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Abstract
Torsion theories play an important role in abelian categories and they have been widely
studied in the last sixty years. In recent years, with the introduction of pretorsion theories,
the definition has been extended to general (non-pointed) categories. Many examples have
been investigated in several different contexts, such as topological spaces and topological
groups, internal preorders, preordered groups, toposes, V-groups, crossed modules, etc. In
this paper,we show that pretorsion theories naturally appear also in the “classical” framework,
namely in abelian categories. We propose two ways of obtaining pretorsion theories starting
from torsion theories. The first one uses “comparable” torsion theories, while the second
one extends a torsion theory with a Serre subcategory. We also give a universal way of
obtaining a torsion theory from a given pretorsion theory in additive categories. We conclude
by providing several examples in module categories, internal groupoids, recollements and
representation theory.
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1 Introduction

Pretorsion theories were defined in [14, 15] as “non-pointed torsion theories”, where the zero
object and the zero morphisms are replaced by a class of “trivial objects” and an ideal of
“trivial morphisms”, respectively. This notion generalises many concepts of torsion theory
introduced and investigated by several authors in pointed and multi-pointed categories [8,
10, 11, 22, 23]. Pretorsion theories appear in several different contexts, such as topological
spaces and topological groups [15], internal preorders [4, 5, 14, 16], categories [6, 7, 31],
preordered groups [18], V-groups [26], crossed modules, etc.
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In this paper, we present two ways of obtaining pretorsion theories starting from torsion
theories, so that many new examples of pretorsion theories can be given in pointed categories.
Lattices and chains of torsion theories are widely studied topics and they are the perfect
framework for applying the first result we prove, where two “comparable” torsion theories
are used to build a pretorsion theory, as follows.

Theorem 3.1. Let C be a pointed category and consider two torsion theories (T1,F1) and
(T2,F2) in it. Then, the following conditions are equivalent:

(1) T2 ⊆ T1;
(2) F1 ⊆ F2;
(3) (T1,F2) is a pretorsion theory.

Moreover, if these conditions hold, thenT1 = T2∗Z andF2 = Z∗F1,whereZ := T1∩F2.

The second method we present to build pretorsion theories consists of “extending” a
torsion theory with a Serre subcategory, that is, a full subcategory closed under subobjects,
quotients and extensions. See Theorem 4.2 for the statement of this result for a more general
category. Here we present the special case when the ambient category C is abelian.

Corollary 4.4. Let C be an abelian category and let S be a monocoreflective and epireflective
Serre subcategory of C. If (U,V) is a torsion theory in C, then (U ∗ S,S ∗ V) is a pretorsion
theory with class of trivial objects S.

In particular, note that any torsion theory of an abelian category can be extended by
any bilocalising Serre subcategory, or in other words a Serre subcategory that is part of a
recollement, see Section 6.3.

We continue the investigation on the connection between pretorsion and torsion theories
showing how to obtain a torsion theory from a given pretorsion theory in an additive category.
This construction is universal, and it is the analogue of the universal stable category provided
in [6] for lextensive categories.

Theorem 5.4. Let (T ,F) be a pretorsion theory in an additive category C with class of
trivial objects Z. The additive quotient functor � : C → C/Z is universal among all additive
functors sending (T ,F) to a torsion theory.

The paper is organised as follows. In Section 2, we recall some key background on torsion
and pretorsion theories. Sections 3, 4 and 5 respectively present and prove the above three
theorems. Finally, Section 6 presents applications of the results in various examples, using
lattices and chains of torsion theories, and recollements of abelian categories.

2 Torsion Theories and Pretorsion Theories

Throughout the paper, we will widely use the following notation and terminology.

• A subcategory B of a given category C is closed under subobjects [resp. quotients] if for
every monomorphism [resp. epimorphism] with codomain [resp. domain] in B, then also
the domain [resp. codomain] is in B.

• We say that a morphism f admits an (epi,mono)-factorisation if it can be written as
f = me with m monomorphism and e epimorphism. The codomain of e will be called
an image of f .
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• An epimorphism f is extremal if whenever f = mg with m a monomorphism, then m
is an isomorphism. An epimorphism in a pointed category is said to be normal if it is
the cokernel of some morphism. Any normal epimorphism is an extremal epimorphism.
Extremal and normal monomorphisms are defined dually.

The notion of torsion theory for abelian categories was introduced in [11] by Dickson in
1966 and serves as a standard tool in module theory and in abelian category theory (see for
instance [29]). Here we recall the definition.

Definition 2.1 A torsion theory in an abelian category C is a pair (T ,F) of full subcategories
of C closed under isomorphisms, such that:

• Hom(T , F) = 0, for every T ∈ T and F ∈ F ;
• for every object X in C, there is a short exact sequence

0 TX
f

X
g

FX 0

with TX ∈ T and FX ∈ F .

It is worth noting that the notion of torsion theory makes sense in any pointed category,
and in fact several authors studied torsion theories out of the abelian case (see for example [8,
10, 11, 22, 23]). More recently, in [14, 15] pretorsion theories were defined as “non-pointed
torsion theories”, where the zero object and the zero morphisms are replaced by a class of
“trivial objects” and an ideal of “trivial morphisms”, respectively, as follows.

Let C be an arbitrary category and fix a class Z of objects of C, that we shall call the
class of trivial objects. A morphism f : A → A′ in C is Z-trivial if it factors through an
object of Z. Given any two objects X and Y , we denote by Triv(X , Y ) the class of Z-trivial
morphisms from X to Y and by Triv the class of allZ-trivial morphisms in C. Notice that Triv
is an ideal of morphisms in the sense of Ehresmann [12], that is, for every pair of composable
morphisms f and g in C, f g ∈ Triv whenever f or g is in Triv. Hence, it is possible to
consider the notions of Z-kernel and Z-cokernel, defined by replacing, in the definition of
kernel and cokernel, the ideal of zero morphisms with the ideal of trivial morphisms induced
by the class Z as follows.

Definition 2.2 A morphism ε : X → A in C is a Z-kernel of f : A → A′ if f ε is a Z-trivial
morphism and, whenever λ : Y → A is a morphism in C and f λ is Z-trivial, there exists a
unique morphism λ′ : Y → X in C such that λ = ελ′. The notion of Z-cokernel is defined

dually. A sequence A
f→ B

g→ C is called a short Z-exact sequence if f is a Z-kernel of g
and g is a Z-cokernel of f .

It can be easily seen that Z-kernels and Z-cokernels, whenever they exist, are unique up
to isomorphism and they are monomorphisms and epimorphisms respectively [15].

It is worth mentioning that the notions of kernels, cokernels and short exact sequences
with respect to an ideal of morphisms played an important role in the works of Lavendhomme
[24] and Grandis [20, 21]. More recently, this approach has also led to a unification of some
results in pointed and non-pointed categorical algebra [19].

Definition 2.3 Let T and F be full subcategories of C closed under isomorphisms. We say
that the pair (T ,F) is a pretorsion theory in C with class of trivial objects Z := T ∩ F , if
the following two properties are satisfied:

• Hom(T , F) = Triv(T , F), for every T ∈ T and F ∈ F ;
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• for every object X of C there is a short Z-exact sequence

TX
f

X
g

FX

with TX ∈ T and FX ∈ F .

Remark 2.4 When C is pointed and T ∩F = 0, we recover the usual notion of torsion theory.
In particular, the following properties are true also for any “classical” torsion theory.

Recall from [15] that given a pretorsion theory (T ,F) in a category C, there are two
functors:

• a “torsion functor” T : C → T which is the right adjoint of the full embedding ET : T →
C of the torsion subcategory T ;

• a “torsion-free functor” F : C → F which is the left adjoint of the full embedding
EF : F → C of the torsion-free subcategory F .

For every object X ∈ C there is a short Z-exact sequence

T X
εX

X
ηX

F X

where the monomorphism εX is the X -component of the counit ε of the adjunction

T
ET

C,
T

⊥

while the epimorphism ηX is the X -component of the unit η of the adjunction

C
F

F
EF

⊥

Given a pretorsion theory (T ,F), the torsion [resp. torsion-free] subcategory is closed
under all colimits [resp. limits] existing in C, extremal quotiens [resp. extremal subobjects]
and Z-extensions (see [15, Proposition 4.2] and [6, Lemma 2.1]). Moreover, the following
properties hold [15, Proposition 2.7]:

• for any X ∈ C, if Hom(X ,F) = Triv(X ,F), then X ∈ T ;
• for any Y ∈ C, if Hom(T , Y ) = Triv(T , Y ), then Y ∈ F .

Remark 2.5 In complete, cocomplete and locally small abelian categories, torsion theories
can be equivalently defined by using the previous properties, in the following sense. A pair
of subcategories (T ,F) is a torsion theory if and only if

• Hom(T , F) = 0 for all T ∈ T , F ∈ F ;
• for any X ∈ C, if Hom(X , F) = 0 for all F ∈ F , then X ∈ T ;
• for any Y ∈ C, if Hom(T , Y ) = 0 for all T ∈ T , then Y ∈ F .

Moreover, a subcategory T of C is a torsion class if and only if T is closed under quotients,
coproducts and extensions [29, Chapter VI]. These characterizations fail to be true out of the
abelian case for torsion and pretorsion theories [10, 15, 23].
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3 Pretorsion Theories from Pairs of Torsion Theories

Let C be a pointed category and consider two torsion theories (T1,F1) and (T2,F2) in it. For
i = 1, 2, let Ti : C → Ti and Fi : C → Fi denote respectively the torsion and torsion-free
functors induced by the torsion theory (Ti ,Fi ). Thus, for every object X ∈ C there is a
(canonical) short exact sequence

0 Ti X
εiY

X
ηiY

Fi X 0

with Ti X ∈ Ti and Fi X ∈ Fi .
Given any two subcategories A and B of C, we denote by A ∗ B the full subcategory of C

whose objects are extensions of an object in A and an object in B, that is, X ∈ A ∗ B if and
only if there exists a short exact sequence 0 → A → X → B → 0 with A ∈ A and B ∈ B.

Theorem 3.1 Let C be a pointed category and consider two torsion theories (T1,F1) and
(T2,F2) in it. Then, the following conditions are equivalent:

(1) T2 ⊆ T1;
(2) F1 ⊆ F2;
(3) (T1,F2) is a pretorsion theory.

Moreover, if these conditions hold, thenT1 = T2∗Z andF2 = Z∗F1, whereZ := T1∩F2.

Proof The equivalence of the first two conditions is clear (andwell known). Indeed, ifT2 ⊆ T1
and Y ∈ F1, then Hom(X , Y ) = 0 for all X ∈ T1, hence Hom(X , Y ) = 0 for all X ∈ T2 and
so Y ∈ F2. The other implication follows by a dual argument.

Assume now that (T1,F2) is a pretorsion theory and let X ∈ T2. Then there is a short
Z-exact sequence

TX
ε

X
η

FX

where TX ∈ T1 and FX ∈ F2. Since X ∈ T2, then η is zero and so a trivial morphism. Hence
ε is an isomorphism [15, Lemma 2.4]. It follows that TX ∼= X ∈ T1.

Conversely, assume that Condition (1) holds. Let f : X → Y be a morphism with X ∈ T1
and Y ∈ F2. Consider the diagram

0 T2X
ε2X

X
η2X

f

F2X 0

0 T1Y
ε1Y

Y
η1Y

F1Y 0

where the first (resp. second) row is the canonical short exact sequence of X (resp. Y ) with
respect to the torsion theory (T2,F2) (resp. (T1,F1)). The dotted arrow is induced by the fact
that η1,Y · f = 0. Moreover, T1Y is a normal subobject of Y ∈ F2, hence T1Y ∈ T1 ∩ F2.
Thus f is a trivial morphism.

To conclude, it suffices to show that for every X ∈ C, the sequence

T1X
ε1X

X
η2X

F2X

is a short Z-exact sequence. Let us prove that ε1X is the Z-kernel of η2X (the “Z-cokernel
part” can be proved dually). Fromwhatwe have seen above, the compositemorphismη2X ·ε1X
is trivial. Let g : W → X be a morphism such that η2X · g is trivial. Applying the functor F2
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to the morphism η1X : X → F1X and using the assumption F1 ⊆ F2, we get a commutative
diagram

F1X F1X

T1X
ε1X

X
η2X

η1X

F2X

F2η1X

W

g

The morphism η2X · g is trivial, so in particular it factors through an object in T1. Thus
we have η1X · g = F2η1X · η2X · g = 0 and therefore g factors uniquely through ε1X .

For the last assertion, since both Z and T2 are contained in T1 and T1 is closed under
extensions, we have T1 ⊇ T2 ∗ Z. For the other inclusion, let X ∈ T1 and consider its
canonical short exact sequence with respect to (T2,F2)

0 T2X X F2X 0 .

Since T1 is closed under extremal quotients, F2X ∈ T1 ∩ F2 = Z, hence T1 = T2 ∗ Z.
The dual argument proves the other equality. ��

Remark 3.2 The class of trivial objects T1 ∩ F2 is closed under extensions. It is also closed
under subobjects [resp. quotients] if the torsion theory (T1,F1) is hereditary [resp. (T2,F2)

is cohereditary].

Lattices and chains of torsion theories are widely studied topics and they are the perfect
framework for applying Theorem 3.1 in order to get pretorsion theories. We present some
applications of our result in Section 6.

4 Pretorsion Theories as Extensions of a Torsion Theory with a Serre
Subcategory

Let C be a pointed category. By a Serre subcategory S of C we mean a full subcategory of C
closed under subobjects, quotients and extensions.

As in the previous section, given any two subcategoriesA and B of C, we denote byA∗B
the full subcategory of C whose objects are extensions of an object in A and an object in B.

Proposition 4.1 Let (U,V) be a torsion theory in a pointed category C in which every mor-
phism admits an (epi, mono)-factorisation, and let S be a Serre subcategory. Consider the
pair (T ,F) = (U ∗ S,S ∗ V). Then:

(1) S = T ∩ F;
(2) F is closed under subobjects (and dually T is closed under quotients);
(3) Hom(T ,F) = Triv(T ,F);
(4) For any X ∈ C, if Hom(X ,F) = Triv(X ,F), then X ∈ T ;
(5) For any Y ∈ C, if Hom(T , Y ) = Triv(T , Y ), then Y ∈ F .

123



Building Pretorsion Theories from Torsion Theories

Proof (1)The inclusionS ⊆ T ∩F is clear. If X ∈ T ∩F , thenwe can consider a commutative
diagram with exact rows

0 U ′ X S′

p

0

0 UX

q

X VX 0

0 S′′ X V ′′ 0

where S′, S′′ ∈ S, U ′,UX ∈ U and V ′′, VX ∈ V . The induced dotted arrows p and q are
an epimorphism and a monomorphism respectively. Since S is a Serre subcategory, we can
conclude that X ∈ S.

(2) Let N � X be a monomorphism with X ∈ F . Then, we have a commutative diagram
with exact rows

0 UN N VN 0

0 S X V 0

with S ∈ S, UN ∈ U and V , VN ∈ V . The left dotted arrow is a monomorphism, hence
UN ∈ S and N ∈ S ∗ V = F . Dually, one can prove that T is closed under quotients.

(3) Let f : T → F be a morphism from an object in T to an object in F . By the previous
points, the image of f is in T ∩ F = S.

(4) Let X ∈ C be such that Hom(X ,F) = Triv(X ,F) and consider the short exact
sequence of X associated with the torsion theory (U,V):

0 UX X
π

VX 0

SinceV ⊆ F ,π is a trivial morphism, hence it can bewritten asπ = βα where the domain
of β is in S and β is an epimorphism (because so is π ). Then, VX ∈ S and X ∈ U ∗ S = T .

(5) Dual of (4). ��
The argument used to prove Proposition 4.1 (1) shows also that if X ∈ F = S ∗ V , then

the torsion part UX of X (w.r.t the torsion theory (U,V)) is in S. The dual statement holds
as well.

Notice that the pair (U ∗ S,S ∗ V) is not a pretorsion theory in general, as the existence
of S-short exact sequences for every object of C is not guaranteed by the hypothesis (see
Example 6.4).

Theorem 4.2 Let C be a pointed category in which every morphism admits an (epi,
mono)-factorisation. Assume that C has pullbacks and pushouts which preserve normal epi-
morphisms and normal monomorphisms respectively. Let (U,V) be a torsion theory in C
and let S be a monocoreflective and epireflective Serre subcategory of C. Then, the pair
(T ,F) = (U ∗ S,S ∗ V) is a pretorsion theory with class of trivial objects S.

Proof By Proposition 4.1, we only need to show that for every X ∈ C there exists an S-short
exact sequence TX → X → FX with TX ∈ T and FX ∈ F .

Notice that S is a monocoreflective and epireflective subcategory of C if and only if all
the S-kernels and S-cokernels of the identity morphisms exist in C [23, Section 1.5].
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Let X ∈ C and consider the short exact sequence of X associated with the torsion theory
(U,V):

0 UX X VX 0

Consider then the commutative diagram

0 UX TX SX 0

0 UX X VX 0

VX

obtained as follows:

• SX → VX is the S-kernel of the identity of VX , that is, the S-coreflection of VX ;
• the right-hand square is a pullback and, in particular, TX → X is theS-kernel of X → VX ;
• the pullback of the arrows TX → X ← UX gives the left-hand square and UX → TX is

the kernel of TX → SX ;
• since pullbacks preserve normal epimorphisms, the top row is a short exact sequence and

hence TX ∈ T .

Now, consider the S-cokernel of the identity of UX and complete the diagram with two
pushout squares:

0 UX TX

εX

SX 0

0 UX X

ηX

VX 0

0 S′
X FX VX 0

(4.1)

We want to show that the middle column is an S-short exact sequence. Since TX ∈ T and
FX ∈ F , the composite morphism ηX · εX is S-trivial by Proposition 4.1 (3). From the fact
that εX is the S-kernel of X → VX [resp. ηX is the S-cokernel of UX → X ] we get that εX
is the S-kernel of ηX [resp. ηX is the S-cokernel of εX ]. ��

Remark 4.3 Examples of categories satisfying the hypothesis of Theorem 4.2 include abelian
categories and more generally almost abelian categories in the sense of Rump [28] (e.g. the
category of topological (Hausdorff) abelian groups). Notice that the hypothesis on C about
the behaviour of pullbacks can be relaxed: it can be assumed that only pullbacks of a cokernel
and an S-kernel exist and preserve cokernels. Dually for pushouts. In particular, we have the
following result, as a specialisation of Theorem 4.2.

Corollary 4.4 Let C be an abelian category and let S be a monocoreflective and epireflective
Serre subcategory of C. If (U,V) is a torsion theory in C, then (U ∗ S,S ∗ V) is a pretorsion
theory with class of trivial objects S.
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5 The Stable Category of Pretorsion Theories in Additive Categories

In this section, we show that for a given pretorsion theory in an additive category C with
class of trivial objects Z, one can construct a quotient category C/Z and a quotient functor
C → C/Z that, roughly speaking, sends the pretorsion theory in C to a classical torsion
theory in C/Z in a universal way. This is a result analogous to [6, Theorem 5.2], where the
construction is provided in the context of lextensive categories (see [6] for the definition of
lextensive category and details on the construction).

We first propose a slight modification of the definition of torsion theory functor introduced
in [5].

Definition 5.1 Let (T ,F) be a pretorsion theory in a category A and let B be a pointed
category. We say that a functor G : A → B is a torsion theory functor with respect to (T ,F)

if the following two properties are satisfied:

(1) there is a torsion theory (T ′,F ′) in B such that G(T ) ⊆ T ′ and G(F) ⊆ F ′;
(2) if T A → A → FA is the canonical short Z-exact sequence associated with A in the

pretorsion theory (T ,F), then

0 → GT A → GA → GFA → 0

is a short exact sequence inB (hence, the canonical short exact sequence ofGA associated
with (T ′,F ′)).

Remark 5.2 If G : A → B is a torsion theory functor with respect to (T ,F), then it is clear
that (GT ,GF) is a torsion theory in GA.

Let C be an additive category and I an ideal of morphisms (that is, a class of morphisms
such that f g ∈ I whenever f or g is in I). We say that I is an additive ideal if I(X , Y ) is
a subgroup of homC(X , Y ) for every pair of objects X , Y ∈ C. For an additive ideal I it is
possible to construct a quotient additive category C/I, whose objects are the same as those
of C and homC/I(X , Y ) := homC(X , Y )/I(X , Y ). The canonical quotient functor C → C/I
is an additive functor sending all the morphisms in I into zero morphisms [13, Section 4.9]
and it is universal among all functors with this property.

Lemma 5.3 Let C be an additive category and let (T ,F) be a pretorsion theory with class
of trivial objects Z. The ideal Triv of Z-trivial morphisms is an additive ideal.

Proof Since T is closed under products and F is closed under coproducts, it follows that
Z = T ∩F is closed under biproducts (direct-sums). If fi : X → Y is a morphism factoring
through Zi ∈ Z for i = 1, 2, then f1 + f2 factors through Z1 ⊕ Z2 ∈ Z. ��

When I = Triv is the ideal of Z-trivial morphisms of a pretorsion theory, we write C/Z
in place of C/ Triv for the quotient category.

Theorem 5.4 Let (T ,F) be a pretorsion theory in an additive category C with class of trivial
objects Z. The quotient functor � : C → C/Z satisfies the following properties:

(1) � sends trivial objects and trivial morphisms into the zero object and zero morphisms
respectively;

(2) � is an additive torsion theory functor with respect to (T ,F);
(3) (�(T ),�(F)) is a torsion theory in C/Z;
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Moreover, if G : C → D is an additive torsion functor (with respect to (T ,F)) into an
additive category D, then there is a unique functor H : C/Z → D making the following
diagram commute

C �

G

C/Z

H

D

.

Proof Point (1) is clear from the definition of the quotient category.We also already observed
that the quotient functor is additive. Let

T A
ε

A
η

FA

be the short Z-exact sequence of an object A ∈ C. If we prove that

�T A
�ε

�A
�η

�FA

is a short exact sequence in C/Z, we get at once that (�(T ),�(F)) is a torsion theory in
C/Z and that � is a torsion theory functor. Let us show that �ε is the kernel of �η.

Let h : X → A be a morphism in C such that �η�h = 0, that is, ηh is Z-trivial. Thus,
there is a unique f : X → T A in C such that h = ε f and therefore �h = �ε� f . Let
g : X → T A be another morphism such that �h = �ε�g. This means that ε( f − g) is a
trivial morphism, hence it factors through a trivial object Z ∈ Z. Moreover, since ε is the
Z-kernel of η, we also have a (unique) morphism u : Z → A making the right-hand triangle
in the diagram

X
f −g

T A
ε

A

Z

u

commute. Since ε is a monomorphism, also the left-hand triangle commutes. Thus, f − g is
a trivial morphism, hence � f = �g. By a dual argument we get that �η is the cokernel of
�ε, hence (2) and (3) are proven.

Now, let G : C → D be another additive torsion theory functor into an additive category
D. Since GT ∩ GF = 0, G sends trivial objects and trivial morphisms into the zero object
and zero morphisms respectively. Moreover, it is routine to check that from the assignments
HX := GX and H� f := G f we get a (well-defined) functor H : C/Z → D such that
G = H�. The uniqueness of such a functor is clear. ��

6 Examples

6.1 Some Pretorsion Theories in Categories of Modules

Let R be a unital ring. For simplicity, we assume R to be commutative, but similar con-
siderations can be done in the non-commutative setting. Let Mod(R) denote the category
of unital R-modules. Given a multiplicatively closed subset S of R (namely a subset S of
R such that 1 ∈ S and for any r , s ∈ S one has rs ∈ S), it is possible to define a torsion
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theory (TS,FS) where the torsion class consists of those modules M ∈ Mod(R) such that
M ⊗R S−1R = 0 (see [29, Chapter VI]; notice that in [29] the term “pretorsion” is used in
a different context). Explicitly, M ∈ TS if, for every m ∈ M , there exists s ∈ S such that
sm = 0, while M ∈ FS if there are no non-zero elements of M annihilated by elements of
S. In view of Proposition 3.1, any inclusion S ⊆ T of multiplicatively closed subsets of R
induces a pretorsion theory (TT ,FS) where the class Z of trivial objects consists of those
modules M with the following property: for every m ∈ M , there exists t ∈ T such that
tm = 0 and if sm = 0 for some s ∈ S, then m = 0. In terms of annihilator ideals, for every
non-zero m ∈ M we have AnnR(m) ∩ T �= ∅ and AnnR(m) ∩ S = ∅. As a particular case
of what we have just seen, any inclusion of prime ideals induces a pretorsion theory, since
the complement of a prime ideal is a multiplicatively closed set.

The following remark, even if not surprising, has never been pointed out.

Remark 6.1 A subcategory T of a given category C can be the torsion class of (possibly
infinitely) many different pretorsion theories. A way to see it is to take a domain R of infinite
Krull dimension. Then, we can consider an infinite chain of prime ideals 0 = P0 � P1 �

P2 � . . . which induces pretorsion theories (T0,Fi ) for i ≥ 0, where T0 is the subcategory
of “classical” torsion modules (namely, those modules whose elements are annihilated by a
non-zero element of R) and Fi is the full subcategory consisting of those modules N such
that for every n ∈ N , AnnR(n) ⊆ Pi . It is easy to see that Fi �= F j for i �= j , since
R/Pi ∈ Fi \ Fi−1 for every i ≥ 1.

6.2 Pretorsion Theories in mod(kAn)

Lattices of torsion theories over finite dimensional algebras have been widely studied, see for
example [30]. These provide chains of torsion theories and hence can be used to give plenty
of examples of pretorsion theories in module categories by applying Theorem 3.1. Recall
that any finite dimensional algebra over an algebraically closed field k is Morita equivalent
to the path algebra of some bound quiver, see for example [1, Chapter II] for details. For the
less familiar reader, given a finite quiver Q (that is an oriented graph), its path algebra over
k is the k-algebra whose underlying vector space has as basis the set of all paths in Q and
the product of two paths is their concatenation whenever this is possible and zero otherwise.

Here, we fix a field k and a positive integer n and focus on a classic example: the path
algebra k An of the linearly oriented Dynkin quiver

An : 1•−→2•−→ . . . −→n−1• −→ n•.

Letting mod(k An) denote the category of finitely generated right k An-modules, its
Auslander-Reiten quiver is shown in Fig. 1. This is a very useful diagram that collects a
lot of key information on mod(k An): its vertices correspond to the indecomposable modules
in the category (that is the building blocks of the objects) and its arrows to the irreducible
morphisms in the category (that is the building blocks of the morphisms), see [1, Chapter
IV] for details.

Example 6.2 We give some examples of pretorsion theories in mod k An for any positive
integer n. In Fig. 1, the leftmost ascending diagonal consists of all the indecomposable pro-
jectives, the descending rightmost diagonal consists of all the indecomposable injectives
and all the modules on the bottom row are simple. Moreover, all the ascending arrows are
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Fig. 1 The Auslander-Reiten quiver of mod(k An)

monomorphisms and all the descending ones are epimorphisms, so it is fairly easy to read
short exact sequences from the diagram.

(1) Consider the chain of torsion classes

0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tn−1 ⊂ Tn,

where Ti := add

{
1 , 1

2 , . . . ,

1
...
i

}
. The torsion-free class Fi corresponding to Ti is add of

the indecomposables in mod k An but not in Ti . Then, by Theorem 3.1, we have that for
any i > j , the pair (Ti ,F j ) is a pretorsion theory inmod(k An)with class of trivial objects

Zi, j := Ti ∩ F j = add

{ 1
...

j+1

,

1
...

j+2

, . . . ,

1
...
i

}
.

(2) Consider now the chain of torsion classes

0 ⊂ T1 ⊂ T2 ⊂ · · · ⊂ Tn−2 ⊂ Tn−1,

with

Ti := add

{
quot

{
n , n−1

n , . . . ,

n−i+1
...
n

}}
,

where by quot{. . . } we mean the quotient closure of the given set. In other words,
T1 = add{ n }, while for bigger i , Ti is add of the indecomposables lying in the triangular
area of the Auslander-Reiten quiver in Fig. 1 delimited by the vertices n , n−i+1 and
n−i+1

...
n

. The torsion-free class Fi corresponding to Ti is then

Fi := add

{
submod

{
1 , 1

2 , . . . ,

1
...

n−i

}}
,
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where by submod{. . . } we mean the submodule closure of the given set. In other words,
Fn−1 = add{ 1 } while for smaller i , Fi is add of the indecomposables lying in the trian-
gular area of the Auslander-Reiten quiver in Fig. 1 delimited by the vertices n−i , 1 and
1
...

n−i

. Then, by Theorem 3.1, we have that for any i < j , the pair (Ti ,F j ) is a pretorsion

theory in mod(k An) with class of trivial objects

Zi, j := Ti ∩ F j = add

{
quot

{
n− j ,

n− j−1
n− j , . . . ,

n−i+1
...

n− j

}}
.

Remark 6.3 Theorem 3.1 gives a way to construct many pretorsion theories but not all pre-
torsion theories can be obtained in this way. In particular, Theorem 3.1 always produces a
pretorsion theory where the first half is a torsion class and the second a torsionfree class in the
classical sense. Even in the case of abelian categories, pretorsion theories do not have such
restrictive properties, and one can use Theorem 4.2 to produce more examples. Consider,
for instance, the path algebra k A2. Then, mod(k A2) contains exactly three indecomposable
modules and it has Auslander-Reiten quiver

1
2 β

2

α

1 ,

where 2 is a simple projective, 1
2 a projective-injective and 1 a simple injective. Consider

the torsion pair (U = add { 1 , 1
2 },V = add { 2 }) and the Serre subcategory S = add { 1 } in

mod(k A2). Applying Theorem 4.2, we get the pretorsion theory

(U ∗ S = add { 1 , 1
2 },S ∗ V = add { 2 , 1 }),

with class of trivial objects S. It is easy to verify that the short S-exact sequences of the three
indecomposable modules are

0 2 2 , 1
2

1
2

β
1 , 1 1 1 .

Note that the above pretorsion theory cannot be obtained by applying Theorem 3.1. In
fact, the short exact sequence

0 2
α 1

2
β

1 → 0

is such that the end-terms are in S ∗V , while the middle term is not. Hence S ∗V is not closed
under extensions and so it is not a torsionfree class. Note that, however, S ∗ V is still closed
under S-extensions.

6.3 Pretorsion Theories and Recollements

Let C be an abelian category. Given a Serre subcategory S, it is possible to construct an
abelian quotient category j∗ : C → [C/S] (see [17]), where j∗ is an essentially surjective
exact functor whose kernel isS. Note that this quotient category construction is different from
the one from Section 5. The category S is called bilocalising if j∗ has both a left adjoint j! and

123



F. Campanini and F. Fedele

a right adjoint j∗. In this case, S turns out to be both a monocoreflective and an epireflective
subcategory of C and thus induces a recollement of C [27, Remark 2.8]:

S i∗ C
j∗

i∗

i !
[C/S]

j!

j∗

Notice that, up to equivalence, any recollement of abelian categories arises in this way (see
[27, Theorem 4.1] for a precise statement of this fact). A torsion theory (U,V) in an abelian
category can be “extended” (in the sense of Theorem 4.2) by any bilocalising subcategory
S to a pretorsion theory (U ∗ S,S ∗ V). Notice that if we apply the exact functor j∗ to
diagram (4.1) in the proof of Theorem 4.2, we have that if

TX X FX

is an S-short exact sequence of X ∈ C, with TX ∈ U ∗ S and FX ∈ S ∗ V , then

0 j∗(TX ) j∗(X) j∗(FX ) 0

is a short exact sequence in [C/S]. Nevertheless, neither the image of (U ∗ S,S ∗ V) in the
quotient [C/S] nor that of (U,V) are torsion theories in general. To see this, consider the
torsion theory (U,V) = (add { 1 }, add { 2 , 1

2 }) in mod(k A2) (see Remark 6.3) and take the
Serre subcategory S = add { 2 }. Then, it suffices to observe that 1 ∼= 1

2 in [mod(k A2)/S].
On the other hand, using the construction from Theorem 5.4, the functor � sends the

pretorsion theory (U∗S = add { 1 , 2 },S∗V = add { 2 , 1
2 }) inmod(k A2) to the torsion theory

(add { 1 }, add { 12 }) inmod(k A2)/S. Notice that heremod(k A2)/S is an additive category that
is not abelian.

6.4 Non-epireflective Serre Subcategories

The following example shows that the assumptions on Proposition 4.1 do not guarantee that
(U ∗ S,S ∗ V) is a pretorsion theory even in the abelian case.

Example 6.4 Consider the abelian categoryMod(Z)with torsion theory (U,V), whereU is the
class of injective abelian groups andV the class of reduced abelian groups [2,Example 1.13.6].
Take S to be the class of torsion abelian groups and note that this is a Serre subcategory that
is not an epireflective subcategory of Mod(Z). We show that (U ∗S,S ∗V) is not a pretorsion
theory by showing that S ∗ V is not closed under products. For example, take the injective
abelian group Q/Z. This is clearly a torsion abelian group, hence it belongs to S ∗ F . Now,
consider the product

∏
i∈N Q/Z of infinitely many copies of Q/Z, which is injective but not

torsion. Suppose for a contradiction that
∏

i∈N Q/Z is in S ∗F , that is, there is a short exact
sequence of the form

0 → S →
∏
i∈N

Q/Z → F → 0

with S ∈ S and F ∈ F . Since F is a quotient of an injective Z-module, then it is injective.
Thus F = 0 and S ∼= ∏

i∈N Q/Z, contradicting the latter not being torsion.
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6.5 Internal Groupoids in a Homological Category

Let C be a homological category (that is, a finitely complete, regular and protomodular
category with a zero object [3]) and consider the category Grpd(C) of internal groupoids
in C. In [8], two torsion theories in Grpd(C) are presented, namely (Ab(C),Eq(C)) and
(ConnGrpd(C), C), where Ab(C),Eq(C) and ConnGrpd(C) denote the subcategories of
(internal) abelian objects, equivalence relations and connected groupoids respectively,
while any object X of C can be seen as an internal “trivial” groupoid taking the identi-
ties X X . Since every internal abelian object is a connected groupoid, then
(ConnGrpd(C),Eq(C)) is a pretorsion theory in Grpd(C) by Theorem 3.1.

6.6 Chains of Torsion Theories for Complexes

Let C be a pointed regular category where every regular epimorphism is a normal epimor-
phism. Consider the category ch(C) of chain complexes in C. We shall denote a generic object
of ch(C) by

X• : . . . Xn+1
δn+1

Xn
δn

Xn−1
δn−1

. . . n ∈ Z

In [25], several chains of torsion theories in ch(C) have been studied. Here we only present
one example, in order to apply Theorem 3.1 explicitly. For every n ∈ Z, there is a torsion
theory (Tn,Fn), where Tn consists of those chains X• with Xk = 0 for all k ≤ n, while Fn

consists of those chains X• with Xk = 0 for all k > n and δn is a monomorphism. Thus,
for every n ≥ m we get a pretorsion theory (Tm,Fn) where the class Zm,n of trivial objects
consists of those chains X• with Xk = 0 for all k ≤ m and k > n, and δn is a monomorphism.

6.7 Pretorsion Theories and Stability Functions

Let C be an abelian length category, that is, an essentially small abelian category such that
every object has a finite composition series. A stability function
 is a map from the non-zero
objects of C into a totally ordered set (P,≤) satisfying the following properties (see [9] and
the references therein):

(1) if A ∼= B for some non-zero objects A, B ∈ C, then 
(A) = 
(B);
(2) if 0 → A → B → C → 0 is a short exact sequence of non-zero objects of C, then

exactly one of the following three cases can occur:

• 
(A) < 
(B) < 
(C); • 
(A) > 
(B) > 
(C); • 
(A) = 
(B) = 
(C).

For every p ∈ P , there is a torsion theory (T≥p,F<p) [9, Proposition 2.19], where:
T≥p := {X ∈ C | 
(Y ) ≥ p for every quotient Y of X} ∪ {0} and
F<p := {X ∈ C | 
(H) < p for every subobject H of X} ∪ {0}
(the obvious variation with (T>p,F≤p) holds as well) [9, Section 2]. Then, for every

p, q ∈ P with p ≤ q , there is a pretorsion theory (T≥p,F<q).
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