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Abstract 

Remote sensing methods which produce point clouds, such as terrestrial laser scanning (TLS), 

terrestrial photogrammetry (TP), and small unmanned aerial systems (sUAS) have become an 

integral component of geotechnical monitoring programs. Applications such as rock-slope 

monitoring benefit from multi-platform datasets to be acquired in two or more different epochs. 

Accurate registration of these datasets in a common coordinate system is essential for detecting 

slope changes. Their registration often relies on initial feature-based alignment followed by fine 

alignment with the iterative closest point (ICP) algorithm. When practical, ground control points 

(GCPs) and other surveying targets with well-defined coordinates are used. However, establishing 

such GCPs on rock surfaces can be difficult, expensive and dangerous. In addition, GCPs and 

targets can be lost or destroyed with time and re-establishing them is difficult. This paper develops 

an automated registration algorithm based on edge detection that can register multi-platform and 

multi-epoch point clouds. Rock-surface edges are expected to remain largely the same and be 

captured in point clouds collected in two different epochs. For edge detection, we use α-molecules 

that offer a unified framework of most multi-scale transforms that can be adapted to any rock-

surface. Then the algorithm identifies edge correspondences based on the discrete Fréchet distance. 

From the corresponding edges we derive matching points between datasets. Transformation 

parameters are then derived through Procrustes analysis. Using real and simulated scenarios, we 

demonstrate the utility and performance of the proposed algorithm. For example, sUAS scenarios 

with 0 and 1 GCPs show that initial root mean square error (RMSE) values of a few decimeters 

drop to a few centimeters. Scenarios with simulated translations, rotations, and scale showed that 

the developed algorithm registers multi-platform point clouds with mm differences from their 

original RMSE values. Results demonstrate that the algorithm can successfully register multi-

platform point clouds and support rockfall monitoring. 
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1. Introduction 

 

1.1 Objectives  

To overcome the limitations of existing registration algorithms for application to complex rock 

surfaces, this paper proposes the use of a new feature-based algorithm based on natural edges 

found on rock surfaces. Natural edges are distinct features that are captured in point clouds 

collected from various platforms and methods, but they have not been utilized in the context of 

point cloud registration for rockfall monitoring. The objective of this paper is to derive a new 

feature-based algorithm that can be applied to complex rock surfaces, and is capable of registering 

multi-platform and multi-epoch point cloud datasets to support rockfall monitoring. The proposed 

algorithm utilizes corresponding edges present in multi-platform and multi-epoch point clouds. 

The matched edges are used to identify point correspondences and estimate the transformation 

between the two datasets.  

In addition to their use in the proposed registration algorithm, rock surface edges are important for 

quantitative analysis and hazard assessment, and their automatic extraction is an active research 

subject (e.g., Bolkas et al. 2018; Guo et al. 2018; Li et al. 2019). Thus, registration through edge 

detection offers the potential for creating a unified framework of edge utilization in the context of 

geotechnical/geological engineering, i.e., from registration to quantitative analysis and hazard 

assessment. Therefore, utilizing edges for the registration of multi-platform point clouds 

representing rock surfaces is an interesting research problem worth exploring. 

 

1.2 Literature Review 

1.2.1 Point clouds in rockfall monitoring   

Terrestrial remote sensing methods have been widely used for rock-slope monitoring. Such 

methods include terrestrial laser scanning (TLS), terrestrial photogrammetry (TP), and ground-

based interferometric synthetic aperture radar (GB-InSAR) (e.g.,  Abellán et al. 2014; Kromer et 

al. 2015; Rouyet et al. 2017; O’Banion et al. 2018; Kromer et al. 2019). Despite their significant 

advantages of high spatial resolution and potential for high temporal resolution in automated 

monitoring systems, these methods present limitations. Terrestrial data are often collected at a sub-

optimal view angle, as setup locations for scanners and/or cameras are limited, thus creating 

several occlusions, which can lead to significant issues in quantitative analysis. Photogrammetric 

small unmanned aerial systems (sUASs) have been increasingly used in several mapping and 

monitoring applications (e.g., O’Banion et al. 2018; Bolkas et al. 2021). Their main advantage is 

fast and high-resolution data acquisition. In addition, in the case of slope monitoring, sUASs can 

offer additional information due to the ability to capture images from different vantage locations. 

Due to these advantages, sUAS-derived point clouds are increasingly used for rock slope 

monitoring and assessment (e.g., O’Banion et al. 2018; Pérez-Rey et al. 2019).  

Monitoring of rock surfaces often uses a single remote sensing method and, when practical, a 

combination of technologies is used (Letortu et al. 2018; O’Banion et al. 2018; Zieher et al. 2018; 



Kromer et al. 2019). Such combinations necessitate the registration of the point clouds in a 

common coordinate system, both for the cases where datasets are combined in one epoch and 

between different epochs. This common registration is typically achieved through registration 

algorithms such as the iterative closest point (ICP) (e.g., Abellán et al. 2010; Van Veen et al. 2017; 

Williams et al. 2018; Kromer et al. 2019) and using targets with known coordinates or ground 

control points (GCPs) (Letortu et al. 2018; Zieher et al. 2018; O’Banion et al. 2018). For TLS, 

such targets do not have to be on the rock surface, as long as there is a line-of-sight connection 

between the instrument and targets. For photogrammetric methods (TP and sUAS), targets should 

appear in the captured images, and they are critical to achieving accurate camera self-calibration 

(O’Banion et al. 2018). Placement of such targets on rock slopes can be dangerous and time 

consuming. In addition, GCPs are damaged or destroyed with time and re-establishing them is 

dangerous and difficult. When multi-platform point clouds are not geo-referenced to a common 

coordinate system (utilizing targets or GCPs), registration relies on data-driven approaches, such 

as the ICP method (Besl and McKay 1992; Chen and Medioni 1992), which uses common point 

correspondences extracted from the point clouds. The ICP algorithm has underwent several 

modifications and improvements through the years. Recent reviews of the successive 

improvements and variants of the ICP can be found in Dong et al. (2020); Jiang et al. (2021); 

Zhang et al. (2021).  

 

1.2.2 Point cloud registration methods  

Registration of multi-platform datasets is not trivial, as they may have different point-densities, 

data gaps/overlap, and/or quality. Cheng et al. (2018) provides a comprehensive review of 

registration methods for laser scanning point clouds. Here, we will briefly describe the main 

existing methods. Focus is placed on registration methods that act on the final point cloud product 

and not in any intermediate processing or data acquisition step (e.g., registration of multiple TLS 

scans, exterior orientation of images). Registration methods are often classified into (i) coarse 

registration and (ii) refined registration (Rusu et al. 2009). In coarse registration methods, the 

transformation parameters are unknown, and typically scale is known, as many algorithms assume 

that the datasets to be registered have the same units. Refined registration methods attempt to fine-

tune the registration of two point clouds that are assumed to be closely or approximately registered. 

In coarse registration methods, corresponding natural features such as points, lines, or planar 

surfaces are used. For instance, Persad and Armenakis (2017) use wavelet methods to identify 

keypoints and register airborne and terrestrial point clouds in urban environments. Cheng et al. 

(2013) and Cheng et al. (2015) use a building corner extraction using a 3D cylinder and point-

density for the registration of airborne and terrestrial laser scanning point clouds. Rusu et al. (2009) 

use a point feature histogram based on the angle between surface normals in TLS point clouds, 

although, only a visual validation of the algorithm is provided. Other researchers have utilized 

linear features such as Habib et al. (2005) where linear features are extracted from buildings. They 

assume that points of the one dataset lie on the line of the second dataset to develop their 

mathematical model. Their formulation can either directly incorporate lines in the 

photogrammetric bundle adjustment or use them in a point cloud to point cloud registration. He 



and Habib (2016) presented a coarse registration method that automatically extracted linear 

features using a region-growing approach. The extracted linear features are then manually matched 

to estimate the transformation parameters. In general, coarse registration using linear features 

depends on the completeness and precision of the extracted linear features (Cheng et al. 2018). 

Other studies utilized planar features; for example Von Hansen (2006); Brenner et al. (2008) use 

conjugate planar features in urban environments. However, Brenner et al. (2008) notes that finding 

suitable planes can be difficult even in urban environments. Often in course registration methods, 

after coarse alignment of the point clouds, fine alignment is performed using the ICP method. For 

instance, Novak and Schindler (2013) developed a coarse registration method based on finding the 

dominant surface normal direction and then using a random sample consensus to derive remaining 

transformation parameters. Fine registration is then achieved through ICP. Another example is Li 

et al. (2020b) who created a course registration algorithm based on topological graphs, with an 

ICP variant for refinement afterwards. 

In terms of fine registration methods, Bae and Lichti (2008) developed a variant of the ICP 

algorithm that uses the surface normal vector and change in curvature to find corresponding points. 

Other fine registration algorithms have used a point-to-plane approach to register TLS scans (Grant 

et al. 2012). Cai et al. (2019) developed a method for registering TLS point clouds that have been 

leveled, thus reducing the number of rotational unknowns to one angle along the z-axis. Given that 

TLS and photogrammetric methods create points clouds with millions of points, one practical issue 

that emerges in point cloud registration methods is contamination with incorrect point matches. 

Accordingly, Cai et al. (2019) reduced the number of outliers of corresponding points in the 

registration, which were detected using fast point feature histograms (Rusu et al., 2009) and a fast 

pruning method developed by Bustos and Chin (2017). Another example of registration in the 

presence of high number of outliers in the corresponding matched points is the graph-enhanced 

sample consensus, based on graph data structure for point cloud matching (Li et al. 2020a). 

 

1.2.3 Challenges in existing registration methods for rockfall detection  

Feature-based registration methods, that rely on natural corresponding geometric features such as 

points, lines, or planar surfaces have been developed for built environments, and their application 

in complex rock surfaces is challenging (Abellán et al. 2014). Specifically, in the context of rock 

surfaces, it is challenging to identify natural corresponding points, linear or planar features 

(Abellán et al. 2014). In the context of rock surfaces feature-based algorithms based on the scale-

invariant feature transform (Lowe 1999), intrinsic shape signatures (Zhong 2009), and point 

feature histograms (Rusu et al. 2009) have been used to identify points and point correspondences. 

Such algorithms are used for initial alignment/ registration followed by a fine registration step, 

usually implemented using the ICP algorithm. For some application examples on rock surfaces see 

Kromer et al. (2017); Kromer et al. (2019); Xian et al. (2019); Yin et al. (2020). However, such 

newer feature-based algorithms rely on surrounding characteristics of identified keypoints; 

however, these might be different in point clouds obtained from different methods (laser versus 

optical). In addition, Gruen and Akca (2005) developed a least squares 3D surface matching 

approach, which converges faster than the ICP but needs better initial/approximation values. This 



algorithm was used in Monserrat and Crosetto (2008) for land deformation. Most registration 

algorithms are based on TLS-derived point clouds, where scale is usually well defined from the 

laser measurement system. In point clouds derived from photogrammetric methods, scale is an 

unknown parameter when GCPs are not utilized. Kromer et al. (2019) developed an automated 

registration approach to register multi-epoch point clouds generated from a fixed photogrammetric 

system. The algorithm identified point correspondences using multidimensional feature-based 

histograms based on surrounding characteristics of each point. Initial scale was estimated using 

the ratio of the eigenvalues, calculated from points with a correspondence. The registration was 

then refined through application of the ICP with refined scale adjustment. Despite the many 

positives of the ICP algorithm (and its variants discussed here), one of its primary limitations is 

the need for good initial registration of the two input point clouds, as the algorithm might get 

trapped in local minima and outliers can have a large impact, thus affecting the registration 

accuracy (Attia and Slama 2017; Li et al. 2020b). This issue is related to the step of finding reliable 

correspondences between two clouds. In each iteration, point correspondences are identified 

through a nearest neighbor (closest point) search, which can lead to incorrect point 

correspondences if the initial alignment is not accurate enough, trapping the algorithm in local 

minima. Other researchers have pointed out that poor registration results are obtained for low 

resolution datasets and the algorithm often requires a high number of iterations (Gruen and Akca 

2005; Abellán et al. 2014). 

 

1.2.4 Edge detection on rock surfaces  

Edges and other features are often used in image matching (Gruen and Stallmann 1993; Gruen 

2012). In image analysis, edges are rapid changes in brightness when a grey level contour is 

crossed (Li 2003), whereas in the spatial domain, edges correspond to rapid changes in the third-

dimension of a dataset such as a point cloud representing a rock surface (Bolkas et al. 2018). There 

are several edge detectors that are often used in image analysis and can be utilized for detecting 

edges on rock surfaces such as the Sobel, Prewitt, and Canny methods (Prewitt, 1970; Canny 1986; 

Richards, 2013). Such methods utilize the local gradient (the Sobel and Prewitt methods) or the 

first derivative of a Gaussian function (the Canny method). In addition to these methods that act 

in the spatial domain, there are edge detectors that act in the space-frequency domain and perform 

a multi-scale analysis. Examples of such methods are the wavelet transform, the curvelet 

transform, the contourlet transform, and the shearlet transform (Shen and Bai 2006; Do and 

Vetterli 2005; Da Cuhna and Do 2005; Labate et al. 2005; King et al. 2015). Wavelets are not 

directionally sensitive, which limits their ability to detect edges (Do and Vetterli 2005). Newer 

transforms such as the Gabor wavelet, curvelets, contourlets, and shearlets were developed to 

overcome this issue. The above edge detectors were tested in Bolkas et al. (2018) for identifying 

edges in underground rock surfaces. Results showed that the contourlet and shearlet transforms 

can be used for automatic edge extraction for rock mass assessment. Recently, Grohs et al. (2016) 

introduced α-molecules, which created a unified framework of most multi-scale transforms (e.g., 

wavelets, curvelets, shearlets). Reisenhofer and King (2019) extended their shearlet edge detector 

to α-molecules, which is stable in the presence of noise and contrast invariant. 



 

 

 

1.3 Contributions  

The main contribution of this paper is the novel edge-based registration algorithm, which can be 

used to support rockfall monitoring of multi-platform and multi-epoch datasets. Having a 

registration method that relies on distinct natural edges facilitates multi-platform registration of 

point clouds such as point clouds derived from laser scanning and photogrammetric methods. The 

paper outlines and discusses the main algorithm steps and provides an evaluation of how user-

input parameters can affect edge detection, edge matching, and registration.  

Additionally, we provide an assessment of the algorithm using multi-platform and multi-epoch 

datasets (TLS, TP, and photogrammetric-sUAS) from a study site in Idaho Springs, Colorado. We 

investigate how the proposed registration algorithm performance is connected to the number of 

GCPs for sUAS photogrammetric surveys. This experiment can highlight the cases where 

registration algorithms should be employed to enhance registration between datasets.  

Finally, we provide application examples of how the proposed registration algorithm can be used 

to register multi-platform and multi-epoch datasets and support rockfall monitoring for the site in 

Idaho Springs, Colorado.  

The paper is structured as follows: first we present the edge detection and registration algorithm, 

then we present the study area, the multi-platform and multi-epoch data. Following sections 

provide the results, numerical assessment of the algorithm, and rockfall detection using the 

proposed algorithm to register multi-platform and multi-epoch datasets. Finally, conclusions and 

remarks concerning potential future work are presented.  

 

2. Registration Algorithm  

The developed registration algorithm relies on identifying corresponding points between two 

datasets (the target and source datasets). These points are located on identified edges, which should 

be similar between the two datasets, since they map the same rock formation. Rockfalls that are 

small in size (e.g., 1-2 m3) can affect edge shape locally, which is why edges used here are longer 

than 1 m and typically between 2 m and 10 m long. Unless a large rockfall occurs (relative to the 

size of the study area), this assumption is valid. In the case of a large rockfall, the edges in the 

rockfall area would become unusable, but such rockfall events would affect any registration 

algorithm in a similar manner. The algorithm is not suitable for large rockslides or highly 

degrading slopes, whereby a large proportion of the scene is unstable, and additional investigation 

is needed to evaluate how the registration algorithm would be affected in such cases.  Therefore, 

the algorithm is based on the logical assumption that similar edges exist in the two multi-platform 

datasets. The algorithm is tested here for point cloud datasets mapping outcrops and slopes, thus 

mostly 2.5D point clouds and not fully 3D point clouds.  



The first point cloud is the target point cloud that is already georeferenced or used as reference. 

The second dataset is a point cloud that needs to be transformed to match the target point cloud. 

In general, the source point cloud needs to be rotated (three rotations), translated (three 

translations), and scaled (one scale) to match the coordinate system of the target dataset. 

Registration of TLS point clouds does not need the inclusion of a scale parameter, but 

photogrammetric point clouds generally do, when GCPs and/or Global Navigation Satellite 

System (GNSS) are not used. Most examples provided herein do not need a scale parameter, as 

the TP and sUAS point clouds utilize GCPs (and GNSS for the sUAS images). The algorithm can 

also accommodate datasets that have different scales, and some examples of application to such 

cases are provided. In addition, photogrammetric images are affected by shadows, depending on 

the time of image capture. For instance, the TP data used in this study were captured at 11 am, but 

the sUAS were captured at 5 pm, because of higher wind and light rain in the early morning and 

early afternoon hours. The proposed algorithm utilizes the geometric information; thus, it is not 

directly affected by shadows. However, it is known that photogrammetric point clouds can be 

noisier in shadow areas than in non-shadow areas.  

 

2.1 Algorithm steps  

The main algorithm steps are (Fig. 1): (1) Preparation: rotation through principal component 

analysis (PCA), phase correlation transformation (PCT), and gridding, (2) edge detection, (3) edge 

matching, (4) point correspondence identification, (5) Procrustes analysis. These are explained in 

more detail below. While the algorithm at its current version requires user-input values that are 

retrieved through a trial-and-error approach, ultimately, generally reasonable parameters (or a 

range of them) could be identified in the future for use without the need for trial and error. 

Computational time of the algorithm is about 5 to 6 minutes for the points clouds used here (5.5 to 

8.5 million points) and with the following computer hardware: Intel(R) Xeon(R) CPU E5-1650 v4 

@ 3.60GHz 3.60 GHz, 64 GB RAM. The most computationally intensive part is the gridding and 

edge detection steps (3 minutes), edge matching takes 1-2 minutes, and point identification with 

Procrustes analysis takes 0.5 minutes. The algorithm was developed in Matlab; thus, the algorithm 

can be optimized and deployed in a more efficient programming language in the future.  



 

Fig. 1. Flowchart showing the main steps of the proposed registration algorithm; boxes with 

slanted tops indicate input parameters.  

(1) Preparation: The point cloud datasets are first rotated using PCA (Jolliffe 2002), making the 

outcrop span in the x- and y-axes, which facilitates gridding in the edge detection step. Because 

outcrop datasets are 2.5D, the point clouds will span in the x-y plane after the PCA operation. 

Small rotations and translations might still exist (e.g., when the two datasets are not cropped to 

about the same extent); therefore, we apply a PCT to achieve coarse registration (Dimitrievski et 

al. 2016). To facilitate effective operation of the algorithm, the user should approximately crop the 

input datasets to the same extent, although rigorous cropping is not crucial (see overlap between 

datasets for this project in the next section and Figure 5). With approximate cropping of the two 

datasets, achieving an overlap of at least 70%-80% appears sufficient for acceptable initial 

registration performance to be achieved. The PCA coefficient matrix, which corresponds to the 

rotation matrix, is derived using the built-in Matlab function “pca” (MathWorks, Inc. 2020b). The 

rotation through PCA is given as follows:  𝐗𝑆,𝑃𝐶𝐴1 = 𝐑𝑃𝐶𝐴1𝑆 (𝐗𝑆 − 𝐗𝑆,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ) (1a) 𝐗𝑇,𝑃𝐶𝐴2 = 𝐑𝑃𝐶𝐴2𝑇 (𝐗𝑇 − 𝐗𝑇,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ) (1b) 

where 𝐗𝑆 and 𝐗𝑇 are the x, y, z coordinates of the source and target point clouds, respectively. 𝐗𝑆,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  and 𝐗𝑇,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  are offsets to reduce coordinates to their centroids in order to avoid 

working with large coordinate values. 𝐑𝑃𝐶𝐴1𝑆  and 𝐑𝑃𝐶𝐴2𝑇  are 3×3 rotation matrices of the source 

and target point clouds. The matrices are derived after the PCA operation. 𝐗𝑆,𝑃𝐶𝐴1 and 𝐗𝑇,𝑃𝐶𝐴2 are 

the transformed x, y, z coordinates of the source and target point clouds. The PCT (Dimitrievski 

et al. 2016) is given as:  



𝐗𝑆,𝑃𝐶𝑇 = 𝐑𝑃𝐶𝑇𝑆 (𝐗𝑆,𝑃𝐶𝐴1 + 𝐗𝑆,𝑃𝐶𝑇)=[cos 𝜃𝑃𝐶𝑇 −sin 𝜃𝑃𝐶𝑇 0sin 𝜃𝑃𝐶𝑇 cos 𝜃𝑃𝐶𝑇 00 0 1] (𝐗𝑆,𝑃𝐶𝐴1 + [𝑇𝑥𝑃𝐶𝑇𝑇𝑦𝑃𝐶𝑇0 ]) 

(2) 

Where 𝐗𝑆,𝑃𝐶𝑇  is the source point cloud transformed using the PCT method, 𝐑𝑃𝐶𝑇𝑆  is the rotation 

matrix around the z-axis with angle 𝜃𝑃𝐶𝑇 , and 𝐗𝑆,𝑃𝐶𝑇  the translation vector for the x- and y-axis 

with 𝑇𝑥𝑃𝐶𝑇 and 𝑇𝑦𝑃𝐶𝑇 translations, respectively. The sub- and super-script 𝑃𝐶𝑇 means that the 

rotation and translation values have been derived from the phase correlation transformation. Note 

that if the two datasets are already approximately georeferenced (e.g., within few meters) and have 

similar extent, such as some of the datasets in this paper, then Eq. (1) can be simplified by using 

the same centroid values and rotation matrix as follows: 𝐗𝑆,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝐗𝑇,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  and 𝐑𝑃𝐶𝐴1𝑆 =𝐑𝑃𝐶𝐴2𝑇 , and the PCT step in Eq. (2) can be discarded. 

The rotation to the x-y plane facilitates gridding of the point clouds in order to utilize edge 

detection algorithms. Gridded point clouds can be treated like a grayscale image, allowing us to 

utilize edge detection methods that were originally designed for images. The grid-step is an input 

parameter and depends on the point cloud resolution. A higher resolution dataset enables better 

identification of edge location, although depending on the size of the study area, could lead to large 

grids that increase computational burden. In this study, grid spacings of 10 cm, 5 cm, and 2.5 cm 

were tested for comparison. A Delaunay triangulation and linear interpolation is used to grid the 

point clouds. The algorithm can produce grids with different spatial extent and grid spacing, 

although if the two datasets have the same scale, then the same grid spacing is used for consistency. 

From the transformed point clouds of Eq. (1) and Eq. (2) we derive three arrays for each dataset 

(i.e., one array for each coordinate component). The z-values of the two gridded datasets are then 

converted to gray-scale images. Note that in the presence of significant scale differences between 

the two datasets, different grid steps are used for the target and source datasets, based on their 

average point densities. Scale and grid step are then refined trough iteration. Estimation of initial 

scale is further discussed in: (3) edge matching.  

(2) Edge detection: In the next step, edge detection is performed using a symmetric α-molecules 

approach (Reisenhofer and King 2019). The main goal of this step is to identify the same edges in 

the two datasets (Fig. 2). Symmetric α-molecules were selected because they offer a general 

formulation that can be adapted to resemble wavelets, curvelets, and shearlets (Reisenhofer and 

King 2019). In addition, several edge detection algorithms were tested in Bolkas et al. (2018) for 

edge detection on rock formations, which showed the superiority of shearlets over several edge 

detection methods. In this step, the user needs to specify input parameters that can be derived 

empirically (see for example Bolkas et al. 2018). These input parameters rely on the rock formation 

itself and not so much on the point cloud creation method (i.e., laser scanning or imagery). Based 

on previous experience from Bolkas et al. (2018), we have derived ranges of parameter values that 

can work in this type of application case, and they are discussed below. 

 The edge detection based on α-molecules is implemented using the SymFD toolbox (Reisenhofer 

and King 2019). The main user input parameters are organized in the following eight main 

categories: (1) minimum and maximum feature width, which determine the width of the narrowest 

and widest filters, respectively, in the system of symmetric molecules; (2) The maximum feature 



length, which determines the length of the longest filter in the system. The maximum length and 

maximum width specify the length and width of the generating filter; (3) The generator, which in 

this study is the tensor product of a Mexican hat wavelet and a Gaussian Filter (as used in Bolkas 

et al. 2018); (4) The α parameter, which determines the degree of anisotropy of the applied scaling 

matrix, where α=1 is isotropic scaling and α=0 is anisotropic scaling; (5) the number of scales; (6) 

The number of differently oriented molecules on each scale; (7) An option for if a rotation matrix 

will be used or if a shear matrix will be used (see King et al. 2015; Reisenhofer et al. 2016); (8) 

The minimal contrast for edge detection.  

Because there are a quite large number of possible input values for the above parameters, we have 

limited testing to few values utilizing the knowledge gained through trial and error and from 

Bolkas et al. (2018); these are: (1) minimum feature width of 1 m and 2 m, maximum feature width 

of 4 m, 6 m, and 8 m; (2) maximum feature length 4 m, 6 m, and 8 m; (3) as described above, the 

generator is the tensor product of a Mexican hat wavelet and a Gaussian Filter as used in Bolkas 

et al. (2018); (4) α values of 0, 0.5, and 1; (5)  2, 4, and 6 scales; (6) 2^6, 2^8, 2^12 and 2^16 

numbers of orientations; (7) both the rotation and shear matrix conditions; and (8) minimal contrast 

values of 1 and 2. Note that in preliminary testing, we considered a 2 m maximum feature length 

and width, but this value led to fragmented edges and high computation load compared to the 4 m 

(and higher value) scenarios, so 4 m is the smallest feature width and length considered here.  

In Bolkas et al. (2018) an empirical approach was implemented to search and find the parameters 

that provide the best detector by comparing with manually extracted edges (used as reference). 

Here, edges do not have to match with a reference edge dataset, but rather we want the detector to 

detect edges in the same location for two input multi-platform datasets. To assess the detector and 

find the edge parameters that will give us the most similar edges, we are assessing the agreement 

(in detected edges) between the three input datasets (i.e., between the TP and sUAS datasets, 

between the TLS and sUAS datasets, and between the TP and TLS datasets). Users are expected 

to conduct a visual comparison because it is assumed that their datasets will be in different 

coordinate systems and thus quantitative assessment cannot be performed. For the purposes of this 

study, a comparison is possible because all three datasets are geo-referenced with cm-level 

agreement. The relative edge agreement is verified using a simple metric, Pratt’s Figure Of Merit 
(PFOM) (Pratt 1978), which is defined as: 

 PFOM = 1𝑚𝑎𝑥{𝐸𝐴, 𝐸𝐷} ∑ 11 + 𝑓𝑑(𝑖)2
𝐸𝐷
𝑖=1  (3) 

where 𝐸𝐴 is the number of actual edge points, 𝐸𝐷  is the number of detected edge points, 𝑑(𝑖) is 

distance (in pixels) between the actual edge to the corresponding detected edge of the ith detected 

edge point, and f is a scaling constant chosen as 1/9. The metric takes on values from 0 to 1, with 

1 corresponding to perfect edge similarity between the two compared edge datasets. 

The output of the edge detection operation for each dataset is a binary array with values of zeros 

and ones, where a value of one indicates the presence of an edge grid cell and a value of zero 

indicates its absence (i.e., 𝐄𝑆 and 𝐄𝑇 for the source and target datasets, respectively). From the 

binary edge images, we extract lists of connected edge points using the algorithm of Kovasi (2019). 



The lists consist of sets of integer (row and column) locations of the connected edge points. From 

the row and columns lists we can extract the coordinates of the identified edges in the source and 

target datasets:   

𝐋𝑆 = [𝐋1𝑆⋮𝐋𝑝𝑆 ] = [𝐱1𝑆,𝑔𝑟𝑑 𝐲1𝑆,𝑔𝑟𝑑 𝐳1𝑆,𝑔𝑟𝑑⋮ ⋮ ⋮𝐱𝑝𝑆,𝑔𝑟𝑑 𝐲𝑝𝑆,𝑔𝑟𝑑 𝐳𝑝𝑆,𝑔𝑟𝑑] 

(4a) 

𝐋𝑇 = [𝐋1𝑇⋮𝐋𝑞𝑇 ] = [𝐱1𝑇,𝑔𝑟𝑑 𝐲1𝑇,𝑔𝑟𝑑 𝐳1𝑇,𝑔𝑟𝑑⋮ ⋮ ⋮𝐱𝑞𝑇,𝑔𝑟𝑑 𝐲𝑞𝑇,𝑔𝑟𝑑 𝐳𝑞𝑇,𝑔𝑟𝑑] 

(4b) 

 

where 𝐱𝑝𝑆,𝑔𝑟𝑑
, 𝐲𝑝𝑆,𝑔𝑟𝑑

, 𝐳𝑝𝑆,𝑔𝑟𝑑
 contain the real-world coordinates of the grid-cells that comprise the 

pth edge in the source dataset and 𝐱𝑞𝑇,𝑔𝑟𝑖𝑑
, 𝐲𝑞𝑇,𝑔𝑟𝑖𝑑

, 𝐳𝑞𝑇,𝑔𝑟𝑖𝑑
 contain the real-world coordinates of 

the pixels that comprise the qth edge in the target dataset. Note that in the general case, the number 

of identified edges will be different in the source and target datasets (i.e., p ≠ q).  The   𝑔𝑟𝑖𝑑 

superscript denotes gridded coordinates.  

 

Fig. 2. Outline of target and source datasets after PCA and PCT. The figure shows detected edges 

for the target and source datasets. Also, the figure shows an example of corresponding edges in 

the two datasets.  

(3) Edge matching: The detected edges from the source dataset are matched with the detected 

edges of the target dataset. The process is based on the Discrete Fréchet Distance (DFD) (Eiter and 

Mannila 1994) as implemented by Danziger (2021). The DFD is a measure of similarity between 

two polygonal curves, and it is often used to measure the similarity between two trajectories (e.g., 

Zhang et al. 2019). The DFD is often explained with the example of a man walking a dog on a 

leash (Eiter and Mannila 1994). The man is moving on the one curve and the dog on the other. 

Their traversing speed can vary, but no backtracking is allowed. The DFD measures the shortest 

“leash” length for traversing the two curves. The algorithm considers the location and ordering of 

points in the two curves, and it can compare curves of different number of points. We compute the 

DFD between all possible pairs of the detected edges in the source and target datasets. For example, 



considering two edges 𝐋𝑝𝑆  and 𝐋𝑞𝑇 , one in the source dataset and in the target dataset, the DFD is 

given as (Eiter and Mannila 1994):  

 DFD(𝐋𝑝𝑆 , 𝐋𝑞𝑇 ) = min𝐶∈Ωmax(𝐋𝑝𝑆 (𝑎𝑖),𝐋𝑞𝑇(𝑏𝑖))∈𝐶‖𝐋𝑝𝑆 (𝑎𝑖) − 𝐋𝑞𝑇 (𝑏𝑖)‖ (5) 

Where Ω is the set of all possible couplings between 𝐋𝑝𝑆  and 𝐋𝑞𝑇 , 𝐶 is a coupling between 𝐋𝑝𝑆  and 𝐋𝑞𝑇 , which is a sequence (𝐋𝑝𝑆 (𝑎1), 𝐋𝑞𝑇 (𝑏1) ), (𝐋𝑝𝑆 (𝑎2), 𝐋𝑞𝑇 (𝑏2) ), … , (𝐋𝑝𝑆 (𝑎𝑚), 𝐋𝑞𝑇 (𝑏𝑚) ) of distinct 

pairs between the points of the two curves. The sequence respects the ordering of the points in the 

two curves such that 𝑎1 = 1, 𝑏1 = 1, 𝑎𝑚 = 𝑝, 𝑏𝑚 = 𝑞, and for all 𝑖 = 1, … . , 𝑞 we have 𝑎𝑖+1 = 𝑎𝑖 
or 𝑎𝑖+1 = 𝑎𝑖 + 1, and 𝑏𝑖+1 = 𝑏𝑖  or 𝑏𝑖+1 = 𝑏𝑖 + 1. Figure 3 shows an illustration of the DFD in 

cases where the edges are similar (a vertical offset was applied for illustration in Fig. 3a) and in 

cases where the edges are not similar, demonstrating the longer “leash” or coupling distance that 

is needed when the edges are not corresponding.  

The application of DFD in the detected edges of the source and target datasets results in a p×q 

matrix of DFD distances. For each target edge, we find the source edge with the smallest DFD. 

For duplicate matches we keep the ones with the smaller DFD. Then we keep the strongest edge 

correspondences between the two datasets by applying a threshold. The DFD considers both the 

location and ordering of points on two curves /edges; thus, the metric is affected by the location 

of edges and an approximate initial registration is required for edge matching. The accuracy of the 

initial registration depends on the spacing between edges. In this case, edges are several meters 

apart; therefore, the initial registration should align the two datasets at the 1-2 meter level or better, 

otherwise the edge matching step can produce poor matches. In that case, the user would need to 

refine the PCT parameters or manually align the two point clouds.  

Furthermore, the DFD finds a one-to-one match with the minimum DFD value. In the case where 

an edge is long in the first dataset and the corresponding edge is fragmented into smaller edges in 

the second dataset, only one of the fragmented segments (the one with the minimum DFD value) 

will be matched to the long edge. To avoid obtaining fragmented edges, the user can select 

appropriate max feature width and max feature length values in the edge detection step with α-

molecules. For instance, in this example we do not use max feature width and length parameters 

of less than 4 m, such parameters led to fragmented edges.  



 

Fig. 3. Illustration of the Discrete Fréchet Distance in cases where (a) edges are corresponding and 

(b) edges not corresponding between the target and source datasets.  

 

Computational time increases with increasing number of edges. About 500 to 600 edges larger 

than 1 m are identified for each dataset. Utilizing parallel computing, the DFD estimation for all 

possible pairs took about 2.5 minutes in our computer system. We have also developed a variant 

where we compute the DFD only for source edges that are within a radius of the midpoint of the 

reference edges (e.g., 5 m or 10 m), which speeds the process to less than 1 minute of processing 

time without parallel computing. Results are identical in the two cases, with the only difference 

being the processing time.   

Note on Scale: In the case of significant scale between the two datasets (e.g., in the case of 

photogrammetric point clouds with no GNSS or GCPs), the DFD will not be accurate. A way of 

retrieving initial estimates of scale is by computing the singular value decomposition (SVD) of the 

two datasets and using the ratio of the singular values between the two datasets (Umeyama 1991). 

Another approach is to utilize the 2.5D nature of the datasets and use the ratio of the standard 

deviations in the z-direction (after the PCA rotation) for the two datasets. We have found that both 

these approaches yield similar estimations of initial scale value. With an initial estimation of scale, 

the algorithm computes average point densities to derive a grid step for the source dataset. A new 

scale is then estimated in the Procrustes analysis step. Scale and grid step, as well as the input 

parameters for edge detection (maximum feature length and width, and minimum feature width), 

are then refined for the source dataset through iteration.  

  



(4) Identify point correspondence: At this point, we have identified matching edges in the two 

datasets. Next, we derive corresponding points in the identified edges (Fig. 4). Point 

correspondences are achieved by computing the sum of squared differences (SSD) between points 

of the two matched edges and using that as a criterion to identify correspondences. We use the 3D 

gridded coordinates for the point-matching step (hence the term 3D gridded points in Fig. 4). The 

matching is implemented using the Matlab function “matchFeatures” (MathWorks, Inc. 2020a), 

which uses the sum of squared differences as metric. A max ratio threshold, with values between 

zero and one, is selected by the user to identify the strongest matches and reject ambiguous 

matches. After this step, the algorithm should have identified matching points in the two datasets 

that can be used to estimate a transformation. Unmatched points (“weak” correspondences) exist 

because of higher differences in coordinates than matched points (“strong” correspondences), 
which can be due to actual point cloud differences between the target and source datasets or due 

to differences in detected edge-points from the edge detection step. Examples of such “weak” 
correspondences are depicted in the source dataset in Fig. 4.    

 

Fig. 4. Point correspondences in the target and source datasets. The circles show locations of 3D 

(gridded) points that make the identified edges.  

(5) Procrustes analysis: The transformation estimation utilizes 3D coordinates, with 3D 

coordinates taken from their gridded values. We use a Procrustes analysis that determines the linear 

transformation (scale, three rotations and three translations) of the points in the one dataset that 

best conforms to the shape of the second dataset (Kendall 1989; Dryden and Mardia 1998), thus 

maintaining the relative shape formed by the source-matched points. The residuals are assessed to 

remove outliers and incorrectly matched points. A threshold of two standard deviations has been 

used in most cases here after trial and error. Although, this approach was sufficient here, another 

approach that could be considered in the future is to use robust outlier removal methods in the case 

of highly contaminated matches, such as the guaranteed outlier removal method (Bustos and Chin 

2017) and the graph-enhanced sample consensus (Li et al. 2020a). The transformation that 

transforms the source dataset to the coordinate system of the target dataset is then given as:  𝐗𝑃𝐴𝑆,𝑃𝐶𝐴𝑇 = b𝐑𝑆,𝑃𝐶𝑇𝑇,𝑃𝐶𝐴2𝐗𝑆,𝑃𝐶𝑇 + 𝐓𝑆,𝑃𝐶𝑇𝑇,𝑃𝐶𝐴2
 (6) 

where b is the scale difference between the source and target datasets, 𝐓𝑆,𝑃𝐶𝑇𝑇,𝑃𝐶𝐴2
 is the translation 

component from the PCT space of the source dataset to the PCA space of the target dataset, 𝐑𝑆,𝑃𝐶𝑇𝑇,𝑃𝐶𝐴2
 



is the rotation component from the PCT space of the source dataset to the PCA space of the target 

dataset, and 𝐗𝑃𝐴𝑆,𝑃𝐶𝐴2
 are the transformed source coordinates to the PCA space of the target dataset. 

The transformation takes place in the PCA space; therefore, to derive the object space coordinates, 𝐗𝑃𝐴𝑆,𝑃𝐶𝐴2
 needs to be rotated by (𝐑𝑃𝐶𝐴2𝑇 )−1 and translated by  𝐗𝑇,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 . 

 

2.2 Algorithm assessment  

Assessment of the proposed algorithm starts with an investigation of the “best” input parameters 
for edge detection with α-molecules, and we illustrate the ability of the edge detector to identify 

corresponding edges in multi-platform point clouds. We evaluate the edge matching step and 

investigate the number of correct / incorrect matched edges based on the DFD threshold. In 

addition, we assess the effect of the number of identified corresponding points on the registration 

result (Procrustes step). Registration / georeferencing of photogrammetric surveys relies on the 

number of GCPs considered, so we test several scenarios with varying number of GCPs to 

highlight the cases where the proposed algorithm can contribute in the registration of 

photogrammetrically derived point clouds.  

Comparisons with the ICP algorithm as implemented in Cloud Compare (CloudCompare 2015) 

are provided. An ICP implementation using correspondence rejection based on the Point Cloud 

Library (Holz et al. 2015) was used to validate the ICP results. The root mean square error (RMSE) 

values were found to be within 1-2 mm of the Cloud Compare implementation. Therefore, for this 

study area, the RMSE values obtained from the Cloud Compare ICP are considered to provide a 

good reference comparison. Furthermore, we test the developed algorithm with simulated 

registration scenarios of multi-platform point clouds with significant translations, rotations, and 

scale. The last assessment section uses multi-epoch scenarios to show how the proposed algorithm 

can be used to register multi-epoch and multi-platform point clouds to support rockfall monitoring. 

To numerically assess the registration algorithm, we compute RMSE values between the multi-

platform datasets, using the model-to-model cloud comparison (M3C2) algorithm (Lague et al. 

2013; CloudCompare 2015). In this study, a point spacing of 10 cm was used, meaning that core 

points that are for calculation of the M3C2 distance between two input point clouds had an average 

point spacing of 10 cm (Lague et al. 2013; CloudCompare 2015).  

Most multi-platform comparisons consider the TP, TLS and sUAS datasets from 2019 data 

acquisition, which eliminates the effect of active rockfalls in the RMSE values. Multi-temporal 

registration scenarios are also considered to assess whether the algorithm can support point cloud 

registration for change detection. To evaluate the algorithm’s performance, RMSE values from 

ICP-based registrations are used as a benchmark. From the M3C2 results, we compute a RMSE 

value to assess the agreement or disagreement between two multi-temporal or two multi-platform 

point clouds. Points in vegetated areas are removed before computing the RMSE value using a 

manually made vegetation mask to eliminate their effects, as they correspond to lower accuracy 

areas in point cloud data (e.g., Gruszczyński et al. 2017; Bolkas 2019).  

 



3. Study area and data  

The study area is located west of Idaho Springs, Colorado along interstate I-70. The site is 

monitored using terrestrial photogrammetry data from the Colorado Department of Transportation 

and The Colorado School of Mines (see Kromer et al. 2019). The area under investigation is 55 m 

wide and 35 m in height (Fig. 5a). This area is part of the front range of the Colorado Rocky 

Mountains and it consists of jointed biotite gneiss. The biotite gneiss is characterized by interlayers 

of plagioclase-biotite gneiss and sillimanitic biotite-quartz gneiss and is well foliated (for more 

information, see Kromer et al. 2019). The region and site under investigation is prone to rockfalls 

due to the steep canyons and seasonal freeze and thaw cycle (Kromer et al. 2019).  

This study uses multi-platform point clouds acquired from terrestrial photogrammetry, aerial 

photogrammetry (from sUAS), and terrestrial laser scanning. A GNSS network was created to 

provide geo-referencing of the various datasets. These are presented in detail below. The TP 

images used here were acquired in March of 2018 and June of 2019; the TLS point clouds were 

collected in February of 2018 and June of 2019; the sUAS data were collected in June 2019 (see 

Figure 5h). For the sUAS data there is not a 2018 acquisition, because the system was not available 

at that time. Figures 5e-5g show the various data on top of the sUAS dataset, to highlight their 

spatial extent. Note that the datasets were moved for illustration. 

 

3.1 GNSS network  

To register and georeference the TLS scans, a network of 11 points was established with GNSS 

observations (triangles in Fig. 5a). These points were one-meter rebars fit into the ground. The 

baselines of the 11 points were observed with 10-minute rapid static observations using two Leica 

GS 15 GNSS units. The coordinates were referenced with respect to NAD 83 (2011) State Plane 

Coordinates, Colorado Central Zone using a National Geodetic Survey Continuously Operating 

Reference Station (CORS) that was 30 km away from the site location. The referencing was 

accomplished by solving the baseline from the said point to one of the GNSS control points 

(triangle with black outline in Fig. 5a) using a 2-hour static survey. Only one point was used as a 

reference for georeferencing to avoid distortion of the GNSS network (minimally constrained 

network). 

Seven points are located on the opposite side of the site location and interstate I-70, as scanning 

very close to the rock formation does not offer an optimal vantage scanning location. Four points 

were located next to the rock formation to assist with registration if needed (Fig. 5a), but they were 

not ultimately used. The average post-adjustment standard deviation was 5 mm for Easting and 

Northing coordinates and 1 cm for ellipsoidal height. The ellipsoidal height standard deviation did 

not exceed 1 cm in the seven points located on the opposite side of the rock formation. Instead, the 

four points located next to the rock formation had the highest standard deviations. These were up 

to 1 cm for Easting and Northing and 1.3 cm to 3.0 cm for ellipsoidal height. The higher standard 

deviations are justified as the points are very close to the rock formation, limiting satellite view. 

This was another reason why these points were not used in the TLS registration, to ensure high 

quality registration.  



 

 

Fig. 5. Study area, data acquisition, and datasets. (a) GNSS control points, TLS setup locations, 

TP stations, study area (solid line) and sUAS trajectory (dashed line). The triangle with black 

outline shows the point that was used to georeferenced the network with respect to NAD 83 (2011) 

(b) GCPs on the rock-surface for the photogrammetric surveys, triangles show found GCPs, and 

stars show destroyed/lost GCPs. The point cloud from the sUAS survey of 4 June 2019 is also 

shown (c) TP dataset from 4 June 2019 (d) TLS dataset from 4-5 June 2019; (e) TLS from 2018 

on top of sUAS from 2019; (f) TP from 2019 in white on top of sUAS from 2019; (g) TLS from 

2019 with sUAS from 2019; (e) graphical timeline. Note that for figures (e), (f), and (g) the datasets 

were moved for illustration of overlap between the different datasets.  

 

 



3.2 TLS data 

The squares in Fig. 5a show the scanning setups and Fig. 4d shows the resulting TLS point cloud. 

Finding setup locations was challenging due to the high vegetation and tree branches. Scanning 

from the road median was not an option due to safety considerations. Ultimately, laser scanning 

data were collected from 7 locations on the opposite side of the highway. The distance between 

the scanning locations and rock formation is between 80 m to 100 m (lower to higher part of the 

rock formation).  

In the data acquisition of June 4-5 2019, a Leica Scanstation P40 was used. The scanner has a 

range precision of 1.2 mm + 10 ppm, angular precision of 8ˊˊ, and a 6 mm 3D position accuracy 
at 100 m (for the instrument’s noise performance in various targets see Bolkas and Martinez 2018). 
The field scanner resolution was set to 0.8 mm at 10 m and the average point spacing after the data 

from all scan locations were merged was approximately 1 cm. The average point spacing was 

unified to 2.5 cm after registration to more closely match the point cloud footprint size on the 

outcrop (about 2-2.3 cm based on a 0.23 mrad beam divergence) and to match the average ground 

spacing of the sUAS dataset (2.2 cm). The seven points in Fig. 5a were used for point cloud 

registration using resection. Each scanner setup utilized at least three points for the resection, 

except for the rightmost square on Fig. 5a, which used only two. Coordinate standard deviations 

of the resection did not exceed 1 cm for all scanner setups.  

Another TLS dataset from February 13 of 2018 was used as a reference for rock-fall detection. 

The dataset was collected with a Faro Focus x330 phase shift scanner. The scanner has a ranging 

error of 2 mm, and a beam divergence of 0.19 mrad. The scanner was set on the median of the 

highway, which is closer than the June 2019 data acquisition, hence the resulting point cloud had 

a 1 cm average point spacing.  

 

3.3 sUAS data and GCPs 

The Colorado Department of Transportation (CDOT) placed 15 ground control points on the rock 

surface in 2018 (Fig. 5b) (Kromer et al. 2019). Of these 15 points, 13 points were found in May of 

2019 (triangles in Fig. 5b; stars show the two destroyed/lost points). Their coordinates were 

estimated in the same coordinate system as the GNSS network discussed above through total 

station observations. A Leica TS 15 was used that has a 1ˊˊ angular precision and 2 mm + 2 ppm 
range precision for any surface. The total station was setup on the GNSS control points. 

Observations were collected from at least two different locations for each GCP of the rock surface. 

Observations were collected in two sets (direct and reverse instrument mode) from each setup. 

Standard deviations of coordinate differences ranged from 2 mm to 11 mm, thus confirming high 

precision.  

Aerial imagery was collected using an Aibotix X6 unmanned aerial vehicle and using a Sony Alpha 

a6000 mirrorless digital camera. The camera has a 24.3-megapixel sensor and a 16-50 mm lens. 

The sUAS has a GNSS capability that reduces the required number of control points. In Bolkas 

(2019) and Bolkas et al. (2019) it was found that 4-6 GCPs are sufficient for cm-level accuracy 



when the sUAS utilizes its GNSS-Real Time Kinematic (RTK) capability, and about 12 GCPs are 

required when georeferencing relies on GCPs only. A GNSS base station was set on one of the 

control points; therefore, the 13 GCPs are more than the minimum required to provide cm-level 

georeferencing.  

Flights were conducted at an altitude of 30 m using focal lengths of 16 mm, 25 mm, and 30 mm. 

Each focal length has two flights: one flight on June 4, 2019 and one on June 5, 2019. The same 

trajectory was followed for all flights and is shown as a dashed line in Fig. 4a. Oblique imagery 

was captured instead of nadir to maintain a vantage line-of-sight with the rock surface. The arrow 

is at the approximate take-off location and shows the direction of flight. Flights closer to the rock 

surface were not possible due to restrictions associated with the interstate.  

For the purposes of this study, the 30 mm focal length-flight of June 4, 2019 is used, which had 

35 images. The 30 mm flight is used because it offers images with better resolution than the 16 

mm and 25 mm flights. The corresponding size of image pixels on the ground for this flight is 1.1 

cm. The aerial images were processed in Agisoft Metashape (Agisoft LLC 2020) using the “high” 
quality level, which generated a point cloud with 2.2 cm average point-spacing. The quality level 

(ultra, high, medium, low, lowest) specifies the dense point cloud reconstruction quality in Agisoft 

Metashape. The ultra-high quality level processes the original photos, while each other level 

downscales input images by a factor of four (Agisoft LLC 2020). This reduces processing times, 

but results in decreased point cloud density. The 2.2 cm average point spacing obtained from the 

high quality level is considered sufficient for this study.  

 

3.4 TP data 

Terrestrial photogrammetry data were acquired using the fixed station camera system established 

on the site and developed by Kromer et al. (2019). There are five camera stations installed at the 

opposite side of the slope. The cameras used are Canon 5DSRs with 50-megapixel resolution. Each 

camera station is 10-15 m apart and they are approximately parallel to the slope (see Fig. 4a and 

Kromer et al. 2019). The system automatically triggers the camera to capture photos two times a 

day (at noon and at 12:30 pm for redundancy), processes the TP point clouds using Agisoft 

Metashape via python scripting, and registers and calculates change using custom-built algorithms. 

The system works without GCPs as it possesses accurate pre-calibration models for the digital 

cameras. The GCPs were only used as a comparison for the GCP-less method in Kromer et al. 

(2019).  

This study used the noon photos (5 photos) taken on June 4, 2019 with a focal length of 85 mm. 

The resulting point cloud had an average point-spacing of 1.5 cm and can be seen in Fig. 4c. We 

also use a TP dataset collected on March 19 2018, which is used as a reference for rock-fall 

detection. These TP point clouds (2018 and 2019) are created using the same 13 GCPs that were 

used in the sUAS datasets acquired in 2019. In addition, the TP models use camera self-calibrations 

generated using these 13 GCPs. This was done for consistency and to reduce differences in geo-

referencing and camera self-calibration in the TP and sUAS point clouds from the use of a different 

number of GCPs.  



  

4. Experimental Results  

4.1 Dataset Comparison and Edge Detection Parameters  

This section demonstrates the effect of the α-molecules parameters on edge detection for the 

present datasets. We use the 2019 datasets, specifically the TP dataset (with 13 GCPs), the TLS 

dataset (georeferenced using targets), and the sUAS dataset (with GNSS + 13 GCPs). Table 1 

shows their statistical comparison using the M3C2 algorithm. The RMSE comparison verifies cm-

level agreements between the three datasets, thus, identified edges should exist in the same location 

(within few cm) for all datasets. Note that in Kromer et al. (2019), who used images from the same 

TP system and TLS datasets (using a Faro Focus x330), lower RMSE values are found for the TP-

TLS comparison (approximately 1.1 cm) because in Kromer et al. (2019), comparisons are 

constrained to the lower rock area, while in this study a larger region is considered (Fig. 5).   

 

Table 1. RMSE of M3C2 algorithm comparisons for the three multi-platform datasets. All datasets 

are georeferenced.  

 TP (13 GCPs) TLS sUAS (GNSS + 13 GCPs) 

TP (13 GCPs) - 3.2 cm 2.1 cm 

TLS 3.2 cm - 3.3 cm 

sUAS (GNSS + 13 GCPs) 2.1 cm 3.3 cm - 

 

Assessment of edge detection and search of input parameters uses the PFOM metric. Based on the 

search/test parameters identified for this test site (see section 2.1), we computed correlation 

coefficients of the tested parameter values with the resulting PFOM values for each scenario (i.e., 

TLS vs TP, TP vs sUAS, and TLS vs sUAS). This identifies which parameters have the most 

influence on the PFOM metric and thus on edge detection and helps us understand how different 

input parameter values change the resulting PFOM values. The strongest correlation in all three 

comparisons was found to be the maximum feature width parameter (correlation coefficients of -

0.81, -0.60, and -0.72, respectively), while the second strongest was the minimum contrast 

threshold (correlation coefficients of -0.32, -0.30, and -0.40, respectively). Note that these 

correlations depend on the selected parameters tested in this paper. Figure 6 shows the PFOM 

variability based on the max feature width parameter, thus highlighting that highest PFOM values 

are retrieved with a 4 m maximum width and maximum length.  



 

Fig. 6. variability of PFOM values based on max feature width.  

Table 2 gives the parameters with the highest PFOM values for each comparison. The three 

comparisons yielded similar “best” parameters with minor differences in the number of 

orientations and minimum feature width for the TP-sUAS comparison. The TLS-sUAS and TLS-

TP comparisons yielded the same parameters. The differences in PFOM values for the identified 

parameters in Table 2 are small. For example, the PFOM value of TP-sUAS using its “best” 
parameters is 0.712, while when we use the “best” parameters from the TLS-sUAS and TLS-TP 

comparisons, the PFOM value is 0.709. Therefore, for consistency we use the “best” parameters 
obtained from the TLS-sUAS and TLS-TP comparisons. Using these parameters, the PFOM values 

are 0.674 for TLS-TP and 0.666 for TLS-sUAS comparisons. 

 

Table 2. α-molecule parameters with the highest PFOM values for each comparison 

 Parameters that yield highest 

PFOM values  

Parameter  TLS vs 

TP 

TLS vs 

sUAS 

TP vs 

sUAS 

Scales per octave 4 4 4 

Min contrast  1 1 1 

Number of orientations  2^8 2^8 2^12 

Max feature width (m) 4 4 4 

Max feature length (m) 4 4 4 

Min feature width (m) 1 1 0.5 

Orientation operator  Rotation Rotation Rotation 



 

Figure 7a,b,c shows the identified edges for each comparison using the parameters of Table 2. 

Although there are some differences in detected edges between the three comparisons (for example 

see Fig. 7a versus Fig. 7b, 7c), what is important for the registration algorithm is that similar edges 

are identified (i.e., relative similarity). With respect to the latter, Fig. 7 shows very good agreement, 

as there are several edges that are identified in the compared datasets. Detected edges are different 

(in an absolute sense) because of the differences in gridding, as we grid datasets with grid extents 

based on the coverage of the reference dataset. For example, Figures 7a and 7c have different grids 

and grid extents, because the coverage of the two reference datasets is different In Figure 7a the 

grid is based on the extent of the TLS dataset and in Figure 7c the grid is based on the extent of 

the TP dataset. However, as mentioned above, relative similarity is assessed by the algorithm, and 

satisfactory results are therefore achieved in Figure 7 for the difference scenarios.   

For comparison, we show the detected edges in the TLS versus sUAS datasets when 8 m are used 

for max feature width and length (Figure 7d), and 2 m for max feature length and width (Figure 

7e). In addition, we show the detected edges in the TLS versus TP comparison using 8 m for max 

feature width and length (Figure 7f). When the max feature width and length parameters are 

increased, less edges are found (Figures 7d and 7f versus Figures 7b and 7c, respectively). When 

these parameters are decreased, more edges are detected (Figure 7e versus 7b); however, we should 

note that the edges with the 2 m max feature width and length are more fragmented, which cannot 

be seen in the figure. In addition, there are more mismatches and poorly shaped edges in the top 

area of Figure 7e where vegetation exists than in Figure 7b, which uses a 4 m max feature width 

and length.  

To show the effect of the different edge detection results on registration, we created three 

scenarios. In all scenarios the reference dataset is the TLS, and the source dataset is the sUAS 

GNSS with 0 GCPs. This means that no GCPs are used, and geo-referencing is achieved from the 

GNSS image positions. The absence of GCPs can lead to poor camera self-calibration (Bolkas 

2019); therefore, to remove such effects, we use the camera self-calibration derived from the case 

with 13 GCPs. Use of the 13 GCP self-calibration parameters in the sUAS dataset is denoted here 

as “sUAS (GNSS + 0 GCPs; Pre-calibration)”. In the first scenario we use 4 m max feature width 

and length (derived from Table 2), in the second scenario we use 2 m max feature width and length, 

and in the third scenario we use 8 m max feature width and length. Note that the RMSE for 

comparison between the TLS and the sUAS (GNSS + 0 GCPs; Pre-calibration) is 42.2 cm. Since, 

we are using an accurate pre-calibration, the high RMSE indicates high georeferencing error due 

to the absence of GCPs. Using the first scenario the registration RMSE is 3.5 cm, using the second 

scenario the RMSE is 3.7 cm, and using the third scenario the RMSE is 4.4 cm. This result indicates 

that even when the input parameters are not the “best” and few edges are detected, the algorithm 

manages to register the two datasets with high accuracy, but with less accuracy than when using 

the optimal parameters. The following section deals with further assessment of the developed 

registration algorithm.  



  

Fig. 7. Detected edges for each comparison based on different α-molecule parameters. (a) TLS 

versus TP with parameters from Table 2; (b) TLS versus sUAS with parameters from Table 2; (c) 

TP versus sUAS with parameters from Table 2; (d) TLS versus sUAS with 8 m max feature width 

and 8 m max feature length; (e) TLS versus sUAS with 2 m max feature width and 2 m max feature 

length; (f) TLS versus TP with 8 m max feature width and 8 m max feature length. The sub-figures 

also show the dataset used as reference in the background. Note that reference edges (green) are 

shown thicker than source ones (red) to enhance illustration.  

 

4.2 Effect of number of edges in the edge matching process  

To evaluate the effect of the DFD threshold on the edge matching, we counted the number of 

correctly and incorrectly matched edges through visual inspection. The results are plotted in Fig. 



8 as a function of the DFD threshold value for each comparison (TLS vs TP, TLS vs sUAS, and 

TP vs sUAS). Note that the DFD was normalized using the maximum and minimum DFD values 

for each comparison, and thus is unitless. Figures 8a,b,c show that as the threshold increases, so 

do the number of correctly and incorrectly matched edges; therefore, the user has to decide the 

appropriate threshold through trial and error. We also calculated the ratio of the number of 

incorrectly matched edges over the number of correctly matched edges (Fig. 8d). A ratio value of 

0.5 means that the number of incorrect matched edges is half the number of the correct matched 

edges. To reduce the effect of incorrect edges, this ratio value should remain low. We consider 

that ratio values of >0.3-0.4 are high and can introduce outliers in the Procrustes analysis. Note 

that many of the incorrect edges are found in vegetation areas, as vegetation is captured differently 

by the different sensors (see top areas in the sub-figures of Figure 7). Although such edges may be 

in the same location in the various datasets, their shape will be different, as they are affected 

differently by vegetation. Many of those “incorrect” edges were matched in the correct location; 

therefore, edge matching was successful, but edges with distinctly different shapes are labeled 

“incorrect”, as they will have a negative impact (outliers) on the Procrustes analysis.  

 

Fig. 8. Effect of DFD threshold on edge matching (a) TLS vs TP; (b) TLS vs sUAS; (c) TP vs 

sUAS; (d) ratio of the number of incorrect matched edges over the number of correct matched 

edges for each comparison. Note that the Discrete Fréchet Distance has been normalized to the 

maximum and minimum distances in each comparison, such that it is unitless.  



 

Fig. 9. Example result of the edge matching step using the discrete Fréchet Distance. (a) TLS vs 

TP; (b) TLS vs sUAS; (c) TP vs sUAS. Sub-figures (a), (b), and (c) use DFD threshold of 0.025. 

(d) TLS vs TP; (e) TLS vs sUAS; (f) TP vs sUAS. Sub-figures (d), (e), and (f) use DFD threshold 

of 0.01. The sub-figures also show the dataset used as reference in the background. Note that 

reference edges (green) are shown thicker than source ones (red) to enhance illustration.  

Figure 9 shows an example of the edge matching step. The figure was created after computing the 

DFD between identified edges for each comparison. Figures 9a,b,c are created using a threshold 

of 0.025, while Figures 9d,e,f are created using a threshold of 0.01. These thresholds were used to 

show some of the edges with different shapes, found in the same location, in the top parts of the 

dataset area. As mentioned earlier, these are affected mostly by vegetation (Figures 9a,b,c). The 

influence of those edges is minimized when more strict thresholds are used (Figures 9d,e,f). 



Furthermore, in the case with strict thresholding, edges with poor shape correspondence are 

typically of short length (1-2 meters), meaning that only few points will be matched and will 

therefore not have a significant impact on the Procrustes analysis and registration. The figure 

shows good edge matching performance overall. Furthermore, the figure shows that vegetation or 

data gaps do not adversely affect the edge matching process. This is further discussed in the 

following section (Section 4.3) where poor mismatches and outliers are removed in the Procrustes 

step.  

 

4.3 Effect of grid-spacing and number of matched points on registration result  

This section evaluates the effect of grid-spacing on the registration accuracy. We test scenarios 

with grid-spacings of 10 cm, 5 cm, and 2.5 cm. The comparisons used are: (i) TP versus sUAS 

(GNSS + 0 GCPs; Pre-calibration); (ii) TP versus sUAS GNSS + 13 GCPs; (iii) TLS versus sUAS 

(GNSS + 0 GCPs; Pre-calibration); (iv) TLS versus sUAS GNSS + 13 GCPs. Table 3 shows the 

RMSE results for each grid-spacing scenario. In general, there is small effect of the selected grid 

on the registration result. The case with 10 cm grid spacing yields the highest RMSE values, but 

these are still within few mm of the RMSE values obtained using a 2.5 cm grid spacing.  In general, 

small differences are found between the 5 cm and 2.5 cm grid-spacings. The 2.5 cm grid-spacing 

is preferred here because it matches the average grid-spacing of the input datasets. In the presence 

of significant scale differences, the source point cloud is scaled with an initial scale value (see 

section 2.1), then the algorithm uses a grid step size based on the average point density of the point 

cloud, and the process is refined through iteration (see scenarios in section 4.5).  

 

Table 3. Effect of grid-spacing on registration; values are RMSE in cm.   

   Proposed Algorithm: Grid-

spacing 

Comparison  Initial ICP 10 cm  5 cm  2.5 cm 

TP (13 GCPs) vs sUAS (GNSS + 0 GCPs; pre-

calibration) 

35.5 3.3 3.0 3.1 2.9 

TP (13 GCPs) vs sUAS (GNSS + 13 GCPs) 2.1 2.0 2.4 2.4 2.0 

TLS vs sUAS (GNSS + 0 GCPs; pre-calibration) 42.2 3.9 4.1 3.8 3.5 

TLS vs sUAS (GNSS + 13 GCPs) 3.3 2.6 2.7 2.6 2.5 

 

For the same dataset comparisons, we provide the point correspondences that were identified when 

using the 2.5 cm grid spacing (Fig. 10). The number of identified points is about 3,500 in all cases, 

and points have been identified in several parts of the study area. This is an adequate number of 

points for the Procrustes analysis. Figure 10 also shows how poorly shaped and poorly matched 

edges in the top part of the study areas, because of vegetation, have been removed from the 

Procrustes analysis, thus minimizing their effect.  



Figure 11 shows the effect on registration RMSE when we randomly reduce the number of points. 

In most cases, we see small differences even when only a few hundred points are used. Larger 

RMSE values are found when the number of identified points drops below one hundred, as the 

network geometry of matched points can deteriorate, and the influence of poorly matched points 

can be increased. To provide additional insights and to show how the number of correct / incorrect 

edges affect the registration we have considered additional analysis scenarios using the TP (13 

GCPs) versus sUAS (GNSS+ 0 GCPs; pre-calibration) comparison. Using 25 correct edges and 5 

incorrect with about 2,000 matched points, the resulting RMSE is 2.9 cm. Using three manually 

selected edges (one at the top right corner and two at the bottom of the site) with 70 matched 

points, we were able to register the two point clouds with an RMSE of 3.3 cm. When using about 

28 correct edges and 20 incorrect ones with about 2,000 matched points, we obtained an RMSE of 

6.1 cm. While the ideal scenario is to have many correct edges and few or no incorrect ones, 

accurate registration is possible even with just a few “correct” edges. In the case with many correct 

and incorrect edges, there is a higher level of contamination from poorly shaped or poorly matched 

edges. In this paper, we have demonstrated that the level of contamination can depend on the 

selected parameters for edge detection, edge matching, and identification of point 

correspondences. As shown in Figure 10, after thresholding to remove poor point correspondences 

in the Procrustes step, the level of contamination is low. In addition, the user, by selecting 

appropriate parameters, can control and reduce this level of contamination. Robust outlier removal 

methods (e.g., Bustos and Chin 2017; Li et al. 2020a) could also be utilized in the future as 

necessary. 

 



Fig. 10. Examples of identified matched points (a) TP (13 GCPs) versus sUAS (GNSS + 0 GCPs; 

pre-calibration); (b) TP (13 GCPs) versus sUAS (GNSS + 13 GCPs) (c) TLS versus sUAS (GNSS 

+ 0 GCPs; pre-calibration) (d) TLS versus sUAS (GNSS + 13 GCPs). Note that reference points 

(green) are shown two times larger than source ones (red) to enhance illustration.  

 

Fig. 11. Registration RMSE as a function of identified matched points.  

 

4.4 Registration with varying numbers of GCPs 

In this section, we apply the developed algorithm in different GCP scenarios. The scenarios here 

use the TP and TLS datasets as reference and we vary the number of GCPs used in the sUAS 

dataset, which affects its georeferencing. Then the proposed algorithm is applied to show the cases 

where it can contribute to enhancing registration of multi-platform point clouds. Scenarios are 

provided with sUAS point clouds that are generated with accurate GNSS positioning for the aerial 

images. Finally, for comparison we have applied the ICP algorithm for each GCP scenario. Figure 

12 shows the GCP scenario that is tested here and how we go from the zero GCP scenario (GNSS-

assisted orientation) to 13 GCPs. As mentioned in the previous section, having no GCPs affects 

camera self-calibration in sUAS-generated point clouds. Therefore, we present scenarios where 

camera self-calibration relies on identified keypoints on the images and using the self-calibration 

that is derived from the GNSS + 13 GCP case. The latter is denoted as “pre-calibration”, thus 
simulating the case where an accurate pre-calibration is available.  



 

Fig. 12. Georeferencing scenarios with GNSS-assisted orientation and varying GCP number.  

Table 4 shows the results of the sUAS comparisons using the TP dataset as reference and Table 5 

shows the results of the sUAS comparisons using the TLS dataset as reference. Tables 4 and 5 

show the RMSE values before the application of the proposed registration algorithm. For the case 

with 0 GCPs (GNSS-assisted orientation) these are 44.0 cm and 50.5 cm for the TP and TLS 

datasets as reference, respectively. The main reasons for the high RMSE error are poor 

georeferencing and camera self-calibration due to the absence of GCPs. Using the camera 

calibration parameters of the case with 13 GCPs, these drop to 35.3 cm and 42.2 cm for the TP 

and TLS datasets as reference, respectively. This indicates that most of the error originates from 

poor georeferencing. After registration with the proposed algorithm the RMSE drops to 5.8 cm 

and 6.5 cm for the TP and TLS reference datasets respectively, without good camera pre-

calibration, and 2.9 cm and 3.5 cm when we use the camera calibration from the 13 GCP case. 

These results highlight that the proposed algorithm can be used to support rockfall monitoring and 

reduce the number of GCPs that are required for georeferencing or registration, when a good 

camera pre-calibration exists. Initial RMSE values using 1 GCP are at the 20 cm – 30 cm level. 

After registration with the proposed algorithm these drop to 2.8 cm – 3.0 cm, when using camera 

pre-calibration. For cases with more GCPs there is little or no improvement, as the GNSS and 

GCPs manage to georeference the various point clouds. For the comparisons with the TLS as 

reference, there is improvement in all GCP cases, because there is an initial mean bias of about 1.5 

cm that is removed after registration with the proposed algorithm. The source of this mis-

registration is believed to be due to the different geo-referencing approach of the laser scanning 

and photogrammetric point clouds. Recall from Fig. 5 that the TLS dataset uses the control points 

on the opposite side of the highway, while the TP and sUAS datasets use the GCPs on the rock-

surface.  

Comparison with the ICP algorithm as implemented in Cloud Compare (CloudCompare 2015) in 

Tables 4 and 5 shows that the proposed algorithm generates comparable results, and in many cases, 



better results are found. The cases where the proposed algorithm provides better results than the 

ICP are mostly in the 0 and 1 GCPs scenarios. The ICP algorithm sometimes can be trapped in 

local minima when initial registration is poor (Attia and Slama 2017), meaning that the proposed 

algorithm provides the best relative performance in such situations. The RMSE values for the 0 

and 1 GCP scenarios before registration are about 30-50 cm, which indicate a poorer initial 

registration than the remaining scenarios. Figure 13 shows the histograms for the TP versus sUAS 

with GNSS using 0 GCPs and 1 GCPs cases (both using the camera calibration from the 13 GCP 

case). The histograms of the M3C2 distance when using the proposed algorithm show higher peaks 

and smaller tails than the ICP algorithm. This highlights the improvement after the application of 

the proposed algorithm, as well as the better performance compared to the ICP algorithm. In 

addition, they validate that the proposed algorithm can be used to support the registration of 

multiplatform point clouds for rockfall monitoring.  

Table 4. Registration of the sUAS dataset to the TP dataset for various GCP scenarios. RMSE 

values are shown.   

GCP number  Before 

(cm) 

Proposed Algorithm 

(cm) 

ICP (cm) 

0  44.0 5.8 6.1 

0 (pre-calibration) 35.5 2.9 3.3 

1 30.0 3.5 3.5 

1 (pre-calibration) 23.6 2.8 3.0 

2 2.3 2.0 2.1 

3 2.2 2.1 2.1 

4 2.1 2.1 2.1 

5 2.0 2.0 2.0 

6 2.1 2.0 2.0 

13 2.1 2.0 2.0 

 

Table 5. Registration of the sUAS dataset to the TLS dataset for various GCP scenarios. RMSE 

values are shown.   

GCP number  Before 

(cm)  

Proposed 

Algorithm (cm) 

ICP (cm) 

0  50.5 6.5 8.5 

0 (pre-calibration) 42.2 3.5 3.9 

1 35.6 3.6 5.7 

1 (pre-calibration) 28.2 3.0 3.8 

2 4.0 2.6 2.8 

3 4.2 2.5 2.6 

4 3.4 2.6 2.5 

5 3.2 2.6 2.5 

6 3.2 2.6 2.6 

13 3.3 2.5 2.6 

 



 

Fig. 13. Histograms for the TP (13 GCPs) versus sUAS (GNSS + 0 GCPs; Pre-calibrated) and TP 

(13 GCPs) versus sUAS (GNSS + 1 GCPs; Pre-calibrated). Differences are calculated using the 

M3C2 distance. (a) TP (13 GCPs) versus sUAS (GNSS + 0 GCPs; Pre-calibrated), original; (b) 

TP (13 GCPs; Pre-calibrated) versus sUAS (GNSS + 0 GCPs; Pre-calibrated), proposed algorithm; 

(c) TP (13 GCPs) versus sUAS (GNSS + 0 GCPs; Pre-calibrated), ICP; (d) TP (13 GCPs) versus 

sUAS (GNSS + 1 GCPs; Pre-calibrated), original; (e) TP (13 GCPs) versus sUAS (GNSS + 1 

GCPs; Pre-calibrated), proposed algorithm; (f) TP (13 GCPs) versus sUAS (GNSS + 1 GCPs; Pre-

calibrated), ICP.  

 

4.5 Registration scenarios with translations, rotations, and scale  

Registration results for multi-platform datasets with significant translations, rotations, and scale 

are provided in this section, for further evaluation of the proposed algorithm. Scenarios considered 

in this section resemble cases where the two datasets have significantly different coordinate 

systems (perhaps because the number of GCPs is insufficient for georeferencing or a different 

coordinate system is used). Five scenarios are investigated in this section (see Table 6). The 

scenarios include translations only in all coordinate-directions, translations and rotations in all 

coordinate-directions, and translations, rotations and scale differences in all coordinate-directions. 

These scenarios present significant translations, rotations, and even differences in scale 

(translations of 500 m, rotations of 30° and 45°, scale differences of 0.5 and 0.8). The scenarios 

are applied to the sUAS (GNSS + 13 GCPs) dataset using the TP (13 GCPs) as reference and to 

the TP (13 GCPs) dataset using the TLS dataset as reference. It is worth noting that using the PCA 

and PCT, we manage to approximately register the input point clouds with an RMSE of about 0.6 

m to 0.7 m for the simulated cases with translations and rotations. When scale is added, the 



approximate registration is about 0.7 m to 1.1 m. This shows a sufficient approximate alignment 

for the datasets of this site, which is important for the subsequent steps of the registration 

algorithm. The level of accuracy required for the initial registration is related to the spacing 

between detected edges. The detected edges in Figure 7 are several meters apart; therefore, a meter-

level initial registration error is required for this site. The adequacy of the initial registration is also 

demonstrated by the results of the edge matching step (Figure 9), as an insufficient initial 

registration would produce a poor edge matching.   

The TP versus sUAS dataset comparison has an original deviation of 2.1 cm; in all scenarios tested 

the proposed algorithm manages to register the two point clouds with an RMSE of 2.0 cm to 2.3 

cm. Note that for the scenarios with scale, the proposed algorithm was iterated four to five times. 

For the TLS and TP datasets, their original comparison of the resulted in an RMSE of 3.2 cm. The 

proposed algorithm registered the two point clouds with an RMSE of 2.5 – 2.9 cm, in all scenarios 

tested. Scenarios with scale were also iterated four to five times in this case. In the presence of 

scale in the source dataset, an initial scale value is estimated using the ratio of the singular values 

between the two datasets (see section 2.1). The algorithm then selects the grid step for the source 

dataset based on its average point density, as the algorithm can support different grid steps for the 

target and source datasets. Then the scale, grid step, and edge detection input parameters 

(maximum feature length and width, and minimum feature width) are refined in each iteration.  

Table 6. RMSE results of translations, rotations, and scale scenarios for the TP (13 GCPs) versus 

sUAS (GNSS + 13 GCPs) and TLS versus TP datasets.  

Comparisons  Scenarios  RMSE (cm)  

TP (13 GCPs) versus sUAS 

(GNSS + 13 GCPs) 

Original comparison  2.1 

500-m offset  2.0 

500-m offset and 30° rotation 2.0 

500-m offset and 45° rotation 2.0 

500-m offset, 45° rotation, and 0.8 scale 2.1 

500-m offset, 45° rotation, and 0.5 scale 2.3 

TLS versus TP (13 GCPs)  Original comparison 3.2 

500-m offset  2.5 

500-m offset and 30° rotation 2.6 

500-m offset and 45° rotation 2.6 

500-m offset, 45° rotation, and 0.8 scale 2.8 

500-m offset, 45° rotation, and 0.5 scale 2.9 

TLS versus TP (no GCPs; 

with pre-calibration)  

ICP  2.2 

Proposed algorithm  2.2 

 

To create a more realistic scenario, we created a TP point cloud without using any GCPs and using 

the camera calibration of the 13 GCPs case. Therefore, this point cloud is lacking scale and 

coordinate system definition. After approximately scaling the two datasets using their coverage, 

the ICP managed to register the two point clouds with an RMSE of 2.2 cm. Using the same 

approximately scaled datasets as input, the proposed algorithm managed to register the two point 



clouds with the same RMSE of 2.2 cm. These results demonstrate that the proposed algorithm is 

capable of registering point clouds with significant differences in position, orientation, and scale.  

 

4.6 Comparison in two epochs  

Placing and maintaining GCPs on rock formations is both expensive and difficult, as GCPs will 

get destroyed or deteriorate over time. This section demonstrates how the proposed algorithm can 

be used to address such issues and recover the registration between datasets collected in two 

different epochs. In these scenarios, we attempt to register datasets collected in 2018 and 2019 in 

the same rock formation. The 2018 datasets we use are the TP dataset with 13 GCPs and the TLS 

dataset, which is not georeferenced to NAD 83 (2011), meaning it uses a local (unknown) 

coordinate system. The 2019 dataset that we use is the TP dataset, but no GCPs have been used, 

assuming that all GCPs were destroyed. Due to the hypothetical absence of GCPs, we used the 

camera calibration from 2018. Note that when using the GCPs, the TP (2018) versus TP (2019) 

comparison yields a 1.5-cm RMSE, so this is the target RMSE for the algorithm. We also use the 

sUAS dataset with GNSS + 0 GCPs with camera calibration from the 13 GCP case, which provides 

a georeferencing of 35.2 cm with respect to the TP (2018) dataset.  

Table 7 shows the results of the different scenarios. The table gives the RMSE values after the 

registration with the proposed algorithm and registration using the ICP algorithm. Note that to 

reduce the effect of rockfalls in the calculation of the RMSE values, we consider M3C2 distances 

that are within ±10 cm, as rockfalls in this study area are expected to create changes that are higher 

than that. In addition, in all cases, both the proposed algorithm and ICP are applied with scale. The 

scale parameter is important for the TP (2018) versus TP (2019) comparison, as the 2019 point 

cloud does not use any GCPs. We use as input the datasets that have been approximately scaled 

using their coverage. 

The resulting RMSE is 1.8 cm, which is very close to the original RMSE of 1.5 cm and the RMSE 

of 1.6 cm achieved by the ICP. In the TLS (2018) versus TLS (2019) comparison, the proposed 

algorithm achieved an RMSE of 1.5 cm and the ICP an RMSE of 1.2 cm. In the TP (2018) versus 

sUAS (2019) and TLS (2018) versus sUAS (2019) comparisons, the proposed algorithm achieved 

an RMSE of 2.5 cm and 3.1 cm, respectively. The ICP algorithm achieved RMSE values of 3.3 cm 

and 3.5 cm, respectively. These results demonstrate that the proposed algorithm can be used for 

the registration of multi-platform datasets in two different epochs.  

 

 

 

 

 



Table 7. Registration experiments of datasets in two different epochs, RMSE values in cm are 

shown.   

 Original 

(cm)  

Proposed 

algorithm 

(cm)  

ICP  

(cm) 

TP (2018, 13 GCPs) vs TP 

(2019, 0 GCPs; with pre-

calibration) 

1.5 1.8 1.6 

TLS (2018) vs TLS (2019) Unknown  1.5 1.2 

TP (2018, 13 GCPs) vs sUAS 

(2019; GNSS + 0 GCPs; Pre-

calibration) 

35.2 2.5 3.3 

TLS (2018) vs sUAS (2019; 

GNSS + 0 GCPs; Pre-

calibration) 

Unknown 3.1 3.5 

 

Having registered datasets in two different epochs, we provide some examples of rockfalls 

detected in the data (Fig. 14). The site consistently presents rockfalls of small magnitude ranging 

in volume from 0.003 m3 to 0.04 m3 (Kromer et al. 2019), meaning detection at the 95% confidence 

level is challenging. Figure 13a shows rockfalls identified using the TP (2018, 13 GCPs) versus 

TP (2019, 13 GCPs) comparison, which had an RMSE of 1.5 cm. This case is used as a reference, 

as it has the lowest RMSE value. Figure 14b shows the results for the TLS (2018) versus TLS 

(2019) registered using the ICP algorithm. This case is used as reference for the TLS comparisons. 

Note that the TLS (2018) dataset had a smaller coverage than all other datasets, hence, a smaller 

area is shown in the Figures in the right side of Fig. 14. We limit rockfall detection on the lower 

part of the rock formation, as in the upper part differences due to vegetation and poor point cloud 

reconstruction (data gaps) might be present.  

Figures 14c,d,e,f show cases where point clouds are registered using the proposed algorithm. Of 

note is that whether we use the TP dataset or the TLS dataset as reference, the same rockfalls are 

generally detected. A few discrepancies were found, as the 2018 TLS dataset was collected one 

month before the 2018 TP dataset (the reference TLS dataset was collected on February 13 2018 

and the reference TP dataset was collected on March 19 2018). To highlight the similarity in 

rockfall detection, we have circled some rockfalls that are detected in all comparisons. Recall that 

the figures on the left side of Fig. 14 use the TP (2018) dataset as reference, while the right side 

figures use the TLS (2018) dataset as reference. The sUAS (2019) dataset manages to detect the 

same rockfalls as the TP and TLS datasets, although there are some differences related to the higher 

RMSE value (see Table 6). These comparisons demonstrate that the proposed algorithm can be 

used to support rockfall monitoring, especially if rockfalls are of larger magnitude than the ones 

encountered at the site considered in this study. 



 

Fig. 14. Detected rock changes overlaid on the sUAS dataset (a) TP (2018, 13 GCPs) vs TP (2019, 

13 GCPs) original comparison (b) TLS (2018) vs TLS (2019), ICP; (c) TP (2018, 13 GCPs) vs TP 

(2019, 0 GCPs; with pre-calibration), proposed algorithm; (d) TLS (2018) vs TLS (2019), 

proposed algorithm; (e) TP (2018, 13 GCPs) vs sUAS (2019; GNSS + 0 GCPs; Pre-calibration), 

proposed algorithm; (f) TLS (2018) vs sUAS (2019; GNSS + 0 GCPs; Pre-calibration), proposed 

algorithm.  

 

 

 



5. Conclusions  

Monitoring of rock surfaces relies on accurate registration of point cloud datasets. Sometimes these 

point clouds are generated from multi-platform sources such as TLS, TP, and sUAS (with and 

without GNSS). Registration typically relies on GCPs or other targets on the rock-surface. 

However, maintaining such GCPs is expensive and difficult. Registration of multi-platform 

datasets is challenging, as they may have different point-densities, data gaps/overlap, and/or 

quality, and surrounding characteristics of identified keypoints might be different in point clouds 

obtained from different methods. This paper presented a semi-automatic registration method that 

relies on edge detection of geological traces. The developed algorithm can register multiplatform 

and multiscale point clouds in complex rock surfaces. Edges are distinct features that can be 

matched in multi-platform point clouds. We have also provided several examples with scale 

difference between the two input point clouds, showing that the algorithm can be used in multiscale 

datasets. The algorithm utilized a recently developed multi-scale transform method to detect edges, 

termed α-molecules, which offers a unified framework for multi-scale edge detection. Edge  are 

matched automatically using the DFD. Matched points extracted from detected corresponding 

edges were then used for deriving translations, rotations, and scale (when necessary) through a 

Procrustes analysis. To assess the performance of the algorithm, we have utilized several multi-

platform point clouds from an outcrop in Colorado. In addition, for comparison we have provided 

registration results using the ICP method.  

The sUAS scenarios with varying numbers of GCPs showed that the proposed algorithm can 

support registration, especially when 0 and 1 GCPs are used as in such cases when geo-referencing 

using GNSS is at the few decimeter level. In the GNSS + 0 GCP and GNSS + 1 GCP cases, the 

proposed algorithm managed to register the sUAS point cloud to the TP and TLS point clouds with 

an RMSE of a few cm and, in general, performed better than the ICP. The ICP can get trapped in 

local minima in cases of insufficient initial registration, thus, the proposed algorithm can contribute 

in such cases. Scenarios with simulated translations, rotations, and scale showed that the proposed 

algorithm can register the two multi-platform point clouds with mm differences from their original 

RMSE value. Comparison of point clouds acquired in two different epochs demonstrated that the 

proposed algorithm can register multi-platform point clouds acquired in different epochs at the cm 

level and support detection of rockfall events. Despite the small rockfalls in the study area, the 

analysis showed promising and consistent results, which can further be improved with future 

evaluation, assessment, and development of the proposed algorithm. We plan to evaluate the 

algorithm in other study sites to further assess the performance of the developed algorithm and 

further explore its potential, especially in cases where rockfalls comprise a larger proportion of the 

scene. Further assessment will also help us identify generally reasonable input parameters. In 

addition, it is worth exploring merging the various datasets, exploiting their synergies to derive 

complete point clouds of the rock surface. The proposed registration algorithm would be important 

in that case to ensure accurate registration of the various datasets.  

Compared to existing registration algorithms, that often rely on point correspondences, the 

proposed registration algorithm utilizes geological edges (discontinuity traces) that are important 



for quantitative analysis in rockmass hazard assessment. This presents the potential for creating a 

unified framework of edge utilization in the context of geotechnical/geological engineering.  
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