine- 

containing dipeptides on cardiometabolic health.
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in hyperinsulinemia, which over time results in a decline in β- 
cell function, impaired glucose tolerance, and hyperglycemia. 
Insulin resistance and hyperglycemia are related to other car-
diometabolic risk factors including chronic low- grade inflam-
mation, accumulation of AGEs, and subsequent development of 
T2D- associated complications [66, 67].

3.3.1   |   Experimental Studies (In Vitro and In Vivo)

Experimental data have produced mixed results for HCDs in 
relation to glycemic outcomes. Several studies have demon-
strated that carnosine and other HCDs reduce plasma glucose 
and HbA1c levels in rodent models of diabetes [53, 54, 68–78]. 
Similarly, some studies reported that carnosine and histidine 
increased insulin secretion in experimental models of both 
type 1 diabetes (T1D) and T2D [68, 69, 77, 79–82]. Some stud-
ies report that carnosine is lower in the cardiac muscle of di-
abetic rats compared with healthy controls [83] and increases 
glucose uptake in skeletal muscle cells [79, 80]. In an in vitro 
study of kidney tissue of mice, L- carnosine showed consider-
able antidiabetic activity through inhibition of α- glucosidase 
and α- amylase [84]. In a cross- species study, muscle carnosine 
levels were found to increase with progressive glucose intoler-
ance in both rodents and human subjects, with significantly 
higher levels observed in individuals with prediabetes and di-
abetes compared to lean controls. This suggests that elevated 
muscle HCDs may serve as a compensatory mechanism to 
mitigate cellular damage under conditions of impaired glu-
cose tolerance [85]. However, not all studies report beneficial 
outcomes; some found no improvement in glucose homeo-
stasis following carnosine or HCD intervention [86, 87], and 
others observed no effects on insulin concentrations in rats 
with metabolic syndrome [53] or insulin resistance in diabetic 
rodents [69, 81, 88].

3.3.2   |   Human Studies

Human observational data are largely in agreement with find-
ings from animal models. In a case–control study of 14 patients 
with T2D and 14 matched controls, those with T2D had less 
muscle carnosine content, which is thought to facilitate their 
higher insulin resistance [89]. These results are supported by 
a cross- sectional study of 88 participants with overweight or 
obesity, whereby dietary histidine intake, which would increase 
carnosine synthesis, was inversely related to insulin resistance 
[59]. Moreover, other cross- sectional studies in individuals with 
overweight or obesity (n = 65) found that muscle carnosine levels 
were inversely correlated with 2- h glucose levels [90] and insu-
lin resistance [91], whereas serum carnosinase- 1 (CN- 1) (which 
degrades carnosine in serum and tissue) was negatively associ-
ated with insulin sensitivity [90].

In clinical trials, carnosine supplementation (1 g/day) for 12 weeks 
improved glycemic control in 85 patients with T1D with nephrop-
athy [92] and patients with T2D [63, 93]. In addition, 2 g/day of car-
nosine supplementation for 12 weeks reduced insulin resistance 
in 24 sedentary individuals with overweight or obesity [94, 95] 
and improved glucose parameters in our pilot trial of 30 individ-
uals without diabetes but with overweight and obesity [36]. When 

supplemented for 14 weeks in 43 individuals with prediabetes or 
T2D, it also reduced blood glucose without significant changes in 
insulin secretion during an oral glucose tolerance test [96]. The 
benefits of anserine, another HCD, have also been investigated in 
relation to glycemic control in healthy individuals, demonstrat-
ing reduced blood glucose during glucose tolerance testing [73]. 
Histidine supplementation administered at 4 g/day for 12 weeks 
improved insulin resistance measured by the homeostatic model 
assessment for insulin resistance (HOMA- IR) among 92 women 
with obesity and metabolic syndrome [62]. In contrast, 28 days of 
supplementation with β- alanine (4 g/day) did not change insulin 
sensitivity and insulin resistance in a small study of 12 participants 
with T2D [97].

Findings from a systematic review and meta- analysis involving 
16 animal studies and four clinical trials of individuals with 
obesity and all types of diabetes showed that carnosine or β- 
alanine supplementation reduced HbA1c, fasting glucose, and 
HOMA- IR in both humans and rodents and fasting insulin in 
humans [98]. Another systematic review and meta- analysis in-
volving three studies revealed that carnosine significantly de-
creased fasting glucose and HbA1c [24]. However, in another 
meta- analysis with four RCTs, carnosine reduced HbA1c only, 
with no effects on fasting glucose and HOMA- IR [99].

3.4   |   Effects of HCDs on Cardiovascular Risk 
Measures

Cardiovascular risk factors, including dyslipidemia (hypertri-
glyceridemia and low levels of high- density lipoprotein cholesterol 
[HDL- C]) and hypertension, are important precursors of T2D, 
often presenting as a combination of symptoms termed “metabolic 
syndrome” [66]. Diabetes- associated dyslipidemia and impaired 
lipid metabolism are also indicative of potential macrovascular 
complications arising with the progression of T2D [67].

3.4.1   |   Experimental Studies (In Vitro and In Vivo)

In high- fat and high- cholesterol- fed rats, treatment with L- 
carnosine resulted in improved serum lipid profiles through 
reduced levels of low- density lipoprotein cholesterol (LDL- C) 
[52, 53, 77, 100] and increased levels of HDL- C [100]. Carnosine 
supplementation also resulted in a significant reduction in obesity- 
related dyslipidemia in obese rats [31, 58]. In addition, histidine 
and carnosine were found to reduce the expression of sterol regu-
latory element- binding proteins (SREBP)- 1c and SREBP- 2 in high- 
fat high- carbohydrate- fed rodents [53, 101]. This led to the reduced 
expression of fatty acid synthase and 3- hydroxy- 3- methylglutaryl 
coenzyme A (HMG- CoA) reductase [101], thus reducing levels of 
triglycerides (TG) [101] and total cholesterol (TC) [53, 101].

3.4.2   |   Human Studies

In a cohort study of 602 adults with mild to high CVD risk, 
urinary levels of nonconjugated carnosine and its acrolein 
conjugates (carnosine- propanal and carnosine- propanol) were 
measured [102]. Both conjugated and non- conjugated urinary 
carnosine were positively associated with CVD risk factors, 
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including BMI and diabetes diagnosis, and negatively associ-
ated with HDL- C levels. However, no associations were found 
between these markers and other CVD risk factors, including 
blood pressure, TC, fibrinogen, platelet aggregates, and high- 
sensitivity C- reactive protein (hsCRP) [102]. Although these 
findings suggest that urinary carnosine and its conjugates may 
serve as informative biomarkers for CVD risk assessment, the 
study did not assess the prospective predictive value of this 
marker for future CVD events [102]. In a prospective cohort 
study, the 5L–5L (homozygosity for 5- leucin repeat) genotype in 
CNDP1 was associated with increased CVD mortality in women 
with T2D [103].

In addition to the limited observational data, small RCTs have 
been conducted to date, demonstrating the potential antihy-
perlipidemic properties of HCDs. Carnosine (1 g or 2 g/day for 
12 weeks) was shown to improve the plasma lipidome in 24 sed-
entary individuals with overweight and obesity [94]; improve 
TG in 54 patients with T2D [63, 93]; and improve TG, TC, and 
HDL- C in 85 patients with T1D with nephropathy [92]. However, 
other RCTs reported no improvements in plasma TG or TC lev-
els among 30 participants with overweight or obesity [36], and 
no change in any lipid profile parameters in 43 individuals with 
prediabetes and T2D [104], following similar carnosine supple-
mentation regimens (2 g/day for 12–14 weeks).

3.5   |   Effects of HCDs on Inflammatory 
and Oxidative Stress Biomarkers

Inflammation and oxidative stress are key risk factors for the 
development of metabolic diseases, including obesity, T2D, and 
CVD, and are thought to be linked with high rates of mortal-
ity among these individuals [105, 106]. An inflammatory state 
occurs when the production of pro- inflammatory cytokines, 
including interleukin (IL)- 6, IL- 1β, and tumor necrosis factor- α 
(TNF- α) exceeds the circulating levels of anti- inflammatory 
mediators, such as IL- 10 and transforming growth factor- β1 
(TGF- β1) [107]. Oxidative stress is a state in which there is an 
imbalance between the generation of reactive oxygen species 
and the processes responsible for eliminating them [108]. The 
primary mechanism for detoxification involves glutathione 
(GSH) and the superoxide dismutase (SOD) enzyme [109, 110]. 
The relationship between oxidative stress and inflammation can 
create positive feedback, whereby oxidative stress triggers the 
production of inflammatory mediators, in turn promoting in-
flammation. This inflammatory response further increases the 
generation of ROS, perpetuating oxidative stress [111, 112].

3.5.1   |   Experimental Studies (In Vitro and In Vivo)

In both cell culture studies and animal models, carnosine and 
HCDs have been found to mitigate oxidative stress [77–80, 84, 87, 
88, 113–119], lipid peroxidation [72, 75, 86, 87, 120], and chronic 
low- grade inflammation [75, 78, 88, 116, 119]. In vitro studies re-
ported that carnosine mitigated oxidative stress, inflammation, 
and apoptosis [121–126]. However, L- carnosine had no effects 
on leptin and adiponectin concentrations in rats with metabolic 
syndrome [53], and its effects on antioxidant capacity remain 
controversial [58, 72, 75, 86, 87, 127–130].

3.5.2   |   Human Studies

Despite compelling evidence from animal studies, human data 
remain sparse. A case–control study (n = 452) found that serum 
histidine levels were significantly lower in women with obesity 
compared to non- obese controls, with histidine negatively asso-
ciated with inflammation and oxidative stress in obesity [131]. 
A cross- sectional study showed that dietary histidine intake 
was inversely related to inflammation and oxidative stress in 88 
participants with overweight or obese [59]. The findings from 
this observational study were supported by a clinical trial of 100 
women with obesity and metabolic syndrome, whereby 4 g/day 
of histidine supplementation for 12 weeks ameliorated inflam-
mation and oxidative stress [62]. In addition, supplementation 
with 1 g/day of carnosine for 12 weeks improved antioxidant de-
fense and reduced oxidative stress biomarkers, serum levels of 
TNF- α and AGEs as add- on therapy in 54 patients with T2D, but 
there was no effect on RAGEs, L- 1β, and IL- 6 [63, 93]. Carnosine 
supplementation (2 g/day for 12 weeks) in 29 individuals with 
overweight led to the detection of carnosine–acrolein adducts in 
urine, indicating that carnosine can trap acrolein in the body, 
potentially reducing its harmful effects associated with oxida-
tive stress and disease progression [132, 133]. However, 2- g/day 
carnosine for 14 weeks did not improve inflammation in 43 in-
dividuals with prediabetes and T2D [134]. Consistent with the 
findings from experimental studies, carnosine supplementation 
did not improve serum adiponectin, leptin, or adipsin but nor-
malized serum resistin, in the small pilot RCT of 24 individuals 
with overweight/obesity [35, 36].

3.6   |   Effects of HCDs on Microvascular T2D 
Complications

Prolonged elevation of glucose levels, as is seen in poorly con-
trolled diabetes, results in damage to multiple organs [135]. 
Diabetic nephropathy (DN) is one of the major microvascular 
complications of diabetes with persistent albuminuria, nodular 
glomerular lesions, and a progressive decline in the glomerular 
filtration rate (GFR) [136]. Diabetic retinopathy is another im-
portant complication of T2D which stands as the leading cause 
of visual impairment [137]. The progression of this condition 
begins with the development of multiple microaneurysms and 
occasional hemorrhages and can worsen proliferative retinopa-
thy and maculopathy with neovascularization and the presence 
of hard exudates within the macula [137]. Diabetic neuropathy 
is also caused by damage to the peripheral and autonomic ner-
vous systems [138]. Details of the included studies related to the 
effect of HCDs on microvascular complications associated with 
diabetes are summarized in Table S3.

3.6.1   |   Experimental Studies (In Vitro and In Vivo)

Several studies have assessed the biological association be-
tween carnosine metabolism and diabetes complications. 
Certain variations in the CN- 1 gene have been associated 
with progression of diabetic kidney disease [69, 74, 139–141]. 
However, knockout of CNDP1 alone was not sufficient to pro-
tect from diabetic complications in zebrafish [56]. In exper-
imental rodent models of diabetes, carnosine was effective 
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in reducing albuminuria [68, 69, 126, 141, 142], glomerular 
hypertrophy [68, 69], and nodular glomerular lesions [126]. 
Carnosine has shown potential in protecting the kidneys of di-
abetic rats from podocyte apoptosis and loss [143]. Carnosine 
has been shown to increase nephroprotection through en-
hancing hydrogen sulfide (H2S) synthesis in human proxi-
mal tubular cells and endothelial cells [144]. CN- 1 knock- out 
decreased kidney fibrosis in streptozotocin- induced diabe-
tes [84]. Additionally, a novel derivative of carnosine called 
FL- 926- 16 has demonstrated beneficial effects in reducing 
glomerular matrix protein expression, cell apoptosis, and cir-
culating and tissue oxidative and carbonyl stress, and renal 
inflammatory markers in adult male mice [116]. It is worth 
noting that the reported effects of anserine on the develop-
ment of T2D and DN are conflicting, with some showing ben-
efits [71, 145–147] and others reporting no effect [148].

Transforming growth factor β (TGF- β) overexpression is asso-
ciated with excessive deposition of extracellular matrix (ECM), 
one of the main contributors to diabetic kidney disease [114, 147]. 
In human podocyte and mesangial cells, carnosine prevented 
TGF- β overexpression and ECM accumulation [149, 150], sug-
gesting a renoprotective property of carnosine. In addition, 
carnosine is beneficial in DN alleviation by targeting glycine N- 
methyltransferase (GNMT), which is a key enzyme for mediat-
ing renal inflammation and fibrosis [145].

In rat models of diabetic retinopathy, carnosine supplementation 
was shown to mitigate oxidative damage [151], prevent retinal 
vascular damage [152], and improve retinopathy [153]. Carnosine 
has not been studied in models of diabetic neuropathy; there is 
only one study investigating the effect of zinc L- carnosine on the 
changes of nociceptive threshold, suggesting a beneficial effect for 
reducing thermal hyperplasia, thus protecting mice from progres-
sive diabetic neuropathy [46]. In addition, carnosine significantly 
enhanced wound healing in db/db mice, likely through increased 
expression of growth factors and cytokines, supporting its thera-
peutic potential in diabetic wound care [154].

3.6.2   |   Human Studies

In line with experimental studies, a case–control study showed 
that an increase in CN1 concentration was correlated with a de-
cline in renal function [155, 156]. Although experimental models 
did not support a strong role for the CNDP1 gene, a case–control 
study reported that patients with diabetes with two copies of the 
CNDP1 Mannheim gene variant, which has the lowest number 
of leucin, were less susceptible to DN [150]. Certain variations in 
the CNDP1 gene or (CNDP1 and CNDP2) genes have also been 
linked to the progression of diabetic kidney disease in the obser-
vational literature of individuals with T2D [150, 157–159]. This 
is supported by a systematic review and meta- analysis involv-
ing nine observational studies, where CNDP1 polymorphisms 
were associated with susceptibility for DN [160]. In contrast, 
there was no association between DN and polymorphisms in 
the CNDP2–CNDP1 genomic region in one study of individuals 
with T1D [161]. In addition, there was no interaction between 
CNDP1 polymorphism and prediction of mortality in patients 
with T1D with DN [162]. Interestingly, another observational 
study showed that the association between the CNDP1 gene 

and susceptibility to T2D is sex- specific, with a lower frequency 
among women [163].

The potential nephroprotective properties of carnosine sup-
plementation have also been demonstrated in two RCTs of 
DN [92, 164]. Here, administration of carnosine (1–2 g/day for 
12 weeks) led to reductions in TGF- β expression in patients with 
T2D with nephropathy [164] and improvements in oxidative 
stress and renal function in patients with T1D with nephrop-
athy [92]. Conversely, carnosine supplementation (2 g/day for 
14 weeks) did not have renoprotective properties in 43 individu-
als with prediabetes and T2D [104].

3.7   |   Effects of HCDs on Macrovascular T2D 
Complications

Atherosclerosis is the leading cause of CVD in patients with 
T2D [67]. Peripheral vascular disease (PVD), also known as pe-
ripheral artery disease, is a progressive atherosclerotic disease 
leading to occlusion of arteries mainly supplying the lower ex-
tremities. This is an important macrovascular complication of 
T2D but can occur without diabetes [165, 166]. Patients with 
diabetes also have a high risk of cerebrovascular diseases, in-
cluding acute ischemic stroke, transient ischemic attack, and in-
tracerebral hemorrhage compared to their counterparts without 
diabetes [167]. Atherosclerosis is the main mechanism involved 
in the progression of these coronary artery, cerebrovascular, and 
PVDs in patients with T2D [168]. Details of the included studies 
related to the effect of HCDs on macrovascular complications 
associated with diabetes are summarized in Table S4.

3.7.1   |   Experimental Studies (In Vitro and In Vivo)

Early treatment with D- carnosine- octylester (DCO) has been 
shown to protect mice from vascular disease with the develop-
ment of more stable lesions [169]. In mice fed a Western diet, oral 
DCO prevented the formation of early atherosclerotic lesions 
by facilitating aldehyde removal largely mediated by oxidative 
stress modulation [170, 171]. Although the findings from human 
trials of the effect of carnosine on serum TG have been incon-
sistent, benefits were demonstrated in diabetic mice, whereby 
prolonged carnosine supplementation led to a significant de-
cline in TG and plaque formation as well as increased recruit-
ment of macrophages [172]. In nondiabetic rats with myocardial 
infarction, oral L- histidine and β- alanine supplementation in-
creased functional capacity and strength gained through aero-
bic exercise, but did not change echocardiographic parameters 
[173]. Carnosine also promoted postischemic revascularization 
through increased pro- angiogenic hypoxia- inducible factor- 1α/
vascular endothelial growth factor (HIF- 1 α/VEGF) signal-
ing, possibly through Fe2+ chelation in the ischemic limb of 
mice [174].

In an in vitro study employing rat vascular smooth muscle cells 
(VSMCs), carnosine attenuated calcification through inhibi-
tion of the mammalian target of rapamycin (mTOR) signaling 
pathway and osteoblastic trans- differentiation [175]. Using a 
similar cell culture model, carnosine prevented the proliferation 
of platelet- derived growth factor (PDGF)- stimulated VSMCs 
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through modulation of c- Jun N- terminal kinase (JNK) signal-
ing, and transcription factor–mediated matrix metalloprotein-
ase- 9 (MMP- 9) activity  [176]. Carnosine also prevented the 
modification of LDL- C by carbonyl compounds derived from 
glucose, effectively reducing the accumulation of cholesterol in 
human macrophages and inhibiting foam cell formation when 
exposed to glycated LDL- Cs [177].

Rat models of ischemia showed that pretreatment with car-
nosine [178] and carnosine- entrapped elastic liposomes [179] 
could be beneficial as a prophylactic treatment for brain tissue, 
whereas a similar animal model found that carnosine is effective 
in both prevention and postischemic treatment of stroke [180]. It 
is noteworthy that both L-  and D- carnosine exhibit similar effi-
cacy in mediating acute focal cerebral ischemia in both transient 
ischemic [181] and permanent models [182].

Recent studies also suggest that histaminergic neurotransmis-
sion plays a significant role in ischemic stroke [183], making it 
a promising therapeutic approach. A study of histidine decar-
boxylase knock- out mice, which are unable to convert carnosine 
into histamine, showed that carnosine had a neuroprotective 
effect, improving neurological function and reducing the size 
of brain infarcts [184]. Carnosine also reduced glutamate levels 
and maintained the glutamate transporter- 1 expression in isch-
emic astrocytes. This suggests that the neuroprotective mecha-
nism of carnosine does not rely on the histaminergic pathway 
but involves a regulation of glutamate excitotoxicity. Similar ob-
servations supporting the limited importance of the histamine 
pathway in carnosine- induced neuroprotection against isch-
emic injury have been reported by others [185, 186].

The neuroprotective effect of carnosine in ischemic stroke has 
been examined in various experimental studies, showing that 
carnosine reduces edema, MMP activation, and infarct volume 
and improves neurological function in rodent models [187–189]. 
L- carnosine protected brain tissue from autoblood- induced 
damage in hypertensive rats by preserving glutamatergic and 
gamma- aminobutyric acid GABAergic receptor activity, reduc-
ing swelling, and maintaining neuronal bioelectric function 
[190]. Carnosine also had a dual effect on N- methyl- D- aspartate 
(NMDA), the glutamate receptor, with an increase in their ex-
pression following long- term supplementation, alongside a de-
cline in NMDA binding postischemic stroke [191].

In a systematic review and meta- analysis comprising eight an-
imal studies, carnosine was effective when supplemented prior 
to or after the onset of ischemia in rodents [192]. The same study 
showed that the efficacy of carnosine was reduced when admin-
istered more than 6 h after ischemia [192].

3.7.2   |   Human Studies

In human clinical trials, 500 mg/day of carnosine for 24 weeks 
resulted in enhanced exercise capacity (VO2 max and 6- min 
walk test), and a higher quality of life in 50 patients with heart 
failure with reduced ejection fraction [193]. However, 2 g/day of 
carnosine supplementation for 14 weeks did not improve endo-
thelial function and arterial stiffness in 43 individuals with pre-
diabetes and T2D [104].

4   |   Discussion

To our knowledge, this is the first systematic scoping review 
to describe the breadth of available literature investigating 
the preventive and therapeutic effects of carnosine and other 
HCDs for T2D and its microvascular and microvascular com-
plications, as well as their cellular and molecular mechanisms 
of action. Carnosine and its derivatives have been extensively 
studied in the context of T2D and its related complications. 
However, the evidence is largely of an experimental nature, 
with conflicting results regarding the potential mechanisms 
of action of HCDs due to variations in dosing, study dura-
tions, and the use of different carnosine derivatives. On the 
other hand, there are limited observational studies and RCTs 
involving individuals with obesity and/or T2D, and no RCTs 
investigating the effect of HCDs in individuals with neuropa-
thy, retinopathy, cerebrovascular disease, and CVD within a 
diabetic context.

Results from studies on the effects of HCDs on T2D risk factors 
are conflicting. Although carnosine and histidine have been 
shown to contribute to obesity management by reducing body 
weight, BMI, fat mass, increasing lean body mass, and food in-
take suppression in both preclinical and some clinical settings 
[52, 55, 62], evidence from some RCTs failed to show improve-
ment of anthropometric measures following carnosine supple-
mentation [63]. The addition of carnosine to standard care might 
be a cost- effective option for T2D management [30]. However, 
findings from experimental and human studies on glycemic 
control are controversial, with some showing improvement 
[36, 53] and others no effect [97, 115]. A proposed mechanism 
in which carnosine exerts its antidiabetic property is the sup-
pression of carbohydrate- digesting enzymes such as α- amylase 
and α- glucosidase, which consequently results in a postprandial 
antihyperglycemic effect [194]. Carnosine has also shown anti-
hyperlipidemic properties in some animal and human studies 
[53, 93] but not others [36].

Data from clinical trials showed promising effects of HCDs on 
oxidative stress and chronic low- grade inflammation [63, 93], 
conflicting with the findings from experimental studies [58]. 
The potential for carnosine lies in its antioxidant activity of car-
nosine both directly as a scavenger of free radicals and in an indi-
rect way, by increasing endogenous antioxidant concentrations 
[20, 27]. Carnosine directly demonstrates antioxidant activity by 
acting as a nonenzymatic chelator of metal ions and a scavenger 
of free radicals [195]. As a result, it reduces the levels of reactive 
oxygen/nitrogen species (ROS/RNS) [196–198]. Carnosine also 
neutralizes toxic heavy metals and interacts with by- products 
of lipid peroxidation [199–201]. Indirectly, carnosine modulates 
cellular antioxidant response through up- regulation of nuclear 
factor erythroid 2- related factor (Nrf2) which modulates the ex-
pression of various genes, such as catalase, SOD, and thioredox-
in- 1 [72, 124, 202]. Carnosine can also activate and enhance the 
expression of peroxisome proliferator- activated receptor gamma 
coactivator 1- alpha (PGC1α), which is a transcription coactiva-
tor involved in various biological pathways, including glucose 
and fatty acid metabolism and lowering inflammation and oxi-
dative stress [203]. Coactivation of PGC1α and Nrf2 works syn-
ergistically to mitigate the harmful consequences of oxidative 
stress [27, 204–206].
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Carnosine has also been shown to have promising effects in 
the management of DN in some preclinical and clinical studies 
[68, 164]. This is thought to occur through a reduction in pro- 
inflammatory cytokine secretion and trapping reactive carbonyl 
species (RCS) while simultaneously increasing the synthesis 
and release of TGF- β1 [26]. This decreases matrix accumulation 
in the kidney and mitigates related pathologies, including DN 
[149]. Carnosine can also decrease the phosphorylation of p38 
mitogen- activated protein kinase (MAPK) and extracellular reg-
ulated kinases 1 and 2 (ERK1/2) in mesangial cells which may 
improve DN [207]. In contrast, some studies failed to show any 
improvement in renal outcomes, most likely due to the normal 
values of outcomes at baseline [104].

Although human studies are scarce, experimental evidence 
suggests that carnosine may be an effective therapeutic op-
tion in atherosclerosis and related conditions including PVD, 
through the prevention of plaque formation and inhibition of 
foam cells [208]. Carnosine may also have significant impacts 
on cardiac health through enhanced regulation of calcium 
and improvement of muscle contraction [209, 210] and may 
potentially reduce oxidative stress in myocardial disease mod-
els [209]. Given the ability of carnosine to cross the blood–
brain barrier, carnosine has also been suggested to provide 
neuroprotective effects in cerebrovascular diseases [211, 212]. 
Several studies have shown that carnosine and its analogs 
exert their neuroprotective effects by inhibiting neuronal cell 
apoptosis via signal transducer and activator of transcription 
3 (STAT3) signaling pathway [213], downregulating nod- like 
receptor protein 3 inflammasome (NLRP3) expression [214], 
4- hydroxynonenal (4- HNE) scavenging [215], reduced levels 
of malondialdehyde (MDA) [128], and attenuation of oxidative 
stress and apoptosis [216] in rat models of cerebral ischemia 
and intracerebral brain hemorrhage [216].

One key challenge in the therapeutic application of carnosine 
is its reduced bioavailability due to degradation by the serum- 
circulating CNDP1 and the cytosolic CNDP2 [19, 20]. As a result, 
over the last 20 years, different research groups have focused on 
the development of new formulations of carnosine, as well as 
novel approaches such as drug delivery systems to protect car-
nosine from degradation and consequently enhance its bioavail-
ability [19, 217]. For instance, carnosinol was developed as a 
next- generation carnosine derivative, which cannot be degraded 
by circulating carnosinase [218]. FL- 926- 16 is another bioavail-
able carnosine derivative, which is carnosinase- resistant [116]. It 
is also proposed that erythrocytes take up carnosine and protect 
it from degradation by serum carnosine [219].

4.1   |   Strengths, Limitations, and Future Directions

This is the first study to provide a broad and comprehensive, 
up- to- date synthesis of the literature investigating the effects of 
HCDs on T2D risk factors and complications. Through systematic 
exploration of the available literature, our review identifies key 
gaps in knowledge to direct future research. Specifically, we high-
light the scarcity of RCTs examining the impact of HCDs on obe-
sity and/or T2D complications and we provide an overview of the 
vast experimental and observational data on this topic. However, 
there are several limitations in both the included studies and the 

present review which need to be acknowledged and addressed in 
future research. First, it is important to note that the majority of 
studies included in the present scoping review were experimental 
animal models, which are not directly applicable to the human 
context. Further validation of these data is needed through the 
use of prospective human studies and clinical trials, both of which 
are currently lacking. Second, there were limited studies investi-
gating the effect of HCDs in animal models of retinopathy and 
neuropathy related to diabetes, highlighting a gap in evidence in 
this area. Third, there was considerable heterogeneity across the 
included studies in terms of methodologies, sample sizes, study 
designs, and the types, forms, and doses of supplementation, 
leading to challenges in comparing findings and uncertainty in 
the overall effect(s). Fourth, it is essential to note that the present 
study focused specifically on obesity, T2D, and diabetes complica-
tions, and these findings cannot be generalized to other diseases 
or populations. Finally, as this was a scoping review, quality ap-
praisal, and meta- analyses were not included but are important to 
confirm the purported effects of HCDs and determine the reliabil-
ity of the evidence.

5   |   Conclusion

Carnosine and other HCDs may be beneficial in individuals 
with obesity and T2D with or without microvascular or mac-
rovascular complications. Benefits may occur through amelio-
ration of inflammation, oxidative stress, and AGE formation, 
leading to potential improvements in lipid profile and glyce-
mic control. It is important to note, however, that existing 
evidence is predominantly derived from experimental stud-
ies, many of which are heterogeneous and have yielded con-
flicting results. To date, the number of observational studies 
and RCTs involving individuals with obesity and/or T2D have 
been limited, and no RCT has investigated the effect of HCDs 
in individuals with neuropathy, retinopathy, cerebrovascular 
disease, and CVD within a diabetic context. Further studies, 
in particular clinical trials with adequately powered sample 
sizes, are needed to establish a more definitive understanding 
of the effect of carnosine and HCDs in the context of diabetes 
and cardiometabolic health.
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