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Path integral spin dynamics with exchange and external field

Thomas Nussle,1, ∗ Stam Nicolis,2, † Iason Sofos,1 and Joseph Barker1, ‡
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2Institut Denis Poisson, Université de Tours, Université d’Orléans,

CNRS (UMR7013), Parc de Grandmont, F-37200, Tours, FRANCE

In this work, we propose a path integral-inspired formalism for computing the quantum thermal expectation

values of spin systems, when subject to magnetic fields that can be time-dependent and can accommodate the

presence of Heisenberg exchange interactions between the spins. This is done by deriving an effective magnetic

field from the quantum partition function of the system to use in classical atomistic spin dynamics simulations

and generalises the formalism presented in our previous work [Phys. Rev. Research 5, 043075 (2023)]. In

special cases where the effective field can be computed exactly we compare our results with exact/numerical di-

agonalisation methods for both ferromagnetic and antiferromagnetic coupling. We show that our method works

well across a large temperature range and can reproduce quantum expectation values for antiferromagnetic cou-

pling which is usually not possible with classical models.

INTRODUCTION

Path integrals have been a rich source of inspiration ever

since Feynman proposed them as an alternative approach to

solving and interpreting quantum mechanical problems [1].

Even in recent years, numerical methods based on Feynman’s

path integral formalism have continued to be developed and

have proven to be particularly efficient, as, for example, in

the field of path integral molecular dynamics [2–4]. Beyond

the standard position and conjugate momentum description of

quantum mechanics, a path integral for spin systems was also

written long ago and has already been thoroughly investigated

[5–7]. These efforts show how constraints can be taken into

account in the path integral formalism. In previous work, we

established a framework, inspired by path integral molecular

dynamics methods, specifically designed for spin systems. We

studied the case of a single spin, coupled to a constant external

field, through the Zeeman interaction [8]. Within this frame-

work, we derived an effective classical Hamiltonian that cap-

tured the quantum fluctuations–as well as the thermal fluctua-

tions, upon coupling it to a thermal bath. Using a systematic

double expansion of the partition function in powers of 1/spin
and ℏ × spin, we computed approximate spin expectation

values through numerical stochastic atomistic spin dynamics

simulations, which we compared to exact quantum thermal

expectation values. In this work, we extend the formalism in

two ways: (i) introducing interactions between spins on dif-

ferent sites through an isotropic Heisenberg exchange Hamil-

tonian and (ii) allowing the Zeeman interaction of a field in

a general direction, to couple the spin system to a potentially

time dependent external magnetic field. Both of these exten-

sions introduce additional complexities arising from the non-

commutativity of the spin operators due to the curvature of

the group manifold, on the one hand, and quantum effects,

on the other hand. This intricate interplay between classical–

geometric–and quantum effects is what we aim to incorporate

∗ t.s.nussle@leeds.ac.uk
† stamatios.nicolis@univ-tours.fr
‡ j.barker@leeds.ac.uk

in our effective Hamiltonian for the classical spin system, now

upon taking into account the complexity of the exchange in-

teraction.

Our work has its natural place in the context of semiclassi-

cal approaches to the treatment of quantum problems through

the mapping of quantum problems to stochastic classical ap-

proximations, which dates back at least as far as 1968 [9–11].

In this context, several attempts have been made to describe

quantum systems in purely classical terms, in equilibrium

with a bath of quantum fluctuations, described by stochastic

noise, which could also encompass e.g. experimental limi-

tations for measurements of initial conditions. The most fa-

mous example is Nelson’s stochastic mechanics [12]. Today,

we know that, in the general case, an exact equivalence be-

tween quantum mechanics and stochastic classical mechanics

is more subtle. However, in the field of open quantum sys-

tems, depending on how the quantum properties of a system

become apparent when studying it using external probes and

how this system is coupled to bath degrees of freedom, ap-

proximate solutions of the quantum system can be produced

that can provide insight [13]. It is for this reason that we

believe that, at the scale of atomistic spin dynamics simu-

lations, where one can consistently describe thermal fluctu-

ations in a stochastic fashion, it should be possible to approxi-

mate the system of spins, thus also describing quantum fluctu-

ations, using a common stochastic approach, though the baths

are distinct. In fact, as already mentioned, we have realised

this construction for a single quantum spin in a constant mag-

netic field, in previous work [8]; taking into account a uniaxial

anisotropy represented by an additional quadratic term in the

Hamiltonian was done in ref. 14. Essentially, we are perform-

ing a systematic expansion in powers of Planck’s constant and

in powers of temperature and retaining only the leading term

in inverse powers of the spin and matching between the parti-

tion function on the one hand and the stochastic equation on

the other.

The outline of the paper is as follows. In Section I, we begin

by recalling results from the exact diagonalisation for a system

of two quantum spins s = 1/2 coupled through an exchange

interaction, in the presence of an external field and in equi-

librium with a thermal bath. These results are already well

known but are essential both to provide a specific reference in
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our conventions for the expectation values, in order to com-

pare to our atomistic model, as well as as a guideline for com-

puting the overlap between the spin coherent states and the

diagonalised spin basis in Section III C. The general method,

which in theory is applicable for any principal quantum spin

number s as well as for systems of more than 2 spins (for ex-

ample, chains, 2D lattice, 3D lattice) is briefly described in

Appendix B). Using these results, we produce exact thermal

expectation values for a system of two spins, with s = 1/2,

as a reference to compare to the results in Section III. This

approach, however, doesn’t scale up in a useful way as the

Hilbert space size grows quickly with s and number of spin

sites N , as dim = (2s + 1)N . Moreover, solving the eigen-

value problem becomes even less practical when the spectrum

becomes degenerate (which is the case for a chain of spins

with s = 1 already). In Section II, we therefore present a

procedure for obtaining the expression of an effective classi-

cal field, that can be used within the framework of stochas-

tic atomistic spin dynamics simulations based on our earlier

work [8, 14]–but being able to handle a more complex Hamil-

tonian for the initial quantum system due to the interaction

between sites. We have named this method Path Integral Spin

Dynamics (PISD), as it is inspired from path integral meth-

ods in molecular dynamics and here applied in the context

of atomistic spin dynamics simulations. This procedure does

“scale up” in a useful way, as it does not require diagonalising

the full (2s+1)2N Hamiltonian operator as a prerequisite. It is

an approximation, but provides an expression for the effective

field where the spin number s only appears as a parameter

rather than an altogether different expression. In Section III

we compute approximate thermal expectation values, using

the path integral atomistic spin dynamics model of Section II,

which we compare to special cases that are exactly solvable,

using the results of exact diagonalisation from Section I.

I. EXACT RESULTS FOR TWO SPINS

The simplest, nontrivial, example involves two spins,

Ŝ(1) (|s(1),m(1)⟩, where m(1) ∈ J−s(1), s(1)K) and Ŝ(2)

(|s(2),m(2)⟩, where m(2) ∈ J−s(2); s(2)K), coupled by an

isotropic Heisenberg exchange interaction and in an external

magnetic field B along the z-direction. The Hamiltonian is

Ĥ = −
J

ℏ2
Ŝ(1) · Ŝ(2) −

gµB

ℏ
Bz

(

Ŝ(1)
z + Ŝ(2)

z

)

, (1)

with µB the Bohr magneton and g is the gyromagnetic ratio.

The standard procedure for diagonalising this two spin system

and obtaining an equivalent single spin system with total spin

Ŝ and basis |S,M⟩ can be found in appendix A. Using the

diagonalised representation we can compute thermal expec-

tation values (or zero-temperature real-time dynamics, upon

analytically continuing to real time, though we shall focus on

the case of two baths, with which the spins are in equilibrium)

from the partition function

Z = Tr e−βĤ =
∑

S,M

⟨S,M | e−βĤ |S,M⟩ , (2)
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FIG. 1. Expectation value ⟨Ŝz⟩ defined in (3) for two spins with

s = 1

2
as a function of temperature. Exact result for J = gµBBz ,

B = (0, 0, 1) T.

from which we obtain the expression for the thermal expec-

tation values, for instance, the average z-component of spin

Ŝz ≡ 1
2

(

Ŝ
(1)
z + Ŝ

(2)
z

)

,

⟨Ŝz⟩ =
1

2

∑

S,M ⟨S,M |
(

Ŝ
(1)
z + Ŝ

(2)
z

)

e−βĤ |S,M⟩
∑

S,M ⟨S,M | e−βĤ |S,M⟩
. (3)

Simple exponentiation of the diagonal elements of (A3)

leads to

⟨Ŝz⟩ =
ℏ

2

eβgµBBz − e−βgµBBz

e−βJ + 1 + e−βgµBBz + eβgµBBz
. (4)

The results for an electron-like particle with g =
2.00231930436256, β = 1/(kBT ), kB = 1.380649 ×
10−23 J K−1 and µB = 9.2740100783 × 10−24 J T−1 are

shown in figure 1. Here we see the decaying ferromagnetic

order as the temperature increases. The inflection point is due

to the present case of a two-level system (spin s = 1/2); the

thermal spin fluctuations must overcome an initial energy bar-

rier before the alignment with the external field can be desta-

bilised.

Scaling this approach, of rewriting the system in its equiva-

lent single spin incarnation, up to large numbers of spins and

larger spin quantisation numbers, encounters two key obsta-

cles. The first is that this diagonalisation only works for a

field that is along a constant direction that we can pick as the

quantisation axis, which means this is not the way to proceed

for a more general field dependence. The second is that even

though the Hamiltonian remains Hermitian regardless of the

system size or the value of the spin, this approach quickly

becomes impractical. For higher value of the spin, the eigen-

spectrum displays degeneracies, and the diagonalisation be-

comes much more difficult, to the point of becoming imprac-

tical. Finding the eigenvalues of a matrix of size N × N
amounts to finding the roots of a polynomial of order N ,

which is only exactly/analytically possible for N ≤ 4, unless
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the polynomial can be factorised. Moreover, having degener-

ate eigenvalues means that eigenvectors must be hand-picked

to ensure that they are orthogonal. So to proceed with our

long-term goal of representing thousands of spins, we prefer

for every quantum spin to be mapped to a classical equivalent

magnetic moment for our enhanced atomistic spin dynamics

model and use these exact results as an exact comparison for

small systems only.

II. CONSTRUCTING THE EFFECTIVE FIELD FOR PISD

SIMULATIONS

Our starting point remains the Hamiltonian for two spins

Ŝ(1) and Ŝ(2), coupled by isotropic Heisenberg exchange

with exchange constant J , although now with a magnetic

field, B, in a general direction

Ĥ = −
J

ℏ2
Ŝ(1) · Ŝ(2) −

gµB

ℏ
B ·

(

Ŝ(1) + Ŝ(2)
)

. (5)

We build the partition function in the coherent spin states basis

Z =

∫ 2
∏

i=1

dµ(z(i)) ⟨z(1)z(2)| e−βĤ |z(1)z(2)⟩ , (6)

where, assuming that s(1) = s(2) = s (two spin sites can have

different values of s, and while it doesn’t prevent applying

the following procedure, it makes the intermediate combina-

torial steps more difficult to resolve analytically), the integra-

tion measure is given by

dµ(z(i)) =
2s+ 1

π

dz(i)
(

1 + |z(i)|2
)2 , (7)

and the spin coherent states are defined as

|z(1)z(2)⟩ ≡
(

1 + |z(1)|2
)−s

(

1 + |z(2)|2
)s

2s
∑

p,p′=0

(

2s
p

)
1
2
(

2s
p′

)
1
2

z(1)pz(2)p
′

|p, p′⟩ ,

(8)

with {z(1), z(2)} ∈ C
2 and where we also defined

|p1, p2⟩ ≡ |s1, s1 − p1; s2, s2 − p2⟩ . (9)

To recover the classical limit (we emphasize that this is

mainly for reference, and the aim of the current work is to go

beyond this), one simply neglects all non commuting terms

which arise in the Hamiltonian (5), i.e.

⟨Ŝ(i)l
x Ŝ(i)m

y Ŝ(i)n
z ⟩ ≈ ⟨Ŝ(i)

x ⟩
l
⟨Ŝ(i)

y ⟩
m
⟨Ŝ(i)

z ⟩
n
, (10)

where we have defined

⟨Â⟩ ≡ ⟨z(1)z(2)| Â |z(1)z(2)⟩ . (11)

The reason this is the classical limit is that it does correspond

to taking ℏs → 0. Recalling [8]

Ŝ
(i)
− |pi, pj⟩ = ℏ

√

(2s− pi)(pi + 1) |pi + 1, pj⟩

Ŝ
(i)
+ |pi, pj⟩ = ℏ

√

pi(2s− pi + 1) |pi − 1, pj⟩

Ŝ(i)
z |pi, pj⟩ = ℏ(s− pi) |pi, pj⟩ ,

(12)

as well as

Ŝ(i)
x =

Ŝ
(i)
+ + Ŝ

(i)
−

2

Ŝ(i)
y =

Ŝ
(i)
+ − Ŝ

(i)
−

2i
,

(13)

and then using the stereographic projection which provides a

z(i) → n(i) mapping







































n(i)
x =

z(i) + z̄(i)

1 + |z(i)|2

n(i)
y = −i

z(i) − z̄(i)

1 + |z(i)|2

n(i)
z =

1− |z(i)|2

1 + |z(i)|2

, (14)

where n(i) are unit vectors, we can map the initial quantum

problem in terms of states and operators, to a classical model

of two interacting spin vectors. This yields the partition func-

tion

Zclassical =

∫ 2
∏

i=1

dν(n(i))e−βHclassical , (15)

with the usual classical Heisenberg Hamiltonian

Hclassical = −Js2n(1) ·n(2)−gµBsB ·
(

n(1) + n(2)
)

, (16)

and the integration measure restricts the integral to all states

on the Bloch sphere for each individual spin

dν(n(i)) =
2s+ 1

4π
δ(1− n(i)2)d3n(i), (17)

where δ(x) is the Dirac delta function ensuring that the inte-

gration is performed on the Bloch sphere, n2 = 1.

To go beyond the classical limit, we obtain an N -th order

approximate value for the partition function of our system by

expanding the operator exponential from the partition function

(6) as a series in the matrix elements (this is by no means a

trivial feat and more details on reasonable convergence can be

found in Appendix D)

⟨z(1)z(2)| e−βĤ |z(1)z(2)⟩

≈ 1 +

N
∑

k=1

(−1)kβk

k!
⟨z(1)z(2)| Ĥk |z(1)z(2)⟩

≡ 1 + F [β,N ].

(18)

All required matrix elements, up to third order, for compu-

tation along with the relevant commutation relations can be

found in Appendix C. Higher orders can be computed symbol-

ically using the python software compendium provided[15].

Now we aim to write the integrand of the partition function

(6) as a unique exponential, that will allow us to identify the

effective Hamiltonian. To this end, we rewrite (18) as

1 + F [β,N ] = eln(1+F [β,N ]). (19)



4

At this stage, there are two ways of proceeding. The first is

to define the effective Hamiltonian directly from this expres-

sion. If the expansion is taken to high enough order, or there is

an exact expression for the matrix elements, i.e. a closed ex-

pression for the sum (18), for N = ∞, as was the case in our

previous work for a single spin [14], the effective Hamiltonian

is

Heff[N, {z(i), z̄(i)}] ≡ −
1

β
ln (1 + F [β,N ]) . (20)

The second approach is to compute an expression (for a

given order N ) for the effective Hamiltonian by performing a

Taylor series expansion of the exponent of (19) for β → 0,

which results in a high-temperature approximation.

ln (1 + F [β,N ]) ≈
N
∑

k=1

(−1)k+1

k
F [β,N ]k, (21)

which always yields an expression which can be factorised

over β, such that we can define

Hhigh-T
eff [N, {z(i), z̄(i)}] ≡ −

1

β

N
∑

k=1

(−1)k+1

k
F [β,N ]k. (22)

A sample computation up to third order is presented in Ap-

pendix C.

Using the mapping (14), we thus obtain an expression in

terms of the two spin coherent state unit vectors n(i)

Heff[N, {z(i), z̄(i)}] ⇒ Heff[N, {n(i)}]. (23)

From this, we deduce the effective field for use in our atom-

istic spin dynamics simulation by using the usual expression

[16] for the effective field

B
(k)
eff [N ] ≡ −

1

µs

∇
n

(k)Heff[N, {n(i)}], (24)

where µs = gµBs.

We do not provide expressions for the effective Hamilto-

nians and fields explicitly in this paper as they are much too

long to be displayed. They are, however, readily obtainable

by computation and printing out, using the python software

package in the compendium [15].

Now that we have constructed the effective Hamiltonian for

the atomistic simulations, we shall use it to compute approxi-

mate thermal expectation values in the case of an exactly diag-

onalisable system of two spins, for a constant magnetic field

along the quantisation axis, and compare results to the exact

quantum results.

III. PATH INTEGRAL SPIN DYNAMICS RESULTS

In this section, we begin by recalling essential aspects of

atomistic modelling and how to compute thermodynamic av-

erages from the spin dynamics trajectories in section III A,

to compare to the expectation values in Section I. We then

present results for two distinct cases:

• In section III B we compute the effective field up to

a given order for the exponential series (18), the most

general case where this series cannot be computed ex-

actly. This is for generic values of s or for a varying

field that cannot be taken to coincide with the quanti-

sation axis. Here we also introduce a better method for

expanding the exponential series, by expanding around

the classical limit of our system. This yields more accu-

rate results than the direct series expansion, at a given

approximation order for the exponential series.

• In section III C we take advantage of the closedness of

the exponential series for fixed values of s, when the

field direction and quantisation axis coincide, and ob-

tain the effective field exactly by computing the overlap

between the diagonalised spin basis and the spin coher-

ent states basis for fixed selected values of s. This yields

results valid for the whole temperature range.

A. Constructing the stochastic atomistic simulation

Once an expression for the effective field has been derived

(e.g. (24) for the high-temperature field from the Taylor ex-

pansion method), we proceed in the usual fashion [16] for

atomistic spin dynamics simulations by computing dynamical

trajectories using the Landau-Lifshitz-Gilbert equation

ṅ(i) = −
γ

1 + α2

(

n(i) ×B
(i)
eff + αn(i) ×

(

n(i) ×B
(i)
eff

))

,

(25)

where γ = gµB/ℏ is the gyromagnetic ratio and α is the

dimensionless Gilbert damping parameter. We introduce a

stochastic field for the thermal fluctuations in the system, η,

defined by its first two moments

⟨η(i)µ (t)⟩ = 0

⟨η(i)µ (t)η(j)ν (t′)⟩ =
2αδijδµνδ(t− t′)

βµsγ
,

(26)

where µ and ν stand for the cartesian components of the

stochastic field η. The stochastic field is then added to the

effective field derived in (24)

B
(k)
eff [N ] → B

(k)
eff [N ] + η. (27)

We compute thermal averages after an initial relaxation period

of 5 ns, averaging over Nt time samples and Ns independent

realisations of the noise and with a system of N spins

⟨Ŝz⟩ = C ⟨nz⟩ ≡ C
1

N

1

NS

1

Nt

N
∑

i=1

NS
∑

j=1

Nt
∑

k=1

n
(i)
j,z(tk). (28)

where C is a normalisation constant to ensure the atomistic re-

sults, which are averages from the unit vector n(i), are compa-

rable to the spin expectation value which depends on the spin

number s. For simulations of the classical limit, we simply

have Cℏs, for all other approximations, this factor becomes
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C = ℏ (s+ 1). This is related to the classical limit approxi-

mating s(s + 1) ≈ s2. For a more detailed discussion of this

issue see the appendix of ref. 8. We integrate the equations of

motion numerically using a symplectic algorithm preserving

the structure of the phase space[17].

At this stage, one can use the code in the compendium [15]

to produce results for the high-temperature expansion method,

as has been done in previous work [8, 14]. In practice, how-

ever, this approximation scheme tends to not scale very well

with increasing exchange strength (see appendix D for a dis-

cussion of this issue), especially for low temperatures. There

are, however, two simple tricks which can improve this: (a)

making an educated guess at what the appropriate classical

limit of our quantum system is, and evaluating the effective

field as a difference to this limit, and (b) not using the high

temperature Taylor series for the effective field, hence yield-

ing an exact expression for the field, to the given order N of

the expansion (20).

B. Exact field as difference series from classical limit

We take two steps to improve the quality of the results and

their scaling with both the temperature and the Heisenberg

exchange interaction J (or whichever the dominant energetic

term is in the Hamiltonian).

Firstly, the Hamiltonian from the Taylor series we take for

the expression of the effective Hamiltonian is useful in a ped-

agogical sense, as it makes the relation to the classical limit

more obvious and provides simpler, polynomial expressions

(22) for the effective Hamiltonian/field, but it is not essen-

tial. It actually makes results worse. Indeed, when taking the

series for the exponential operator, we are simply taking the

definition of the exponential of the operator, whilst postulat-

ing that this series converges (we emphasize again that this

isn’t obvious as discussed in Appendix D). This means that

taking higher order terms into account enhances convergence

towards the correct solution at all temperatures, even if prac-

tically, higher temperature are easier to capture as they make

the argument of the exponential smaller. In taking the Taylor

series of the logarithm expression however, we explicitly im-

pose that the results are only valid at high temperatures, and

in fact there is no requirement to do this, so we will see what

happens if we skip this step. This is what we call quantum

exact field in figures 2, 3 and 4. In the case where the ex-

ponential series is exactly computable as in figures 3 and 4,

the field expression is a closed expression and the field is gen-

uinely exact, whereas it is only exact up to the given order in

the exponential series for figure 2.

The second step is that we know that, at least for high

enough temperatures, the classical limit (when properly nor-

malised) yields qualitatively correct results, so it makes sense

0 2 4 6 8 10
T (K)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 Ŝ
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®  (ħ
)

s=2

classical limit
quantum exact field order 2
quantum exact field order 3
quantum solution

FIG. 2. Expectation value ⟨Ŝz⟩ for spin s = 2 as a function of

temperature with J = gµBBz and α = 0.5, B = (0, 0, 1) T. Atom-

istic results for classical limit (purple dashed line) and 2nd (orange

dashed line) and 3rd (yellow dashed line) order quantum corrections

from exact field as difference to classical limit, compared to quantum

results (red solid line) from exact diagonalisation method.

to rewrite matrix elements as

⟨z| e−βĤ |z⟩ = e−βHclassical ⟨z| e−β(Ĥ−Hclassical) |z⟩

≈ e−βHclassical

(

1− β ⟨z| Ĥ − Hclassical |z⟩

+
β2

2
⟨z|

(

Ĥ − Hclassical

)2

|z⟩+ . . .

)

,

(29)

and evaluate the effective Hamiltonian from this expression

instead. For a discussion on the convergence of this approach,

see Appendix D.

The results for two spins with s = 2 are given in figure 2

with an integration timestep of 5 × 10−6 ns, Ns = 5 reali-

sations and an average time of 10 ns (after 5 ns equilibration

time). The order of correction is the number of terms in the

Taylor expansion of (29). Here we can see that this approach

yields promising results. The first correction (orange-dashed

curve) already coincides with the quantum solution around

T = 4K and the second correction (yellow-dashed curve) for

T = 1K. We will now briefly discuss a method to evaluate

these thermal expectation values more accurately by explicitly

imposing, as is used for computing the exact quantum expec-

tation values, that the field is constant and chosen to be aligned

with the quantisation-axis. This will enable us to derive an ex-

act expression for the effective Hamiltonian, and hence should

provide results, valid over the whole temperature range.

C. Effective Hamiltonian for the exactly solvable case

In the case of two spins interacting via an isotropic Heisen-

berg Hamiltonian with addition of a Zeeman term, under the

restriction that the magnetic field and the quantisation axis co-

incide (1), we have seen that the Hamiltonian is readily di-
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agonalisable (of course, in principle, it is diagonalisable for

any value of spin s, despite the procedure becoming more and

more cumbersome with increasing dimension of the Hilbert

space). This has some more practical use for us namely that

we can rewrite the integrand of the partition function (6) as

⟨z(1)z(2)| e−βĤ |z(1)z(2)⟩

= ⟨z(1)z(2)| e−βĤ
∑

S,M

|S,M⟩ ⟨S,M |z(1)z(2)⟩

=
∑

S,M

e−βλS,M | ⟨S,M |z(1)z(2)⟩ |2,

(30)

where λS,M are the eigenvalues of H in the |S,M⟩ basis. Us-

ing this, one can obtain an exact expression for the effective

Hamiltonian as

Heff = −
1

β
ln





∑

S,M

e−βλS,M

∣

∣

∣⟨S,M |z(1)z(2)⟩
∣

∣

∣

2



 . (31)

The results are displayed in figure 3 with an integration

timestep of 5 × 10−6 ns for sub-figure(a) and 4 × 10−6 ns

for sub-figure(b), Ns = 5 realisations and an average time

of 10 ns (after 5 ns equilibration time). Here we can indeed

see that in this case the whole temperature range is accurately

sampled, with the caveat that one requires a constant direction

of the magnetic field. In practice, this method is useful for

computing most equilibrium thermodynamics quantities such

as the Curie temperature, for large spin systems where the ap-

plied field can be safely assumed to be constant.

Of particular note is that our method is readily extended to

the case of antiferromagnetic coupling with no additional dif-

ficulty and provides the correct quantum expectation value as

can be seen in figure 4 with an integration timestep of 7×10−7

ns, Ns = 5 realisations for subfigure (a) and Ns = 10 reali-

sations for subfigure (b) and an average time of 10 ns (after 5
ns equilibration time). Whereas obtaining results for quantum

expectation values for antiferromagnetic systems is famously

tricky due a family of problems often collectively referred to

as “the sign-problem”, in the context of Quantum Monte Carlo

methods for example, where antiferromagnetic systems can

lead to negative probability issues[18]. Figure 4 also gives a

clear demonstration of the qualitative difference in the quan-

tum expectation values for antiferromagnets compared to clas-

sical models. In the purely classical case (purple-dotted curve,

with only thermal fluctuations) the two spins will try to anti-

align in the plane normal to the applied field, slightly canting

towards the applied field, with decreasing alignment as ther-

mal fluctuations increase, this configuration does not exist for

the two quantum spins with s = 1/2. The ground state for

the quantum system is a combination of |↑↓⟩ and |↓↑⟩ states,

for which once an initial energy barrier is overcome, increas-

ing thermal fluctuations will be biased to favour spin flips to

align with the external field, until the exchange coupling is

overcome and then we are back to the thermal decay of the

alignment of the spins with the external field. This is per-

fectly reproduced by the effective classical stochastic model

(orange-dotted curve)
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 Ŝ
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)
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classical limit
quantum exact field
quantum solution

0 2 4 6 8 10
T (K)

0.0

0.5

1.0

1.5

2.0

2.5

 Ŝ
z

®  (ħ
)

(b)

s=2

classical limit
quantum exact field
quantum solution

FIG. 3. Expectation value ⟨Ŝz⟩ for two spins with (a) s = 1

2
and

(b) s = 2, as a function of temperature. Atomistic simulation result

(orange dots) from exact effective field (31) vs exact result for J =
gµBBz , B = (0, 0, 1) T (solid red line).

IV. CONCLUSION

In this work, we expanded the scope of our previous model

for simulating quantum spin systems using atomistic spin dy-

namics and an enhanced effective field which captures thermal

and quantum fluctuations. Whereas previously, our model was

limited to a single spin interacting with an external field [8], or

with a uniaxial, quadratic anisotropy term [14], here we have

expanded it to include isotropic Heisenberg exchange and the

magnetic field need not coincide with the quantisation axis.

This would be relevant for a time-dependent magnetic field for

example, though this remains to be spelled out, since the cur-

rent formalism only applies for computing static expectation

values in the presence of quantum and thermal fluctuations at

equilibrium.

As before, we begin by expressing the quantum thermal

partition function in the spin coherent states basis so as to

provide a continuous, integral definition. At this stage, we

need to approximate the matrix elements in the partition func-
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FIG. 4. Expectation value ⟨Ŝz⟩ for two antiferromagnetically cou-

pled spins with (a) s = 1

2
and (b) s = 1, as a function of tempera-

ture. Atomistic simulation result (orange dots) from exact effective

field (31) vs exact result for J = −2gµBBz , B = (0, 0, 1) T (solid

red line).

tion (unless an exact expression is computable). This we

do by recalling the series definition of the operator exponen-

tial. In essence, this expansion is required to capture non-

commutativity due to the curved geometry of the spin phase

space and the quantum fluctuations described respectively by

the 1/s and ℏs expansions in the introduction. The accu-

racy of this expansion is depending on the scale of the domi-

nant energetic term in the quantum Hamiltonian being either

βgµB ∥B∥ or βJ . We have presented a method where the ef-

fective Hamiltonian is computed as a difference to the classi-

cal limit which provides a better approximation scheme than

the direct expansion from ref. 8. We then use the stereo-

graphic projection to map the two spins to their correspond-

ing unit spin coherent state vector. At this stage, we can use

the effective field as we would in any other standard atomistic

spin dynamics simulation. In the special case where the field

is constant and can hence be chosen along the quantisation-

axis of the system, we have seen that it is possible to provide a

method valid for the whole temperature range. Moreover, we

have shown that this also holds for antiferromagnetic systems,

for which even the most sucessful methods for computing ex-

pectation values of quantum systems, such as quantum Monte

Carlo, are often faced with the so-called “sign-problem” [18]

While the expressions for the effective fields are impractical

to include in this document, they are readily available to be

printed out using the software compendium [15].

At this stage, what needs to be investigated is expand-

ing this method to systems of more than 2 spins. Indeed,

whereas this mapping from our initial quantum spin system to

a stochastic atomistic spin dynamics simulation can be done

exactly in this case, provided that the external field is aligned

with the quantisation axis, this is no longer the case for N spin

systems, or more precisely, an exact mapping from a quan-

tum system with nearest neighbour interaction only would re-

quire all-to-all interactions from the effective model, which

would very quickly become impractical. However, insights

from open quantum systems and density matrix renormalisa-

tion group (DMRG) methods [19], however, seem to indicate

that there are approximations that can be consistently made,

especially for “mildly”-entangled systems, as the requirement

for these all-to-all interactions to be taken into account is es-

sentially a marker of how entangled a system is. At this stage,

we envision as a first approximation to neglect interactions be-

tween more than 2 sites and readily generalise the procedure

provided in the current work.

This is why in future work we will investigate the effects

of our approach for larger atomistic simulations, coupling it

to more elaborate thermostatting techniques, which are also

built on solid quantum-mechanical grounds[20–22], as well

as investigating systems that display frustration.
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Appendix A: Exact diagonalisation for two-spins

It is possible to recast the two-spin system define by (1),

as an equivalent single-spin system, defined by a state vec-

tor |S,M⟩, where S ∈ J|s(1) − s(2)|, s(1) + s(2)K and M ∈
J−S, SK), using the Clebsch-Gordan coefficients [23]. In

terms of the resulting total spin Ŝ = Ŝ(1) + Ŝ(2), the Hamil-

tonian becomes

Ĥ = −
J

2ℏ2

(

Ŝ2 − s(1)(s(1) + 1)− s(2)(s(2) + 1)
)

−
gµBBz

ℏ
Ŝz.

(A1)

If we take the example of s = 1/2, this amounts

to a change of basis from |1/2,±1/2; 1/2,±1/2⟩ ≡
{|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩} represented as

⟨↑↑| ⟨↑↓| ⟨↓↑| ⟨↓↓|




















−gµBBz −
J

4
0 0 0

0
J

4
−
J

2
0

0 −
J

2

J

4
0

0 0 0 gµBBz −
J

4





















|↑↑⟩

|↑↓⟩

|↓↑⟩

|↓↓⟩

(A2)

to the new basis |S,M⟩ ≡
{ 1√

2
(|↑↓⟩ − |↓↑⟩) , |↓↓⟩ , 1√

2
(|↑↓⟩+ |↓↑⟩) , |↑↑⟩} ≡

{|0, 0⟩ , |1,−1⟩ |1, 0⟩ |1, 1⟩}, which is represented by

⟨0, 0| ⟨1,−1| ⟨1, 0| ⟨1, 1|


















3J

4
0 0 0

0 gµBBz −
J

4
0 0

0 0 −
J

4
0

0 0 0 −gµBBz −
J

4



















|0, 0⟩

|1,−1⟩

|1, 0⟩

|1, 1⟩ .

(A3)

As this is a diagonal matrix, the quantum problem has been

solved.

Appendix B: Generalisation for any spin s and for larger

systems

For general values of s, one first has to compute the com-

ponents of the spin operators given by


















































(Sx)jl =
[s(s+ 1)− j(j − 1)]

1
2 δjl+1

4s

+
[s(s+ 1)− j(j + 1)]

1
2 δjl−1

4s

(Sy)jl =
[s(s+ 1)− j(j − 1)]

1
2 δjl+1

4is

−
[s(s+ 1)− j(j + 1)]

1
2 δjl−1

4is
(Sz)jl = jδjl

, (B1)

where {j, l} ∈ {−s,−s+ 1, . . . , s− 1, s}2. From these, one

then constructs the Hamiltonian as

Ĥ = −
gµB

ℏ
Bz

⊕

i

Ŝ(i)
z

−
J

ℏ2

∑

⟨ij⟩

(

Ŝ(i)
x

⊗

Ŝ(j)
x + Ŝ(i)

y

⊗

Ŝ(j)
y + Ŝ(i)

z

⊗

Ŝ(j)
z

)

.

(B2)

where ⟨ij⟩ stands for a sum over the nearest neighbour j for

every spin site i,
⊕

is the direct product, and
⊗

is the Kro-

necker product. The Hamiltonian (B2) constructed in such a

fashion is always real and symmetric hence, in theory, always

diagonalisable, even in the case of a chain or array of spins

of principal number s > 1/2. In practice, however, finding

such a diagonalised matrix analytically quickly becomes in-

tractable, especially when the eigen spectrum becomes degen-

erate. However, using numerical diagonalisation of matrices,

and with sufficient computational resources, one can achieve

exact results for larger Hilbert spaces, especially when taking

into account symmetry arguments [24–26]. A python software

package which provides exact diagonalisation results (not nu-

merical diagonalisation) for two spins for arbitrary spin s [15]

is made available alongside the atomistic spin dynamics code,

mainly to serve as a reference. In practice, this code has been

tested for s ≤ 3 and higher values may take considerable

time to solve, or never provide results. For larger spin, we

highly recommend numerical diagonalisation instead, as well

as a more thorough symmetry analysis.
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Appendix C: Matrix elements and commutation relations

We present here, for reference, the matrix elements of the

spin operators, in the basis of coherent states, highlighting

the double expansion in powers of ℏs ≡ s and 1/s and the

fundamental property that, to any fixed order, Lmax, in s the

moments ⟨Sk1
+ Sk2

− Sk3
z ⟩, with k1 + k2 + k3 = l ≤ Lmax, are

polynomials in 1/s of order l−1. We focus on the expressions

for the moments, ⟨Sk1
+ Sk2

− Sk3
z ⟩, with k1 + k2 + k3 = l ≤ 3,

that were used in our calculations.

The matrix elements of Ŝ
(i)
z to O(s) are given by

⟨Ŝ(i)
z ⟩ = ℏs

1− |z(i)|2

1 + |z(i)|2
= s

1− |z(i)|2

1 + |z(i)|2
(C1)

We note that it doesn’t receive a correction to first order in

1/s, consistent with the property that the dependence on 1/s
for this moment is a constant; the non-trivial property is that

the moment can be consistently normalized, so that this con-

stant is equal to 1.

The matrix elements to O(s2) are given by

⟨Ŝ(i)2
z ⟩ = s

2

{

(

1− |z(i)|2

1 + |z(i)|2

)2

+
2

s

|z(i)|2

(1 + |z(i)|2)2

}

(C2)

⟨Ŝ
(i)2
+ ⟩ = s

2

(

4−
2

s

)

z(i)2

(1 + |z(i)|2)2
(C3)

⟨Ŝ
(i)2
− ⟩ = s

2

(

4−
2

s

)

z̄(i)2

(1 + |z(i)|2)2
(C4)

⟨Ŝ
(i)
+ Ŝ

(i)
− ⟩ = s

2

(

2|z(i)|2 +
1

s

)

2

(1 + |z(i)|2)2
(C5)

⟨Ŝ
(i)
− Ŝ(i)

z ⟩ = s
2

(

1− |z(i)|2 +
1

s
|z(i)|2

)

2z̄(i)

(1 + |z(i)|2)2
(C6)

⟨Ŝ
(i)
+ Ŝ(i)

z ⟩ = s
2

(

1− |z(i)|2 −
1

s

)

2z(i)

(1 + |z(i)|2)2
(C7)
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The matrix elements to O(s3) are given by

⟨Ŝ(i)3
z ⟩ = −ℏ

3 s
(

|z(i)|2 − 1
) (

s2
(

|z(i)|4 + 1
)

− 2((s− 3)s+ 1)|z(i)|2
)

(

|z(i)|2 + 1
)3 (C8)

(C9)

⟨Ŝ
(i)
+ Ŝ

(i)
− Ŝ(i)

z ⟩ = ℏ
3 2s

(

−2(s− 1)s|z(i)|4 + (s(2s− 3) + 2)|z(i)|2 + s
)

(

|z(i)|2 + 1
)3 (C10)

(C11)

⟨Ŝ
(i)
− Ŝ

(i)
− Ŝ(i)

z ⟩ = −ℏ
3 2s(2s− 1)z̄(i)2

(

(s− 2)|z(i)|2 − s
)

(

|z(i)|2 + 1
)3 (C12)

(C13)

⟨Ŝ
(i)
+ Ŝ

(i)
+ Ŝ(i)

z ⟩ = −ℏ
3 2s(2s− 1)z(i)2

(

s|z(i)|2 − s+ 2
)

(

|z(i)|2 + 1
)3 (C14)

(C15)

⟨Ŝ
(i)
+ Ŝ(i)

z Ŝ(i)
z ⟩ = ℏ

3 2sz
(i)

(

s2|z(i)|4 + (−2(s− 2)s− 1)|z(i)|2 + (s− 1)2
)

(

|z(i)|2 + 1
)3 (C16)

(C17)

⟨Ŝ
(i)
− Ŝ(i)

z Ŝ(i)
z ⟩ = ℏ

3 2sz̄
(i)

(

(s− 1)2|z(i)|4 + (−2(s− 2)s− 1)|z(i)|2 + s2
)

(

|z(i)|2 + 1
)3 (C18)

(C19)

⟨Ŝ
(i)
+ Ŝ

(i)
+ Ŝ

(i)
− ⟩ = ℏ

3 4s(2s− 1)z(i)
(

s|z(i)|2 + 1
)

(

|z(i)|2 + 1
)3 (C20)

(C21)

⟨Ŝ
(i)
+ Ŝ

(i)
− Ŝ

(i)
− ⟩ = ℏ

3 4s(2s− 1)z̄(i)
(

s|z(i)|2 + 1
)

(

|z(i)|2 + 1
)3 (C22)

and the transcription as s
3P (2)(1/s) isn’t as illuminating,

though it is obvious from these expressions.

For the operators Ŝ
(i)
± it is possible to show that there exists

a closed expression for their N−th order moments, for any N,
given by

⟨Ŝ
(i)N
+ ⟩ = ℏ

N (2s)!

(2s−N)!

z(i)N

(1 + |z(i)|2)N
(C23)

⟨Ŝ
(i)N
− ⟩ = ℏ

N (2s)!

(2s−N)!

z̄(i)N

(1 + |z(i)|2)N
(C24)

These can, also, be recast in the form (ℏs)NP
(N−1)
± (1/s).

By using the commutation relations

{

[Ŝ
(i)
z , Ŝ

(i)
± ] = ±ℏŜ

(i)
±

[Ŝ
(i)
+ , Ŝ

(i)
− ] = 2ℏŜ

(i)
z

, (C25)

the expressions for these moments, as well as the definition

(13), one can compute the approximation for the effective

Hamiltonian up to third order; in fact, the provided Python

package does just this and can be used to print an expression

in LATEX for all relevant matrix elements in terms of Ŝ
(i)
x , Ŝ

(i)
y

and Ŝ
(i)
z in terms of the components of n(i), as well as the ef-

fective Hamiltonian and corresponding field. By construction,

the code can also be used to generate these for any quadratic

Hamiltonian up to fifth order. However it must be kept in

mind that going up to order higher than three requires sig-

nificant memory for the symbolic derivation of the effective

Hamiltonian, essential to the rest of this procedure. The more

complex the initial Hamiltonian, the more memory- and time-

consuming this procedure will be.

Appendix D: Convergence analysis

Expanding an exponential operator as a series is not trivial,

as one needs to ensure that this series definition converges, and

moreover that only a few terms are sufficient to approximate

it, if we wish to use this series as an efficient way of simulating

our quantum system, by sampling a classical Hamiltonian. A
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safe way to verify this [27–30], is to check that

β
∥

∥

∥Ĥ
∥

∥

∥

∞
≪ 1 (D1)

where

∥

∥

∥Ĥ
∥

∥

∥

∞
is the supremum norm which in our case, as

the Hamiltonian is diagonalisable in the case of the field be-

ing constant and chosen along the quantisation axis, can be

understood as the largest eigenvalue for the operator Ĥ. If we

take the example of the exactly diagonalised result from (A3)

then, if we take for example J = gµBBz we require that

∣

∣

∣

∣

3J

4kB

∣

∣

∣

∣

=

∣

∣

∣

∣

3gµBBz

4kB

∣

∣

∣

∣

≪ T (D2)

specifically in our case this means that this method can safely

be expected to be convergent for temperatures such that T ≫
1.01K.

The issue with this approach is that the convergence will

depend quite sensitively on the value of the exchange constant

J, which for realistic materials can be much larger than the

applied field.

A more reasonable approach is to take as appropriate mea-

sure the norm of the difference between the effective Hamil-

tonian and its classical limit so that, despite the influence of

the relevant constants in the quantum Hamiltonian, these will

also appear in the corresponding classical limit, hence one can

hope for a larger domain of convergence and fewer orders of

corrections required for a good degree of approximation. At

this point a good estimate for the convergence of the exponen-

tial series will be

β
∥

∥

∥

(

Ĥ − Hclassical

)∥

∥

∥

∞
≪ 1. (D3)

As a rough estimate, we use the difference between the highest

eigenvalue of the quantum Hamiltonian and the correspond-

ing value of the classical Hamiltonian at a given tempera-

ture. Results are given in figure 5 for a much higher value

of J = 100gµBBz with Bz = 1T which is the right order of

magnitude for standard ferromagnets.

In practice this means that the first correction of this method

should be sufficient to provide a reasonable approximation

starting from around T = 200K. We would like to emphasize

here that a single quantum spin (or rather a few, if we include

concepts such as entanglement) is much less likely to behave

classically than a collection of them. Indeed a larger system

provides more routes for the quantum degrees of freedom to

interact with through fluctuation and dissipation when in con-

tact with a bath, and therefore can be expected to be more

readily approximated by a classical model.
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