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Abstract We utilize ocean 10‐m wind speed (U10m) from the microwave Multi‐sensor Advanced
Climatology data set to examine the coupling between convective cloud and precipitation processes, synoptic
state, and U10m and to evaluate the representation of U10m in global climate models (GCMs). We find that
midlatitude U10m is underestimated by GCMs relative to observations. We examine two potential mechanisms
to explain this model behavior: cold pool formation in cold air outbreaks (CAOs) associated with downdrafts
that enhance U10m and sea surface temperature (SST) gradients affecting U10m through thermally forced surface
winds at regional scales. When the effects of the CAO index (M) and SST gradients on U10m are accounted for, a
relationship between GCM horizontal resolution and U10m appears. The strongest correlation between
resolution and U10m is over the western boundary currents characterized by frequent CAOs atop strong SST
gradients which drives the strongest surface fluxes on Earth.

Plain Language Summary Surface wind drives the exchange of momentum and energy between
the atmosphere and ocean, forcing movement of ocean surface water that impacts the circulation responsible
for transporting heat and carbon. It is thus important to study how well global climate models (GCMs)
simulate near surface winds. Here, we show an underestimation of ocean surface wind in the latest‐generation
of GCMs and examine how an underestimation of ocean surface winds covaries with biases in surface
temperature and fine‐scale precipitation‐driven circulations. We show the effect of model horizontal grid
resolution on the wind speed bias and analyze surface wind speed bias occurrence in western boundary
currents.

1. Introduction
Near surface wind speed is key to our understanding of the atmospheric state. It is critical to topics ranging from
the availability of wind energy over the oceans (Possner & Caldeira, 2017), to how climate is affected through air
sea exchanges of heat and gas (Fu et al., 2019), and the transition from shallow to deep convection (Elsaesser &
Kummerow, 2013). Surface wind speed also affects dust emissions (Evan, 2018) and is important for setting the
cloud feedback (Bodas‐Salcedo et al., 2019). Surface winds play an integral role in the Earth's energy and hy-
drological cycles by setting the atmospheric and oceanic circulation (Alexander & Scott, 1997; Hartmann, 2016).
Wind speed magnitude and direction impacts the wind stress that serves as a dominant energy source for the
kinetic energy driving the ocean circulation (Ferrari & Wunsch, 2009). The drivers of variability in surface wind
speed are complex and include both large scale variability in the atmosphere and processes that are internal to the
boundary layer.

The most direct way that surface wind affects the climate system is by setting the flux of energy and momentum
between the surface and the atmosphere. This flux can be approximated using the bulk formulas for sensible heat
(SH), latent heat (LH) fluxes and momentum fluxes (M):

SH = CpρCDHUr (Ts − Ta)

LH = LρCDEUr (qs − qa)

M = ρCDMUr
2
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where Cp and ρ are the specific heat at constant pressure and density of air; L is the LH of vaporization; CDH and
CDE are the heat and moisture flux coefficients, CDM is the momentum exchange coefficient; Ur is the mean wind
speed at the standard height; and T and q are the air temperature and specific humidity. Subscripts s and a indicate
values for the surface and the air at the reference level respectively. These formulas are used in global climate
models (GCMs) to compute heat and momentum fluxes. The accurate representation of surface wind speed is
critical to coupling between the atmosphere, ocean, and land surface in GCMs.

Ocean surface winds have an extensive observational record because of their importance to weather, energy, and
global climate. Buoys provide an in‐situ network of observations of ocean surface wind speed. Remote sensing of
surface winds via satellites using passive and active instruments has been carried out for decades across global
oceans (F. J. Wentz et al., 2017), expanding observational coverage beyond buoy‐based point measurements.
Satellite observations of ocean surface winds can be made using microwave radiometers and scatterometers (Fu
et al., 2019; F. J. Wentz et al., 2017) as well as microwave altimeters (F. J. Wentz & Ricciardulli, 2011; Young,
Zieger, & Babanin, 2011; Young, Babanin, & Zieger, 2011) and synthetic aperture radar (SAR) (Sikora
et al., 2006).

Because ocean surface wind speed is crucial to our understanding of climate, realistic prediction of ocean surface
wind speed by GCMs is essential to offering accurate predictions of future climate (McMonigal et al., 2023).
Krishnan and Bhaskaran (2020) compared surface wind speed in Coupled Model Intercomparison Project Phase 5
(CMIP5) GCMs in the Bay of Bengal region with buoy observations for moderate winds yielding a correlation of
0.65 and maximum underestimation and overestimation of 2.5 m/s and 1.5 m/s, respectively. Shen et al. (2022)
evaluated the global terrestrial near surface windspeed in 22 CMIP6 models relative to the US Air Force Global
Surface Summary of the Day database and found biases ranging from − 1 m/s to 1 m/s Morim et al. (2020) found
biases in CMIP5 multi‐model ensemble mean wind speed relative to ERA‐interim reanalysis data ranging from
− 2 m/s to 1.5 m/s. Clearly, there is substantial regional and global variation in simulated wind speed, and it is
necessary to continue to evaluate the ocean surface wind speed discrepancies between GCMs and observations.

The ability of a given GCM to resolve features impacts the simulated surface wind speed across scales from global
features (Chelton et al., 2004), to regional features (Chu, 1989; Small et al., 2008). At the regional scale, surface
wind speed is affected by features such as ocean fronts and eddies (Small et al., 2008). The sea surface tem-
perature (SST) gradient can affect the thermal forcing at the surface (Chu, 1989). Mesoscale SST features and
SST fronts have a significant effect on wind speed and direction, particularly in western boundary currents
(O’Neill et al., 2010; Seo et al., 2023). Poorly‐resolved surface gradients can affect the representation of surface
wind in GCMs through this process (Maloney & Chelton, 2006). Surface wind anomalies driven by strong SST
gradients can lead to Ekman heat transport anomalies that ultimately affect the heat content variability in the upper
ocean (Bellucci et al., 2021). Hence, evaluating the SST gradients' impact on surface wind is relevant to both
meteorological and climate research.

There are a vast number of sub‐grid features that can affect the surface wind speed. This study focuses on one sub‐
grid feature that strongly affects Cold Air Outbreaks (CAOs): cold pool formation and associated density current‐
driven enhancements in surface wind speed (Feingold et al., 2010; Thorpe et al., 1982). CAOs are synoptic‐scale
weather patterns where advection of cold, dry air masses from cold continents over relatively warm ocean causes
an unstable boundary layer. They occur most frequently during the winter months in Northern Hemisphere
midlatitudes. CAOs generate the largest fluxes of SH and LH on Earth (Dahlke et al., 2022; Kolstad, 2017).
Fluxes in CAOs can exceed 1,000 Wm− 2 (Bane & Osgood, 1989; Bigorre et al., 2013; Marshall et al., 2009),
where they account for 60%–80% of the wintertime oceanic heat loss in the Northern Hemisphere (Papritz &
Spengler, 2017). Fluxes in CAO events in the Northern Hemisphere are amplified by air‐sea contrast due to very
cold temperatures over the land in winter and strong SST gradients associated with western boundary currents
(Fletcher et al., 2016; He & Lin, 2019; Xie, 2004). While severe CAOs are seen in the Northern Hemisphere
midlatitudes, CAOs can occur more frequently in the Southern Hemisphere midlatitudes when viewed as indi-
vidual events. In the Southern Hemisphere midlatitudes, CAOs occur in shoulder seasons as much as they occur in
winter (Fletcher et al., 2016).

Open mesoscale cellular convection (MCC) occurrence frequency increases in the post‐frontal regions of CAOs
(McCoy et al., 2017). This leads to strong downdrafts forming cold pools which enhance surface wind speeds
(Feingold et al., 2010; Thorpe et al., 1982).
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Previous work analyzing air‐sea interactions as a function of GCM horizontal resolution are limited to a small
number of models or regional analyses. Maloney and Chelton (2006) suggests, that climate model air–sea
interaction simulations degrade with decreasing grid resolution. This result was inferred from an analysis of
coupling between SST and surface wind stress in GCMs in the vicinity of strong midlatitude SST fronts (e.g., Gulf
Stream, Kurushio, and Agulhas regions). Coarse spatial resolutions lead to unresolved surface temperature and
pressure gradients. Pope and Stratton (2002) show that systematic errors in Hadley Center Atmospheric climate
Model version 3 (HadAM3) wind speed relative to reanalysis decrease when the horizontal resolution increases,
attributed to the improvement of simulated ocean eddies. By utilizing a product that aggregates microwave wind
speed estimates from multiple satellites, we are able to expand our analysis over the entirety of the midlatitudes
and assess a large number of GCM wind speed simulations. In this study we expand upon previous studies by
examining a selection of GCMs participating in the sixth CMIP6. In the following sections, we analyze the near‐
surface wind bias between CMIP6 GCMs and MAC‐LWP retrievals, and explore its relationship with model
resolution.

2. Materials and Methods
This study compares the passive microwave‐derived U10m, aggregated as part of the MultiSensor Advanced
Climatology of Liquid Water Path (MAC‐LWP) data product (Elsaesser et al., 2017; Naud et al., 2023), to U10m

from CMIP6 GCMs. We focus on the midlatitudes (30°N–80°N and 30°S–60°S). While substantial surface
energy fluxes occur in the tropics (Schubert et al., 2023), the observations used in this study are less reliable in
regions characterized by heavy precipitation (Meissner & Wentz, 2009), so we exclude low‐latitude regions.
Analyses are performed as a joint function of CAO index (M) and SST gradient. We characterize the effect of
resolving SST gradients and boundary layer processes on U10m by examining CMIP6 GCMs with horizontal
atmospheric resolutions ranging from approximately 0.25°–3.8° (Eyring et al., 2016). All data are resampled to
daily‐average timescales and re‐gridded to the coarsest resolution across data sets (5° × 5°). Cold pools in CAOs
occur on much finer scales than resolved by any GCM (Field et al., 2017), and we characterize the effect of
resolving cold pools on surface wind speed in CAOs using Weather Research and Forecasting (WRF) (Ska-
marock et al., 2019) simulations at approximately 2 km resolution.

2.1. Cold Air Outbreak Index

We evaluate U10m as a function of CAO index (M) to understand the effect of unstable boundary layers on GCM
wind speed. M is defined as M = θSST –θ850 where θSST is the sea surface potential temperature, and θ850 is the
potential temperature at the 850 hPa pressure level (Fletcher et al., 2016). The metric M represents the air‐sea
temperature difference that is strongly influenced by CAOs. A positive M is defined as an unstable lower
troposphere.

2.2. Sea Surface Temperature Gradient

To assess the signature of thermally forced winds, we evaluate the variation of U10m as a function of SST gradient.
SST gradient (|∇SST|) is calculated using the central difference method (Vazquez‐Cuervo et al., 2013):

∇xSST(i, j) = (SST(i + 1, j) − SST(i − 1, j))/2ΔX

∇ySST(i, j) = (SST(i, j + 1) − SST(i, j − 1))/2ΔY

|∇SST|(i, j) = (∇xSST(i, j)2 +∇ySST(i, j)2)
1/2

where ΔX and ΔY are the distances in km between the neighboring meridional and zonal grid points, respectively.

2.3. Observations

As mentioned above, we leverage passive microwave observations of wind from space to evaluate GCMs, as
opposed to the active microwave retrievals from sun synchronous satellites used in previous work (Chelton
et al., 2004; Small et al., 2008). We use these sources since microwave radiometer data might be more suitable for
studying non‐first‐harmonic diurnally varying transient convective wind signals that would influence a daily
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average computation. Passive microwave wind speed retrievals depend on the surface roughness (F. Wentz &
Meissner, 2000). The algorithm to compute wind speed uses polarized brightness temperature observations and
total one‐way atmospheric transmittance (F. J. Wentz, 1992). Rain can interfere with the retrieval of surface
roughness (Contreras & Plant, 2006). Error may also be introduced by averaging across different sensor footprints
(Emery & Camps, 2017).

Passive microwave wind retrievals can be validated against buoy winds in rain‐free conditions. Passive micro-
wave retrievals show low biases compared to in‐situ measurements (Mears et al., 2001; Meissner et al., 2001; F. J.
Wentz, 1997; Zhang et al., 2018). Zhang et al. (2018) diagnose a mean bias <0.25 m/s and Mears et al. (2001)
diagnose a mean bias <0.4 m/s for clear sky conditions.

Passive microwave retrievals of U10m are ancillary variables used in the MAC‐LWP climate data record
(Elsaesser et al., 2017; Naud et al., 2023). MAC‐LWP utilizes data from the following satellite instruments:
Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission (TRMM) Microwave Imager
(TMI), Advanced Microwave Scanning Radiometer Earth Observing System (AMSR‐E), WindSat, Special
Sensor Microwave Imager/Sounder (SSMIS), the Advanced Microwave Scanning Radiometer 2 (AMSR‐2), and
Global Precipitation Measurement (GPM) Microwave Imager (GMI). At present 29 years (1988–2016) of gridded
(1°) data over oceans are available. Daily‐mean U10m from MAC‐LWP for a period of 27 years (1988–2014), set
to agree with available GCM data, were used in this study. MAC‐LWP passive microwave wind speed retrievals
are corrected for the drifting satellite overpass times and sample the entire diurnal cycle (Elsaesser et al., 2017;
Trenberth et al., 2005; F. J. Wentz, 2015) thus ensuring that the daily estimate is an average of validated
windspeed retrievals (Elsaesser et al., 2017; Mears et al., 2001; Meissner et al., 2001; O’Dell et al., 2008; F. J.
Wentz, 1997) and comparable to other daily‐averaged cloud variables (Naud et al., 2023). Since Multi‐sensor
Advanced Climatology (MAC) provides an estimate of the daily‐mean U10m, as opposed to a retrieval at the
satellite overpass time, this enables a direct comparison to CMIP6 GCM daily‐averaged data without the need to
implement a satellite simulator that accounts for overpass time.

The second Modern‐Era Retrospective analysis for Research and Applications (MERRA2) reanalysis (Molod
et al., 2015) is used to calculate M and SST gradients. The native MERRA2 resolution of 0.5° × 0.625° was
subsampled by nearest neighbor remapping to a resolution of 1° to calculate these two variables.

2.4. Global Climate Model Data

This study examines historical simulation outputs from 27 CMIP6 GCMs with horizontal atmospheric resolutions
ranging from ≈279 km to ≈50 km The resolution is calculated by

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
dx × dy

√
× 100km where dx and dy are the

zonal, meridional grid spacing. Twenty seven years of GCM data are examined. The list of analyzed GCMs and
resolutions is given in Table S1 in Supporting Information S1. The CMIP variables used for the analysis are Near‐
Surface Wind Speed (sfcWind), Sea Level Pressure (psl), Air Temperature (ta), and Surface Temperature (ts). The
analysis of GCMs at their resolutions limits the ability to examine the effects of small‐scale features on U10m

representation. Hence we utilize a WRF simulation at 2 km resolution to analyze sub‐grid‐scale features affecting
U10m that might be missing in GCMs, so as to understand ballpark magnitudes of surface wind underestimation
that might emerge in the GCMs.

2.5. Weather Research and Forecasting Model Simulations

The Weather Research and Forecasting (WRF) model offers a flexible and computationally efficient platform to
produce simulations using actual or idealized atmospheric conditions (Powers et al., 2017). This study uses the
WRF model version 4.4 with two nested domains, each with 136 vertical levels. Each simulation was run for
29 hr, with data output hourly. The first 5 hr were not used to allow for model spin up. The physics schemes used
in the study include the WRF Single‐Moment 6‐Class microphysics scheme (WSM6) (Hong & Lim, 2006), the
Rapid Radiative Transfer Model for GCMs (RRTMG) for longwave and shortwave radiative schemes (Clough
et al., 2005), and the Yonsei University scheme for boundary layer parameterization (Hong et al., 2006). The fifth
generation European Center for Medium‐Range Weather Forecasts (ECMWF) reanalysis (ERA5) 3‐hourly data
were used to nudge WRF simulation boundary conditions toward observations (Hersbach et al., 2020).

WRF is run over the Norwegian sea in Northern Hemisphere extratropics set to correspond to where strong CAOs
were observed during the Cold‐Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) field
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campaign (Geerts et al., 2022) on 28th March 2020. We select this specific domain and date to examine U10m in a
strong CAO. Cold pools formed in this CAO allow us to examine cold pool effects on U10m using WRF. We do
not compare these simulations with MAC estimates but analyze the occurrence of cold pools and U10m repre-
sentation at very high‐resolution simulations. WRF U10m is qualitatively compared with SAR winds (Sikora
et al., 2006). SAR data is provided by the NOAA NESDIS Center for Satellite Applications and Research.

3. Results
3.1. Surface Wind Speed Bias

U10m in GCMs participating in CMIP6 is uniformly lower than observed by MAC. This appears in mean U10m

(Figure 1a) as well as when U10m is composited on M and SST gradient (Figures 1d and 1e). Both GCM M and
SST gradient medians are distributed around the values predicted by reanalysis (Figures 1b and 1c).

Observed U10m is higher than GCM‐predicted U10m as M increases, except for a few models in the range M < 0K
(Figure 1d). There is a monotonic relationship between U10m and M in observations and GCMs (Figure 1d).

Most GCMs are biased in U10m compared to MAC throughout the range of SST gradients, except a few for which
biases are small when gradients are less than 0.005 K/km (Figure 1e). The U10m bias extends up to 2 m/s when
composited by SST gradients. For GCMs, U10m remains relatively constant for SST gradient values >≈0.01 K/km.
MAC shows a positive monotonic relationship that continues through the range of SST gradients found in the study
region. The range of bias in the median (Figure 1a) and when composited on M (Figure 1d) and SST gradient
(Figure 1e) is greater than the range of possible microwave wind speed bias relative to in‐situ observations
diagnosed by previous studies (Mears et al., 2001; Zhang et al., 2018).

U10m is clearly low in the 27 GCMs surveyed here at a magnitude that depends on both M and SST gradient.
However, before we delve into the dependence of wind on these parameters, it is worth discussing how well GCMs
represent SST gradients and CAOs. We have looked at the SST gradients and CAOs using probability density
function (PDF) and spatial distribution diagnostics. Our analysis yields concise results for the U10m biases.
Figures 1b and 1c show the PDFs of SST gradients and M, while Figure 4, and Figures S5–S31 in Supporting
Information S1 show the spatial distributions of selectedM and SST gradient regimes. Observational SST gradient‐
M regimes broadly map with GCMs spatially (Figure 4, Figures S5–S31 in Supporting Information S1) GCMs tend
to be in good agreement with observations in terms of SST gradient distributions (Figure 1b). While medianM is not
dramatically different from GCMs to reanalysis, the distribution of M in GCMs is skewed slightly toward higher
values (Figure 1c). Persistent biases in U10m may be compensated to some degree by systematic biases in GCMM.
GCMs tend to have boundary layers that are relatively unstable (Figure 1c) (Qu et al., 2014) resulting in
compensating errors between the frequency of occurrence of synoptic state and low U10m. If the average boundary
layer stability in GCMs was consistent with observations, the bias in GCM U10m would be more pronounced.

3.2. Cold Pool Contribution to Surface Wind Speed

Cold pools often appear in CAOs (Papritz et al., 2019; Shapiro et al., 1987) and may be one mechanism linking
boundary layer winds to CAO occurrence (Zuidema et al., 2012). Cold pools appear as pockets of enhanced wind
speed in high‐resolution simulations (Figure 2). Cold pools exhibit spatial scales of 10–200 km and are not
resolved in most present‐day GCMs (Field et al., 2017; Zuidema et al., 2017). Cold pools are driven by processes
related to precipitation, clouds, and convection, all of which are largely parameterized in GCMs (Bryan
et al., 2003; Sakradzija et al., 2016). Thus parametric and structural uncertainty exists in boundary layer behavior
in GCM‐simulated CAOs.

Our WRF simulation, run over a domain in the Norwegian sea on 28th March 2020, can resolve many cold pools
(Figure 2) and enable qualitative characterization of the contribution of cold pool‐induced gustiness to surface wind
speed that might be underestimated in GCMs. The reasonably‐high WRF horizontal resolutions enable resolving of
some convective and boundary layer processes operating in cold pools (Field et al., 2017). These simulations are
only exploratory and not an exhaustive evaluation of the cold pool contribution to surface wind speed across re-
gimes and microphysical processes, which has partially been addressed elsewhere (Saggiorato et al., 2020). The
GCM evaluation across the domain where the WRF analysis is performed shows underestimated U10m (Figure S1
in Supporting Information S1). This analysis is in line with the global midlatitude analysis shown in Figure 1.
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Examination of WRF simulation output during a CAO displays cold pool formation (Figure 2). We identify cold
pools as contiguous adjacent boxes of anomalously cold temperature 1–3 K colder than surrounding areas
(Zuidema et al., 2012). We focus on a simulation of a CAO observed during the Cold‐Air Outbreaks in the Marine
Boundary Layer Experiment (COMBLE) field campaign (Geerts et al., 2022) (Figure 2). Strong downdrafts,
updrafts, and precipitation can be seen in the vertical cross section along a transect from this simulation (Figure 2).
Figure 2 shows enhancement of U10m below the strong downdrafts and precipitation associated with the cold
pools. U10m enhancement is observed on the downwind side of the cold pools because of the northerly flow
(Figure S2 in Supporting Information S1) (Li et al., 2014; Zuidema et al., 2012). The U10m enhancement
simulated in this CAO is consistent with wind speed observed by SAR (Figure 2).

Figure 1. (a) The distribution of U10m (b) the distribution of sea surface temperature (SST) gradients, and (c) the distribution of cold air outbreak index (M = θSST–θ850)
from observations (black dashed line) and coupled model intercomparison project global climate models (GCMs) (colored lines by horizontal resolution) over oceans
between 30°N and 80°N and 30°S–60°S. Dots show the median of each GCM and the vertical star line is the observed median. (d) U10m as a function of M (e) U10m as a
function of SST gradient.
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3.3. Resolution Dependence

We expect that the wind biases that manifest with SST gradient and M (Figure 1) largely arise from processes that
operate at finer spatial and temporal scales than those resolved by GCMs (Figure 2). We analyze the resolution
dependence of GCM U10m and examine the dependence of this bias on the meteorological regime.

To examine the U10m bias (defined U0–Um where U0 and Um denote the observation and CMIP6 U10m,
respectively), we stratify bias by M and SST gradient (Figure 3). Higher surface wind speed appears in CAOs and
higher SST gradients in observations (Figure 3a).

U10m bias tends to be higher in CAOs and at higher SST gradient (Figure 3b, Figure S4 in Supporting Infor-
mation S1). When the rank regression of U10m bias on GCM horizontal resolution is accounted for in bins of SST

Figure 2. Weather research and forecasting (WRF) simulation of a strong cold air outbreak (CAO). A vertical cross‐section along a Transect showing reflectivity (filled),
downdrafts (red contours), and updrafts (blue contours), WRF 2m‐Temperature, WRF U10m, and synthetic aperture radar (SAR) U10m. SAR data provided courtesy of
NOAA NESDIS center for satellite applications and research. https://www.star.nesdis.noaa.gov/socd/mecb/sar/sarwinds_s1.php.
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gradient and M, lower resolution corresponds to higher bias across over 80% of the bins (Figure 3c). The U10m

bias of each GCM for SST gradient and M bins is shown in Figure S2 in Supporting Information S1.

We aggregate our data into four M and SST gradient regimes (Figure 3d). In each regime, we characterize the
relationship between U10m bias and resolution by the Spearman rank‐order correlation. Across regimes, the
correlation is robustly greater than zero, depicting a relationship where the U10m bias decreases when GCM
horizontal grid resolution gets finer, although several GCMs are outliers from the trend. The strongest correlation
coefficient of 0.59 corresponds to the regimes of high M and SST gradients. The high M correlations show p‐
values less than 0.05 and are deemed statistically significant. The correlation coefficient between U10m bias
and resolution in Figure 3d is consistent with each regime in Figure 3c. The presence of outliers in the relationship
between bias in U10m and horizontal resolution is expected. Given the drastically different model families
considered in this study, it is not surprising that completely different parameterization and parameterization
structures give rise to different U10m bias dependence on resolution (Moreno‐Chamarro et al., 2022).

We characterize the regions that are affected by wind speed bias by examining the spatial distribution of the four
regimes of M and SST gradient (Figure 4, Figures S5–S31 in Supporting Information S1). The highest frequency

Figure 3. (a) Observed U10m as a function of M and sea surface temperature (SST) gradient. Gray contours show data density
percentage. (b) Average U10m bias (obs—gcm) controlled forM and SST gradients. Pink, blue, black, and green colored boxes
designateM and SST regimes. (c) The Spearman rank correlation coefficient for U10m bias versus model horizontal resolution
as a function of M and SST gradient. P‐values less than 0.05 are marked with a circle. (d) Average U10m bias as a function of
horizontal resolution corresponding to the four regimes highlighted in (b) and (c). Stars and squares are for the available higher
resolution and lower resolution versions for the same model. Points are labeled by the model number given in Figure 1. The
best fit and 95% uncertainty is calculated by jackknife sampling (Tukey, 1958).
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of occurrence of high SST gradients and unstable boundary layers are over the western boundary currents in the
study region: the Gulf stream, Agulhas current, and Kuroshio current (Figure 4d). More than 57% of bins in each
of the regimes with a high frequency of occurrence in western boundary currents (Figures 4b and 4d) show
positive monotonic relationships between U10m and grid resolution (Figure 3c). This is important to our under-
standing of how coarse‐resolution global models predict climate because the U10m bias in the western boundary
currents affect the simulation of LH and SH fluxes (Alexander & Scott, 1997). Additionally, heat flux simulations
in the western boundary currents affect the simulation of the thermohaline circulation (Cai & Godfrey, 1995;
Delworth & Greatbatch, 2000) in GCMs. The effect of the Gulf Stream on the troposphere is significant, and
accurate prediction within the regions of these western boundary currents is important (Minobe et al., 2008).

Figure 4. Relative frequency of occurrence when (a) M < 0 K and sea surface temperature (SST) gradient <0.0095 K/km
(blue box in Figures 3b–3d) (b) M < 0 K and SST gradient >0.0095 K/km (pink box in Figures 3b–3d) (c) M > 0 K and SST
gradient <0.0095 K/km (green box in Figures 3b–3d) (d) M > 0 K and SST gradient >0.0095 K/km (black box in
Figures 3b–3d).
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4. Conclusion
This study evaluates CMIP6 GCM U10m in the midlatitudes (30°N–80°N and 30°S–60°S) against the MAC
climate data record. We find that the U10m is underestimated compared to MAC estimates across all 27 CMIP6
GCMs considered in this study (Figures 1d and 1e). This GCM bias is concerning because U10m is a critical
measure of the atmospheric state and governs air‐sea exchange and affects boundary layer evolution (Hart-
mann, 2016; Saggiorato et al., 2020).

One possible reason for biased surface wind in GCMs is a poor representation of the subgrid processes that
contribute to cold pool formation (Field et al., 2017) and systematic high wind gusts. We integrated WRF
simulations in CAOs to evaluate the impact of these km‐scale processes (Figure 2). Our case study WRF sim-
ulations show enhanced U10m in cold pool downdrafts in CAOs. This is supported by previous studies examining
observations (Zuidema et al., 2012) and high‐resolution simulations of cold pools (Fiévet et al., 2023). Across
GCMs and observations, stronger CAOs correspond to stronger surface winds (Figures 1d and 3a). Broadly,
higher resolution models are in closer agreement with observations at a fixed CAO index (Figure 3c).

Another possible reason for the bias in the GCM U10m stems from GCMs only crudely resolving SST gradients
that in turn modulate surface wind speed U10m (Chelton, 2005; Chelton & Wentz, 2005; LaCasse et al., 2006).
Across GCMs and observations, larger SST gradients correspond to stronger surface winds, and higher resolution
models tend to be in closer agreement with observations at a fixed SST gradient (Figures 1e and 3c).

We find that U10m bias decreases with GCM horizontal grid resolution (Figures 3c and 3d). Surface wind speed
depends strongly on M and SST gradient (Figures 1d and 1e). We evaluate resolution dependence controlling for
M and SST gradients (Figures 3b and 3c). We find that the highest correlations between the U10m bias and the
GCM horizontal resolutions are over the most unstable boundary layers with the highest SST gradients. These
regimes correspond to the western boundary currents (Figures 3d and 4) which affect the representation of
thermohaline circulation (Cai & Godfrey, 1995; Delworth & Greatbatch, 2000). This supports previous work
suggesting that GCM horizontal resolution may play an important part in climate predictability through features
such as the thermohaline through the representation of U10m and associated surface fluxes (Bellucci et al., 2021;
Roberts et al., 2020).

Data Availability Statement
All CMIP data are available at CMIP6 Earth System Grid Federation (2023). MAC wind data can be accessed
at Naud et al. (2023). MERRA‐2 data are available at GES DISC Data set: MERRA‐2 inst1_2d_asm_Nx: 2d,
1‐Hourly, Instantaneous, Single‐Level, Assimilation, Single‐Level Diagnostics V5.12.4 (M2I1NXASM 5.12.4)
(2015) and GES DISC Data set: MERRA‐2 inst3_3d_asm_Np: 3d, 3‐Hourly, Instantaneous, Pressure‐Level,
Assimilation, Assimilated Meteorological Fields V5.12.4 (M2I3NPASM 5.12.4) (2015). SAR wind data pro-
vided courtesy of NOAA NESDIS Center for Satellite Applications and Research (NOAA STAR, 2024).
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