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Safety Assurance of Machine Learning for Autonomous Systems

Colin Patersona, Richard Hawkinsa, Chiara Picardia, Yan Jiaa, Radu Calinescua, Ibrahim Hablia

aDepartment of Computer Science, University of York, Heslington, York, YO10 5GH, United Kingdom

Abstract

Machine Learning (ML) components are increasingly incorporated into systems, with different degrees of au-

tonomy, where model performance is reported as meeting, or exceeding, the capabilities of human experts. This

promises to transform products and services, in diverse domains such as healthcare, transport and manufacturing,

to better serve underrepresented groups, reduce costs, and increase delivery effectiveness, especially where expert

resources are scarce. The greatest potential for transformative impact lies in the development of autonomous sys-

tems for safety-critical applications where their acceptance, and subsequent deployment, is reliant on establishing

justified confidence in system safety. Creating a compelling safety case for ML is challenging however, particularly

since the ML development lifecycle is significantly different to that employed for traditional software systems. Typ-

ically ML development involves replacing detailed software specifications with representative data sets from which

models of behaviour is learnt. Indeed, ML’s strength lies in tackling problems which are challenging for traditional

software development practices. This shift in development practices introduces challenges to established assurance

processes which are crucial to developing the compelling safety case required for regulation and societal acceptance.

In this paper we introduce the first methodology for the Assurance of Machine Learning for use in Autonomous Sys-

tems (AMLAS). The AMLAS process describes how to systematically and attractively integrate safety assurance into

the development of ML components and how to generate the evidence base for explicitly justifying the acceptable

safety of these components when integrated into autonomous system applications. We describe the use of AMLAS

by considering how a safety case may be constructed for an object detector for use in the perception pipeline of an

autonomous driving application. We further discuss how AMLAS has been applied in several domains including

healthcare, automotive and aerospace as well as supporting policy and industry guidance for defence, healthcare and

automotive.

Keywords: Machine Learning, Safety, Assurance, Safety Case, Autonomy

1. Introduction

The use of machine learning (ML) in everyday services and products has grown rapidly, with recent breakthroughs

in deep learning supporting the development of ML models capable of performance levels that match or exceed those

of human experts in tasks ranging from medical diagnosis [1, 2] to financial trading [3] and marine life monitoring [4].

As a result, these models are increasingly considered for a variety of roles in systems where their failure could

compromise safety. In particular, ML components are well suited to performing key tasks required in autonomous

systems, and difficult to achieve using traditional software. Examples of such tasks include perception in autonomous

vehicles [5, 6, 7], process optimisation and supply chain management in manufacturing [8], maintenance of critical

infrastructure [9, 10, 11], hazard identification in autonomous shipping [12, 13] and reliability prediction in nuclear

power plants [14]. Unfortunately, these uses of ML have not been without failures [15, 16], leading to accidents and,

in some cases, to loss of life. Successful adoption of ML for such safety-related tasks therefore hinges on our ability

to assure that the ML will be safe to use prior to its deployment into operation. This requires understanding of the

ways in which the ML may contribute to safety risk for the system [17, 18], and how that contribution is acceptably

managed.

The established methodologies for the safety assurance of traditional software components of safety-related sys-

tems are not applicable to ML components, which are developed using a completely different lifecycle [19] than

standard software. This lifecycle includes multiple stages (e.g., data management, and model training) and activities
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(e.g., data collection, preprocessing and augmentation, and ML model and hyperparameters selection) that are not en-

countered in traditional software development. For that reason, the safety assurance of machine learning requires new,

dedicated methodologies that consider these stages and activities explicitly. This paper introduces such a method.

For novel technologies such as ML, where there is no established practice for safety and considerable variation

in design approaches, it is crucial that, as well as identifying the safety processes and techniques required to manage

safety risk effectively, system developers are able to explain and demonstrate to a range of stakeholders how sufficient

safety has been achieved. Safety cases provide a way of explicitly demonstrating, through the creation of a structured

argument supported by a compelling body of evidence, why a system is safe to operate. The safety case argument

can be used to explain the sufficiency of the adopted ML safety assurance processes. When software technology

underwent a similarly fast adoption in safety-related applications, safety cases were similarly identified as the best

approach [20, 21, 22] Safety cases have been used for the assurance of systems from application domains as diverse

as aerospace [23], rail transportation [24], defence [25] and nuclear power generation [26]. This success has led to

safety cases being enshrined in standards [27, 28], and to research on methodologies for their rigorous development.

This has included the development of safety argument patterns as a way to guide the structure of safety cases.

Our paper introduces the first methodology that focuses on the Assurance of Machine Learning for use in Au-

tonomous Systems (AMLAS). Underpinned by a systematic six-stage process, AMLAS employs a suite of new safety

argument patterns to produce a complete safety case for a given ML component of an autonomous system. AMLAS

details the activities undertaken, and the artefacts (e.g., requirements, data sets and assurance evidence) required by,

and generated at, each stage of a typical ML development lifecycle [19]1. Crucially, AMLAS explains explicitly how

these artefacts are used to instantiate the associated safety argument patterns for the ML component, and to generate

its safety case. This safety case can then be used to support safe deployment decisions for ML in autonomous systems.

The first two stages of the AMLAS process define the scope under which safety assurance for the ML component

is needed, and provides assurance for the safety requirements of this component, respectively. The next three stages

concentrate on the assurance of the data sets used to train, validate and test the ML component, on the actual training

of the ML model, and on its verification. Finally, the AMLAS process ends with a stage that provides safety assurance

for the deployment of ML component into the operational autonomous system.

The rest of the paper is structured as follows. In Section 2, we provide the necessary background on safety cases

and safety argument patterns. Section 3 introduces a use case from the autonomous driving domain which is used to

illustrate the application of the AMLAS methodology, detailed in Section 4. In Sections 5 and 6, we present results

obtained from the application of AMLAS to other contexts and the lessons learnt from these applications. Finally,

Section 7 presents our conclusions and proposes directions for future work.

2. Background

This section provides background information on safety cases and safety argument patterns which are used

throughout the paper. We also present an introduction to supervised machine learning, which is used extensively in a

range of autonomous systems and which underpins the worked example used in the paper to illustrate our approach.

2.1. Safety Cases

A safety case provides a set of evidence along with a clear, comprehensive and defensible argument in support

of a given claim about the safety of a system within a particular operating context [29]. Since their introduction,

safety cases have become a requirement in numerous safety standards and regulations for industries including nuclear

energy [30], medical devices [31] and air-traffic control [32]. Given the diversity of application domains, each safety

case must be specific to the system and processes for which the argument is to be constructed. Indeed the development

of a safety case is a complex process itself comprising activities performed across all stages of the development

life cycle. In practice any safety case is presented with explicit assumptions and contextual scoping such that the

arguments only hold when these contexts also hold.

1We note that within this work we are primarily concerned with traditional ML components, e.g. Convolutional neural networks for classification

tasks, rather than Generative AI models such as Large Language models.
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Figure 1: Core concepts from the GSN standard [33]

Goal Structuring Notation (GSN) is a standardised graphical notation [33] which has found use widely in industry

for the presentation of assurance cases [34]. The main concepts used to construct a safety case using GSN are shown

in Figure 1. A claim made as part of a safety case is shown in GSN using the goal element, which may be presented

with relationships to assumptions and contexts within which the claim may be said to hold. The goal structure then

decomposes this goal into sub-goals until we reach a point where a solution may be presented. A solution consists of

evidence that the goal is met. The decomposition of goals may be undertaken using a strategy which is presented with

an appropriate justification, and throughout the argument the context within which concepts exist and the assumptions

underpinning the claims are made explicit. For a detailed description of GSN we refer the interested reader to the

GSN standard [33].

2.2. Safety Argument Patterns

The generation of a safety argument requires considerable effort and the reuse of argument approaches from one

safety case to another is to be expected. Reuse of safety arguments can reduce the effort required for argument

generation, and ensure the dissemination of good practice within safety case development. The reuse of arguments

may, however, lead to potentially dangerous outcomes if the arguments are used inappropriately. To mitigate this,

explicit saftey argument patterns can be used [35] that enable the essence of the required argument and evidence to be

captured, whilst abstracting away from the details of a particular application.

Safety argument patterns can be documented using GSN to capture an argument structure that represents good

practice and which is believed to be applicable to a more general set of applications. Within a pattern, certain aspects

of GSN elements are left uninstantiated. The uninstantiated aspects are indicated by the presence of curly brackets in

the text, and an uninstantiated element decorator. When using a safety argument pattern in the creation of a safety case,

uninstantiated aspects of the argument pattern must be instantiated using information that is specific to the system or

application under consideration. The undeveloped element decorator may also be used within the pattern to indicate

that further work will be needed to determine appropriate support for a claim for the particular system.

2.3. Supervised Machine Learning for Autonomous Systems

The primary focus of AMLAS is the safety assurance of ML components obtained through off-line supervised

learning and in this section we introduce the concepts which are central to supervised learning. Supervised machine
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Figure 2: Abstract representation of an autonomous driving platform in which multiple information channels are derived from sensor inputs to

control actuating functions.

learning techniques are at the forefront of the emergence of autonomous systems, underpinning classification and

object recognition tasks for use in domains as diverse as autonomous driving [36] and medical diagnosis [37]. At its

core supervised learning is the task of learning a mapping between a set of training samples xi and a pre-defined set

of labels yi.

If we define a training set T to be a set of n input-output pairs

T = (x1, y1), (x2, y2), · · · (xn, yn)

where we assume that each output yi was generated by an unknown function y = f (x) applied to the input, then the

aim of supervised learning is to learn a function h which approximates f .

For an image classification task, the sample xi is typically a vector where each element in the vector is the pixel

value of a colour channel in the image. For a standard HD video camera a single frame would, therefore, present a

sample with over 6 million values (1920× 1080× 3 = 6, 229, 800). In practice images of this size are problematic and

so pre-processing pipelines are employed to segment or scale the sample before learning. For classification problems

the label associated with the image is then typically encoded as an ordinal value where labelling is typically a manual

processes. Whilst classification is a common problem for supervised learning this technique may also be used to learn

regions of an image or, on numeric data, statistical features.

The central aim of machine learning is generalisation, that is learning a function that not only works well on the

training data but also works well on that previously unseen data [38]. This problem drives our choice of model, our

choice of training data and the learning techniques employed. For many problems, finding h is formulated as an

optimization problem in which an objective, or loss, function is created to measure how far the estimated function is

from the true function. Learning then involves minimising loss through the adjustment of model parameters. Whilst

reducing the problem in this way allows for solutions to be found, assuring their safety is challenging and throughout

the remainder of this paper we will demonstrate how AMLAS allows for such assurance arguments to be constructed.

3. Example Use Case

In order to introduce AMLAS we make use of a worked example derived from the world of autonomous driving.

Specifically we consider the task of identifying road traffic signs. In autonomous vehicles a perception pipeline is

typically constructed such that machine learning components transform data from sensors to produce semantically

meaningful information for use in a decision framework [39]. An abstract representation of such an autonomous

driving platform is shown in Figure 2 and illustrates the use of multiple, parallel, information processing channels to

control the behaviour of the vehicle.

We assume that the primary information channel for the road sign detection pipeline processes data from a video

camera. The raw data feed from a video camera may be processed to normalise light levels, remove sensor noise

etc. before the image is resized for use in the object detection algorithm. The object detection algorithm may be

considered (conceptually) as having two functions as shown in Figure 3. In the first stage the video frame is analysed
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Figure 3: Conceptual workflow of a two stage object detection algorithm in which the first stage identifies a set of bounding boxes for each object

in the scene and the second stage allocates labels to each identified object.

and a vector li = (x1, x2, y1, y2) is created for each of the n objects detected where the x and y co-ordinates define

the corners of the box. In the second stage, the contents of each bounding box is passed to an object classifier which

allocates a label to the object.

The information produced by the object detector may then be used, in conjunction with data from other information

channels, to update an object database which is responsible for not only tracking objects of interest in the operational

space, but also estimating the location and trajectory of those objects. The capacity of the object database is finite and

therefore merging and discarding objects is necessary. Finally the information about the current state of the world is

passed to a decision framework which derives appropriate actions which are enacted by a set of actuating devices and

their control electronics [40].

Object detection is a supervised learning problem and, as such, the creation of the ML component requires that

we obtain a training dataset which has been labeled with both bounding boxes and class labels. Since this is a vision

system deployed into an open world context the range of possible inputs, including environmental perturbations, is

very large and providing a complete set of all possible inputs is not possible. A machine learnt object detector may

provide inaccurate, or incorrect, results in a number of ways. For example, a failure in the first stage may lead to a

stop sign being missed such that a vehicle enters a junction at speed. Alternatively a sign may be correctly identified

but in the wrong location. Consider a vehicle on a motorway approaching a junction where a sign applies only to

vehicles leaving the motorway. In such a case stopping abruptly on the main carriageway may lead to an accident.

Failures in the classification stage of the detector may also lead to unsafe behaviours. For example, confusing 30mph

and 60 mph speed signs, or misclassifying a stop sign as an give way sign. The likelihood and impact of each type

of machine learnt component failure depends on the context in which the system is deployed as well as the operating

platform into which the component is deployed.

4. Methodology

The AMLAS process, shown in Figure 4, starts by considering the system safety requirements. These requirements

are obtained through the application of system-level safety engineering [41], specifically the safety requirements gen-

erated from hazard identification and risk analysis. Whilst broader discussion of safety engineering is beyond the

scope of this work we provide guidance on how safety assurance may be systematically integrated into the develop-

ment of autonomous systems for use in complex environments in other work [42]. These requirements are passed

to the first stage of the process in which we define the bounds within which the safety of the ML component can

be demonstrated. In the next stage we translate these component agnostic safety requirements into ML specific re-

quirements and demonstrate their equivalence. In stage 3 we consider the use of data as an encoding of component

specifications and define the requirements for data used to train, validate and test the ML model in order to achieve

the defined ML safety requirements. Next stage 4 considers the model creation process by which the data is combined

with a learning strategy to create models which will meet the safety requirements when deployed in the target system.
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The candidate model is then verified in stage 5 to ensure the model will meet the allocated safety requirements when

exposed to inputs not present in the training data. Finally in stage 6 we determine whether the ML component will

continue to meet the specified system level safety requirements when deployed into the operational system.

The AMLAS assurance activities are intended to be undertaken in parallel with development processes. In this

way evidence gathered from both development and assurance activities are combined to generate an explicit safety

case for each ML component by using the safety argument patterns provided for each stage of AMLAS. AMLAS is,

by its nature, an iterative process so the output from any single stage may lead to a reconsideration of the previous

stages. For example the results of the verification stage may highlight conditions under which ML safety requirements

are violated. By analysing these conditions, we can identify whether we need to modify our robustness requirements

(stage 2) and then gather additional data (stage 3) to improve the model.

4.1. ML Safety Assurance Scoping

AMLAS provides assurance for the safety of ML components. This is different from making claims about re-

liability or performance of ML. Safety is inherently context-sensitive. Safety claims can only ever be made with

respect to the context of the system in which ML will be used, the role it plays within that system, the environment in

which the system operates and the safety hazards that are present. This additional information is therefore essential

to understanding the safety of the ML component, and is the reason that this ML safety assurance scoping stage is so

important as part of the AMLAS process.

The aim of this stage is then to define the scope under which we are able to demonstrate the safety of the resulting

ML component.

Figure 5 shows the scoping process consisting of 2 activities and 7 artefacts consumed, and generated, by the

AMLAS activities. The first activity defines the scope of the safety assurance for the ML component by analysing

the component’s function, the systems it will be used in, the operating environment, and the associated system safety

requirements. Based on this analysis, the safety requirements that apply to the component can be identified and

allocated. At this stage, the requirement is independent of any ML technology or metric. Instead, it reflects a need

for the component to perform safely within the system and operating environment regardless of the technology later

deployed. The component description is functional in nature, stating the intended operational characteristics of any

component deployed in this role.

The second activity then uses the GSN pattern, shown in Figure 6, and the artefacts from the previous activity to

instantiate an ML assurance scoping argument.

Central to the pattern is claim G1.1, which states that the component will meet the safety requirements defined

in activity 1. For the worked example one may instantiate the placeholder text in G1.1 with “The object detection

component”. The pattern states that this goal exists within contexts defined in C1.1 - C1.4. Each of these contexts

are then instantiated with the relevant artefact. For example, once instantiated, context C1.2 may say “System and

architecture report 2.04” i.e. the document which forms artefact [C]. As discussed above, correctly establishing this

contextual information is important to the validity of the safety case, and ensuring the information is complete and

correct for the application domain. For the complex open-world contexts in which many safety-critical autonomous

systems operate, defining a complete description of the operational environment is particularly challenging. It is

essential therefore that this contextual information is derived from discussions between system safety engineers and

ML developers to avoid assumptions which would invalidate the safety case. It may therefore be appropriate to

6



1. Define the

Assurance Scope

for the ML

Component

2. Instantiate ML

Assurance Scoping

Argument Pattern

[D]

ML Component

Description

[G]
ML Assurance

Scoping

Argument

[B]

Environment

Description

[F]

ML Assurance

Scoping

Argument Pattern

Safety Rqts

Allocated to ML

Component

[A]

System Safety

Requirements

[E]

[C]

System

Description

Figure 5: The AMLAS ML Assurance Scoping Process showing 2 process activities and their associated artefacts. The letters in square brackets

([A] - [G]) are artefact identifiers which are mapped to the assurance patterns.

provide a confidence argument to justify the sufficiency of each of these contextual artefacts within an ML context. To

maintain clarity of the argument pattern however we choose not to represent these confidence arguments explicitly. In

this pattern the assumptions that underpin the claims made are stated explicitly in A1.1. In this case the assumption is

that the system safety process has correctly identified the system safety requirements allocated to the ML component.

Finally the pattern states the strategy, S1.1, by which G1.1 will be supported. The strategy is to split the argument

into two parts. Firstly the development of the ML component is considered, beginning with the development of ML

safety requirements as outlined in activity 2. Secondly the deployment of the ML component will be addressed by

stage 6 of the AMLAS process. The way in which the strategy is enacted is described by two patterns which are linked

at the bottom of Figure 6 and described in Sections 4.2 and 4.6.

The artefacts that have been generated from the Stage 1 activities are used to provide this context in the safety

argument. The outcome of this AMLAS stage is then an instantiation of the argument pattern in Figure 6 where the

uninstantiated aspects, in curled braces, will be replaced with details of the ML component under consideration to

create the first part of the safety case. In the next section we consider Stage 2 in which the AMLAS process produces

the next part of the safety case considering the ML safety requirements.

ML Safety Assurance Scoping for the Use Case

For our worked example we shall consider the requirement for the vehicle to obey all traffic signs. The safety

requirements will vary for different types of traffic sign, based on the required response of the vehicle. For example

speed limit signs may require the vehicle to change speed, warning signs may require a change of lane, and so on. For

our example we will consider stop signs, where the vehicle must recognise their presence in sufficient time to safely

come to a halt. As the ML component that we are considering is responsible for object detection, we must identify

the safety requirement on the object detection component relating to stop signs.

Determining the safety requirements on the component involves vehicle safety analysis activities which are largely

outside of the scope of this paper, however it is important to consider the way in which the safety requirements are

derived. If the vehicle fails to detect the presence of a stop sign this would clearly be hazardous since the vehicle

may fail to stop as required which could result in a collision. It is firstly necessary therefore to consider, from a

safety perspective, how many missed stop sign would be considered acceptable. This may be determined through, for

example, comparison to the performance of a careful and competent human driver. This enables us to prescribe, for

instance, a permissible number of stop sign misses per 1000 miles of driving. For the object detector component, we

are interested in the required probability of failing to detect any single stop sign. We must therefore also consider the
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number of stop signs that the vehicle is expected to encounter per 1000 miles of driving.

As described in Figure 2, the input to the object detector component is a series of image frames obtained from a

video camera. This means that for each stop sign that is present, the object detector will be presented with multiple

frames. The detection component then outputs a detection result for each frame which updates the belief that a stop

sign is present in the operating environment. The decision component will, therefore, have multiple opportunities to

determine the presence of each stop sign. Therefore, based upon the frame rate of the input images, and the decision

framework implemented by the decision component, it becomes possible to specify how many frames of detection are

required, per stop sign, in order for the vehicle to respond safely.

An additional consideration is how close the vehicle will be to the stop sign before it is detected. To be safe, this

must allow the vehicle enough time to stop comfortably without excessive braking. Determining this distance will

require assumptions to be made regarding the maximum speed that the vehicle may be travelling, and the worst-case

braking performance of the vehicle in adverse road conditions.

Based on an analysis of these factors for the vehicle we derive the following safety requirement for the object

detection component:

“SR1 - The object detector component shall correctly detect any stop sign present on the planned path of the

vehicle in its correct location in 95% of frames where a stop sign exists within 80 metres of the vehicle.”

False detection of stop signs is also a safety concern since a vehicle stopping inadvertently increases the potential

for rear-end collisions. In addition any unpredictable behaviour from a vehicle can lead to unsafe behaviour in other

vehicles, such as unnecessary and sudden overtaking. A false detection may arise if the perception component indi-

cates a sign that is not actually present, or mis-classifies another object as a stop sign (such as a tree or an advertising

board).

As for missed detections, specifying safety requirements related to false detection of stop signs will require an

analysis based upon assumptions regarding the vehicle systems and the operating environment. This enables us to

specify the following additional safety requirement for the object detection component:

“SR2 - The probability of the object detector identifying a stop sign on the planned route, where no such object

exists, shall be less than 1% in each frame.”

The position of a sign within a road network can be important in understanding to which vehicles the sign is

applicable. In dense and complex road configurations, identifying a sign in an incorrect position could lead to an

unnecessary response, and therefore potentially hazardous behaviour. Determining the safety requirement relevant to

this requires an understanding of anticipated road geographies and sign orientations using the environment description

[B]. For autonomous driving systems such as this, the details of the operating environment are often captured through
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Figure 7: The AMLAS ML Requirements Assurance Process consisting of 3 process activities and their associated artefacts.

the specification of an operational design domain (ODD) [43] [44]. The derivation of appropriate behaviours for the

system can therefore only be undertaken where the description of the ODD is complete. Assuring the completeness of

the ODD is a subject of ongoing research [45] This enables us to specify one more safety requirement for the object

detection component:

“SR3 - The object detector component shall detect stop signs within 1.2 metres of their true position.”

These requirements must be shown to be satisfied within the defined context including the operational environment

(C1.1) and for the system and its architecture (C1.2).

4.2. ML Requirements Assurance

Having completed Stage 1 and identified the relevant component level safety requirements, we must now translate

these into requirements which are suitable for use in the construction, and verification, of a machine learnt model. One

of the primary focuses of this stage is to justify the sufficiency with which the derived ML safety requirements capture

the intent of the component level safety requirements. We must be able to demonstrate that the ML requirements have

properly accounted for the previously identified component level safety requirements, architecture and environment

description.

This stage of the process, shown in Figure 7, consists of 3 activities and 7 artefacts consumed and generated in the

enactment of this stage.

The first activity in the stage, activity 3, consumes the safety requirements for the component as generated in

the previous stage, as well as the system and environment descriptions, and derives requirements in a form suitable

for machine learning. This requires translating complex real world concepts and cognitive decisions into a format

and level of detail that is amenable to ML implementations and verification [46]. The biggest challenge we face

in implementing autonomous systems using ML is in replacing, or augmenting, human decision making, which has

general intelligence, with an ML component with specific capabilities. This requires information which is normally

implicit to be made explicit as part of the ML requirements. In AMLAS we expect as a minimum that the set of ML

safety requirements will include requirements on both the performance and robustness of the ML model.

Performance of machine learnt models is typically defined as a mathematical quantity which represents a threshold

which must be met or exceeded by the model in operation. As part of AMLAS, it is important that this threshold

provides a representation of safe operation as allocated to the model. In practice it is rarely possible to define a

performance threshold for safety using a single value as a threshold, so multiple metrics must be considered when

defining the threshold. Additionally it is often necessary to require a trade off between the performance metrics. For
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Figure 8: Argument Pattern for ML Safety Requirements

example in a healthcare application for the detection of medical conditions in patient scans it is necessary to define an

acceptable balance between false negatives and false positives [47] which reflects sufficiently safe performance.

Model robustness considers the model’s ability to perform well when the inputs encountered during operation

are different but similar to those present in the training data. To argue the robustness of a model with respect to the

system safety requirements requires us to consider how any, even small, changes in the operational input space may

impact the performance of the model. Therefore robustness requirements will encapsulate features of the operational

space that have been identified as having an effect of the model output. This will include defining dimensions of

variability for each of the relevant features of the operational space for example, environmental features [48], sensor

noise [19] and the variation of humans in the loop [49]. The range of variability will be specified by domain experts to

cover the situations likely to be encountered at run-time within the operational context (as captured in the operational

environment description).

We note that whilst the development of an ML model necessitates the consideration of numerous functional and

non-functional requirements, e.g. the energy requirements of a computationally complex ML algorithm at run-time,

in AMLAS we limit our consideration to those requirements which impact the operational safety of the system.

Activity 4 takes the previously defined ML safety requirements and validates them with respect to the allocated

system safety requirements in the defined system and environmental contexts. There are two commonly used ap-
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Table 1: Operating Domain Features and Dimensions of variability for ML component robustness

Feature Variability

Weather : Rain {none, low, med, high}

Weather : Fog {none, low, med, high}

Lighting : Glare Angle {none, 0, 30, 60}

Lighting : Ambient { normal, bright, dark }

Environment : Obscuration {none, 10%, 50%}

Environment : Damage { none, minor, severe}

proaches for validating ML safety requirements. Firstly using reviews by domain experts to ensure that the specified

ML safety requirements for the component will deliver the intended system level safety requirements. Secondly

through simulation of a constructed system in which the ML safety requirements are obeyed and outcomes are ob-

served for a set of operational scenarios.

The final activity of this stage constructs the ML safety requirements argument using the argument pattern given

in Figure 8 and the artefacts from the previous activities. We note that the ML safety requirements developed in

activity 3 provide the context for the strategy employed to assure our top level goal. The justification J2.1 should

explicitly explain the issues involved in translating complex real world concepts and cognitive decisions into formats

amenable to ML implementation. For our motivating example this may include mapping distances the geometry of

the real world to pixel regions in the image for example. Our strategy here is then to derive to sub goals where G2.3

considers the validity question while G2.2 focuses on the ML safety requirement in the context of the model and data

each using by an assurance claim point (ACP) which we provide as argument patterns developed later in the process.

The satisfaction of the safety requirements is decomposed based on the different types of requirement and will include

claims concerning the performance and robustness of the machine learnt component.

ML Requirements Assurance for the Use Case

Let us consider the three allocated safety requirements from the first stage of AMLAS (SR1, SR2, SR3) which

consider the components ability to identify and locate objects in the input image. Machine Learnt object detectors,

such as YOLO [50], typically return a set of bounding boxes and associated class labels for each video frame. Mean

average precision (mAP) [51] is commonly used to assess component performance and incorporates measures of

recall, precision and localisation accuracy. In this way the single metric combines a weighted assessment of the three

safety requirements specified in stage 1. We note that localisation in the object detector is not measured as a distance

in metres in the real world, or a projection into pixel space, but as the intersection over union (IOU) which compares

the ground truth bounding box for the stop sign with the predicted bounding box. Selecting an appropriate limit on

the mAP then involves finding that bound for which an acceptable trade off exists to meet the component level safety

requirements. A requirement for the performance of the component will then we specified in terms of the mAP as

“MLR1 -The mean average precision for the component in detecting a stop sign shall be no less than 0.90”. To justify

the sufficiency of our threshold choice it is necessary to show that the three component level safety requirements are

satisfied. This requires us to calculate distances from video images, from the development data, and from these show

that an IOU that violates the mAP also violates the distance requirement SR3.

The ML robustness will then be evaluated by its ability to meet MLR1 as each of the features of the operational

domain are varied within expected bounds. These features are developed through an analysis of the operating domain

and an understanding of the conditions which are known, or expected, to impact component performance and the

safety requirements as allocated to the component. For our worked example a set of categories are identified to include

weather lighting and environmental conditions known to compromise the object detectors ability to correctly identify

and classify objects in the image. Within these categories a set of features are then identified, e.g. rain, fog etc. and

bounds on expected operational limits created through discussions with domain experts. A set of potential features

and dimensions of variability are provided in Table 1. A justification for the sufficiency of this feature set, in the

anticipated operational environment, will all be required for the safety argument. having identified our dimensions of

variability we can now define a requirement for machine learning robustness as “MLR2 - The mean average precision

defined in MLR1 shall be satisfied over the features and ranges of variability defined in Table 1 ”.
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Figure 9: The AMLAS Data Management Assurance Process consisting of 4 process activities and their associated artefacts.

4.3. Data Management Assurance

The data used to train machine learnt components directly impacts their performance. Therefore, the development

and assurance of data requirements is a core requirement of any ML assurance argument. Figure 9 shows the third

stage of AMLAS which considers these data requirements and consists of 4 activities. During the first activity the data

requirements are defined, which may be considered as an encoding of the ML requirements and a data requirements

justification report is created.

There is a considerable amount of literature that has been published regarding data management for ML. In pre-

vious work [19] we have undertaken an extensive survey of existing literature, and based on this were able to identify

four key properties that data should exhibit from an assurance perspective. The specification of the data requirements

requires consideration of these four criteria, data relevance (G3.4), data accuracy (G3.6), data balance (G.7), and data

completeness (G3.5).

Data relevance refers to the extent to which the development data is representative of the operating environment

and architecture of the system into which the ML component will be deployed. Data set reuse between contexts is

common, however where existing data sets are used an argument concerning their suitability will need to be provided.

Data accuracy considers the extent to which variations in data gathering, pre-processing and labelling can impact

the satisfaction of the ML safety requirements. A requirement for accuracy should therefore define acceptable limits

on such variation. This is particularly difficult where labelling requires a level of judgment. In such cases staff training

may be an important factor in assuring accuracy.

Data balance typically considers the number of samples for each class present in the data sets. Ideally all data sets

used would be perfectly balanced, i.e. the same number of samples would exist for every class of interest. In practice

however those samples which are of particular interest in a safety context are often, by their nature, more difficult to

obtain. Therefore, requirements for data balance should ensure that a sufficient number of samples exist for each class

to ensure the ML safety requirements are satisfied.

While balance considers the number of samples for each class, data completeness concerns how the collected data

sets reflect the robustness requirements specified in the ML safety requirements. This will consider the extent to which

all of the identified features of concern in the operating domain are present in the data samples for all classes. Ensuring

completeness is challenging in open world contexts in which the cross product of the relevant features becomes large.

The data requirements justification report generated in this process will explain why it is believed that the specified

requirements are sufficient to develop a model that satisfies the ML component safety requirements.

In order to generate such a report expert review and statistical analysis may be necessary.

Having defined the data requirements in activity 6 we now generate the ML data which meets these requirements.

Specifically 3 distinct data sets are generated. Development data is used by the development team to create the
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Figure 10: Argument Pattern for ML Data

model and is typically defined to include training and validation data sets. Internal test data is used to assess candidate

release models and, where appropriate, may indicate the need for additional development cycles. Only once a model is

deemed fit for release by the development team is the model then exposed to the verification data. The generation of the

data will typically consider three sub-processes: collection, preprocessing and augmentation [19] the details of which

are recorded in the data generation log along with any rationale for the approaches used (simulation, augmentation

etc.), analysis undertaken, issues arising, and decisions which necessitate the gathering of specific data samples.

It is crucial that the collection and management of verification data is independent of the model development.

The sufficiency of the verification data to assure safety is considered futher as part of the model verification stage in

section 4.5.

Once the data has been generated the ML data is validated in Activity 8 of the process. The aim of this activity is to

ensure that the data are sufficient to meet the data ML requirements. The validation shall consider the gap between the

samples obtained and the real-world environment in which the system is to be deployed. The results of the validation

as well as any rationale for their sufficiency is then recorded as ML data validation results.

The final activity of this stage then makes use of the argument pattern for the ML data assurance, as shown in Fig-

ure 10 and the artefacts generated in the earlier activities to construct an assurance argument for the data management.

The top level claim of this argument is that the data used in the development and verification of the model is sufficient

and is made for all three of the generated data sets. The argument sets out how this sufficiency can be demonstrated
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Table 2: Data distribution by operating domain feature for the use case

Factor

Rain Fog Glare Angle

Sample ID 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 · · ·

1 ✔ - - - ✔ - - - ✔ - - - · · ·

2 - ✔ - - - ✔ - - ✔ - - - · · ·

3 - ✔ - - ✔ - - - - - - ✔ · · ·
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and makes use of a strategy of goal decomposition into 4 desirable criteria: relevance, completeness, accuracy and

balance.

Data Management Assurance for the Use Case

For our motivating example we now consider the four criteria outlined in section 4.3 as they apply to our use case.

For data relevance, consideration of the target domain of the vehicle in operation allows us to define requirements for

data relevance associated with both the system architecture and the operating environment, such as: DR1: All images

used shall be sufficiently representative of images obtained by the camera used by the vehicle in operation, and DR2:

All road signs in images shall be road signs found on UK roads.

The requirements on data accuracy for this example focus on the creation of labels and bounding boxes in the

image data. In this case labelling is carried out using a predominantly manual process and is therefore susceptible to

human error, which must be managed, such as: DR3: All bounding boxes shall be specified such that the entirety of

the stop sign is contained within the box irrespective of any obscuration.

For data balance we define a requirement DR4: There shall be an equal number of samples for each road sign

present in the highway code.

Finally, for data completeness we can define a requirement by considering the dimensions of variability defined as

part of the earlier robustness requirement (MLR2) such as : DR5: Data samples shall be obtained that represent each

viable combination of features identified in Table 1.

Having defined the data requirements, data sets can then be created to meet those requirements. This data can be

analysed in order to determine if the defined data requirements are met. For example we may say the following in

support of the satisfaction of the defined data requirements.

DR1: although a different camera will be used on the target vehicle, the performance characteristics of the camera

are comparable and the images obtained are of identical resolution.

DR2: The images were obtained in Germany, so contain some road signs that are not applicable for the vehicle

operating on UK roads. This will require the data sets to be checked for images containing irrelevant road signs,

which must then be removed.

DR3: All staff undertaking labeling activities were appropriately trained before commencing labelling work. In

particular they were trained on the need to individually label partially obscured vehicles. Random sampling form the

labelled sets was undertaken to validate the accuracy of the bounding boxes generated.

DR4: Meta data for the data sets indicated that a set of classes were under represented in the data set, i.e. caution

signs related to specific types of wildlife. These classes were clustered into a single class to create a balanced data

set. In addition there were many more speed restriction signs than necessary and we therefore undersampled from this

class to maintain balance.

DR5: The features of the operating environment as defined in Table 1 are mapped to the data sets as shown in

Table 2. Analysis of the distribution of features showed that the number of samples with high levels of rain were

insufficient. The data set was therefore augmented with synthetic samples to address this shortfall.

4.4. Model Learning Assurance

The model learning assurance process is shown in Figure 11 and consists of 3 activities. The first activity in

this stage is the creation of a candidate model which meets the ML safety requirements. Model creation is a highly
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Figure 11: The AMLAS Model Learning Assurance Process consisting of 3 process activities and their associated artefacts.

iterative2 process with numerous decisions points concerning model structure, learning strategy and hyper-parameter

selection. Each of these decision points and the supporting rationale for decisions should be recorded in the model

development log. At each development cycle a new candidate model will be created, many of which will lead to new

decision points and further iterations of the development cycle. Whilst the focus of AMLAS is on the safety assurance

of the machine learnt component we must recognise the practicalities of building components that are performant,

robust, reusable and interpretable. As such design decisions will not be purely be driven by safety but take account

of these wider factors. It should be shown therefore that these decisions do not compromise our ability to satisfy the

safety requirements.

Once a candidate model has been created which the development team believe is suitable for deployment it passes

to the next activity in the process where testing is undertaken using the internal test data. From the pool of can-

didate models which meet the safety requirements the ‘optimal’ is selected in light of the, potentially conflicting,

requirements taking into account any trade offs which are required for the operating context.

Finally the evidence from the process activities is used with the argument pattern shown in Figure 12 to instan-

tiate an ML learning argument. The central claim of this argument is the sufficiency of the development activities

undertaken to create a machine learnt model. This is, in turn, separated into two claims regarding the development

approach and the use of the internal test data. For the development approach we argue that the type of model selected,

the parameters obtained and the decision taken which drive the development process are appropriate to meet the safety

requirements. Each of these claims in turn being supported by the model development log.

Model Learning Assurance for the Use Case

When considering the choice of model to be used in our learning, we select a model from which has been suc-

cessfully demonstrated in a similar context. For the use case under consideration in this paper we choose YOLO [52]

which has been used for perception in autonomous driving applications [53]. This choice is then recorded in the

development log with known issues and benefits highlighted as appropriate.

We recognise that training a model is computationally expensive and using existing models as a starting point, can

significantly reduce the costs and effort required to obtain a suitable model. We may, therefore, choose to start the

development cycle using a deep neural network structure, and transfer learning, from a system previously used in a

perception pipeline for an autonomous truck. Our rationale here is that whilst the vehicle for deployment is different

to that proposed for our model we believe that the features present in the driving scenario are similar to those present

in the new context. Therefore the previously learnt model weights will be sufficiently close to those to be learnt in the

new context to allow for faster learning without compromising the safety requirements.

Object detectors are known to be difficult to generalise in open world contexts such as the self-driving vehicle

case. Having selected a widely used object detection model (YOLO) we can also apply techniques such as image

2Whilst we omit feedback loops between stages from the diagrams to aid readability, we recognise that the assurance process is likely to be

highly iterative in nature with the results of one activity requiring us to return to earlier activities in the process. For example model testing may

well highlight the need for additional data generation activities.
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Figure 12: Argument Pattern for Model Learning

mix-up [54] and learning rate schedulers [55] to improve the performance of the model. Once again the choice

of training approaches is added to the development log with a justification of selection as well as a record of the

improvements in performance observed during training.

It is likely that multiple techniques will be applied to improve the performance of the model based on previous

experience of developing these models in a range of contexts. Where a new combination of techniques is employed it

is essential to demonstrate that combining these techniques does not compromise the expected efficacy.

In our use case a large number of candidate models are learnt and, given the stochastic nature of model learning,

each model is distinct. By applying the internal test data to these models we can identify multiple models which

satisfy the defined safety requirements. Model selection therefore requires us to choose from amongst those candidate

models. Whilst all models satisfy SR1 (False Negatives) and SR2 (False Positives), we could plot model performance

with respect to SR1 and SR2 and select a Pareto optimal model which provides the best trade off between false

positives and negative. This requires us to consider the impact on vehicle performance if a stop sign is missed within

a single video frame and when a stop sign is identified in error. The justification for model selection is then recorded

in the development log.

4.5. Model Verification Assurance

The fifth stage of the AMLAS process, Figure 13, consists of two activities and aims to create an assurance

argument for the verification of the ML component. The resulting argument demonstrates that the component will
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Figure 13: The AMLAS Model Verification Assurance Process consisting of 3 process activities and their associated artefacts.

meet the ML safety requirements when exposed to inputs not present during the development of the model.

This stage of the process starts with model verification which involves both test based and formal verification

approaches.

Test based verification combines the model from stage 4 with the verification data from stage 3 to assess whether

the model meets the ML safety requirements allocated to the component. This first activity in the stage produces

verification results, as well as a verification log, which are then used as evidence in the assurance argument.

One aim of the verification process is to show that the performance of the model with respect to the ML safety

requirements, encoded as ML metrics, continue to be met when the model is subjected to data not present in the

development process. As such it is imperative that the verification process is independent of development to avoid

data leakage [56].

Verification data, like development data, must be accurate and relevant to the specified operating environment.

Unlike development data, however, verification data does not need to be balanced or complete. Indeed the data

will tend to over represent those cases which are likely to be problematic, but realistic, for the system in context.

Verification data should be challenging and gathered using an adversarial mindset within the intent of the system to be

developed and be sufficient to verify the intent of the ML safety requirement in the operating context, see Figure 14

(G5.9).

Complete coverage is unlikely to be possible for most real-world systems. It is therefore desirable to find addi-

tional forms of verification to support the assurance case. It may be possible, for a subset of cases and ML model

structures, to employ formal verification which provides a mathematically rigorous proof that the safety requirements,

as specified, are satisfied [57]. This requires us to encode safety requirements as properties amenable to formal ver-

ification and this encoding can be difficult. One area where formal verification has proved useful is in providing

guarantees on local robustness, that is ensuring that small perturbations in the input space will not lead to changes in

the output of the model [58]. These techniques are computationally expensive and, while significant work continues

to improve their scalability [59] they are currently not scalable to the size of DNNs that are used in many industrial

applications. It is also recognised that such measures of local robustness, whilst mathematically convenient, can lose

semantic meaning, which is crucial for safety, and a body of work has therefore arisen to address this issue [60, 48].

The second activity of this stage then instantiates the argument using the pattern shown in Figure 14 and the

artefacts generated in the preceding activity. The top level claim in this pattern corresponds to the bottom claim in

the safety requirements argument pattern, Figure 8. The claim is supported by the verification activities undertaken

as evidence in the verification log. The strategy supporting this claim argues over the verification with respect to the

verification data and any formal verification undertaken. For test-based verification we argue that, not only are the test

results sufficient, but also that the data and the test platform are sufficient. Similarly for formal verification we do not

only argue over the results but also how well they represent the machine learnt model and operating environment.

Model Verification Assurance for the Use Case

For our running example we construct a verification data set which has additional images for environment features
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Figure 14: Argument Pattern for Model Verification

at the extremes of the defined variability ranges. Through discussions with domain experts we also add images that

contain combinations of features that are known to be particularly challenging for human drivers, or for previously

deployed autonomous systems, e.g. fog combined with obscured images in low light. Where it is not possible to

obtain real-world images representing such cases image augmentation will be employed to alter existing data samples

to provide the required features synthetically.

For our use case fog is particularly challenging given the sensing technology on the platform to which the ML

will be deployed. We wish to demonstrate that the ML object detector is no less capable of spotting stop signs in the

presence of fog than a highly competent human driver.

To verify this objective we therefore undertake additional tests to identify the level of fog at which the model fails

to satisfy the ML safety requirement (MLR1, MLR2)s. This can be achieved for our use case using DeepCert [48],

which provides test and formal verification evidence. Formal verification using DeepCert requires us to construct a

model of the environmental perturbation which is characterised by a perturbation level ϵ. When this model is com-

posed with the neural network model we are able to verify that for any perturbation of less than ϵ a misclassification

will not occur for any sample considered in the verification set. Figure 15 provides an illustrative example of such a

plot showing the degradation in mAP as the amount of fog present increases such that MLR1 is violated for a pertur-

bation level ϵ greater than 0.5. If a perturbation level of 0.5 is greater than the levels expected under normal operation
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Figure 15: Illustrative example of a robustness plot for environmental perturbations due to fog. The machine learning requirement (MLR1) is

violated for perturbations greater than 0.5

then we may argue that the robustness requirements are met.

Since the ML component in our worked example is an object detector, we would also like to verify the robustness

of the model with respect to the accuracy of bounding boxes generated, as this is a key determinant of MLR1. In order

to undertake formal verification in this case we would use the approach outlined in [61], which allows us to formally

verify the model’s robustness to misdetection in the presence of small variation in the input space.

4.6. Model Deployment Assurance

The assurance of model deployment is the final stage of AMLAS and considers the safe integration of the machine

learnt component into the target system. Up to this point, the AMLAS process has focused on the assurance of the ML

model itself. The aim of this stage is to demonstrate that when the model is deployed as a component as part of the

target system the satisfaction of the safety requirements is not compromised. There are a number of safety assurance

considerations when integrating an ML component as part of a larger system that are common to the deployment of

any safety-related component. This includes activities such as system level testing and safety assessment which are

outside of the scope of the AMLAS process. Further guidance on this, as well how the overall system safety case

for an autonomous system can be created is provided in [42] [62]. For this stage of AMLAS the focus is on safety

assurance issues specifically related to the deployment of an ML component.

Once the ML model has been developed and verified it is then deployed onto the intended hardware and software

platform and the broader system of which it is part. Such a deployment may itself require multiple stages with the

component first deployed to computational hardware which is then deployed to a subsystem before being integrated

with the final hardware platform. This integration process typically involves attaching the components to its inputs,

such as the systems sensing devices, and pre-processing pipelines as well as connecting the outputs to traditional

software units which ultimately produce system outputs.

The assurance of the ML deployment, as shown in Figure 16, consists of four activities. This assurance process is

not only applicable to initial deployment but to any subsequent deployment when component updates are applied.

An important part of this integration is to identify what the deployment assumptions are that could impact the

safety of the ML component if they are violated. In the first activity, these assumptions are derived from the system

description that was specified at the start of the AMLAS process and are recorded in a deployment assumptions

log. The deployment assumptions should consider the hardware upon which the model will execute (such as AI edge

devices), the nature of the system into which the ML component will be integrated (such as the type of sensors that are

used); and supporting software libraries which may be different to that used at development time (such as TensorFlow

Lite [63] or PyTorch Mobile [64]).

It is important to also consider the assurance of the ML component through-life in evolving open environments.

This requires us to record assumptions concerning the input distribution likely to be encountered by the model in

operation and the strategies for identifying when the ML component is being used outside of its defined safe scope

of operation. Identifying these environmental deviations requires the creation of monitors which are aligned with the
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Figure 16: The AMLAS Model Deployment Assurance Process consisting of 4 process activities and their associated artefacts.

description of the operational environment, further emphasising the need for a complete description of the operational

environment. Further work developing a framework for the through-life assurance of ML components is ongoing [65].

We need to firstly validate that the deployment hardware and software is as assumed in the deployment assump-

tions log. Where variations exist these must be shown not to compromise the satisfaction of the system safety require-

ments, for example where a newer version of a software library is to be used, sufficient verification has been provided

to assure backwards compatibility.

Once the ML component is integrated with the deployment platform, an integration test plan should be created

to check that the performance of the model is not adversely affected by the deployment platform. The test plan

should define the tests to be conducted, the expected outcomes, and a justification of the sufficiency of the tests to

demonstrate that the performance of the deployed model continues to satisfy the safety requirements. This test plan is

then executed and the integration test results recorded.

The final activity is then to instantiate the ML deployment argument using the pattern as shown in Figure 17. The

primary goal of showing that the deployment of the ML component satisfies the safety requirements is addressed by

arguing over the validation of the deployment platform, integration testing and through-life monitoring.

With relation to the monitoring of the ML component, the Deployment Assumption Log can be used as evidence to

demonstrate that the monitoring requirements are complete and correct. The integration testing argument demonstrates

that the integration test are passed and that the testing performed is sufficient to test both the assumptions and the

effects of the hardware deployment.

It is important to emphasise the key role of through-life assurance, and the role played by monitoring, as captured

in the argument strategy S6.1: ‘Argument over testing and monitoring of the deployed ML component’. Monitoring

here should be interpreted in two complementary senses: online and offline.

Online monitoring continuously evaluates the performance of the ML component in actual use, at run-time, against

its predefined safety requirements (Stage 2 of AMLAS). If these requirements are not met, the wider system’s design

must incorporate robustness recovery mechanisms, such as switching to an alternative component or operational

mode, depending on the risk posed by the identified violations. For example, Denney and Pai propose a dynamic

safety assurance framework for ML-based and autonomous systems [66]. They demonstrate its implementation for

autonomous taxiing of uncrewed systems utilising deep convolutional neural networks and derive monitoring indica-

tors and metrics, and define corresponding recovery mechanisms. This work ultimately leads to an operationalisation

of the notion of dynamic safety cases, with clear links to online monitoring in Stage 6 of AMLAS.

Offline monitoring, conversely, addresses broader changes within the operating and organisational environment

that could challenge the ongoing suitability of the safety requirements themselves. For instance, a recent application
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Figure 17: Argument Pattern for Model Deployment

of AMLAS to an AI-decision support system for prostate cancer diagnosis, currently undergoing clinical trials and in

clinical use, highlighted emerging issues during deployment [66]. These triggered a re-evaluation of the initial hazard

analysis results, linked to AMLAS Stage 1, due to the emergence of new hazardous conditions not identified during

the design stages (e.g., ”True positive classification but under-annotated tissue map”).

What this reinforces is that the deployment stage is intrinsically linked with essential system-level and non-ML

specific obligations [67] [68]. These include architectural dependability mechanisms for redundancy and recovery, as

well as established procedures and organisational activities that ensure hazard analysis and risk assessment are con-

ducted throughout the system’s lifecycle, rather than being limited to initial development and pre-deployment phases.

This whole-system, through-life, approach represents best practice in safety engineering and must be maintained, and

where appropriate adapted (given the higher frequency of updates), for ML-based systems.

Model Deployment Assurance for the Use Case

For our running example we consider the situation where the hardware to which the model will be deployed is

validated to be identical to the edge computing device initially specified in the deployment assumptions log. This

hardware, however, requires a “lightweight” ML library which differs from that used at development time. In the case

of the running example we may assume that TensorFlow [63] is used for development whilst TensorFlow Lite [63]

is required for deployment. TensorFlow Lite requires us to optimise the model using an inference compiler [69]

which will quantize model weights [70]. The deployment model may have reduced performance due to the need to

store weights at a lower resolution. We therefore need to demonstrate that the performance of the degraded model

is sufficient such that the allocated system safety requirements (SR1, SR2, SR3) can still be satisfied. This is done

through integration testing in which we rerun verification activities on the deployment hardware.
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5. Application of Methodology

The practical aim of AMLAS is to provide a systematic methodology for assuring the safety of ML components

when used in safety-critical systems, especially those with autonomous capabilities. So far, AMLAS has been applied

in several domains, including healthcare [71][66], automotive [72] and aerospace [73]. It has also supported policy

and industry guidance in defence3, healthcare4 and automotive5.

For example, Festor et al applied AMLAS for the assurance of the ‘AI Clinician’ [71], a clinical decision support

system for the treatment of sepsis. The treatment of sepsis in ICU includes the administration of intravenous fluids

and/or vasopressors. The AI Clinician system uses Reinforcement Learning (RL) for recommending doses for either

intravenous fluids or vasopressors. Determining the scope of safety assurance and defining the ML safety requirements

presented a significant challenge (i.e. stages 1 and 2 of AMLAS). This was due to the complex and highly uncertain

nature of the healthcare setting and the clinical condition. This required close collaboration between the clinicians,

ML developers and safety engineers who worked together on defining unsafe treatment scenarios and importantly on

determining how the outputs of the RL model could potentially contribute to these scenarios. Using AMLAS, the

control of this clinical hazard was refined into specific safety requirements and constraints, including at the model

learning stage.

Borg et al [27] reported similar results of applying AMLAS for the safety assurance of an ML-based pedestrian

automatic emergency braking system. The authors also highlighted the importance of context and safety require-

ments, especially when combined with further evaluation through simulation. They emphasised the significance of

the iterative nature of ML assurance and how this could be applied systematically by following the AMLAS process.

Hawkins et al [73] applied AMLAS in full to an ML-based wildfire alert system. The authors provided a complete

snapshot of an ML safety argument that centred on the management of two overarching hazards (i.e. missing a real

emergency or reporting a false one) and explained how they were controlled at the different stages of AMLAS.

It is fundamental principle that safety assurance is a system-level issue. This is a strength of AMLAS by insisting

on traceability between system hazards, overall safety requirements and ML safety requirements. The weakness lies

in the lack of sufficient consideration of safety as a whole system property in ML development and practice gener-

ally, due to either lack of conceptual system-level clarity (e.g. boundaries between systems, services and pathways

in healthcare are rarely defined [74]) or overemphasis on technology-driven solutions and investment (i.e. asking

questions about the safety of the technology rather than the safety of the system of which the technology is one of

a number of interacting and interdependent components). As such, to provide more complete assurance, AMLAS

has to be combined with other guidelines and standards that consider the safety of the wider system and context.

This could be domain independent such as the Guidance on the Safety Assurance of Autonomous Systems in Complex

Environments (SACE) [42] or sector specific such as the ISO 21448 standard (Road vehicles—Safety of the intended

functionality) [75].

It is important to acknowledge that this paper has focused on the conceptual and methodological aspects of AM-

LAS, supported by an illustrative example. As indicated above, existing and publicly available studies show some

evidence of applicability of the use of ML in various sectors, most notably against supervised learning technologies.

We are currently evaluating AMLAS further using research case studies. These will provide qualitative insights into

the methodology’s feasibility and its effectiveness in generating a clear safety case for ML, as well as evaluating how it

fits within a wider system safety case. We are encouraged by the independent studies reported in the literature, such as

the AMLAS safety case developed by Borg et al [27], that critically evaluate AMLAS and generate impartial evidence

of its potential benefits and limitations. A number of key, open, questions remain, including: how precise metrics for

ML safety requirements can be defined; how the data desiderata could be justified from a safety perspective; and how

to develop monitoring mechanisms to ensure that the ML safety requirements and verification evidence remain valid

through life.

3Defence Science and Technology Laboratory: https://www.gov.uk/government/publications/assurance-of-ai-and-autonomous-systems-a-dstl-

biscuit-book/assurance-of-artificial-intelligence-and-autonomous-systems-a-dstl-biscuit-book
4English National Health Service: https://digital.nhs.uk/services/clinical-safety/documentation/healthcare-supplementary-guidance-for-amlas
5SO/CD PAS 8800 Road Vehicles Safety and artificial intelligence: https://www.iso.org/standard/83303.html
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6. Related Work

In this section, we provide an overview of significant research efforts and developments in this field, focusing on

surveys and safety assurance frameworks rather than specific verification and validation (V&V) methods.

Dong et [76] presented a safety case template for machine learning components employed as part of a system, with

an emphasis on quantitative aspects combining HAZOP and quantitative FTA to derive probabilities of basic events

associated with the ML components. Burton et al [77] presented a structure for a safety assurance argument for a

safety-relevant function implemented using supervised ML and addressed the impact of uncertainty on the confidence

in the safety argument. Bloomfield et al [78] proposed safety assurance argument templates for autonomous systems

that include ML components. Specifically, they focused on the requirements for an ML component and presented a

safety monitor architecture for an autonomous system including at least one ML component . What each of these

papers failed to provide was guidance on how to link the safety assurance activities and ML development processes

to the proposed safety case structures.

In contrast other work has focused on specific aspects of an ML safety lifecycle. For example Alves et al [79]

and Koopman [80] identified the challenges in safety assurance of increasingly autonomous systems, specifically

discussing the issues in V&V of ML techniques and explored the approaches for developing assured ML systems, e.g.

anomaly detection of the inputs to the ML-based components. Burton et al [81] introduced a contract-based approach

to satisfy a set of safety-related requirements for ML components under a given set of assumptions, with the aim of

supporting modular V&V of systems including ML-based components.

There are a number of dedicated survey papers of methods for safety assurance of ML-based systems. A review by

Schwalbe and Schels [82], carried out in the context of autonomous driving, provided a summary table categorising

methods against requirements, the ML development process and V&V of ML. Other relevant surveys of techniques

and methods include Ashmore et al. [19] which provided the initial basis for the development of AMLAS.

There has also been work looking at safety standards for ML-based systems. Salay et al [83] conducted a complete

applicability assessment of the automotive standard ISO 26262 for ML-based software and recommended explicitly

addressing the ML lifecycle with customised tools and techniques that can be applied to this lifecycle. There is also

ongoing work on ML-focused safety standards, e.g., ISO PAS 8800 is considering V&V of ML-based components in

automotive systems [84].

Some other research has explicitly explored the technical aspects of the safety of ML models. For example, Jia

et al [85] have illustrated how to use safety analysis methods to shape loss functions for deep reinforcement learning.

Rudin has argued that we should develop more interpretable deep learning models, e.g. [86],[87], for use in high-

stakes applications, including where safety is a concern [88]. Other work has focussed on uncertainty of ML, e.g. [89]

and [90].

We can see from this review that there is substantial interest in the use of safety cases for safety assurance of ML

systems, with Dong et al [76] concluding that safety cases are now “the emerging consensus within both, industry and

academia”. Most of the literature focuses on part of the issues, e.g. deriving safety requirements for ML components,

data quality or V&V for ML models etc. Many papers are also focused on specific application sectors, most commonly

autonomous driving. Some of the approaches that discuss ML are also presented at a whole system level and do not

go into the details of the ML-based elements of the system, e.g. [78], [79], and [91].

In summary, none of the existing research has developed a domain-independent methodology that considers the

whole of the ML life-cycle and describes how a resulting safety case can be developed for the ML component. We

believe that this is the first work to provide such an approach.

7. Conclusions and Future Work

In this paper, we introduced the six-stage AMLAS process, which enables the safe incorporation of machine-

learned components into safety-critical autonomous systems. AMLAS aligns with the machine learning lifecycle,

proactively integrating safety assurance into ML development. When combined with the provided safety argument

patterns, AMLAS supports the creation of a compelling safety case for the ML component. We described the applica-

tion of AMLAS in an automotive context and showed how AMLAS is being used across various application domains

to demonstrate the safety of ML components.
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Future research directions for this work include applying AMLAS to larger scale, real-world deployments which

will necessitate the development of guidance and practical toolsets for both developers and safety engineers which

account for domain-specific concerns. Currently, AMLAS primarily focuses on ML technologies that use supervised

learning in perception and prediction tasks. Further work is needed to extend and adapt AMLAS for other forms of

ML, including reinforcement learning, unsupervised tasks, and emerging technologies such as graph neural networks

and neurosymbolic reasoning used in autonomous decision-making frameworks. We also recognise the desire to use

autonomous systems in highly dynamic environments and the challenges which this presents for ensuring the safety

of ML components is maintained throughout system operation. Therefore, we plan to extend AMLAS to provide

continuous safety assurance throughout the system’s life.
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[74] M. A. Sujan, I. Habli, T. P. Kelly, A. Gühnemann, S. Pozzi, C. W. Johnson, How can health care organisations make and justify decisions about

risk reduction? lessons from a cross-industry review and a health care stakeholder consensus development process, Reliability Engineering

& System Safety 161 (2017) 1–11.

[75] ISO, PAS 21448-road vehicles-safety of the intended functionality, International Organization for Standardization (2019).

[76] Y. Dong, W. Huang, V. Bharti, V. Cox, A. Banks, S. Wang, X. Zhao, S. Schewe, X. Huang, Reliability assessment and safety arguments for

machine learning components in system assurance, ACM Transactions on Embedded Computing Systems 22 (2023) 1–48.

[77] S. Burton, B. Herd, Addressing uncertainty in the safety assurance of machine-learning, Frontiers in Computer Science 5 (2023) 1132580.

[78] R. Bloomfield, G. Fletcher, H. Khlaaf, L. Hinde, P. Ryan, Safety case templates for autonomous systems, arXiv preprint arXiv:2102.02625

(2021).

[79] E. E. Alves, D. Bhatt, B. Hall, K. Driscoll, A. Murugesan, J. Rushby, Considerations in assuring safety of increasingly autonomous systems,

Technical Report, NASA, 2018.

[80] P. Koopman, M. Wagner, Challenges in autonomous vehicle testing and validation, SAE International Journal of Transportation Safety 4

(2016) 15–24.

[81] S. Burton, L. Gauerhof, C. Heinzemann, Making the case for safety of machine learning in highly automated driving, in: Computer Safety,

Reliability, and Security: SAFECOMP 2017 Workshops, ASSURE, DECSoS, SASSUR, TELERISE, and TIPS, Trento, Italy, September 12,

2017, Proceedings 36, Springer, 2017, pp. 5–16.

[82] G. Schwalbe, M. Schels, A survey on methods for the safety assurance of machine learning based systems, in: 10th European Congress on

Embedded Real Time Software and Systems (ERTS 2020), 2020.

[83] R. Salay, R. Queiroz, K. Czarnecki, An analysis of ISO 26262: Using machine learning safely in automotive software, arXiv preprint

arXiv:1709.02435 (2017).

[84] International Organization for Standardization, ISO/CD PAS 8800. Road Vehicles -— Safety and artificial intelligence, under development.

URL: https://www.iso.org/standard/83303.html.

[85] Y. Jia, T. Lawton, J. Burden, J. McDermid, I. Habli, Safety-driven design of machine learning for sepsis treatment, Journal of Biomedical

Informatics 117 (2021) 103762.

[86] Z. Chen, Y. Bei, C. Rudin, Concept whitening for interpretable image recognition, Nature Machine Intelligence 2 (2020) 772–782.

[87] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, P. Liang, Concept bottleneck models, in: International conference on

26



machine learning, PMLR, 2020, pp. 5338–5348.

[88] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature machine

intelligence 1 (2019) 206–215.

[89] D. Hendrycks, M. Mazeika, S. Kadavath, D. Song, Using self-supervised learning can improve model robustness and uncertainty, Advances

in neural information processing systems 32 (2019).

[90] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan, J. Snoek, Can you trust your model’s

uncertainty? evaluating predictive uncertainty under dataset shift, Advances in neural information processing systems 32 (2019).

[91] F. Favaro, L. Fraade-Blanar, S. Schnelle, T. Victor, M. Peña, J. Engstrom, J. Scanlon, K. Kusano, D. Smith, Building a credible case for

safety: Waymo’s approach for the determination of absence of unreasonable risk, arXiv preprint arXiv:2306.01917 (2023).

27


