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Abstract12

Turbulent exchanges between sea ice and the atmosphere are known to influence13

the melting rate of sea ice, the development of atmospheric circulation anomalies14

and, potentially, teleconnections between polar and non-polar regions. Large model15

errors remain in the parametrization of turbulent heat fluxes over sea ice in climate16

models, resulting in significant uncertainties in projections of future climate. Fluxes17

are typically calculated using bulk formulae, based on Monin-Obukhov similarity18

theory, which have shown particular limitations in polar regions. Parametrizations19

developed specifically for polar conditions (e.g. representing form drag from ridges20

or melt ponds on sea ice) rely on sparse observations and thus may not be universally21

applicable.22
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In this study, new data-driven parametrizations have been developed for surface23

turbulent fluxes of momentum, sensible heat and latent heat in the Arctic. Machine24

learning has already been used outside the polar regions to provide accurate and25

computationally inexpensive estimates of surface turbulent fluxes. To investigate26

the feasibility of this approach in the Arctic, we have fitted neural-network mod-27

els to a reference dataset (SHEBA). Predictive performance has been tested using28

data from other observational campaigns. For momentum and sensible heat, per-29

formance of the neural networks is found to be comparable to, and in some cases30

substantially better than, that of a state-of-the-art bulk formulation.31

These results offer an efficient alternative to the traditional bulk approach in32

cases where the latter fails, and can serve to inform further physically based devel-33

opments.34

1 Introduction35

Arctic sea ice has declined drastically over recent decades, drawing special attention and36

instigating concern about potential repercussions on local ecosystems (Kovacs et al., 2011;37

Post et al., 2013; Tynan, 2015), indigenous populations (Meier et al., 2014) and lower-38

latitude climate (Cohen et al., 2014; Jung et al., 2015; Cohen et al., 2020; Liu et al., 2022).39

Indeed, since the advent of satellite imagery, about three million km2 of Arctic sea ice has40

been lost; this represents a decrease by half of sea ice extent at the end of the summer41

season and has coincided with a reduction in ice thickness also by about a half (Gascard42

et al., 2019). Arctic sea ice loss is expected to continue in coming decades, although large43

uncertainties still remain regarding the expected rate of disappearance (e.g. Bonan et al.,44

2021a,b). Surface warming two to four times faster than the global mean has also been45

observed in the Arctic over the last couple of decades (e.g. Cohen et al., 2014). This46

phenomenon is commonly referred to as Arctic ampliĄcation (e.g. Serreze and Francis,47

2006; Graversen et al., 2008; Serreze and Barry, 2011). Heat exchanges between the ice48

and the atmosphere are a key determinant of both the rate of Arctic sea ice melting (e.g.49

Rothrock et al., 1999; Screen and Simmonds, 2010) and the Arctic ampliĄcation (e.g.50
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Serreze et al., 2009; Lesins et al., 2012; Previdi et al., 2021).51

Large uncertainties still remain in the estimation of surface turbulent Ćuxes under52

polar-speciĄc conditions (e.g. Vihma et al., 2014), where the atmospheric boundary layer53

is frequently stable and turbulence can be intermittent (e.g. Andreas, 1998). Turbu-54

lent Ćuxes are typically modelled through bulk formulae based on the Monin-Obukhov55

similarity theory (Monin and Obukhov, 1954; Garratt, 1994; Andreas, 1998). Stability56

corrections tailored to polar conditions have been proposed (Grachev et al., 2007) from57

the year-long SHEBA (Surface Heat Budget of the Arctic Ocean, Uttal et al., 2002; Pers-58

son et al., 2002) campaign, but the number of measurements used to produce them is59

still limited compared to the volume of data available from tropical areas used to tailor60

stability corrections for convective conditions. Polar-speciĄc parametrizations have also61

been proposed for surface roughness (e.g. Andreas, 1987; Andreas et al., 2010b; Andreas,62

2011) and for the form drag arising from alternating Ćoes and leads (e.g. Lüpkes et al.,63

2012; Lüpkes and Gryanik, 2015; Elvidge et al., 2016). However, further calibration of64

those parametrizations might still be necessary with upcoming campaigns (e.g. Elvidge65

et al., 2021). Such parametrizations have been shown to reduce polar biases in atmo-66

spheric models (Renfrew et al., 2019; Elvidge et al., 2023). Most climate models still use67

a constant and Ąxed neutral transfer coefficient for all ice types and thicknesses (e.g. Notz68

et al., 2013; Lüpkes et al., 2013). Reluctance to include the most up-to-date polar-speciĄc69

parametrizations in climate models has originated partly from the lack of observational70

data available to validate and calibrate those parametrizations, and from inadequacies in71

model formulation. This situation has improved with the recent Year of Polar Prediction72

(Jung et al., 2016) and the MOSAiC campaign (Shupe et al., 2022), as well as other73

studies using data gathered from recent intensive Ąeld campaigns in the Arctic (Elvidge74

et al., 2016, 2021; Srivastava et al., 2022). Another obstacle to widespread adoption of75

advanced schemes for speciĄc situations (such as the presence of sea ice) may be the76

fact that large-scale models have historically struggled to represent the stable boundary77

layer, even in simple, homogeneous conditions (e.g. the GABLS experiments, Cuxart78

et al., 2006; Svensson et al., 2011; Bosveld et al., 2014), although recent work suggests79
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that better parameter calibration is needed (Audouin et al., 2021). Finally, both the80

stability correction and the surface roughness parametrizations, which are essential com-81

ponents of the Monin-Obukhov similarity theory leading to estimates of surface turbulent82

Ćuxes, depend on the surface turbulent Ćuxes themselves. Hence, iterative algorithms are83

often used (Fairall et al., 2003; Edson et al., 2004). Calibration of such algorithms on84

noisy data is complicated by the Şself-correlationŤ phenomenon (e.g. Baas et al., 2006).85

Some of those challenges could be bypassed through the use of machine-learning al-86

gorithms, a type of empirical Şblack boxŤ relating the turbulent Ćuxes directly to the87

observable meteorological quantities on which they depend. Although somewhat lacking88

in physical interpretability, the data-driven approach avoids the many sequential steps89

involved in developing bulk schemes, which are likely to result in compounding errors.90

There is also the possibility of assessing the effect of input variables not directly included91

in the physical relationships of the bulk method. Most importantly, machine-learning92

models have the potential to deliver more accurate Ćux estimates. The observational93

data collected thus far offer the opportunity to assess the relevance of such an approach.94

Machine learning has already been tested for the estimation of surface turbulent Ćuxes95

outside the polar regions with a successful outcome (e.g. Pelliccioni et al., 1999; Qin et al.,96

2005a,b; Wang et al., 2017; Safa et al., 2018; Xu et al., 2018; Leufen and Schädler, 2019;97

Wang et al., 2021). In recent studies, machine-learning parametrizations have been de-98

veloped which can accurately estimate turbulent Ćuxes observed at measurement towers99

(McCandless et al., 2022; Wulfmeyer et al., 2022), and the properties of such parametriza-100

tions investigated in large-eddy simulations (Muĳoz-Esparza et al., 2022). In this study,101

we apply data-driven methods to the SHEBA campaign to investigate the viability of this102

approach in polar conditions, and we assess its performance compared to a state-of-the-103

art bulk formulation over a few other recent Arctic campaigns. This article is structured104

as follows. Section 2 describes the available Ąeld data used to carry out our analysis.105

Section 3 presents the bulk- and the data-driven approaches to estimate surface turbu-106

lent Ćuxes as well as the statistical methodology to assess their performance. Section 4107

describes the results. Conclusions and perspectives are provided in Section 5.108
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2 Data109

Our analyses make use of data from the following observational campaigns.110

• SHEBA (Surface Heat Budget of the Arctic Ocean): the SHEBA ice camp was111

set up around the icebreaker Des Groseilliers, which was frozen into the Arctic ice112

pack and drifted approximately 2700 km in the Beaufort Gyre between 2 October113

1997 and 11 October 1998. It started in the Beaufort Sea, drifted westward into the114

Chukchi Sea, then turned north into the Arctic Ocean near the date line. Turbulent115

Ćuxes and mean meteorological data were measured continuously at Ąve levels: 2.2,116

3.2, 5.1, 8.9, and 18.2 m (or 14 m during most of the winter), on the 20-metre117

main SHEBA tower. Turbulent covariances and variances were estimated at each118

level based on one-hour averaging and derived through the frequency integration119

of the cospectra and spectra (Persson et al., 2002). From the more than 8000 h120

for which the main SHEBA tower was instrumented, over 6000 h passed quality121

control. Four remote sites, ranging in distance from 0.25 to 30 km from the main122

camp and known as Portable Automated Mesonet (PAM) stations, were also instru-123

mented. The PAM stations provided measures of wind, temperature and humidity124

together with estimates of surface heat Ćuxes through eddy covariances. The sea ice125

characteristics changed radically during the year-long deployment, from compact126

and snow-covered in winter (Andreas et al., 2010b), through to a covering littered127

with deep melt ponds and leads in summer (Andreas et al., 2010a). Other details128

of the SHEBA programme, the ice camp, deployed instruments, data processing,129

accuracy, calibration, and archived data Ąles may be found in Andreas et al. (1999,130

2002, 2003, 2006); Persson et al. (2002); Uttal et al. (2002); Grachev et al. (2002,131

2005).132

• ACCACIA (Aerosol-Cloud Coupling and Climate Interactions in the Arctic): eight133

Ćights, from 21 to 31 March 2013, to the northwest of Svalbard over the Fram Strait134

and to the southeast of Svalbard in the Barents Sea, were conducted with two air-135

craft: a DHC6 Twin Otter operated by the British Antarctic Survey and equipped136
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with the Meteorological Airborne Science Instrumentation (MASIN) (King et al.,137

2008; Fiedler et al., 2010); and the UK Facility for Airborne Atmospheric Mea-138

surement (FAAM) BAe-146 (Renfrew et al., 2008; Petersen and Renfrew, 2009).139

Both aircraft measured turbulent Ćuxes and meteorological parameters in the at-140

mospheric boundary layer, as well as surface meteorological parameters through141

radar, leading to more than 200 new estimates of surface drag in the Marginal Ice142

Zone (Elvidge et al., 2016). In the Barents Sea, sea ice was characterized by small,143

unconsolidated ice Ćoes (generally associated with a higher neutral drag coefficient),144

while over the Fram Strait there were typically larger, smoother Ćoes (Elvidge et al.,145

2016).146

• ACSE (Arctic Cloud in Summer Experiment): the icebreaker Oden left Tromsö,147

Norway, on 5 July 2014, crossing the Kara, Laptev, East Siberian, and Chukchi148

Seas, following the Siberian Shelf, and arriving in Barrow, Alaska, on 18 August.149

A second leg left Barrow on 21 August following a similar route back, albeit farther150

north. The expedition ended on 5 October in Tromsö. An instrumented mast151

at the bow of the ship was used to obtain surface turbulent Ćuxes through the152

eddy covariance technique (Prytherch et al., 2017; Thornton et al., 2020; Srivastava153

et al., 2022), while a weather station on the seventh deck at about 25 m measured154

temperature, humidity and wind (Sotiropoulou et al., 2016). The 12-week ACSE155

cruise took place within the Arctic pack ice, working over, and just off the Siberian156

Shelf, during summer melt and early autumn freeze-up conditions. It sampled a157

wide range of sea ice morphologies (Persson et al., 2015; Srivastava et al., 2022).158

• AO16 (Arctic Ocean 2016): the icebreaker Oden departed from Longyearbyen,159

Svalbard, on 8 August and operated in the Arctic Ocean, mainly in the Amundsen160

Basin and in areas around the underwater mountain ranges, Lomonosov Ridge and161

Alpha Ridge, until 19 September 2016. Similar instrumentation as in the ACSE162

expedition was employed (Tjernström and Jakobsson, 2021; Srivastava et al., 2022).163

The six-week AO16 cruise followed a more northerly route than ACSE (mostly164

north of 85°N) and the surface was mostly characterized by old and thick ice, with165
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intermittent patches of thin ice and melt ponds (Srivastava et al., 2022).166

Corresponding estimates of sea ice concentration from satellite imagery were obtained167

from the National Snow and Ice Data Center (NSIDC, Meier et al., 2021). For the168

AO16 dataset, the included satellite-based estimates were used. See the data availability169

statement for details of where to obtain the datasets used in this study.170

3 Methods171

3.1 Bulk flux parametrizations172

Sea ice, atmosphere and coupled climate models rely on Monin-Obukhov Similarity The-

ory (MOST, Monin and Obukhov, 1954) to represent turbulent Ćuxes at the surface-

atmosphere interface through bulk Ćux parametrizations. The bulk approach consists in

estimating surface turbulent Ćuxes of momentum τ , sensible heat HS and latent heat

HL from the near-surface gradient of model-resolved (or averaged) variables (wind speed,

temperature and humidity), weighting each gradient by the corresponding transfer co-

efficient for momentum (CD, the drag coefficient), sensible heat (CH) and latent heat

(Cq):

|τ | = ρCD(z)u(z)2, (1)

HS = ρcpCH(z)u(z)
(

θs − θ(z)
)

, (2)

HL = ρLvCq(z)u(z)
(

qs − q(z)
)

, (3)

where ρ is the air density, u is the horizontal component of wind, θ is the potential173

temperature, q is the speciĄc humidity, cp is the speciĄc heat of air at constant pressure,174

Lv is the latent heat of vaporization or sublimation, CD, CH and Cq are the transfer175

coefficients which all depend on the height z at which the wind speed u, the temperature176

θ and the humidity q are taken, θs is the surface potential temperature and qs is the177

surface humidity.178

A bulk parametrization essentially consists of an algorithm estimating the transfer179
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coefficients CD, CH and Cq. In this study, we use a composite bulk algorithm comprising180

recent components developed for use in polar conditions. Over the ocean, we use the181

COARE 3.0 algorithm (Fairall et al., 2003; Edson et al., 2013), with a Ąrst guess of182

transfer coefficients deduced from the stability according to Grachev and Fairall (1997)183

to speed up the convergence, stability correction for unstable conditions from Grachev184

et al. (2000), and for stable conditions from Beljaars and Holtslag (1991), the aerodynamic185

roughness model from Edson et al. (2013) and the scalar roughness model from Fairall186

et al. (2003). The COARE 3.0 algorithm has been extensively tested and is currently187

used in large-scale climate models (e.g. CNRM-CM6, Voldoire et al., 2019).188

Over sea ice, the stability correction under stable conditions relies on Grachev et al.189

(2007), the scalar roughness model on Andreas (1987) and the aerodynamic roughness190

model on Andreas et al. (2010b), the rest of the algorithm being the same as over the191

ocean (i.e. COARE 3.0). Sea ice concentrations between zero and unity are handled by192

taking a weighted average of the estimated Ćuxes over ocean and sea ice, weighting by sea193

ice concentration. This averaging approach, known as the mosaic method (e.g. Vihma,194

1995), is already used in general circulation models (GCMs), such as CNRM-CM6. For195

the momentum Ćux, we also include a form drag contribution, which accounts for the196

increased turbulence observed where Ćoes and leads are alternating (Lüpkes and Gryanik,197

2015). This combination leads to the best estimates of surface turbulent Ćuxes that we198

can obtain in light of the most recent studies focusing on polar regions (Andreas et al.,199

2010a,b; Lüpkes and Gryanik, 2015; Elvidge et al., 2016; Srivastava et al., 2022). On the200

datasets used in this study, momentum Ćux estimates from our polar-speciĄc algorithm201

have up to 23 % lower root-mean-square error (RMSE) than those from the unmodiĄed202

COARE 3.0. Estimated heat Ćuxes are very similar with or without the polar-speciĄc203

modiĄcations (corr. > 0.99). The bulk algorithm described here is publicly available204

for download as a Python library (see the code availability statement for a link to the205

repository) and the equations of the polar-speciĄc components are given in the appendix.206

Following the MOST, surface turbulent Ćuxes are commonly expressed as functions

of the scaling parameters u⋆, θ⋆ and q⋆ for wind, potential temperature and humidity
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respectively:

|τ | = ρu2

⋆, (4)

HS = −ρcpu⋆θ⋆, (5)

HL = −ρLvu⋆q⋆. (6)

So-called kinematic Ćuxes u2

⋆, u⋆θ⋆ and u⋆q⋆ will be used in the remainder of this study207

because they correspond directly to the eddy covariances which are measured in the Ąeld.208

3.2 Neural networks209

Multiple machine-learning algorithms were tested for this study including random forests210

(Breiman, 2001), gradient boosting machines (Friedman, 2001; Chen and Guestrin, 2016),211

generalized additive models (Hastie and Tibshirani, 1986) and multivariate adaptive re-212

gression splines (Friedman, 1991). In general, it was found that algorithms permitting213

high-degree interactions between input variables performed better, but often at the cost214

of many free parameters. The algorithm chosen for the Ąnal analysis was the artiĄcial215

neural network, which we found to offer the best predictive performance and with a216

relatively parsimonious model.217

Neural networks can approximate continuous functions of multiple variables (Hornik218

et al., 1989) and have performed well in previous studies as estimators of surface tur-219

bulent Ćuxes (Pelliccioni et al., 1999; Qin et al., 2005a; Wang et al., 2017; Safa et al.,220

2018; Xu et al., 2018; Leufen and Schädler, 2019; McCandless et al., 2022; Muĳoz-Esparza221

et al., 2022; Wulfmeyer et al., 2022). Many specialized conĄgurations of network nodes222

or architectures have been developed for speciĄc applications, for example the convolu-223

tional networks used for image recognition (e.g. Krizhevsky et al., 2017), however in this224

study attention is restricted to the simplest architecture: the single-layer feed-forward225

network. At its most basic, a neural network is a non-linear generalization of linear re-226

gression, in which the independent and dependent variables are represented as input and227

output nodes. A feed-forward network passes information from a layer of input nodes, by228

9



way of linear combination, to a so-called hidden layer, containing nodes with non-linear229

activation functions (see Figure 1). An activation function is simply a non-linear trans-230

formation. Finally, the output of the hidden layer is combined in the output layer, which231

in our case consists of a single node representing the estimated Ćux. For an introduction232

to feed-forward neural networks see Ripley (1996).233

Let xi denote a seven-element input vector containing measurement height z, wind234

speed u(z), potential temperature θ(z), surface temperature θs, speciĄc humidity q(z),235

surface humidity qs and sea ice concentration Ci. These are the predictor variables used236

as inputs to the bulk algorithm described above. Letting y ∈ {u2

⋆, u⋆θ⋆, u⋆q⋆} denote the237

Ćux of interest in kinematic units, we can write a network-predicted Ćux ŷ as238

ŷ = α0 +
Nj
∑

j=1

wjf



αj +
7
∑

i=1

wjixi



, (7)

where, in neural-network parlance, constants αj are known as biases, coefficients wji are239

weights, and f is a non-linear activation function. Here we use the sigmoid activation240

f(x) = ex/(1 + ex). The number of hidden nodes Nj controls the total number of241

parameters and hence the complexity of the network. In practice, it is necessary to rescale242

the inputs and outputs, to avoid excessive saturation of each hidden nodeŠs activation243

function (Ripley, 1996). Saturation refers here to the disappearing gradient of the sigmoid244

function for inputs with large magnitude. We rescale all variables for model training via245

z-score normalization.246

Training of the neural networks was performed by minimizing the sum of squared247

prediction errors on a designated training set. The sum of squared errors was minimized248

using the implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS, Broyden,249

1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) quasi-Newton method in the nnet250

package for R (Venables and Ripley, 2002; R Core Team, 2021). Numerical optimization of251

the network parameters requires a non-zero initialization of the weights and biases, which252

is obtained by random number generation. Due to the presence of local minima in the253

least-squares objective function to be minimized, such random initialization introduces254

randomness in the Ątted networks, making it difficult to measure predictive performance.255
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z

u(z)

θ(z)

θs

q(z)

qs

C i

u *θ*

Figure 1: Neural-network architecture schematic. Information is passed from the seven
inputs nodes on the left, through the four hidden nodes with non-linear activation func-
tions, to the output node - in this case kinematic sensible heat Ćux u⋆θ⋆. Separate
networks with the same architecture were estimated for Ćuxes of momentum u2

⋆ and la-
tent heat u⋆q⋆. The two unlabelled nodes at the top correspond to node biases (analogous
to the intercept term in a linear regression) and represent constant inputs of value unity.
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Following Ripley (1996) we take two steps to address this problem. Firstly, applying a256

quadratic penalty to the network weights (a technique known as weight decay, L2 regular-257

ization or Tikhonov regularization) constrains the weights to be small in magnitude and258

increases the convexity of the objective, thus improving the numerical conditioning of the259

minimization problem. Secondly, we Ąt each neural network 100 times, each time using260

an independent random parameter initialization. The set of 100 Ątted networks is used261

as a model ensemble, with an overall prediction obtained by averaging predictions from262

all the members. Thus we largely eliminate randomness in our results due to parameter263

initialization, and at the same time we gain a small boost in mean predictive performance264

compared with using single networks. The performance gain from ensemble averaging is265

sufficiently small (< 5 % reduction in RMSE) that, for implementation in a GCM, the266

improvement over single networks may not be worth the computational cost.267

The neural networks in this study have two tunable hyperparameters: Nj, the number268

of nodes in the hidden layer; and λ, the L2 regularization penalty. Setting λ = 0.01, at the269

upper bound of the range recommended by Ripley (1996), and Nj = 4 gives the networks270

more than enough Ćexibility to emulate their respective bulk-algorithm counterparts over271

the range of meteorological conditions observed. Since the bulk algorithm represents an272

a priori estimate of the functions to be approximated by the network, it makes sense273

to use the bulk in this way when choosing the model complexity. Aggressive tuning274

of hyperparameters using observational data has been avoided, so as not to excessively275

bias the cross-validation results (see Section 3.3), although it should be noted that these276

settings are roughly optimal. Increasing Nj beyond four does not substantially improve277

performance for any of the Ćuxes considered, while the chosen value of λ is sufficient278

to keep network weights within a suitable range for the sigmoid activation (standard279

deviation of order unity).280

Our approach to neural-network modelling of surface turbulent Ćuxes differs in some281

ways from recent studies by other authors. For example, McCandless et al. (2022),282

Muĳoz-Esparza et al. (2022) and Wulfmeyer et al. (2022) employ deep networks, i.e.283

networks containing multiple hidden layers, as well as more nodes per layer, resulting in284
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models with orders of magnitude more parameters. The rationale behind that approach is285

to equip the network with a huge learning capacity (Ćexibility to approximate functions),286

thus ruling out any possibility of underĄtting. To mitigate the corresponding tendency of287

larger models to overĄt, those studies used a reduced number of training iterations. The288

network architecture used in this study is more similar to that of Leufen and Schädler289

(2019), who found that single-layer networks with just a handful of nodes provide a good290

balance of parsimony and Ćexibility for modelling turbulent Ćuxes. Indeed, the purpose of291

regularization techniques, such as early stopping during training, is to reduce the effective292

degrees of freedom of the model (Hastie et al., 2009). Since the ultimate goal is to obtain293

parametrizations suitable for use in a GCM, where redundant computation should be294

avoided wherever possible, we therefore favour smaller, more highly optimized networks.295

The neural-network parametrization of Leufen and Schädler (2019) had roughly the same296

computational cost as a bulk algorithm based on the MOST, when implemented in a297

one-dimensional land surface model.298

Our model also differs from those in the above studies in our choice of input variables299

to the network. SpeciĄcally, network inputs in the present study were constrained to300

be the same variables used as inputs to the bulk algorithm. This restriction allows301

a fair apples-to-apples comparison of the performance of the different parametrizations.302

Wulfmeyer et al. (2022) use incoming and outgoing radiation as predictor variables. While303

we second their Ąnding that the radiation terms contribute explanatory power to predict304

Ćuxes, we have refrained from including them in our parametrizations. This is because the305

surface radiation balance in a GCM is itself dependent on complicated radiative transfer306

parametrizations, which means that including radiation terms in a turbulent Ćux model307

risks introducing another layer of compounding errors. We have also refrained from pre-308

computing gradients of temperature and humidity, or other derived quantities such as309

the bulk Richardson number. Instead, by including measurement height z as a model310

input, we allow any explicit height dependence of the Ćuxes to be modelled empirically.311

Thus we avoid interpolating observations to reference heights, which would anyhow be312

impossible (given that, except at the SHEBA tower, most of the variables were measured313
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at only one height above ground level) without making parametric assumptions on the314

vertical proĄles (e.g. the MOST). From the ACCACIA Ćight data, only those Ćuxes315

observed at altitudes below 30 m have been used in model training and validation, due316

to concern about how representative the higher-altitude observations (up to 90 m) are of317

surface-layer conditions. The Ąrst model level in GCMs, e.g. CNRM-CM6, is typically318

well below 30 m over ocean.319

3.3 Cross validation320

The purpose of the present study is to determine whether a machine-learning algorithm,321

trained on observational data collected in the Arctic, can offer improved performance over322

advanced bulk formula parametrizations developed for use in polar regions. An important323

property of neural-network models is that they can often achieve an arbitrarily high324

goodness-of-Ąt on the training data, simply by increasing the number of free parameters325

in the model (Hastie et al., 2009). Therefore, when observations contain measurement326

errors, as is usually the case, one must be careful not to overĄt the data (extract not only327

signal but also noise). To mitigate the risk of overĄtting, the performance of a machine-328

learning model should be assessed based on its ability to predict unseen data (data not329

used to train the model), hereafter the Şout-of-sampleŤ performance. A popular approach330

to measuring out-of-sample performance is K-fold cross validation, which entails splitting331

the data into K independent subsets. For each k ∈ {1, . . . , K}, the model is Ątted to332

those data not contained in subset k. The Ątted model is then used to predict the333

response variable in subset k. Iterating over the K subsets, one thus obtains a complete334

dataset of out-of-sample predictions from which to compute performance metrics such as335

root-mean-square error (RMSE) or mean absolute error (MAE).336

Statistical independence of the K subsets is a necessary condition for cross-validated337

performance metrics to be meaningful. In a typical machine-learning problem, genuinely338

independent subsets are not available and are instead manufactured by randomly parti-339

tioning a single dataset into K folds. Datasets of surface turbulent Ćuxes are typically340

measured as time series, in our case none longer than a year, which invalidates the inde-341

14



pendence assumption of the random subsetting approach. While one alternative would342

be to construct an elaborate stratiĄed cross-validation scheme, intended to account for343

temporal (and other sources of) autocorrelation, we instead opt to make use of the fact344

that in this study we have a database of observations from multiple Ąeld campaigns.345

The observations were collected at a range of locations, at different times, using different346

measurement instruments, by different teams of researchers and under different meteoro-347

logical conditions. For example, data were collected at towers, from ship masts and from348

low-Ćying aircraft. In theory, cross validation of a Ćux parametrization across observa-349

tional campaigns estimates how well we would expect it to perform at predicting data350

collected in a future campaign, which would seem an appealingly objective metric for351

comparison. In practice, however, there are some limitations on the independence of the352

available datasets. For example, overlap in the large-scale meteorological conditions at353

the SHEBA tower and SHEBA PAM stations cannot be ruled out as a potential source of354

statistical dependence. Nevertheless, the degree of heterogeneity in the present ensemble355

of datasets is such that achieving a generalizable parametrization may be regarded as a356

real benchmark of success.357

3.4 Variable importance358

One advantage of supplying the same input variables to the neural networks as to the359

bulk algorithm is that the two methods can be diagnosed and compared using variable360

importance techniques. Wulfmeyer et al. (2022) used the so-called Şfeature importanceŤ361

methodology proposed in Breiman (2001) to compare two machine-learning algorithms362

for computing surface turbulent Ćuxes. The feature importance algorithm is as follows.363

Firstly, a model is used to make predictions on a dataset and the quality of those pre-364

dictions is assessed using some error metric (e.g. MSE). Then, for each input variable365

to the model xi, the values of that variable are randomly shuffled in the dataset and366

the model predictions (and corresponding error metrics) recomputed. The importance367

of each input variable is estimated as the respective amount by which the performance368

metric increases when that variable is shuffled. This procedure has been applied to the369
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Table 1: Cross-validated performance metrics of neural-network (nnet) and bulk-
algorithm Ćux parametrizations in kinematic units. The cross validation was over
observational campaigns. Boldface indicates a signiĄcantly better score at the Ąve-
percent level in one of root-mean-square error (RMSE), mean absolute error (MAE) or
Pearson correlation.

RMSE MAE corr.
campaign n bulk nnet bulk nnet bulk nnet

u2

⋆ accacia 65 0.085 0.247 0.047 0.234 0.57 0.49
acse 2324 0.053 0.051 0.036 0.035 0.83 0.80
ao16 250 0.090 0.072 0.063 0.044 0.82 0.90

sheba_atlanta 3203 0.019 0.019 0.012 0.011 0.91 0.91
sheba_baltimore 279 0.036 0.038 0.021 0.022 0.64 0.65

sheba_csm 225 0.029 0.029 0.019 0.019 0.89 0.88
sheba_Ćorida 427 0.048 0.047 0.031 0.031 0.82 0.82
sheba_tower 23028 0.018 0.021 0.011 0.014 0.95 0.93

u⋆θ⋆ accacia 50 0.0214 0.0476 0.0163 0.0273 0.95 0.61
acse 796 0.0095 0.0115 0.0064 0.0083 0.85 0.81
ao16 95 0.0154 0.0135 0.0102 0.0093 0.58 0.73

sheba_atlanta 3203 0.0063 0.0055 0.0040 0.0035 0.65 0.64
sheba_baltimore 279 0.0061 0.0062 0.0043 0.0050 0.48 0.45

sheba_csm 225 0.0202 0.0177 0.0093 0.0085 0.00 0.01
sheba_Ćorida 427 0.0141 0.0132 0.0102 0.0093 0.29 0.32
sheba_tower 23633 0.0037 0.0061 0.0025 0.0046 0.82 0.47

u⋆q⋆ accacia 34 2.85E-06 7.96E-06 1.76E-06 6.24E-06 0.97 0.72
acse 673 1.03E-05 1.05E-05 5.93E-06 6.24E-06 0.35 0.17
ao16 81 1.44E-05 1.46E-05 6.27E-06 5.58E-06 0.24 0.10

sheba_tower 13511 1.06E-06 5.72E-06 5.51E-07 4.03E-06 0.69 -0.23

bulk algorithm and neural-network models used in this study, and the resulting variable370

importances scaled to lie between zero and unity.371

4 Results372

Performance metrics computed from the cross-validation experiments are given in Table373

1. Measured differences in performance between the bulk and neural-network methods374

were tested for statistical signiĄcance on a per-dataset basis using a bootstrapping ap-375

proach (Davison and Hinkley, 1997). Model-predicted turbulent Ćuxes in kinematic units376

are plotted against Ąeld observations from the ACSE dataset in Figure 2. Results for377
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Figure 2: Scatter plots of predicted vs observed Ćuxes in kinematic units for the ACSE
campaign. The diagonal line has equation y = x and represents 100 % predictive accuracy.
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ACSE are fairly representative of the results across the other datasets, with the notable378

exception of the ACCACIA Ćight data. Equivalent Ągures for the other datasets, in-379

cluding ACCACIA, are provided in the supplementary information. Computed variable380

importance metrics for the bulk algorithm and neural-network models are shown in Figure381

3.382

It can be seen from these results that, of the three turbulent Ćuxes {u2

⋆, u⋆θ⋆, u⋆q⋆},383

the momentum Ćux u2

⋆ is by far the easiest to predict, due to its strong linear correlation384

with squared wind speed u2. Compared with the bulk algorithm, the neural-network385

model performs similarly well or better on most datasets, except for ACCACIA and386

the SHEBA tower. Performance at the SHEBA tower is expected to be worse because387

that dataset accounts for most of the available observations and removing it reduces the388

training set to a small fraction of its former size. In ACCACIA, the neural-network389

model systematically overpredicts u2

⋆, in an unsuccessful attempt to extrapolate beyond390

the range of measurement heights z seen in the training set. Note that z in ACCACIA391

ranges from 20 to 30 m, while the highest z in the other datasets is z = 20.3 m in ACSE392

and AO16. The greatest proportional error reduction was seen in the AO16 dataset where393

the neural-network model gave a 21 % reduction in RMSE. In general, bulk estimates of394

u2

⋆ are very good, so there is little room for large performance improvements, especially395

considering the fact that we are dealing with noisy real-world observations. There is a396

notable negative bias in the neural-network estimates for large values of u2

⋆ in the ACSE397

dataset (see Figure 2), which is an artifact of the conservative extrapolatory properties398

of neural networks (see next paragraph). It should be noted that the bulk algorithm399

exhibits a similar negative bias in other datasets, e.g. AO16. Due to the lack of boundary400

constraints on its output, the neural-network model occasionally produces very small401

negative estimates of u2

⋆. In this study, such estimates have been rounded up to zero402

before computing performance metrics, as this step can easily be included when the403

parametrization is implemented in a GCM. Estimation of u2

⋆ in a log-transformed space,404

a common method for enforcing strict positivity, is inappropriate here, since in a GCM it405

is the magnitude of the Ćux in an absolute rather than relative sense which is important.406
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Figure 3: Bar plots showing the relative importance of the different input variables to the
bulk algorithm and neural-network models. Variable importance metrics were computed
using the Şfeature importanceŤ algorithm of Breiman (2001).
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The neural-network parametrization of the sensible heat Ćux u⋆θ⋆ was generally suc-407

cessful, yielding reductions in RMSE of 12 % for the AO16 data and for two of the SHEBA408

PAM stations. For the ACSE dataset, and to a far greater extent ACCACIA, performance409

of the neural networks was worse. This is again a consequence of extrapolation failure. In410

ACCACIA, not only do all observations lie outside the range of z in the training set, but411

the observed Ćuxes themselves are often of much greater magnitude: the largest value of412

u⋆θ⋆ in ACCACIA is more than Ąve times larger than anything seen elsewhere. In both413

ACCACIA and ACSE, the neural networks systematically underestimate the magnitude414

of the extreme Ćuxes. This is because the use of a sigmoid activation function means the415

neural-network predictions will extrapolate roughly linearly until such a point as all the416

sigmoid activations on all the relevant neurons are saturated, after which the predictions417

will be insensitive to more extreme data. In this sense, the neural-network predictions418

in unseen conditions may be considered conservative estimates, as can be seen in Fig-419

ure 2. On the other hand, the bulk algorithm suffered no such intrinsic limitation in420

the magnitude of its Ćux predictions. The high correlation between the observed and421

bulk-estimated Ćuxes in ACCACIA and ACSE is largely due to co-occurrence of large422

positive or negative Ćuxes. There was an anomalously low correlation between observed423

and modelled (both bulk and neural-network) Ćuxes at the SHEBA Cleveland-Seattle-424

Maui PAM station. The Seattle site in particular was surrounded by ice ridging and the425

PAM station was downwind of a pressure ridge that disturbed the turbulence (Andreas426

et al., 2010a), so conditions there were not representative of those at the other sites.427

Unlike the parametrizations of u2

⋆ and u⋆θ⋆, the neural-network estimator of the la-428

tent heat Ćux u⋆q⋆ did not deliver performance improvements over the bulk algorithm,429

although for ACSE and AO16 performance of the two methods was similar. It should430

be noted that observed Ćuxes of latent heat are not available at the SHEBA PAM sta-431

tions, rendering the training sets in the cross-validation experiments both smaller and432

less representative of the corresponding validation sets. Latent heat Ćux observations433

in the Arctic are comparatively scarce, and of those available in this study the SHEBA434

tower contributes 94 %. The range of Ćux magnitudes observed at the SHEBA tower is435
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small in comparison to the other datasets. Encouragingly, where the training sets are436

representative of conditions in the validation set (ACSE and AO16), performance of the437

neural networks is on par with that of the bulk. Given some of the performance gains438

of the neural-network parametrizations of u2

⋆ and u⋆θ⋆, we might reasonably expect a439

training set which samples densely a wider range of Ćux values to enable an improved440

latent heat Ćux parametrization. Note, however, that the bulk algorithm generally per-441

forms worse for u⋆q⋆ than for the other Ćuxes, a Ąnding consistent with results obtained442

outside the polar regions (e.g. McCandless et al., 2022). For example, it systematically443

under-predicts those Ćuxes with larger magnitudes.444

Results from the variable importance analysis illustrate some of the differences in how445

the bulk algorithm and neural networks make use of their respective inputs (see Figure446

3). For u2

⋆, the primary difference is that the neural-network model is more sensitive to447

the temperature inputs, as well as to the air humidity. The differences for u⋆θ⋆ are less448

pronounced; however, the neural-network model is relatively more sensitive to the non-449

temperature inputs. For u⋆q⋆, the neural networks are less sensitive to surface humidity450

than to air humidity, but also have a stronger dependence on the temperature inputs.451

Due to the way it is constructed, the variable importance metric can be interpreted as452

a measure of robustness to error in the various inputs. It is therefore unsurprising that453

the accuracy of the bulk algorithm depends critically on the relevant gradient variables454

for each Ćux. Note that the variable importance metric is strictly relative, so even a455

very low score does not necessarily imply that an input is uninformative in an absolute456

sense. Perhaps because they are trained on noisy observational data, the neural networks457

appear to possess more redundancy across important inputs. For example, in the case of458

u⋆q⋆, surface temperature θs is an excellent proxy variable from which to estimate surface459

humidity qs.460
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5 Summary and future directions461

As the rapid melting of Arctic sea ice continues unabated, and as we become increasingly462

aware of the serious consequences of warming in the polar regions, the need for accurate463

representations of the relevant heat-transfer processes in climate models is greater than464

ever. Surface turbulent Ćuxes are a key mechanism for heat transfer between the atmo-465

sphere and ocean / sea ice, and yet their parametrization in current-generation climate466

models is based on traditional bulk formulae, originally calibrated in the tropics and mid-467

latitudes. Although polar-speciĄc bulk formulations have been developed, their adoption468

in GCMs has been limited, in part due to the small number of Ąeld observations against469

which to validate their performance, and also because of difficulties modelling stable470

boundary layers generally.471

The data-driven or machine-learning approach to parametrization of surface turbulent472

Ćuxes has emerged in recent years as an alternative or complement to bulk algorithms.473

In this study, it has been proposed to encode in a machine-learning model the relation-474

ships observed in practice between surface Ćuxes and meteorological predictor variables475

in the Arctic. To investigate feasibility of the data-driven approach, we have trained476

neural-network models using a database of observations assembled from several Arctic477

Ąeld campaigns. A bulk-algorithm implementation, containing advanced polar-speciĄc478

parametrizations from the literature, has been used as a benchmark against which to test479

performance of machine-learning models.480

Using a cross-validation scheme, the out-of-sample predictive accuracies of the bulk481

and neural-network parametrizations have been objectively compared. The neural-network482

parametrizations of the momentum and sensible heat Ćuxes were found to match and in483

some cases outperform their bulk counterparts in a RMSE sense. However, the neural-484

network latent heat Ćux parametrization was less successful and was generally outper-485

formed by the bulk algorithm, probably due to insufficiently informative training data.486

These results are encouraging and suggest directions for future research. Firstly, it487

may be possible to improve performance of the data-driven latent heat Ćux parametriza-488

tion using observations from the recent MOSAiC campaign, where a large volume of data489
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has been collected (Shupe et al., 2022). We would expect an expanded training dataset490

containing more extreme values to improve the representation of large Ćuxes. With the491

MOSAiC data, it may be possible to investigate sea ice surface characteristics (e.g. ridges,492

level ice, refrozen leads) as potential inputs to our algorithm. Another question to inves-493

tigate is whether the bulk parametrization of latent heat Ćux can be used to inform or494

constrain neural-network training in a hybrid parametrization approach: incorporation495

of physical constraints has already been found to improve the extrapolation capability of496

machine-learning models (Zhao et al., 2019). There is also the question of whether results497

obtained here can be extended to sea ice in the Southern Ocean. Finally, having already498

obtained promising data-driven parametrizations of momentum and sensible heat Ćux,499

an immediate next step is to implement these models in a GCM. This step will likely500

be non-trivial: due to compensating errors, better agreement with in-situ observations501

is no guarantee that a new turbulence parametrization will improve predictive skill of502

the GCM (Sandu et al., 2013). Implementation in a GCM may beneĄt from equation503

discovery techniques (e.g. AI Feynman, Udrescu and Tegmark, 2020), whereby explicit504

equations are found which approximate well the neural networks. Explicit equations505

could reduce computational cost and would enable easier diagnostics in the case of model506

crashes. Sensitivity studies with a GCM will allow us to assess the impact of these new507

parametrizations on the polar atmosphere and on the melting of sea ice.508
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A Polar-specific bulk parametrizations570

A.1 Stability correction of Grachev et al. (2007)571

Grachev et al. (2007) assumed the form of the vertical proĄles to be:572

a(z) = p1(ln z)2 + p2 ln(z) + p3, (8)

where a can be the wind speed, potential temperature, speciĄc humidity, or any other

variable, and p1, p2, p3 are constants to be determined. By taking the derivative of eqn

(8), the vertical gradients can be obtained through a Ąt to observations. Using data from

the SHEBA tower, Grachev et al. (2007) proposed the ŞSHEBA proĄle functionsŤ:

ϕM = 1 +
6.5ζ(1 + ζ)

1

3

1.3 + ζ
, (9)

ϕH = 1 +
5ζ + 5ζ2

1 + 3ζ + ζ2
, (10)

where ζ is the Monin-Obukhov stability parameter and ϕM ,ϕH are the non-dimensional573

stability proĄle functions for momentum and sensible/latent heat respectively.574
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A.2 Aerodynamic roughness model of Andreas et al. (2010b)575

Based on the SHEBA winter data, Andreas et al. (2010b) concluded that the aerodynamic576

roughness z0 did not signiĄcantly depend on the atmospheric stability. They proposed577

the following uniĄed parametrization:578

z0 = 0.135
ν

u⋆

+ B tanh3(13u⋆), (11)

where ν is the kinematic viscosity of air in m2s-1 and B = 2.3×10−4. The Ąrst term on the579

right models aerodynamically smooth regimes, while the second treats aerodynamically580

rough regimes as well as the transition from smooth to rough Ćows.581

A.3 Scalar roughness model of Andreas (1987)582

Andreas (1987) proposed modelling the ratio of the scalar and aerodynamic roughness583

lengths as a function of the roughness Reynolds number:584

ln
zs

z0

= b0,s + b1,s ln R⋆ + b2,s(ln R⋆)2, (12)

where zs is the scalar roughness for temperature (s = T ) or humidity (s = Q) and585

R⋆ = u⋆z0

ν
is the roughness Reynolds number. Polynomial coefficients bi,s are tabulated586

for smooth (R⋆ ≤ 0.135), transitional (0.135 < R⋆ < 2.5) and rough (2.5 ≤ R⋆ < 1000)587

surfaces in Andreas (1987).588

A.4 Form drag parametrization589

The form drag parametrization used in this study assumes that the drag coefficient CD590

in eqn (1) (the bulk exchange coefficient for momentum) can be partitioned as:591

CD = CD,w(1 − Ci) + CD,iCi + CD,f , (13)
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where CD,w and CD,i denote the skin drag coefficients over water and ice respectively, Ci592

is the sea ice concentration, and CD,f is the form drag contribution. We obtain CD,f by593

applying a stability correction to its neutral counterpart CDN,f :594

CDN,f = CDN,f,w(1 − Ci) + CDN,f,iCi, (14)

where CDN,f,k are form-induced drag coefficients over water (k = w) and ice (k = i).595

Following Lüpkes et al. (2012) and Lüpkes and Gryanik (2015), we use:596

CDN,f,k =
ce

2











ln
hfc

z0,k

ln
10
z0,k











2

hfc

D
(1 − Ci)βCi, (15)

where ce = 0.4 is the effective resistance coefficient, hfc = 0.41 m is the ice Ćoe freeboard,597

z0,k is the skin drag aerodynamic roughness over water/ice, D = 8 m is the average598

diameter of leads or melt ponds and β = 1 is an optional exponent.599
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