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PEZEGO: A Precision Agriculture System Based

on Large Language Models and Internet of Things

for Pest Management
Zhipeng Yuan, Kang Liu, Shunbao Li, Ruoling Peng, Daniel Leybourne, Nasamu Musa, and Po Yang

Abstract—Pests significantly threaten global agricultural pro-1

duction, which causes severe yield losses through feeding and2

virus transmission. To mitigate yield losses caused by pests, timely3

and precise pest management practices are critical. Although4

previous efforts have advanced automated solutions for real-time5

environmental monitoring in agriculture, implementing precise6

pest management decision-making and suggestion generation7

remains challenging due to complex reasoning processes in8

practice. In response, an enhanced pest management system,9

PEZEGO, is proposed to provide precise management sugges-10

tions through multi-modal environmental data, a fine-tuned open11

vocabulary detector (OVD), and large language models (LLMs).12

Specifically, a mobile application and low-cost IoT devices are13

developed to capture images and environmental information. A14

hybrid convolutional low-rank adaptation method (HCLoRA) is15

proposed to fine-tune pre-trained OVDs, enabling zero-shot pest16

detection for converting images to pest species and quantity infor-17

mation. In addition, a structured data-based retrieval augmented18

generation workflow for LLMs is proposed to provide precise19

pest management suggestions through automatically extracted20

agriculture management knowledge and chain-of-thought. The21

effectiveness of PEZEGO is validated in a case study of pest22

management in the UK, including pest detection in field sce-23

narios and management suggestion generation. Compared to24

advanced model fine-tuning methods, HCLoRA achieves the25

highest detection performance with 0.1759 AP
h for YOLOWorld26

on pest detection. Additionally, the proposed structured data-27

based retrieval augmented generation workflow obtains 68.7%28

average Entity-level F1 score for knowledge extraction and29

77.33% accuracy for pest management suggestion generation.30

Eventually, a user-friendly mobile application demonstrates the31

practical effectiveness of the proposed PEZEGO system.32

Index Terms—Precision agriculture, Internet of Things, Large33

language model, Retrieval augmented generation, Pest manage-34

ment.35
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I. INTRODUCTION 36

With global warming, the increasing incidence of pest 37

outbreaks seriously threatens food security worldwide [1]. 38

Statistically, pests are responsible for over 20% of global 39

annual yield loss [2]. To mitigate the loss caused by pests, 40

agronomists are employed in traditional agriculture to esti- 41

mate pest population densities and to determine management 42

strategies by manual observations and extensive management 43

experience [3]. However, the timeliness and labour inten- 44

sity of traditional agriculture hinder the effectiveness and 45

sustainability of management strategies. As a response to 46

the limitations in traditional agriculture, precision agriculture 47

has been proposed to provide accurate and timely automated 48

agriculture management support with data-driven technologies. 49

Over the past decade, various works in precision agriculture 50

explored the feasibility of implementing automated pest [4] 51

or disease [5] monitoring by combining IoT sensors with 52

advanced deep learning models. In addition, automated spray- 53

ing systems were developed based on drones or mechanical 54

equipment for efficient chemical control [6]. However, these 55

previous works ignored the complex reasoning process and 56

sustainable strategies in agricultural practice. Especially, the 57

complex influence of environment on sustainable practice, 58

such as climate [7], location [8], and economic benefits, poses 59

a challenge for providing sustainable agricultural support. 60

In this work, we implement a pest management system, 61

PEZEGO, which addresses the reasoning challenges of pro- 62

viding sustainable management support by introducing large 63

language models (LLMs) in a precision agriculture system. 64

Inspired by the text comprehension and reasoning ability of 65

LLMs, LLMs play the role of reasoners in PEZEGO, using 66

environmental information and agricultural knowledge to pro- 67

vide sustainable pest management suggestions. Specifically, 68

PEZEGO consists of Internet of Things (IoT) sensors, open 69

vocabulary detectors (OVDs) [9], LLMs [10], and a cloud 70

computing platform. IoT sensors are utilised to capture images 71

and environmental information as system input for analysis. 72

The OVD provides a zero-shot detection solution by integrat- 73

ing a text encoder in object detection models for estimating 74

the density of numerous pest species from captured images. 75

Eventually, a structured data-based retrieval augmented gener- 76

ation (SRAG) workflow is introduced to provide accurate pest 77

management suggestions based on environmental information, 78

chain-of-thought (CoT), and retrieved agricultural knowledge 79
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Fig. 1. Workflows of PEZEGO covering zero-shot pest detection, knowledge extraction, and suggestion generation. The green arrows present the data flow
for pest detection, which obtains images from sensors or mobile phones to estimate pest species and densities. The blue rectangles show the workflow of
the knowledge extraction method, which coverts unstructured external resources to structured knowledge databases. The yellow rectangles demonstrate the
suggestion generation in the SRAG workflow. The rounded rectangles in the figure indicate methods. Right-angled rectangles represent data.

data. An overall workflow of PEZEGO is shown in Figure 1.80

The novelty of PEZEGO involves three LLM-inspired meth-81

ods for supporting pest management. Firstly, a hybrid convo-82

lutional low-rank adaptation method (HCLoRA) is proposed83

to fine-tune OVDs for adapting pest detection tasks with84

few trainable parameters. To the best of our knowledge, this85

is the first fine-tuned OVD for pest detection. Secondly, a86

knowledge extraction method based on prompt engineering87

is implemented to automate the agricultural knowledge base88

construction, which has the potential to construct an up-to-89

date agricultural knowledge base in a structured textual format.90

Last, a suggestion generation method is proposed to address91

the hallucination of LLMs. The proposed knowledge extrac-92

tion and suggestion generation methods constitute the SRAG93

workflow. With the above methods, PEZEGO demonstrates the94

effectiveness of LLMs in supporting sustainable agriculture.95

The contributions of this work are summarised as follows.96

1) A fine-tuning method, HCLoRA, is proposed for OVDs,97

which implement real-time zero-shot pest detection98

without the requirement of constructing a large-scale99

pest detection dataset.100

2) A SRAG workflow, consisting of knowledge extraction101

and suggestion generation methods, is proposed to gen-102

erate accurate pest management suggestions based on103

environmental information and structured knowledge.104

3) A case study of UK pest management is completed to105

qualitatively and quantitatively validate PEZEGO with106

proposed methods, which outperform state-of-the-art107

methods in terms of detection and suggestion accuracy.108

II. RELATED WORK109

This section reviews relevant studies on precision agricul-110

ture systems and LLMs to provide a comprehensive research111

context for this work.112

A. Precision Agriculture System113

Precision agriculture systems are dedicated to increasing114

yields and reducing environmental pollution in agriculture115

through IoT sensors and data analysis. Related works started 116

with the monitoring of farms and gradually evolved into an 117

automated system. For preliminary studies, a real-time pest 118

monitoring solution [11] was proposed through a light trap 119

and an optimised deep learning model. This work demon- 120

strated balanced performance in terms of speed and accuracy, 121

achieving 71.3% mean average precision (mAP) for 24 classes. 122

In addition to image-based solutions, a fuzzy logic system 123

was proposed to predict crop pest breeding for rice and 124

millet through weather information captured by IoT-based 125

monitoring infrastructure [7]. 126

Based on the pest and disease detection ability, several stud- 127

ies have implemented automated pesticide spraying through 128

unmanned robotic vehicles or drones for effective management 129

practices. For example, a drone-based automated spaying 130

system [12] was designed for managing Tessaratoma papillosa 131

on longan crops. This system integrates YOLOv3 to locate 132

pests in real-time for planning the optimised pesticide spraying 133

routes and areas. Although the above efforts have demon- 134

strated the effectiveness of precision agriculture for farm 135

monitoring and management, these works simplify complex 136

reasoning in agricultural management, such as the integration 137

of environmental information, economic thresholds, and sus- 138

tainable management strategies. Therefore, the implementation 139

of sustainable management strategies is still a challenge for 140

current precision agriculture systems. 141

B. Large Language Models 142

LLMs refer to text generation models with more than 10 143

million trainable parameters [10], demonstrating the potential 144

to solve the challenges in precision agriculture with text 145

comprehension and reasoning abilities. Most LLMs employ 146

a transformer model or its variants [13] that are pre-trained on 147

large-scale data via elaborate self-supervision strategies and 148

transferred to specific downstream tasks through supervised 149

fine-tuning. Compared with previous natural language pro- 150

cessing (NLP) models [14] training for a single downstream 151
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task, LLMs have demonstrated attracted learning capabilities,152

including instruction learning [15], in-context learning [16],153

reasoning [17], and cross-modal generalised representation [9].154

Instruction learning refers to zero-shot methods of guiding155

LLMs to complete downstream tasks through task instruction.156

A common task instruction consists of a task description,157

supplementary information, the definition of anticipated in-158

put format, and anticipated output format [15]. In contrast,159

in-context learning acts as few-shot learning methods that160

guide LLMs to complete downstream tasks by identifying161

hidden patterns from target task samples without modifying162

the parameters of LLMs [16]. In-context learning has been163

widely used in numerous NLP tasks, such as information164

extraction task [18] and machine translation task [19]. In165

addition, LLMs have demonstrated reasoning ability to break166

down complex problems into simple subproblems and solve167

them sequentially, such as CoT [20], which stimulates interme-168

diate reasoning for downstream text tasks. In addition to text169

tasks, the Platonic Representation Hypothesis in LLMs [21]170

introduced ability of LLMs for cross-modal transfer learning.171

Inspired by this hypothesis, OVDs were proposed for zero-shot172

object detection, by guiding visual model training [9].173

The above capabilities of LLMs have attracted researchers174

to explore the feasibility of LLMs in knowledge-intensive175

fields. For instance, LLMs demonstrated surprising potential176

in primary diabetes care [22] and legal judgment [23]. For177

agriculture, some efforts explored the effectiveness of LLMs178

in agriculture by constructing datasets [24], providing eval-179

uation methods [25], and providing auxiliary detection [26].180

However, providing sustainable pest management suggestions181

is still underexplored. In addition, the hallucination issue in182

LLMs threatens the reliability of LLMs in agriculture. To183

address this problem, a SRAG workflow is proposed based184

on an automated knowledge extraction method for efficient185

and accurate pest management suggestion generation.186

III. PEZEGO SYSTEM187

PEZEGO is designed with a client-server architecture, as188

shown in Fig. 2. In this architecture, IoT sensors and a mobile189

application serve as clients for capturing system input data190

and accessing system function through user-friendly human-191

machine interaction. The server is deployed on a cloud com-192

puting platform with a microservice framework to ensure sys-193

tem availability and scalability. The microservice framework194

manages four system services with corresponding data storage,195

including farm management, pest detection, knowledge extrac-196

tion, and suggestion generation services. Specifically, the farm197

management service in PEZEGO provides basic management198

functions, covering field, crop, farmer, and practice informa-199

tion. The pest detection service implements an image-based200

pest detection function through a fine-tuned OVD to provide201

pest information for suggestion generation. Knowledge extrac-202

tion and suggestion generation services are two LLM-based203

services for reliable suggestion generation. The knowledge204

extraction service automatically extracts knowledge from un-205

structured textual documents to constitute structured data for206

supporting suggestion generation with reliable knowledge. The207
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Fig. 2. PEZEGO system architecture. The IoT sensors and a mobile applica-
tion are clients for collecting images and environmental information to support
suggestion generation. The cloud computing platform provides a unified
resource management solution for farm management, suggestion generation,
and knowledge extraction with four API services and two databases. The
black arrowed line demonstrate the data flow of this system. Captured images
is sent to detection service for conversion to tabular pest data, which is sent
to suggestion generation service with environmental data.

structured data is saved in a database to solve the hallucination 208

issue of LLMs. The suggestion generation service provides 209

reliable suggestions based on retrieval and CoT. In this system, 210

images and environmental data captured by IoT devices or 211

mobile applications are transmitted to the server. Specifically, 212

the image data is processed by the pest detection service to be 213

converted into tabular pest data, which is sent to the sugges- 214

tion generation service with captured environmental data for 215

obtaining suggestions. In this section, specific hardware and 216

algorithm designs are demonstrated. 217

A. Hardware Device Design 218

The IoT device for information collection, as shown in 219

Fig. 3, consists of a microprocessor unit, a camera module, 220

and environmental sensors. The microprocessor unit of this 221

device is implemented by Raspberry Pi Zero 2 W, which is 222

a single-board computer with a quad-core 64-bit ARM CPU 223

and wireless LAN. The whole device is powered via a micro- 224

USB socket on Raspberry Pi Zero 2 W. In this device, a 225

high-resolution autofocus camera module, which has a Sony 226

IMX519 sensor with 4656×3496 pixel resolution and a built- 227

in autofocus motor, is connected to the microprocessor through 228

a camera serial interface. The camera module is positioned to 229

face pest activity zones, such as leaf surfaces or plant stems, 230

for periodically capturing images. In addition, environmental 231

sensors, BME280 and LTR-559, on the Enviro board are con- 232

nected to Raspberry Pi Zero 2 W through GPIO pins. BME280 233

can capture environmental data for temperature, barometric 234

pressure, and humidity, which are key contextual information 235

for pest management. LTR-559, as a light sensor, is utilised 236

to detect ambient light to determine if it is an appropriate 237

time for image capture. A data collection program is installed 238
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Fig. 3. IoT sensor component connection diagram. This device consists of
a Raspberry Pi Zero, a camera module and an Enviro board for image and
environmental data collection.

in the Raspberry Pi, which regularly captures images and239

environmental data and uploads them to the PEZEGO system240

over the network or stores them locally.241

B. Fine-tuning for Open Vocabulary Detectors242

OVD [9], which achieves zero-shot detection for arbitrary243

objects through text comprehension, presents a potential so-244

lution for the challenge of constructing large comprehensive245

datasets covering various pest species. A general framework of246

OVDs, as shown in Fig. 4, includes a text encoder, image back-247

bone, feature fusion module, classification head, and bounding248

box head. Compared with object detection models, it integrates249

a text encoder to provide generic textual features that are250

combined with visual features through a feature fusion module.251

The fused features are fed into classification and bounding252

box headers to output object detection results with text guid-253

ance. The classification header is implemented by text-region254

comparisons [9], which determines a classification result by255

the similarity between fused features and textual features.256

OVDs are pre-trained on large-scale text-region datasets for257

learning generalised text comprehension and object detection258

abilities. However, the performance of OVDs significantly259

degrades when the domain of target objects changes, especially260

for pest detection. To address this issue, we propose HCLoRA,261

inspired by low-rank adaptation (LoRA) fine-tuning [27], to262

fine-tune OVDs on pest detection datasets.263

For OVD fine-tuning, HCLoRA modules, consisting of264

two branches, replace some neural network layers in the265

image backbone and feature fusion module. A base feature266

branch Fp() inherits the original pre-trained weights Wp in267

the OVD, which is frozen during the fine-tuning process268

to maintain generalised detection ability. Another fine-tuned269

feature branch Ft() employs an encoder, a set of convolutional270

layers with different kernel sizes, and a decoder, as trainable271

parameters during the fine-tuning process, to learn residual272

features between the general object and pest for adapting a273

pest detection task. The encoder and decoder work on channel- 274

wise features. Convolutional layers deal with spatial features, 275

which implement separated channel-wise and spatial feature 276

processing with multiple visual fields. The trainable parame- 277

ters of the encoder, set of convolutional layers, and decoder 278

are represented by We, {Wn
c }

3
n=1, and Wd, respectively. The 279

computational process of HCLoRA modules is defined as 280

Ft(f
i) =Wd · C(Wef

i, {Wn
cWef

i}3n=1)

Fp(f
i) =Wpf

i

fo = Fp(f
i) + Ft(f

i),

(1)

where f i and fo are the input and output features of the 281

HCLoRA module, respectively. C() is a concatenation func- 282

tion in channel dimension for a fusion of features from 283

convolution layers with multiple receptive fields. Wef
i is the 284

feature processed by the encoder. {Wn
cWef

i}3n=1 is three 285

features from three convolutional layers, as shown in Fig. 4. 286

During the fine-tuning process, trainable parameters in 287

HCLoRA modules are optimised on a pest detection dataset 288

through a stochastic gradient descent algorithm with a detec- 289

tion loss function defined as, 290

L = λcls · Lcls + λiou · Liou + λdfl · Ldfl, (2)

where λcls, λiou, and λdfl are weights for classification loss 291

Lcls, object intersection over union loss Liou, and distributed 292

focal loss Ldfl. Specifically, the classification loss Lcls is im- 293

plemented by a binary cross-entropy loss function to measure 294

classification accuracy. The intersection over union loss Liou 295

and distributed focal loss Ldfl are utilised to measure the 296

precision of bounding boxes. Other pre-trained parameters, 297

such as Wp in HCLoRA modules and unreplaced original 298

network layers, are frozen during the fine-tuning process. 299

C. Knowledge Extraction Method 300

In response to the lack of structured agriculture knowledge 301

bases, we propose a three-stage knowledge extraction method 302

to support suggestion generation and mitigate the hallucination 303

issue of LLMs. The proposed extraction method structures 304

knowledge by extracting named entities and textual descrip- 305

tions with relationships from unstructured documents to pro- 306

vide reliable external information for suggestion generation. 307

To simplify the description, entities are used to include named 308

entities and textual descriptions in subsequent articles. 309

Formally, the input of the knowledge extraction includes a 310

set of unstructured files d ∈ D, a set of predefined relationships 311

r ∈ R, and a set of expected table format examples {fr|r ∈ 312

R}. The output is a set of structured data in a format of named 313

tables T = {tr|r ∈ R}. The data structure for each table tr 314

is defined by a tuple with pest names and relationship r, such 315

as r =(”Pest Name”, ”Pest Description”) for a table of pest 316

descriptions. Extracted entities with relationships are stored 317

in the corresponding table tr. Algorithm 1 demonstrate the 318

knowledge extraction process. 319

The three-stage knowledge extraction method includes pre- 320

processing, extraction, and post-processing. In addition to 321

stopword removal and signal removal, an instruction-based 322
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Algorithm 1 Algorithm for Knowledge Extraction Method.

Input: A set of unstructured files, D.

A set of predefined relationships, r ∈ R.

A set of expected table format examples, {fr|r ∈ R}
Output: A set of named tables, T

T← {tr|r ∈ R} ▷ Initialisation

for all di ∈ D do

{p0, ..., pk} ← split(di) ▷ Split documents by paragraph

C← {p0} ▷ Initialisation continuous chunk set

idxo ← 1, idxn ← 0
while idxo ≤ k do

if continu(C[idxn], pidxo
) then

C[idxn]← C[idxn] + pidxo
▷ Merge paragraphs

else

C← C ∪ {pidxo
} ▷ Add a new paragraph

idxn ← idxn + 1
end if

idxo ← idxo + 1
end while

for all c ∈ C do

for all r ∈ R do

k ← keyExtract(c) ▷ Extract keys

tr ← tr ∪ relExtract(r, fr, c, k) ▷ Construct tables

end for

end for

end for

for all tr ∈ T do

tr ← merge(tr) ▷ Merge similar entities

tr ← llmCln(tr, r) ▷ Clean inappropriate entities

end for

return T

document splitting method is utilised to split documents,323

which avoids relationship loss due to contiguous text splitting.324

Specifically, the splitting method firstly splits input documents325

into chunks {p0, ..., pk} with a fixed length. Then, an instruc-326

tion learning prompt is employed to detect the continuity of327

two split chunks for merging semantic continuous chunks. The 328

prompt is formally represented as continu(pidx, pidx+1) ∈ 329

{0, 1} to output a boolean value indicating whether to merge 330

chunks, where pidx, pidx+1 refer to the idx chunk and idx+1 331

chunk. The merged chunks are represented as c ∈ C. 332

After completing the pre-processing, a heuristic CoT is used 333

to extract knowledge, including pest descriptions, affected 334

crops, pest thresholds, and pest management practices. The 335

first step in CoT is to extract the pest entities as keywords k 336

in a chunk c through keyExtract(c) defined as ”Extracted 337

pest name mentioned in the following text contents, use the 338

vocabulary from the original text. Return a list of pest names 339

without duplicate names. Text Contents: c“. The second step 340

extracts relational entities to construct named tables tr by a 341

prompt relExtract(r, fr, c, k) defined as ”Extracted {r} of 342

pest in the PEST LIST mentioned in the following text, use 343

the sentences or words from the original text. Return a list of 344

JSON objects with the pest name as the key of the JSON object 345

and corresponding {r} as value, such as {fr}. Returns an 346

empty JSON object if no corresponding content is mentioned 347

in the following text. Text Contents: {c} PEST LIST: {k}”. 348

The output format fr is a dictionary as an example of output 349

with relationship r for a corresponding table tr. 350

Post-processing methods for extracted data are used to 351

merge duplicate data and to remove irrelevant data. Specifi- 352

cally, the tables are traversed based on key values to determine 353

duplicate records. The contents of identified duplicate records 354

are fed into an instruction learning method and are merged by 355

LLMs for updating the entities in the named tables. Finally, the 356

updated entities are passed into LLMs to determine if they are 357

appropriate entities for a corresponding specific relationship. 358

Inappropriate entities are removed from the named table. 359

D. Suggestion Generation Workflow 360

To improve the accuracy of suggestions, a suggestion gen- 361

eration method, as shown in Algorithm 2, is proposed based 362

on reasoning, structured data retrieval, and reflection. The 363

reasoning ability of LLMs ensures that multiple environment 364
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Algorithm 2 Algorithm for Suggestion Generation Method.

Input: A user query, q.

Extracted named tables as knowledge bases, T.

Output: A pest management suggestion, sugfinl
k, sugcot ← cot(q) ▷ Generate suggestion proposal

INFO← {} ▷ Initialisation retrieved information

for all tr ∈ T do

INFO← INFO∪ retrieval(k, tr) ▷ Retrieve knowledge

end for

sugfinl ← ref(INFO, sugcot, q) ▷ Optimise suggestion

return sugfinl, INFO

variables are used sensibly in a suggestion proposal generation365

process. The retrieval of structured data provides LLMs with366

external knowledge information. The reflection mechanism367

combines retrieved information with suggestion generation.368

Formally, the first stage is to generate an initial suggestion369

proposal sugcot for a user query q through a CoT method370

cot(q), which is implemented by a heuristic prompt ”Let’s371

think step by step.”. In addition, the CoT method extracts372

keywords in the user query q for information retrieval. The373

information retrieval is performed through a predefined SQL374

template within a loop for knowledge bases. Retrieved in-375

formation, including pest descriptions, pest thresholds, and376

pest management methods, is spliced into a dictionary as377

contextual information INFO for the suggestion generation.378

In addition, the sources of retrieved contextual information are379

recorded to be presented as a basis for decision-making. The380

last step in the suggestion generation is to generate a final pest381

management suggestion through the reflection mechanism.382

Specifically, the reflection mechanism ref(INFO, sugcot, q)383

is an instruction-based prompt, defined as ”Acting as an384

agricultural expert answering user queries in a brief and385

precise manner based on contextual information and previous386

suggestions. Context Information: {INFO}; Previous Sugges-387

tion: {sugcot}; User Query: {q}.”, to combine suggestion388

proposal sugcot and retrieved information INFO. Based on389

this generation method, users have access to generated man-390

agement suggestions with related knowledge information.391

IV. EXPERIMENTAL EVALUATION392

The effectiveness of PEZEGO is evaluated in a case study393

of UK pest management, which covers pest management for394

carrots, cereals, beans, oilseeds, peas, potatoes, and sugar beet.395

We compare the performance of proposed methods with state-396

of-the-art methods on pest detection, information extraction,397

and suggestion generation tasks in this case study. An ablation398

experiment is conducted to explore the effect of different399

LLMs on suggestion generation. In addition, the effective-400

ness of PEZEGO in agriculture is qualitatively demonstrated401

through an implementation on Android clients.402

A. Experiment Setup403

1) Datasets: We extend our pest detection dataset [28],404

which consists of 9,902 images with annotations provided by405

agronomists, to validate the effectiveness of HCLoRA. Image406

samples in this dataset are captured from farms in England. 407

Category annotations contain 27 types of insects. The fine- 408

tuning dataset is randomly sampled from 11 categories in this 409

dataset. The remaining samples are used for validation. 410

A pest management encyclopaedia [29] from the Agriculture 411

and Horticulture Development Board is used to validate the 412

knowledge extraction method. A set of manually extracted 413

data is recorded as ground truth values of the extraction for 414

pest types, affected crops, pest descriptions, pest thresholds, 415

and management practices. The data samples are long text 416

descriptions, except for pest types and affected crops. 417

To evaluate suggestion generation methods, a tabular dataset 418

of pest sampling records is synthesised for simulating user 419

queries. Specifically, the tabular dataset contains pest statistic 420

information, crop type, crop growth stage, time of collection, 421

location, weather, and temperature. Pest statistic information 422

records observed pest species and their corresponding pop- 423

ulation densities, such as pollen beetle with 5 adults per 424

square meter. The crop type and growth stage describe the 425

crop information, such as the oilseed on flower-bud emergence 426

stage (GS 55). The time of collection is recorded as the day 427

of the year. Based on the aforementioned information in pest 428

sampling records, a rule-based expert system [30] driven by 429

agricultural expert knowledge is employed to annotate pest 430

sampling records with ground truth values of whether or not 431

management is required. In addition, tabular data is inserted 432

into pre-defined text templates to construct user queries. 433

2) Evaluation Metrics: Mean average precision (AP ) is 434

utilised to evaluate the detection ability, which is defined 435

as an average area under precision-recall curves with an 436

intersection over union threshold of 0.5 for all categories in 437

the validation dataset. To demonstrate the effectiveness of fine- 438

tuning methods, AP for unseen categories APu and seen 439

categories AP s is calculated. The seen and unseen categories 440

are defined as pest species present or absent in the fine- 441

tuned training set, respectively. To comprehensively validate 442

the performance of fine-tuned models for seen and unseen 443

categories, a harmonised APh is defined as, 444

APh =
2×APu ×AP s

APu +AP s
. (3)

In addition to detection abilities, model size and detection 445

speed are reported to demonstrate the availability of OVDs 446

in a pest detection task. 447

For knowledge extraction and suggestion generation, eval- 448

uation metrics in machine learning, including accuracy, pre- 449

cision, and F1 score, are employed to evaluate the effective- 450

ness of proposed methods. Varied definitions of true positive 451

samples are provided for two tasks. Specifically, true positive 452

samples of the entities with precise vocabularies, such as 453

pest types and affected crops, are defined as samples that are 454

identical to ground-truth samples in the knowledge extraction 455

task. The entities of long textual descriptions, such as pest 456

descriptions and management practice, utilise BERTScore [31] 457

to measure the textual similarity between extracted values 458

and ground-truth values. BERTScore is implemented in this 459

work using the 384-dimensional embedding vector space of 460

the MiniLM-L6-v2 model with cosine similarity. A threshold 461
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TABLE I
PERFORMANCES OF OVDS AND FINE-TUNING METHODS. YOLOWORLD ACHIEVES THE HIGHEST DETECTION PERFORMANCE IN PEST DETECTION

TASKS. FINE-TUNED YOLOWORLD ACHIEVED THE HIGHEST APh THROUGH HCLORA.

Models Tuning Strategy Model size (MB) Speed (FPS) AP APh AP s APu

GLIP-T - 2,317.8 4.2 0.0043 0.0008 0.0098 0.0004
OWLViT - 584.6 11.9 0.0097 0.0084 0.0154 0.0058
OmDet - 440.43 12.3 0.0019 0.0003 0.0044 0.0002
Grounding DINO-T - 661.8 2.87 0.0026 0.0021 0.0043 0.0014
YOLOWorld - 24.7 136.9 0.0238 0.0388 0.0330 0.0470

YOLOWorld FFT 24.6 144.9 0.284 0.0698 0.6437 0.0369
YOLOWorld SPEFT 24.6 153.8 0.284 0.0698 0.6435 0.0369
YOLOWorld PFT 24.6 148.7 0.032 0.0128 0.0696 0.0157
YOLOWorld LoRA 24.8 157.9 0.163 0.0752 0.3378 0.0423
YOLOWorld HCLoRA 36.9 151.3 0.297 0.1759 0.5792 0.1037

for BERTScore is set to 0.5 to distinguish between positive462

and negative samples. Entity-level F1 (E F1) is [32] is used463

to report the performance of knowledge extraction methods.464

For the suggestion generation method, the record informa-465

tion in the dataset is inserted into a set of pre-defined text466

templates as user queries for pest management suggestion467

generation. A classification instruction of LLMs is used to468

assign labels for the suggestions generated by different meth-469

ods. Positive samples of generated suggestions are defined470

as suggestions that require immediate management through471

voting from various LLMs. Negative samples are the opposite.472

The samples that do not provide a clear decision in generated473

suggestions are defined as unknown samples.474

3) Baselines: The performances of OVDs, including GLIP-475

T [33], OWLViT [34], OmDet [35], Grounding DINO-T476

[36], YOLOWorld [9] for pest detection, are validated to477

determine the optimal baseline model for fine-tuning methods.478

Advanced fine-tuning methods, including full-parameter (FFT)479

[37], parameter-efficient (SPEFT) [38], prompt (PFT) [39],480

and LoRA [27] fine-tuning, are compared with HCLoRA to481

demonstrate its validity.482

The proposed knowledge extraction method is compared483

with the state-of-the-art methods including in-context learn-484

ing [16], Resolved GPT-3 (GPT-3+R) [40], Evaporate-485

Direct (Evapo-D), Evaporate-Code (Evapo-C) [32], and Self-486

Verification (Self-verif) [41] for knowledge extraction. The487

in-context learning method feeds a task instruction with two488

input-output pairs into LLMs for guiding information extrac-489

tion. GPT-3+R and Evapo-D are zero-shot instruction learning490

methods with different task instructions and post-processing491

methods. Evapo-C uses four samples to generate Python code492

that extracts information through regular expressions, reduc-493

ing the computational cost of LLMs. Self-verif revises the494

extracted information for improving extraction performance.495

The baselines of suggestion generation include instruction496

learning [15], Auto-CoT [42], tree-of-through (ToT) [43],497

Least-to-Most [44], Self-Ask [45], and RAG [46]. These498

baselines cover methods to improve generation performance499

through appending reasoning and information retrieval capa-500

bilities. Auto-CoT and ToT inspire the reasoning of LLMs to501

improve the accuracy of suggestions. Least-to-Most and Self-502

Ask identify a set of subproblems for answering user queries503

in a zero-shot manner and a few-shot manner, respectively.504

RAG retrieves text based on embedding vectors of documents505

to optimise generation.506

4) Experiment and System Implementation: Fine-tuning 507

and validation of OVDs are completed on a server with 3060 508

GPU. Langchain toolkit [47] is used to implement LLM-based 509

workflows. All of the LLM-based workflows in the system use 510

the GPT-3.5-turbo (GPT-3.5) [48] as a basis of LLMs. The 511

mobile application of the PEZEGO system is implemented by 512

Kotlin with Jetpack. API services, which are deployed on a 513

cloud computing cluster, are coded by Python and Java for 514

different API services. 515

B. Comparison With Existing Work 516

Table I demonstrates the performance of OVDs and fine- 517

tuning methods on pest detection. Compared with other state- 518

of-the-art OVDs, YOLOWorld [9] achieves the highest detec- 519

tion speed and average precision for zero-shot pest detection 520

due to its efficient one-stage model structure with convolution. 521

Therefore, fine-tuning methods are validated on YOLOWorld. 522

In the validation of fine-tuning methods, FFT achieves the 523

highest AP s due to adjusting all trainable parameters of 524

YOLOWorld for adapting the pest detection task, while losing 525

the ability to detect unseen categories due to the lack of 526

constraints on the pre-training weights. Similarly, the SPEFT 527

method that optimises classification and bounding box heads 528

loses the ability to detect unseen categories. Counterintuitively, 529

PFT obtains the lowest performances for both seen categories 530

AP s and unseen categories APu of all the fine-tuning due 531

to few trainable parameters. Moreover, the adjusted text em- 532

beddings affect the detection of unseen categories. In contrast, 533

LoRA obtains a balanced detection ability for seen and unseen 534

categories by parallel residual connections. Compared with 535

LoRA, the proposed HCLoRA achieves higher AP s and APu
536

with separating features processing and multiple receptive 537

field fusions. In addition, HCLoRA learns generalisable pest 538

features by low-rank constraints, enabling positive enhance- 539

ment of fine-tuning for unseen pest categories, rather than 540

just maintaining the existing zero-shot detection capability of 541

OVDs. For example, learning visual features of grain aphids 542

has a positive impact on the detection of willow-carrot aphids. 543

The performances of baselines and the proposed workflow 544

on knowledge extraction tasks are shown in Fig. 5. Different 545

knowledge extraction methods have significant differences 546

in performance when dealing with different types of data. 547

The proposed knowledge extraction method obtained the best 548

performance with 68.70% average E F1 due to the LLM- 549

based pre-processing and post-processing. In particular, this 550



IEEE INTERNET OF THINGS JOURNAL 8

Fig. 5. Knowledge extraction method performances for affected crops, de-
scription of pests, economic thresholds, and management strategies compared
with in-context learning (In-context), GPT-3+R, Evapo-D, Evapo-C, and Self-
verif on Entity-level F1 value (E F1).

workflow outperforms other baseline methods in the extraction551

of pest descriptions, pest thresholds, and pest management.552

However, the proposed workflow slightly lags behind GPT-553

3+R in the extraction of affected crop information, which554

is explicit words rather than long text. Since GPT-3+R uses555

regular expression matching, it avoids the word conversion556

of LLM and is more adept at extracting words. In addition,557

few-shot learning methods, such as in-context learning and558

Evapo-C, have not achieved satisfactory accuracy in extraction559

tasks. Because few samples do not demonstrate an adequate560

input-output relationship for supporting information extrac-561

tion. Especially, Evapo-C, which generate regular expression562

for extraction, is difficult to extract entities from complex563

inputs. Self-Verify utilises the multiple generation of LLMs564

to optimise the extraction results, which also results in the565

modification of the specific entity vocabulary, affecting the566

accuracy of the entity extraction.567

For the evaluation of suggestion generation, the proposed568

generation method outperforms other baseline methods on569

accuracy. The proposed method improves the average accuracy570

by nearly 15% compared to RAG, which accesses the original571

textual information by vector-based retrieval, since the struc-572

tured knowledge retrieval method is more accurate for complex573

generative tasks. Self-Ask using an in-context learning method574

with four samples obtains the suboptimal accuracy. However,575

Self-Ask is limited by the reasoning process for the suggestion576

generation task. Throughout the evaluation of the suggestion577

generation task, the low average precision and average recall578

value are due to the absence of samples with unknown579

ground truth values in the test dataset. Specifically, there are580

some generated suggestions from LLMs where an explicit581

decision is not provided to avoid responsibility for decision-582

making, even if the need for a decision is declared in the task583

instruction. Therefore, there are no true positive samples for584

the samples without explicit decisions.585

Fig. 6. Suggestion generation workflow performance compared with In-
struction Learning (Instruction), Auto-CoT, ToT, Least-to-Most, Self-Ask, and
RAG on average Accuracy, average Recall, average Precision, and F1 score.

TABLE II
SUGGESTION GENERATION TASK PERFORMANCES FOR DIFFERENT LLMS

INCLUDING FLAN, GPT-4, GPT-3.5, GPT-3 AND GPT-BASE.THE

HIGHEST PERFORMANCE OBTAINED BY THE FIVE LLMS IS BOLDED.

Methods Acc Avg Prec Avg Rec F1 Score

Flan 62.67% 28.95% 28.59% 28.77%
GPT-4 73.33% 39.00% 46.72% 42.51%
GPT-3.5 78.72% 45.40% 45.40% 45.40%

GPT-3 60.00% 41.66% 41.66% 41.66%
GPT-Base 54.67% 20.83% 19.00% 19.87%

C. Ablation Experiment 586

The impact of using different LLMs on the performance 587

of suggestion generation service is demonstrated in Table II. 588

The GPT-3.5 model achieves the highest average accuracy, 589

precision, and F1 scores on suggestion generation for pest 590

management. In addition, the GPT-4 model only obtains the 591

highest average recall. GPT-4 does not obtain the highest per- 592

formance because it is overconfident and ignores the provided 593

contextual information for generation. These two models have 594

been trained on downstream tasks for instruction learning and 595

are therefore more adept at understanding task descriptions 596

and completing tasks. Flan, GPT-3 and GPT-based models do 597

not obtain better performance due to the limitation of training 598

strategies and training data. This result demonstrates that the 599

performance of the proposed framework depends on the zero- 600

shot and few-shot learning capability of LLMs. 601

D. Qualitative Analysis For Mobile Application 602

A suggestion example generated by PEZEGO and the user 603

interfaces of PEZEGO are demonstrated in Fig. 7. As shown 604

on the home page, users can check the pest detection records 605

and suggestion records by the mobile application. The pest 606

detection function reduces the knowledge requirements for 607

farmers on pest identification. Environmental information is 608

collected by the mobile application for reliable suggestion 609

generation. While the original LLM and Auto-CoT method 610
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Input Record Suggestion from PEZEGO

Suggestion From LLMs 

Dealing with pests like Pollen Beetles 

in your oilseed fields requires a 

systematic evaluation. Here's a step-

by-step plan:

1. Pest Identification: Ensure that the 

insects you have identified are indeed 

Pollen Beetle ... 

2. Assess the Situation: ...

3. Determine the threshold level: ...

...

Remember, it is essential to consult 

with local agricultural experts or 

extension services for specific 

recommendations tailored to your 

region and crop. They can provide you 

with the most up-to-date information 

on pest management practices and 

help you make informed decisions.

Based on the given information of detecting pollen 

beetles in oilseeds with a density of 5/m², immediate 

action is not necessary. The numbers are relatively low 

and may not reach the economic threshold where the 

cost of damage outweighs the cost of control. However, 

it's important to continue monitoring the situation 

closely. If the numbers increase significantly, then you 

may need to consider pest control measures. For now, 

focus on promoting natural predators and maintaining 

good field hygiene to prevent pest populations from 

increasing.

Pest Description:

The adults of pollen beetles are around 2.5 mm long, 

metallic greenish-black, and have clubbed antennae. 

The larvae are creamy white with a black head, three 

pairs of legs, and dark brown spots and short ...

Management Thresholds:

Thresholds are based on the maximum number of buds 

each beetle can destroy and the number of excess 

flowers produced. Low plant populations tend to 

produce more branches and more flowers. Threshold 

number of beetles per plant at the green-to-yellow-bud 

stage: If there are fewer than 30 plants/m2 : 25; ...

Pest Management:

Pollen beetle larvae are attacked by parasitic wasps 

during flowering. Insecticides can considerably decrease 

parasitism. ...

Generated by Auto-CoT

Suggestion from PEZEGO 

Contextual Information from Knowledge Base 
(a) (b) (c)

(d) (e) (f)

User Interfaces

Pest Statistics: 

   - Pollen Beetle: 5/m²

Crop Type: Oilseed

Growth Stage: GS 55

Day of Year: 167

Location: UK

Weather: Sunny

Temperature: 17.54 °C

Fig. 7. Suggestion examples and user interface of PEZEGO. The content in the input record is a record from the test dataset. Compared to Auto-CoT, PEZEGO
provides a clearer suggestion with domain knowledge. The user interface includes (a) Home Page for Pest Detection, (b) Home Page for Suggestions, (c) Pest
Detection Page, (d) Suggestion Generation Page, (e) Suggestion Screen, and (f) Setting Screen.

has the ability to provide users with pest management sug-611

gestions, this method tends to generate unclear management612

decisions with disclaimers to avoid liability. In comparison,613

the PEZEGO system generates clear suggestions for decision-614

making, accompanied by relevant knowledge information with615

economic threshold and non-chemical management methods.616

V. DISCUSSION AND FURTHER RESEARCH DIRECTION617

Although the above case studies qualitatively and quantita-618

tively demonstrate the effectiveness of PEZEGO in support-619

ing sustainable agriculture practices by suggestion generation,620

this work still has some limitations, which lead to further re-621

search directions. Firstly, zero-shot pest detection ability for622

OVDs is limited due to the differences between the pre-train-623

ing and pest image data. Incremental pre-training methods with624

more diverse pest samples need to be further explored for625

further improving zero-shot pest detection ability. Secondly,626

there is still a trade-off between accuracy and effectiveness627

for knowledge base construction methods. The effectiveness of628

structured knowledge bases for suggestion generation has been629

shown in experiments. However, the accuracy of extracting630

structured data through automated methods remains limited.631

Therefore, an accurate and effective solution needs to be ex-632

plored. Thirdly, the validation of this work focuses on deci-633

sion-making performance based on LLMs and environmental634

information. However, LLMs have the potential to enable open635

question-and-answer for supporting agricultural management.636

In addition, the effectiveness of management strategies still 637

needs to be verified. Therefore, a more extensive validation for 638

agricultural management needs to be completed, covering open 639

question-and-answer aand managment strategies. Finally, the 640

PEZEGO system provides data storage but does not address 641

the cybersecurity threats in the IoT environment. Developing a 642

robust security framework that includes advanced encryption, 643

intrusion detection and strict access control measures to protect 644

the privacy of sensitive agricultural data is a further direction. 645

VI. CONCLUSION 646

Precision agriculture systems aim to implement sustainable 647

agriculture management practices, which is hindered by the 648

detection of numerous pest species, lack of structured agri- 649

cultural knowledge, and precision suggestion generation with 650

reasoning. In this work, an IoT-based precision agriculture 651

system, called PEZEGO, is proposed to address the aforemen- 652

tioned challenges through LLMs with environmental informa- 653

tion. Specifically, the feasibility of OVDs for zero-shot pest 654

detection is explored by fine-tuning. The proposed fine-tuning 655

method, HCLoRA, significantly improves the performance of 656

OVDs for pest detection, which achieves 0.297 AP for 27 657

categories, 0.5792 AP s for 11 seen categories, 0.1037 APu
658

for 16 unseen categories, and 151.3 FPS. In addition, a SRAG 659

workflow, consisting of agricultural knowledge extraction and 660

management suggestion generation methods, is proposed to 661

provide accurate management suggestions. In practice, the 662
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knowledge extraction method utilises LLMs to structure agri-663

culture knowledge, including pests, crops, thresholds, and664

management strategies, as external resources for supporting665

precision suggestion generation. To address the hallucination666

issue in generation by LLMs, we propose an optimised RAG667

workflow, which integrates with reasoning, structured data668

retrieval, and reflection mechanisms to enhance the accu-669

racy of suggestion generation. In quantitative experiments,670

we validate the effectiveness of the proposed methods using671

a pest encyclopaedia dataset and a pest sampling dataset.672

Compared to state-of-the-art zero-shot and few-shot methods,673

the proposed methods achieve optimal performance in the674

knowledge extraction tasks, including pest description, pest675

thresholds, and pest management practices. Furthermore, the676

PEZEGO achieves state-of-the-art results on three evaluation677

metrics in the generation task for pest management suggestions678

with 77.33% average accuracy. In ablation experiments for679

the choice of LLMs, we note that GPT-3.5 achieves optimal680

accuracy in suggestion generation. GPT-4 does not demon-681

strate the expected performance due to overconfidence issues.682

In addition, the client of PEZEGO is implemented on an An-683

droid mobile application, which provides relevant knowledge684

sources with generated suggestions to ensure reliability.685
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