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Simple Summary: The incidence of rare recessive disease is significantly increased in
children whose parents are related, as both may carry the same deleterious variant inherited
from a shared relative. As well as inheriting the same disease mutation, they also inherit the
flanking DNA, which can be detected as extended regions of homozygous SNPs. Initially,
these regions were detected using microsatellite markers, which were then replaced by
microarray genotype data. With the advent of next-generation sequencing, many mutations
could be found without identifying these homozygous regions; however, this failed to find
the disease mutation in many patients. Consequently, there has been renewed interest
in mapping these homozygous regions to help detect a patient’s deleterious mutation.
Therefore, we have created AgileMultiIdeogram to identify these regions using both next-
generation sequence data as well as microarray genotype data.

Abstract: Rare autosomal recessive diseases are a major cause of mortality and morbidity.
They occur more frequently in individuals with consanguineous parents, in which case the
pathogenic variants are often located within regions of genetic identity by descent. A well-
established and effective way of identifying these “autozygous” genomic regions has been
to search for runs of homozygous genotypes in microarray SNP data. However, with the
widespread use of whole-genome and exome sequencing in both diagnostic and research
settings, it has become desirable to be able to both map autozygous regions and identify
the deleterious variants using a single dataset. We have developed AgileMultiIdeogram,
an application that can identify and visualize autozygous regions in inbred individuals
using exome data as well as microarray SNP genotype data. This application has been
successfully used in both research and diagnostic settings to map pathogenic mutations.

Keywords: rare recessive disease; next-generation sequencing; autozygosity mapping

1. Introduction
Conventionally, a rare inherited disease is one affecting fewer than 5 in 10,000 indi-

viduals; however, the very large number of different conditions means that, collectively,
rare diseases affect up to 8% of people [1]. As of 24 March 2025, OMIM [2] lists 6531 phe-
notypes with a known molecular cause mapping to an autosomal chromosome. Of these,
~55% are recessively inherited conditions, which thus constitute a major cause of mortality
and morbidity.
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Since first being proposed [3], autozygosity mapping has been used extensively, both in
diagnosis and research, to identify the possible locations of recessive pathogenic mutations
in inbred affected individuals. Such individuals generally inherit the same deleterious
variant, identical by descent, along with flanking DNA, from both of their consanguineous
parents. The resulting extended stretches of homozygous (autozygous) DNA may be many
megabases long, and statistically, causative mutations are more likely to be located within
large autozygous regions [4]. Since a child born to first-cousin parents is expected to be
autozygous over 1/16 of their genome, examining a single such affected individual can
exclude candidate causal variants in approximately 94% of genes. If a second affected
individual within the family is included, it may be possible to exclude the vast majority of
candidate variants, leading rapidly to the pinpointing of a disease-causing variant.

Initially, the advent of whole-exome sequencing (WES) and whole-genome sequencing
(WGS) de-emphasized the value of mapping autozygous regions; pathogenic mutations
could often be identified simply by scanning a patient’s variant data for putatively deleteri-
ous homozygous variants within the coding sequences of genes believed to be important
in the pathways disrupted in the patient. However, while this approach has been effective
in many families, a significant number of cases remain unresolved and would potentially
benefit from information regarding the likely genomic position of the causative variant.
Consequently, such cases are being revisited with their autozygous regions mapped and
used to filter their variants. Historically, autozygous regions were defined using microsatel-
lite markers and later by microarray SNP genotyping. However, it is now advantageous to
be able to identify autozygous regions directly from the patient’s WGS or WES data.

As a consequence, a number of applications, such as AgileVariantMapper [5], H3M2 [6],
PLINK [7], AutoMAP [8], AUDACITY [9], SavvyHomozygosity and SavvyVcfHomozy-
gosity from the SavvySuite [10] and AutozygosityMapper [11], were developed to aid the
identification of autozygous regions using WES and WGS variant data. The process by
which some of them were validated is not apparent. As of 1 June 2025, SavvyHomozygosity
and SavvyVcfHomozygosity are cited as a GitHub repository primarily concerned with
copy number analysis. PLINK and AutozygosityMapper are established applications to
which the ability to process WES and WGS has been added but not clearly described in
subsequent publications. The manuscript describing AgileVariantMapper lacks a rigorous
comparison and simply compares the visualization of regions identified using WES and
microarray SNP genotype data. H3M2 was developed using three reference cell lines,
whose data were subsequently used as the starting point for the production of a range of
synthetic data used in the validation step. Meanwhile, AUDACITY was validated using
200 samples from the 1000 Genome Project [12], whose autozygous regions were identified
using PLINK, BCFtools [13] and VCFtools [14]. AutoMap was validated using 52 samples
for which WES and microarray SNP genotype data were available. This cohort was then
split into a training set of 26 samples and a test set consisting of the remaining 26 samples.

Microarray SNP genotype data are generally considered the gold standard for the
detection of autozygous regions, as they consist of a predetermined set of evenly distributed,
pre-validated variant positions whose genotypes are determined with a high degree of
certainty. Compared to microarray SNP genotype data, detecting autozygous regions
in WGS or WES is a more complex task because sequence data are more error-prone,
and in the case of WES, unevenly distributed across the genome. Consequently, it is the
preferred method for the detection of autozygous regions when processed by a suitable
application such as PLINK, which has approximately 35,000 citations covering the analysis
of microarray genotype data. While synthetic WES and WGS data were used to validate
H3M2, it is debatable whether the synthetic data fully reflect the random noise present
in WGS and WES datasets, and so it may not be a suitable resource for this validation.
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Similarly, AUDACITY was validated against a set of regions identified using PLINK,
VCFtools and BCFtools with the WES data; however, none of these tools is widely used to
determine autozygosity and so they may not have captured all the regions in each sample.
Consequently, of the tools listed, only AutoMap can be considered to be fully validated;
unfortunately, for ethical reasons, the authors are unable to share their data, and so it cannot
be used to validate other applications.

Of the listed applications, only AutozygosityMapper and AutoMap generate images;
however, their format is not always suitable for the display of regions in a publication
and does not allow the use of a range of data types such as microarray SNP genotype
and WES and/or WGS variant data. Consequently, we have developed a new adaptive
algorithm that allows the automated detection of autozygous regions within WES and
WGS, as well as genotype data from a range of SNP microarrays. When processing WES
and WGS data, this algorithm re-genotypes variants and identifies and filters erroneous
heterozygous variants located within runs of homozygous variants. This algorithm was
then implemented in the desktop application AgileMultiIdeogram, which can visualize the
autozygous regions in a cohort of samples whose data consists of a mix of microarray SNP
genotyping, WES and/or WGS variant datasets.

Due to the very large number of possible input parameter combinations, a genetic al-
gorithm was used to determine the near-optimal parameters required to detect autozygous
regions from sequencing data. Genetic algorithms represent a methodology for determining
the near-optimal values for parameters used in an analysis. An iterative process inspired
by evolution is used. In evolution, individuals mate and only the fittest offspring survive
to reproduce in the next generation, after which the process repeats. In theory, this process
increases the fitness of the population until an optimum set of characteristics is held by the
offspring. Similarly, genetic algorithms perform data analysis many times using randomly
selected parameters, with the results of each analysis being quantified. The best-performing
parameter sets are selected and used to create a new generation of parameter sets, which
are in turn used to reprocess the data, with the best-performing parameters again passed
on to the next generation. At each step, “mutations”—random changes—are introduced
along with new datasets so that the final result is not solely determined by the values in the
initial generation. After multiple iterations, a stable set of near-optimal parameter values
should occur.

2. Materials and Methods
2.1. Patient Data

Twenty-two individuals with consanguineous parents and one outbred person were
analyzed by exome sequencing and SNP array genotyping as described below. The consan-
guineous parents of these individuals were first cousins, suggesting that the individuals
are autozygous for approximately 1/16 of their genome. However, the extended pedigrees
were generally characterized by multiple additional consanguineous unions, making the
true level of autozygosity difficult to predict, but probably higher than 1/16. Of these
individuals, 18 (including the outbred person) were used as the training dataset, which was
used by the genetic algorithm to identify the optimal parameter values, while the remaining
6 were used as a test dataset, comparing the accuracy of the outcome to those produced by
H3M2, PLINK, AutoMAP, AUDACITY, SavvyHomozygosity and SavvyVcfHomozygosity
from the SavvySuite and AutozygosityMapper in identifying variants in autozygous re-
gions. Each individual’s dataset consisted of paired-end short-read data of between 40 and
50 million read pairs per subject.
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2.2. Exome Sequencing and Variant Detection

Following shearing to approximately 250 bp, 3 µg of genomic DNA was used to create
Illumina-compatible libraries that were enriched for coding sequences using Agilent’s
v5.0 SureSelect exome reagent. Five individuals were sequenced per HiSeq 2500 high-
output lane to generate 100 bp paired-end read data, which were then aligned to the human
genome (hg19) using BWA after quality trimming using Cutadapt [15]. Sequence variants
were identified using GATK [16] and exported to VCF files. Where possible, each variant
was linked to an RS ID using BCFtools and the 1000 Genomes variant dataset [12,17] as the
reference variant dataset.

2.3. Identification of Autozygous Regions with Exome Data Using PLINK, H3M2,
SavvyHomozygosity, SavvyVCFHomozygosity, AUDACITY, AutozygosityMapper and AutoMAP

Each subject’s autozygous regions were predicted from exome variant data using each
of the above-named methods, as follows:

PLINK: the required MAP and genotype files were generated from the VCF files and
processed using PLINK 1.07 with the suggested parameters (--homozyg --homozyg-snp 100
--homozyg-window-het 1 --homozyg-window-snp 50 --homozyg-window-threshold 0.10).

H3M2: Rather than use the variant data determined by GATK, the analysis was per-
formed on the aligned data in the BAM files. Initially, the H3M2BamParsing.sh script was
used to parse each BAM file with reference to a list of variants (obtained from the H3M2 web-
site) to produce a list of predefined variant genotypes. These data were then processed using
the H3M2Analyze.sh script with the suggested parameters (dnorm = 1,500,000, p1 = 0.1,
p2 = 0.2 and F = 5) to identify the autozygous regions.

AutoMAP: the AutoMAP_v1.2.sh script was used to process each VCF file in turn
using the pre-set settings.

SavvyHomozygosity and SavvyVCFHomozygosity: These applications require a ref-
erence set of known variants, which for this analysis were derived from the first hundred
individuals in the 1000 Genomes Project variant dataset. Deletions and insertions longer
than 1 bp were removed, as were variants with fewer than 2 non-homozygous reference
genotypes. These data were then formatted using the SavvySuite’s PrepareLinkageData
application to produce a binary file of the variants. As with H3M2, SavvyHomozygosity
processes the sample’s aligned sequence data, while SavvyVCFHomozygosity filters prede-
termined variants in the sample’s VCF file against the list of known variants. The filtered
variants are then used to determine the location of homozygous regions. Both SavvyHo-
mozygosity and SavvyVCFHomozygosity were used with their pre-set parameters.

AUDACITY: The analysis consists of two Perl scripts: The first (AUDACITYPrepare.pl)
filters the variants to remove indels and multiallelic variants and determines the number of
each genotype present in the dataset (homozygous reference, heterozygous and homozy-
gous non-reference). The retained variants are then stored in an indexed bgzip-compressed
VCF file that is processed by the second script. This script (AUDACITYAnalyze.pl) pro-
cesses the variant dataset with reference to a list of known variants to determine the location
of any homozygous regions.

AutozygosityMapper: The VCF files were sequentially uploaded to the Autozygosi-
tyMapper data entry web page and then analyzed individually using the default settings.
The regions were copied from the results page and ordered by chromosome and position
before saving them as tab-delimited text files.

Since these applications, as well as AgileMultiIdeogram, are intended to identify
extended regions of autozygosity due to recent inbreeding, regions shorter than 1.5 Mb were
discounted, while closely adjacent (<100 kb) regions were amalgamated into a single region.
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2.4. Microarray SNP Genotype Data Production

Autozygous regions were identified in each patient using the microarray genotype data
as follows: Affymetrix SNP 6.0 microarray data (Aros Applied Biotechnology A/S, Aarhus,
Denmark) were generated for each patient with autozygous regions identified using PLINK
1.07 (--homozyg--homozyg-window-snp 250--homozyg-window-het 2--homozyg-snp 300
--homozyg-kb 1000). The data were then visualized in AutoSNPa [18] to identify regions
missed due to low-quality SNP genotyping calls, and finally the regions were manually
edited to remove regions shorter than 1.5 Mb, while closely spaced (>100 kb) regions were
combined into a single region.

3. Results
3.1. The Algorithm to Detect Autozygous Regions

To compensate for the effects of genotyping errors, the AgileMultiIdeogram algorithm
that detects autozygous regions applies empirically determined smoothing criteria to
the exome variant data. Also, to make the algorithm responsive to the different variant
densities that characterize different individual next-generation sequencing (NGS) datasets,
the number of variants required in homozygous runs is scaled using the total number of
variants on Chromosome 1, relative to an arbitrary value (70,700: the approximate number
of Chromosome 1 SNPs in the Affymetrix SNP6 dataset). Unlike microarray genotype
data, the genotypes of individual SNVs in WGS or WES datasets are of uncertain quality
(for example, due to variations in read depth and the quality of each read); consequently,
each variant’s genotype is reassessed, and putatively erroneous heterozygous variants are
discounted before the data are screened for autozygous regions using cut-off values (see
Table 1) scaled to the number of variants in the dataset, as shown in Figure 1 and described
in the supplementary data document.

Table 1. Starting values used by the genetic algorithm to optimize the AgileMultiIdeogram algorithm.
NR is the minimum read depth, NAA is the proportion of reads suggesting the reference allele for
a homozygous reference genotype, and NBB is the proportion of reads suggesting the reference
allele for a homozygous non-reference genotype. Nhet is the divergence from 0.5 allowed for a
heterozygous genotype (0.5 ± Nhet). The Xfilter constant is used to set the minimum number of
flanking homozygous variants before a heterozygous variant is discounted.

Parameter Range of Tested
Values

Minimum Change
in Value

Final Optimized Value
for All Subsequent Use

NR 0–19 1 5

NAA 0.56–0.95 0.01 0.64

NBB 0.05–0.34 0.01 0.17

Nhet 0.05–0.34 0.01 0.17

Xfilter 75–574 1 386

Xminimum 0.01–0.50 0.01 0.1

Xcall 300–1499 1 575

The process consists of four sections: basic filtering, genotyping, removal of aberrant
heterozygous variants and finally setting the autozygosity of a region. Initially, variants
undergo a basic filtering process: if a variant is required to have an RS id or is not a single
base variant, it is ignored. Then, variants that have more than two alleles or a read depth
below 5 (NR) are ignored. The remaining variants are then genotyped and the proportion
of reads suggesting each allele is determined. If the proportion of reads linked to the
non-reference allele is 0.83 (1 − NBB) or greater, the variant is homozygous. The variant is
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considered heterozygous if the reference allele is present in 0.33 to 0.67 (0.5 ± Nhet) of the
reads. Finally, if the proportion of reads linked to the reference allele is 0.64 or more, the
variant is homozygous. Ungenotyped variants are discounted. The optimized values of
each parameter used to analyze user data are shown in the final column of Table 1.

Figure 1. Flowchart describing the process by which the autozygosity of a variant is determined.
The process is split into four parts: variant filtering (blue section), variant genotyping (green sec-
tion), removal of aberrant heterozygous variants (white section) and determining autozygosity
(grey section).
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3.2. Parameter Optimization by Simulated Evolution

Initially, 100 sets of parameters were generated, with values constrained as outlined
in Table 1. Each parameter set was then used to process the exome genotype data for
the 18 subjects in the training data, for whom microarray SNP genotype data were also
available. The resulting autozygous regions were then compared to the manually curated
list of autozygous regions generated by PLINK from the Affymetrix SNP6 genotype data,
as described in the Materials and Methods section. For each Mb over which the two lists
of autozygous regions differed, the analysis scored +1, with the scores for each subject
combined to give a final score for each parameter set. Any analysis scoring less than or
equal to the tenth-best analysis was retained for the next generation: for this, the retained
parameter sets were randomly “mated” to the other retained parameter datasets, such that
each parameter in the new set was randomly selected from one of the parents; to increase
variation, there was also a 1 in 5 chance that each parameter would be overwritten by a
randomly selected value. When necessary, randomly generated parameter sets were added
to each generation, such that all generations had at least 100 parameter sets. This genetic
selection algorithm was run for a period of 48 h (approximately 40 to 45 generations). Since
any single analysis will still be influenced by its starting values, this entire process was
run 100 times, after which no noticeable improvements were obtained, with the optimum
values identified as the best set from all the analyses shown in the final column of Table 1.
It is expected that these values will be used for all subsequent analysis.

3.3. Comparison of AgileMultiIdeogram, H3M2, AutoMAP, PLINK, AutozygosityMapper,
SavvyHomozygosity and SavvyVCFHomozygosity

A comparison of the regions identified by PLINK (using microarray genotype data)
to those identified by each of the other programs was performed using the six samples
in the test dataset to determine the optimal parameters. Variants in regions identified by
PLINK using microarray data were classed as positive, while those outside the regions
were classed as negative. This was repeated using the regions defined by each of the
applications; where a variant’s status was in agreement with PLINK, it was classified as a
true positive (both methods suggested it was autozygous) or true negative (both methods
suggested it was not autozygous). When the two analyses disagreed, the variant was
classified as either a false negative (the variant was determined to be autozygous only
by PLINK using microarray genotype data) or false positive (the variant was assessed
as not autozygous only by PLINK using microarray genotype data). This allowed the
counts of true and false positives as well as true and false negatives to be determined for
each method (Table 2 and Supplementary Table S1), which were then used to calculate
the true positive rate (sensitivity) and true negative rate (specificity) for each individual
and for the dataset as a whole (Figure 2 and Supplementary Figure S1). The results of the
comparison show that AUDACITY, H3M2, SavvyHomozygosity and PLINK performed the
worst when both sensitivity and specificity are considered. When considering the true neg-
ative rate, there was very little difference between AutoMAP (0.9704), AgileMultiIdeogram
(0.9716) and SavvyVCFHomozygosity (0.9736), while for the true positive rate, AgileMulti-
Ideogram (0.9692) and SavvyVCFHomozygosity (0.9632) performed noticeably better than
AutoMAP (0.9471).
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Table 2. The number of variants found to reside in and outside of autozygous regions identified by
AgileMultiIdeogram, AutoMAP, H3M2, SavvyHomozygosity, SavvyVCFHomozygosity, AUDACITY,
AutozygosityMapper and PLINK using exome variant data was compared to the same variants
similarly classified with a manually curated list of autozygous regions generated using Affymetrix
SNP6 genotype data to quantify the number of correctly classified variants. These values were used
to calculate the true positive rate (TPR) and true negative rate (TNR) for each methodology.

Method True
Positives

False
Positives

True
Negatives

False
Negatives TPR TNR

Agile-
MultiIdeogram 22,821 9214 315,182 725 0.9692 0.9716

PLINK (VCF) 9279 2202 322,194 14,267 0.3941 0.9932

AutoMAP 22,301 9612 314,784 1245 0.9471 0.9704

H3M2 22,158 21,094 303,302 1388 0.9411 0.9350

Savvy-
Homozygosity 22,820 21,026 303,370 726 0.9692 0.9352

Savvy-
VCFHomozgosity 22,680 8572 315,824 866 0.9632 0.9736

AUDACITY 20,231 4673 319,723 3315 0.8592 0.9856

Autozygosity-
Mapper 22,470 13,261 311,135 1076 0.9543 0.9591

 
Figure 2. Graph demonstrating the true positive and true negative rates of variant classification
using autozygous regions identified by AgileMultiIdeogram (blue symbols), AutoMAP (red symbols),
H3M2 (yellow symbols), SavvyHomozygous (grey symbols), SavvyVCFHomozygous (black symbols),
AutozygosityMapper (brown symbols) and PLINK (orange symbols) using exome data. Each symbol
represents the aggregated score of the 6 inbred individuals.

3.4. Implementation

AgileMultiIdeogram is a Windows desktop application written in C# that, while aimed
at the Windows desktop, can also run on Linux and macOS computers with the aid of
Wine: https://www.winehq.org/ (accessed on 1 June 2025). AgileMultiIdeogram can
detect and visualize autozygous regions within various data types, such as microarray
SNP genotype data and Illumina short-read sequencing variant data formatted as either
VCF or gVCF files, as well as predetermined regions imported as tab-delimited text files.

https://www.winehq.org/
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Any identified regions can be exported as plain text or as a range of publication-quality
images [19–26]; in the latter case, either circular or linear ideograms can be chosen (Figure 3
and Supplementary Figure S2). For flexible integration of different information when a
family may have been analyzed “piecemeal”, AgileMultiIdeogram also has the ability to
process microarray SNP genotype type data as well as display regions identified by other
applications and imported as tab-delimited text files. Since it is not possible to redetermine
the genotypes of variants in microarray SNP genotype data, this type of data enters the
analysis at step 7, where aberrant heterozygous variants in long runs of homozygous
variants are detected and removed from the analysis. A preliminary investigation to
determine the optimal parameters for use with microarray SNP genotype data suggested
that the analysis was not especially sensitive to their values; consequently, the same values
were used for microarray SNP genotype data as were used with exome variant data. This is
demonstrated in Supplementary Figure S3, which shows the regions identified using WES
variant and microarray SNP genotype data for each of the samples used in the training and
testing set.

Figure 3. Aligned autozygous regions in a family of four siblings and their parents, in which two
siblings are affected by the lethal multiple pterygium syndrome (MIM 253290). (A,B) were generated
using whole exome data, while (C,D) were derived from whole genome data. (A,C) only used
variants with an RS ID, while (B,D) used all variants. Autozygous regions in affected and unaffected
individuals are shown as pale blue and pink bands, respectively. Dark blue bands indicate autozygous
regions common to all affected individuals. The red line marks the position of the CHRNG gene. The
individuals from the outside to the center are affected male sibling, affected female sibling, unaffected
female parent, unaffected male parent and unaffected female sibling.
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As part of the parameter optimization process, the underlying algorithm used to
identify the autozygous regions was implemented as a C++ console application that runs
on Linux and Windows computers. This allows variant data in VCF files to be processed as
part of an automated pipeline. The source code for this implementation is available here:
https://github.com/msjimc/AgileROH (accessed on 30 May 2025).

4. Discussion
Short-read WGS and WES have rapidly become an almost universal entry point for

genetic investigations in both research and diagnostic settings. These agnostic approaches
often allow direct identification of pathogenic genetic lesions, without recourse to other
approaches such as genetic mapping or biochemical assays. Nonetheless, for a substantial
proportion of patients, an obviously pathogenic lesion does not stand out from the set
of identified variants. In such cases, particularly in diagnostic settings where costs are
constrained, further analysis may be discontinued in favor of prioritizing the testing of
other patients with more easily identifiable mutations. It remains the case, though, that
many such cases could be resolved by minimal additional analysis tailored to the individual
context. For this purpose, the revisiting of older approaches such as genetic mapping of
disease loci can be valuable, particularly for rare recessive disorders. It is advantageous to
be able to use pre-existing sequencing data for such cases, rather than perform additional
microarray genotyping. However, due to the lower genotyping accuracy of these short-read
datasets (and, in the case of WES, the uneven genomic distribution), identifying autozygous
genomic regions is more error-prone than when using microarray genotype data [5] (Carr
et al., 2013). Because these sources of error are experimental rather than statistical, there is
insufficient evidence on which to base a mathematical solution to this problem. We have
therefore investigated the utility of a genetic algorithm approach to empirically select the
optimal parameter values for detecting autozygous regions. By an iterative process of
comparing the results from different parameter sets and combining the best-performing
sets, it has proved possible to identify a set of near-optimal analysis parameters for the
discovery of autozygous regions using only exome variant data.

While it would have been preferable to use a larger training and testing dataset, patient
data with both microarray and WES/WGS data are not readily available. For instance, due
to ethical considerations, the dataset used to develop AutoMap is not available. Similarly,
raw data in large biobanks, such as UK Biobank [27], are available for download and can
only be processed within the UK Biobank data analysis portal. The creation and use of
synthetic data is commonly used in the development of bioinformatics programs such as
H3M2; however, this is not appropriate when dealing with WES and WGS variant datasets.
Due to sequencing errors and sequence variation between the patient and reference genome
sequences, the location and quantity of aberrant variant calls cannot easily be modeled. This
is compounded by reads from highly homologous duplicated sequences being misaligned
and so creating hotspots of incorrect variant calls. Similarly, hotspots may occur at locations
with unusual GC content, which present as regions of low sequencing depth. Consequently,
the creation of synthetic data based on the overall genotyping error rate of NGS techniques
is not suited to the analysis of WES/WGS variant data, as the resultant data are unlikely to
represent the true granularity of aberrant genotyping across the genome. The developers
of AUDACITY chose to identify the autozygous regions in patient data by analyzing them
with a combination of three other applications (PLINK, VCFtools and BCFtools); however,
this methodology will always miss regions that are inherently resistant to NGS-based
analysis and so will not truly reflect the accuracy of the method under test.

Microarray SNP genotype data consist of the genotype data of up to 1 million pres-
elected variant positions and has been the foundation of both genome-wide association

https://github.com/msjimc/AgileROH
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studies and disease gene mapping studies since its introduction. Unlike NGS variant data,
microarrays consist of highly curated positions chosen for their distribution, heterozygosity
and high level of reducibility. Consequently, detecting autozygous regions is a trivial task
possible by simply scanning a region by eye. However, due to the number of data points in
a typical chip design, a number of applications were developed to automate the process,
such as PLINK. Consequently, when developing and validating AgileMultiIdeoigram, it
was decided to determine the autozygous regions in the test subjects using Affymetrix
microarray SNP6 genotype data processed using PLINK.

When the performance of our optimized algorithm was compared to that of other
applications (using samples not used in the optimization process), AgileMultiIdeogram
achieved the best true positive ratio and a true negative rate just 0.0216 below the best true
negative rate, which was achieved by PLINK. However, PLINK’s true positive rate was
0.3641, compared to 0.9692 for AgileMultiIdeogram. When both the true positive and true
negative rates are considered, PLINK and AUDACITY achieve high true negative rates but
at the expense of a poor true positive rate; conversely, H3M2 and SavvyHomozygosity have
good true positive rates at the expense of poorer true negative rates. AgileMultiIdeogram,
AutoMAP and SavvyVCFHomozygosity formed a cluster with similar high scores for
both true positive and true negative rates, suggesting that AgileMultiIdeogram is able to
robustly detect autozygous regions using exome variant data.

Unlike the other applications, AgileMultiIdeogram is able to detect autozygous re-
gions using data from WGS, WES and microarray SNP genotype experiments, as well as
import regions identified by other methods when generating publication-quality figures.
Since WGS and WES data only report positions that differ from a reference sequence, their
data tend to only contain heterozygous or homozygous non-reference genotypes. How-
ever, when the variants are recalled by AgileMultiIdeogram, some variants (particularly
heterozygous variants) are determined to be, in fact, homozygous reference. For WES data,
this is generally not an issue, but due to the lower read depths currently associated with
WGS data, a sizable proportion of a WGS variant dataset may be reset to homozygous
reference, causing the AgileMultiIdeogram algorithm to fail due to an excess of recalled
homozygous positions. This issue can be overcome by allowing AgileMultiIdeogram to
exclude variants that lack an RS identifier in the input data since variants that lack an RS id
are more likely to be artefactual than those with an RS id (Figure 3).

The memory requirements of AgileMultiIdeogram are modest; since it only retains
a variant’s position and genotype data when processing each sample, the program can
be run on a standard desktop computer. The time required to process each file is linearly
dependent on the number of variants in the dataset. Typically, a WES VCF file is processed
in several seconds, while a microarray SNP genotype file may require 10 to 20 s. Due to the
large size of WGS variant data files, these may take several minutes to process.

An important practical advantage of AgileMultiIdeogram is its input data flexibility.
While it performs comparably to or better than a range of other software, AgileMulti-
Ideogram can process a wider range of input data types (including either microarray SNP
genotype data or WGS/WES variant data) as well as detect common autozygous regions
within a set of affected and unaffected individuals. For users who may prefer to use regions
identified by another application, it is possible to import regions as a tab-delimited text
file and then prompt AgileMultiIdeogram to create the desired image. While the desktop
AgileMultiIdeogram application itself may not be suitable for use in an automated pipeline,
its underlying algorithm was ported to the C++ language as part of the parameter opti-
mization process. It is possible to compile this application to run from either Windows or
Linux command lines, enabling it to be incorporated into automated pipelines.
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5. Conclusions
Careful analysis of NGS variant datasets can identify deleterious variants in a large

proportion of autozygous patients afflicted by a recessive disease without the need to
map their autozygous regions, especially if there is a strong candidate gene. However,
for a significant number of individuals, this approach fails; as a result, there has been a
renewed interest in mapping autozygous individuals who have not received a molecular
diagnosis. In many situations, these patients will have been routinely sequenced, and so
it is advantageous to be able to use these datasets to map their autozygous regions. To
facilitate this, we have developed an algorithm that can detect autozygous regions using
either NGS variant or microarray genotype data. Its performance is on par with the best
autozygous mapping applications when using NGS data. To increase its utility, it has been
implemented in a command line application that can be used as part of an automated
analysis pipeline and a desktop application that can draw publication-quality images of
the detected regions in multiple individuals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology14060666/s1, Figure S1: Graph demonstrating the true
positive and true negative rates of variant classification using autozygous regions identified by
various programs; Figure S2: An ideogram drawn with linear chromosomes on which aligned
autozygous regions in a family of four siblings and their parents are shown.; Figure S3: 3 Aligned
autozygous regions for the samples used in the training and testing set. The outer, blue regions
are derived from WES data, while the inner pink segments were determined using microarray SNP
genotype data. Table S1. Lists of variants found to reside inside and outside of autozygous regions
identified by AgileMultiIdeogram, AUDACITY, AutoMAP, AutozygosityMapper, H3M2, PLINK
using exome variant data were compared to the same variants similarly classified by PLINK using
Affymetrix SNP6 genotype data, SavvyHomozygosity and SavvyVCFHomozygosity, to quantify the
number of correctly classified variants. These values were used to calculate the true positive rate
(TPR) and true negative rate (TNR) for each consanguineous individual’s data.
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