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Abstract: (1) Background: Detecting long-lie incidents—where individuals remain immo-
bile after a fall—is essential for timely intervention and preventing severe health conse-
quences. However, most existing systems focus only on fall detection, neglect post-fall
monitoring, and raise privacy concerns, especially in real-time, non-invasive applications;
(2) Methods: This study proposes a lightweight, privacy-preserving, long-lie detection
system utilizing thermal imaging and a soft-voting ensemble classifier. A low-resolution
thermal camera captured simulated falls and activities of daily living (ADL) performed
by ten healthy participants. Human pose keypoints were extracted using MediaPipe,
followed by the computation of five handcrafted postural features. The top three clas-
sifiers—automatically selected based on cross-validation performance—formed the soft-
voting ensemble. Long-lie conditions were identified through post-fall immobility mon-
itoring over a defined period, using rule-based logic on posture stability and duration;
(3) Results: The ensemble model achieved high classification performance with accuracy,
precision, recall, and an F1 score of 0.98. Real-time deployment on a Raspberry Pi 5 demon-
strated the system is capable of accurately detecting long-lie incidents based on continuous
monitoring over 15 min, with minimal posture variation; (4) Conclusion: The proposed sys-
tem introduces a novel approach to long-lie detection by integrating privacy-aware sensing,
interpretable posture-based features, and efficient edge computing. It demonstrates strong
potential for deployment in homecare settings. Future work includes validation with older
adults and integration of vital sign monitoring for comprehensive assessment.

Keywords: long-lie detection; thermal imaging; ensemble learning; privacy-preserving
monitoring; edge computing

1. Introduction
Long-lie incidents—conditions in which individuals, especially older adults, remain

immobile on the floor for extended periods after a fall—pose serious health risks. These
include dehydration, pressure ulcers, infections, and even death in severe cases [1–3].
Studies show that nearly 98% of long-lie events occur when individuals are alone at home,
leading to delayed medical assistance and increased morbidity [4]. Timely and accurate
identification of such events is therefore critical to improve patient outcomes and reduce
healthcare burdens [2,5].

While fall detection systems have been widely investigated [6–10], the specific iden-
tification of long-lie conditions remains limited. Unlike fall detection, which focuses on
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the immediate impact event, long-lie detection requires sustained post-fall monitoring to
assess whether a person remains incapacitated or unable to seek help. Clinical studies have
suggested thresholds ranging from 24.5 s to over an hour as critical indicators for long-lie
scenarios, highlighting their association with increased morbidity and mortality [2,5,11–13].
Moreover, some research indicates that long-lie events may occur independently of falls or
emerge gradually, further complicating early recognition [3]. The absence of a standardized
definition and the diversity of post-fall behaviors—such as changes in posture, partial
movements, and occlusions—present additional challenges to automatic detection [3,14].

To address these complexities, various sensing modalities have been proposed.
Wearable-based systems using accelerometers or gyroscopes have shown promise in con-
trolled environments [15,16], but their practical use is often hindered by user discomfort,
low compliance, and stigma, particularly among older adults [4,17]. Meanwhile, vision-
based methods using RGB cameras provide rich contextual information and have demon-
strated reductions in Time On Ground (TOG) in controlled trials [18]. However, such
approaches raise privacy concerns and suffer from degraded performance under poor
lighting conditions [19,20]. Thermal imaging has emerged as a privacy-preserving and
lighting-agnostic alternative for human activity monitoring [21–23]. By capturing heat
signatures rather than identifiable visuals, thermal systems mitigate privacy issues while
maintaining robustness in real-world conditions. When integrated with edge computing
platforms such as the Raspberry Pi, they offer the potential for low latency and real-time
inference without relying on external servers [24,25]. Despite these promising capabili-
ties, very few existing systems are designed specifically for long-lie detection, and even
fewer are optimized for lightweight, on-device computation using privacy-sensitive inputs.
Most previous work remains limited to detecting fall events alone, overlooking the critical
need to assess post-fall recovery attempts or prolonged immobility. Additionally, current
machine learning approaches often rely on resource-intensive architectures that are not
feasible for embedded deployment or lack clinical insight into how long-lie conditions
manifest in practice [7,26–28].

To address these limitations, we propose a novel, real-time, and privacy-preserving
long-lie detection system that leverages thermal imaging and a lightweight soft-voting
ensemble classifier. The system introduces a dual-stage detection mechanism that not only
identifies fall events but also monitors post-fall immobility using interpretable, handcrafted
posture features. By utilizing thermal imaging and geometric-based feature extraction,
the approach ensures privacy preservation without relying on identifiable visuals or com-
plex deep learning architectures. Moreover, the system is designed for efficient deployment
on low-power edge devices such as the Raspberry Pi 5, enabling real-time monitoring
without dependence on cloud infrastructure. The model is validated using a custom-built
dataset collected specifically for this study from ten healthy participants performing both
activities of daily living (ADL) and simulated fall scenarios. This self-collected dataset,
recorded exclusively through thermal imaging under controlled indoor conditions, ensures
data quality, privacy, and relevance to the problem domain. Altogether, this study presents
a practical and interpretable solution for the early detection of long-lie incidents, contribut-
ing to the development of intelligent, privacy-aware assistive technologies that support
safe and independent living for older adults.

The remainder of this paper is structured as follows: previous research that relates to
this work is explained in Section 2. Section 3 details the methodology, including data collec-
tion, feature extraction, and model design. Section 4 presents experimental results. Section 5
discusses the system’s performance and deployment feasibility. Finally, Section 6 concludes
with insights and future directions, including the integration of vital sign monitoring.
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2. Related Work
Thermal imaging-based fall detection has emerged as a promising, privacy-preserving

alternative to RGB and depth-based methods, particularly for in-home monitoring of older
adults. Prior studies have shown that thermal vision can effectively capture postural and
motion anomalies [21,22,29]. While thermal cameras protect user anonymity and function
in low-light conditions, their limited resolution and lack of texture detail present significant
challenges for accurate pose estimation. Sensor-related issues—such as calibration drift and
thermal diffusion—can further degrade keypoint localization, especially under occlusion
or changing ambient temperatures. These limitations are particularly problematic when
estimating posture-dependent features, such as body orientation or width-to-height ratio
(WHR), which are critical for identifying abnormal immobility.

Recent work has explored pose-based fall classification using thermal imagery with
enhanced architectures and descriptors to improve detection under low-light or infrared
conditions [30,31]. These systems typically extract postural dynamics—such as bounding
box elongation, centroid motion, or keypoint confidence—to distinguish falls from regular
activity. Similarly, efforts to develop lightweight pose estimation models for thermal im-
ages, such as THPoseLite, have significantly improved keypoint detection under limited
computational resources [32]. However, despite advancements in classification accuracy
and model efficiency, these approaches are limited to instantaneous fall detection. None
incorporate temporal reasoning to monitor post-fall states or identify prolonged immobil-
ity. As such, the critical problem of long-lie detection—an essential indicator of post-fall
morbidity—remains unaddressed mainly in thermal-based monitoring systems.

Deep learning models, including 3D CNNs and recurrent architectures, have demon-
strated strong performance in thermal-based fall detection [20,29,33]. However, these
models typically require substantial computational resources, making them unsuitable
for deployment on low-power embedded systems. Hybrid architectures combining au-
toencoders with deep convolutional models have also been proposed; however, their
complexity and reliance on paired modalities limit their practical deployment [29,34]. To
address deployment constraints, classical machine learning approaches using handcrafted
features have been explored on low-resolution thermal data [16,35]. Although these meth-
ods are more lightweight, they often suffer from reduced robustness under varying ambient
conditions. Furthermore, while some systems demonstrate feasibility in real-world use,
many still lack interpretability and scalability—essential factors for long-term deploy-
ment in resource-limited environments [20,36]. Others have achieved high accuracy using
coarse-resolution infrared arrays [33] but fall short of addressing post-fall monitoring or
immobility assessment.

Critically, the majority of existing thermal-based systems focus solely on detecting
the initial fall event [21,26] without addressing the equally important problem of long-
lie detection—prolonged immobility after a fall, which is a key risk factor for morbidity
and mortality in elderly care. Although recent approaches in neuromorphic and event-
based vision offer temporal fall localization capabilities [19], they often rely on specialized
sensors that are not suited for widespread deployment. In addition to technical gaps,
ethical considerations remain a central concern. Continuous monitoring systems must be
designed with transparency and user consent in mind, especially when deployed in private
environments such as bedrooms or care homes [37].

This work presents the first thermal-based fall detection framework that explicitly
addresses long-lie detection as a primary objective. Unlike prior systems that focus solely
on identifying fall events, the proposed method introduces a rule-based temporal logic
module to monitor post-fall immobility—an essential indicator of health risk in elderly
care. The system operates entirely on thermal input, preserving privacy, and employs
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interpretable handcrafted features with a soft-voting ensemble classifier, which is designed
for real-time execution on edge devices, offering a lightweight and deployable solution
tailored for continuous in-home monitoring. By integrating long-lie detection within a
privacy-preserving architecture, this approach fills a critical gap in existing literature.

3. Materials and Methods
Some studies have found that long-lie incidents are often caused by falls, leaving indi-

viduals immobilized on the ground for extended durations exceeding one hour [2,11–13].
Motivated by these findings, this study presents a system that detects long-lie events by
analyzing characteristic patterns of post-fall immobility. We propose a real-time, privacy-
preserving detection framework that utilizes thermal imaging in combination with a soft-
voting ensemble classifier. The system is specifically designed for efficient operation on
edge devices, achieving high detection accuracy while addressing privacy concerns.

The pipeline process, illustrated in Figure 1, includes four primary stages: (1) thermal
data acquisition and pose estimation, (2) preprocessing and temporal data augmentation,
(3) handcrafted feature extraction, and (4) classification using a lightweight ensemble model.
The system also incorporates a long-lie detection logic that monitors postural stability over
time following a fall event. A custom dataset was collected specifically for this study,
consisting of simulated fall and ADL sequences recorded solely using thermal imaging to
ensure privacy and realism.

Figure 1. The block diagram of the real-time long-lie detection system. The process for long-lie
identification starts with dataset preparation, including keypoint extraction, feature generation,
and data preprocessing to create a labeled dataset. Classification models are trained and tested using
fall and activities of daily living (ADL) living data to evaluate their performance. The final stage uses
an ensemble approach to identify long-lie incidents based on the best-performing models.

3.1. Thermal Data Collection

To support privacy-aware and real-time long-lie detection on edge devices, this study
employs a low-resolution (256 × 192) thermal camera mounted on an adjustable tripod.
The camera can be extended up to 170 cm in height and is angled downward at approxi-
mately 30 degrees, providing an elevated frontal view. This setup ensures unobstructed
capture of full-body movements during falls and daily activities while maintaining porta-
bility and ease of deployment in indoor environments.
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Data collection was conducted in a controlled indoor setting using thermal imaging
exclusively to preserve privacy. Ten healthy adult participants (five male, five female), aged
29.4 ± 4.52 years, with an average height of 164.4 ± 9.34 cm and weight of 63.4 ± 7.90 kg,
were recruited for the study. Each participant performed 32 types of simulated falls
and 15 ADLs, resulting in a total of 320 fall and 150 ADL video sequences. Participant
demographics are summarized in Table 1.

Table 1. Participant details for dataset collection including age, height, weight, and gender.

No. Age (years) Height (cm) Weight (kg) Gender (F/M)

1 34 150 55 F
2 37 168 75 M
3 36 160 64 M
4 30 160 55 M
5 28 168 70 F
6 26 158 49 F
7 25 163 60 F
8 24 185 70 M
9 29 158 68 F

10 25 174 68 M

3.2. Pose-Based Feature Extraction and Dataset Preparation

The dataset development pipeline is illustrated in Figure 2. It begins with thermal
video capture, followed by keypoint extraction using an efficient implementation of the
MediaPipe Pose estimation algorithm v0.10.9 (Google LLC, Mountain View, CA, USA),
which is compatible with CPU-based edge devices such as the Raspberry Pi 5 (Raspberry
Pi Foundation, Cambridge, UK) [38]. Given the inherent limitations of thermal imag-
ing—such as reduced contrast and occasional occlusions—a lightweight adaptation of the
original pose estimation framework [39] was applied, specifically optimized for thermal
modalities. To enhance reliability, the extraction focused on a subset of 13 keypoints that
consistently exhibited clear visibility across sequences and contributed meaningfully to
postural representation.

Figure 2. The workflow for dataset generation involves processing thermal video frames using human
pose estimation algorithm to extract skeleton data, followed by data cleaning, sample selection,
temporal data augmentation, and feature extraction. The final features are compiled into a structured
CSV dataset used for model training and testing.

This subset includes upper body landmarks (nose, shoulders, elbows, and wrists),
as well as hips, knees, and ankles from the lower body. While lower-limb keypoints are
sometimes occluded in side-view configurations, their inclusion—particularly hips and
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knees—has been found to improve the computation of posture-related features, such as
orientation angles and the width-to-height ratio (WHR). Confidence-based filtering and
selective use of keypoints helped reduce noise from unreliable detections. Temporal smooth-
ing through backward interpolation was further applied to mitigate transient dropout and
ensure sequence continuity.

The extracted keypoints were then preprocessed, augmented to increase data diversity,
and used for handcrafted feature extraction. The final feature sets were saved in CSV
format for model training and evaluation.

3.2.1. Data Preprocessing

The data preprocessing stage comprises two main components: data cleaning and
sample selection, as outlined in the dataset generation pipeline. This step is essential for
ensuring pose data quality and enabling reliable long-lie detection, particularly in the
context of thermal imaging and low-power edge deployment limitations.

To mitigate pose estimation noise on thermal frames, a confidence-based filtering strat-
egy was applied. Specifically, keypoints with detection confidence below 0.5 were excluded
from further processing. A temporal interpolation mechanism was also employed to restore
short-term missing keypoints and maintain spatial continuity. Although this study did not
include manual benchmarking against annotated thermal pose datasets, we performed a
detection consistency analysis to assess the reliability of keypoint detection. We evaluated
a representative subset of seven keypoints—nose, shoulders, hips, and knees—using two
thermal video recordings captured at a resolution of 256 × 192.

The detection rate for each keypoint was computed as the percentage of frames in
which the keypoint was successfully detected (i.e., confidence > 0.5) relative to the total
number of frames:

Detection Rate (%) =
(

valid frames
total frames

)
× 100 (1)

Table 2 summarizes the aggregated detection results. While upper-body and torso
keypoints achieved consistently high detection rates above 99%, knees exhibited more
variability, likely due to occlusion or pose-related thermal distortion. The overall average
detection rate across keypoints was 93.96%, with a standard deviation of 8.22, confirming
the robustness of the selected keypoint subset under thermal conditions.

Table 2. Aggregated detection rate of selected keypoints from two thermal infrared videos. A keypoint
is considered valid if its confidence exceeds 0.5.

Keypoints valid frames total frames Detection Rate (%)

Nose 3710 3742 99.15
Left Shoulder 3710 3742 99.15
Right Shoulder 3710 3742 99.15
Left Hip 3710 3742 99.15
Right Hip 3710 3742 99.15
Left Knee 3010 3742 80.44
Right Knee 3050 3742 81.51

Average ± SD – – 93.96 ± 8.22

(1) Data Cleaning: This process enhances the reliability and temporal consistency
of skeleton keypoints extracted from thermal video frames. Compared with RGB-based
inputs, thermal data often produces noisier or incomplete keypoints due to lower spatial
contrast and sensor artifacts. To address these challenges, a two-step cleaning strategy is
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employed: (i) removal of frames with insufficient or missing keypoints and (ii) replacement
of missing keypoints using temporally adjacent values.

Let the keypoint dataset be defined as

D = {ki | i ∈ I} (2)

where ki = (ki1, ki2, . . . , kim) represents the m keypoints in frame i, and I denotes the set of
all time indices.

Step 1: Elimination of invalid keypoints. A frame is discarded if any required
keypoint kij remains undetected for longer than the predefined threshold T1:

D∗ = {ki ∈ D | kij ̸= ∅ within T1} (3)

where ∅ indicates a missing keypoint value.
Step 2: Temporal replacement of missing values. Transient missing values—often

caused by motion blur or momentary occlusion—are replaced using the corresponding
keypoints from the previous valid frame within the threshold T2:

ki =

ki−1 if ki has missing keypoints within T2

ki otherwise
(4)

This approach was tailored specifically for thermal skeleton data, enabling robust
temporal correction without re-estimation. The method is computationally efficient and
well-suited for real-time applications on resource-constrained devices.

(2) Sample Selection: Following cleaning, the skeleton sequences are segmented us-
ing a sliding window approach with fixed-length overlapping segments. Each segment
comprises 40 frames (equivalent to 4 s at 100 ms per frame). This window length was
selected based on clinical findings showing that most fall events in older adults—from loss
of balance to impact—occur within a 4-s period [40]. Capturing this time interval is crucial
for distinguishing falls from other daily activity transitions.

From each segment, five handcrafted features are computed: the width-to-height ratio,
three body orientation angles (θ1, θ2, θ3), and the angular center of body orientation (θ).
The temporal sample is structured as

{xi} = (x1, x2, x3, · · · , x40) (5)
x1

1 x1
2 · · · x1

40
x2

1 x2
2 · · · x2

40
x3

1 x3
2 · · · x3

40
x4

1 x4
2 · · · x4

40
x5

1 x5
2 · · · x5

40

 =


X1

X2

X3

X4

X5

 = X ∈ R5×40 (6)

V = (X1, X2, X3, · · · , XT) (7)

where XT is the temporal feature matrix of segment T, and V is the sequence of such
segments. While the structure of window-based segmentation follows previous practices
in pose-based activity recognition [41], the current work extends it for thermal keypoint
data and adapts it with a lightweight, handcrafted feature set optimized for thermal-based
fall detection and privacy-aware embedded systems.
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3.2.2. Temporal Data Augmentation

To address the class imbalance and enhance the temporal diversity of motion patterns,
a tailored temporal data augmentation strategy was implemented based on overlapping
sliding window segmentation. Let W represent a video sequence segmented into overlap-
ping clips Di of fixed length M, where the degree of overlap is defined by the ratio:

β =
Moverlap

M
(8)

To account for differing motion dynamics between fall and ADL events, distinct
overlap rates were applied: β1 for fall sequences and β2 for ADL sequences. The number
of augmented clips for each category is given by

Nclips_fall = N f

(
1 +

1
β1

)
, Nclips_ADL = Nadl

(
1 +

1
β2

)
(9)

The total number of augmented samples across all participants P is expressed as

Ntotal = P ·
(

Nclips_fall + Nclips_ADL

)
(10)

This adaptive augmentation approach is designed specifically for fall detection under
thermal imaging, where class imbalance and motion ambiguity are common. Unlike con-
ventional augmentation techniques that apply uniform strategies, our method introduces
differentiated overlap parameters to better preserve contextual motion cues for both fall and
non-fall activities. As a result, a total of 2756 temporally enriched and labeled sequences
were generated, substantially improving the balance and representativeness of the dataset
while mitigating the risks of overfitting.

3.2.3. Handcrafted Feature Extraction

Following temporal segmentation and data augmentation, five handcrafted geometric
features were extracted from each sample segment to capture posture-related variations be-
tween fall events and daily activities. These features were specifically designed to address
the limitations of thermal keypoints, which often suffer from reduced spatial resolution
and partial occlusions. The feature set includes the width-to-height ratio, body orien-
tation angles, and the angular center of body posture—all derived from thermal pose
estimation [27,28]. These compact and interpretable features were chosen for their effective-
ness in characterizing both the dynamics of falling and the patterns of sustained immobility,
making them well-suited for real-time detection in privacy-sensitive applications.

(1) Width-to-Height Ratio (WHR): To describe overall body compactness, a 2D posture-
based width-to-height ratio was computed, as illustrated in Figure 3a. Unlike prior
work [42,43] that used full-body joint sets, our formulation used only the shoulder and
knee keypoints to enhance reliability in thermal images. The ratio is calculated as

W = max(xs, xk)− min(xs, xk), H = max(ys, yk)− min(ys, yk) (11)

WHR =
W
H

(12)

where (xs, ys) and (xk, yk) denote the shoulder and knee coordinates, respectively.
(2) Body Angle Orientation: This feature evaluates postural orientation, distinguishing

between upright and supine positions by calculating the center of gravity (COG) for the
upper, whole, and lower body segments, as shown in Figure 3b. The COG for a body
segment (BS) is calculated as
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COGBS[x] =
∑n

i=1 mixi

∑n
i=1 mi

, COGBS[y] =
∑n

i=1 miyi

∑n
i=1 mi

(13)

where mi is the mass, which refers to the area of image height and width that is covered on
the segment area, and xi, yi are the coordinates of the i-th segment. To calculate the COG
based on body location, what is needed is

COGbody[x, y] = ∑ COGBS[x, y]
∑ body segment

(14)

where ∑ COGBS[x, y] is the sum of the COGs for all body segments.

(a) Width-to-height ratio (WHR) (b) Computation of centers of gravity (COG)

(c) Orientation angles from COG positions (d) Angular center of body orientation (ACB)

Figure 3. Illustration of handcrafted feature extraction: (a) Projected width-to-height ratio (WHR)
calculated from shoulder-to-shoulder width and shoulder-to-knee height, used as a posture descriptor
in 2D thermal images, (b) computation of multiple centers of gravity (COG), (c) orientation angles
derived from COG positions, and (d) calculation of angular center of body orientation (ACB).

To determine the body angle orientation, we used the COGs for the upper body
(CUB), whole body (CWB), and lower body (CLB). As a person falls, these COGs shift from
vertical to horizontal alignment, as shown in Figure 3c, indicating different postural states
(standing, nearly fallen, or fallen). The angles between COGs were calculated as follows:

θ1 = arctan
((

CUBy − CWBy

)
, (CUBx − CWBx )

)
− arctan

((
y′y − CWBy

)
, (CWBx − CWBx )

)
θ2 = arctan

((
CUBy − CLBy

)
, (CUBx − CLBx )

)
− arctan

((
y′y − CLBy

)
, (CLBx − CLBx )

)
θ3 = arctan

((
CWBy − CLBy

)
, (CWBx − CLBx )

)
− arctan

((
y′y − CLBy

)
, (CLBx − CLBx )

)
(15)
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(3) Angle Center of Body Orientation (ACB (θ)): The ACB angle measures the vertical
and horizontal angles of the COGs during movement, helping estimate the angular dis-
placement before falling. Figure 3d shows the ACB angle with the lower body COG as
a blue dot at c(x,y), the hip center as a green dot at b(x,y), and the upper body COG as an
orange dot at a(x,y). Angular deviation occurs during a fall because of the displacement of
these points. The hip center coordinates Chip[x, y] are calculated as follows:

xc_hip =
xlh + xrh

2

yc_hip =
ylh + yrh

2
Chip[x, y] = (xc_hip, yc_hip)

(16)

while the COG of the lower body and upper body was obtained using Equation (14).
After determining the COGs of the upper body, knee, and hip center coordinates, the ACB
angle (θ) was calculated as follows:

θrad = arctan
(
(cy − by), (cx − bx)

)
− arctan

(
(ay − by), (ax − bx)

)
θdeg = abs

(
θrad × 180

π

) (17)

This feature set was engineered explicitly for thermal-based pose estimation, where
conventional skeleton representations may be incomplete or noisy. By prioritizing angu-
lar and proportional cues from reliable keypoints, the extracted features offer enhanced
discriminative power for lightweight and privacy-aware fall detection systems. Moreover,
the compact nature of these features makes them highly suitable for real-time inference on
resource-constrained edge devices such as Raspberry Pi, ensuring fast and energy-efficient
deployment in practical homecare scenarios.

To address the impact of camera viewpoint on keypoint recognition and body pa-
rameter estimation, all data in this study were recorded using a fixed 30° side-view angle
with a consistent subject-to-camera distance of approximately 1.8 to 2.0 m. This setup
minimizes perspective distortion and ensures stable keypoint projection geometry across
samples. Additionally, z-score normalization was applied to all features to reduce inter-
subject variability in scale. To evaluate the robustness of the WHR, body angle orientation,
and ACB under this setup, we analyzed 2755 samples across all postural features. The mean
projected WHR was 1.94 ± 2.53, while body angle orientations θ1, θ2, and θ3 each showed
a consistent mean of 0.72 radians with standard deviations around 0.69–0.70. The ACB
angle (θ) exhibited a mean of 3.02 radians with a standard deviation of 0.66, consistent
with horizontal orientation under long-lie or supine conditions. These results indicate that
the observed feature variations primarily reflect authentic postural transitions rather than
camera-induced artifacts. This supports the use of a fixed-angle 2D setup for reliable WHR
and orientation estimation in controlled environments. However, we acknowledge that
future real-world deployments may require depth-based compensation or view-invariant
feature enhancement to maintain accuracy across varied camera angles.

3.2.4. Dataset Generation

All extracted features from each sample segment were compiled into a structured
CSV format to serve as inputs for the soft-voting ensemble classifier. Each segment matrix
X ∈ R5×40 encodes five features across 40 consecutive frames, enabling temporal modeling
of pose dynamics with minimal computational overhead.
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3.3. Classification Model: Soft-Voting Ensemble

As illustrated in Figure 4, the proposed long-lie identification system adopts a modular
architecture designed for real-time execution on edge devices. The process begins with
thermal video capture, followed by 2D pose estimation using MediaPipe Pose. From the
extracted keypoints, handcrafted postural features are generated to capture geometric cues
relevant to fall and immobility detection.

Figure 4. The ensemble architecture for long-lie identification system.

To maximize robustness and generalization, a soft-voting ensemble classifier is em-
ployed. Rather than relying on a single model, the system evaluates a pool of candidate
classifiers based on cross-validated precision, recall, and F1 score. The top three per-
forming classifiers are automatically selected to form the ensemble. This model-agnostic
selection ensures adaptability to future updates or datasets without being restricted to
pre-defined algorithms.

Each selected classifier produces a class probability distribution over input samples.
These probabilities are averaged to obtain an ensemble confidence score:

Pens(ci|x) =
1
N

N

∑
k=1

Pk(ci|x) (18)

where Pk(ci|x) is the probability from the k-th classifier for class ci, and N = 3 is the total
number of selected models. The final prediction is made by

ŷ = arg max(Pens(ci|x)) (19)

This ensemble mechanism enables the system to integrate diverse decision boundaries
while maintaining computational efficiency, making it suitable for deployment on embed-
ded systems, such as the Raspberry Pi 5. The decision to adopt a soft-voting ensemble was
based on a comparative evaluation of five classifiers: K-Nearest Neighbors (KNN), Support
Vector Classifier (SVC), Multi-Layer Perceptron (MLP), Decision Tree (DT), and Logistic
Regression (LR). These models were selected for their efficiency and compatibility with
edge hardware. As shown in Table 3, the ensemble combining KNN, SVC, and MLP outper-
formed all individual models in terms of accuracy, precision, recall, F1 score, and specificity.
While more complex architectures such as deep convolutional networks or transformers
have been used in related work, [7,8] they require GPU acceleration and are not feasible for
lightweight, real-time deployment on resource-constrained devices like Raspberry Pi. In contrast,
the soft-voting ensemble balances high classification performance with low inference latency,
making it a suitable choice for our privacy-aware, embedded, long-lie monitoring system.

Table 3. Comparison of performance metrics across individual classifiers and the proposed ensemble
method. The proposed ensemble, combining KNN, SVC, and MLP, achieves the highest accuracy
and robustness with a modest execution time.

No. Models Acc 1 Prec 2 Recall Specificity F1 Score AUC 3 ATE (s) 4

1 KNN 0.97 0.98 0.98 0.98 0.98 0.993 0.1460
2 SVC 0.97 0.97 0.97 0.98 0.97 0.982 0.0331
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Table 3. Cont.

No. Models Acc 1 Prec 2 Recall Specificity F1 Score AUC 3 ATE (s) 4

3 MLP 0.97 0.97 0.97 0.98 0.97 0.989 0.0045
4 DT 0.95 0.96 0.96 0.94 0.96 0.959 0.0012
5 LR 0.97 0.97 0.97 0.97 0.97 0.984 0.0055
6 Ours 0.98 0.98 0.98 0.99 0.98 0.993 0.2687

1Acc: Accuracy. 2 Prec: Precision. 3 AUC: Area Under the ROC Curve. 4 ATE: Average Time of Execution per prediction.

3.4. Long-Lie Detection Logic

To determine whether a fall leads to a critical long-lie condition, the proposed system
incorporates a post-classification temporal monitoring module. Unlike conventional fall
detection systems that issue alerts immediately after a fall is detected, our system continues
monitoring the subject’s posture over time to assess prolonged immobility. Once a sample
is classified as a “Fall”, the system begins tracking body orientation across consecutive
frames. A potential long-lie event is flagged when two conditions are simultaneously
met: (1) the subject remains in the fallen state for at least 15 min, and (2) body orientation
variation across that duration remains below 15%. This dual-criterion approach ensures
that only high-risk, sustained immobility cases are identified, while minor adjustments or
recovery attempts are not misclassified. The logic is formalized in Algorithm 1.

Algorithm 1 Long-lie Identification

1: if Status == “Fall” then
2: Count Fall_current_time
3: Body_ort_change ⇐

(∣∣∣ body_ort−body_ort_old
body_ort_old

∣∣∣)× 100%
4: if Fall_current_time ≥ LongLie_Time_Threshold then
5: Longlie_Detected ⇐ True
6: if Body_ort_change > 15% then
7: LongLie_Current_time ⇐ 0
8: Longlie_Detected ⇐ False
9: Status ⇐ “Moving”

10: end if
11: end if
12: else
13: LongLie_Current_time ⇐ 0
14: Fall_current_time ⇐ 0
15: Longlie_Detected ⇐ False
16: end if

The orientation change is calculated as

Body_ort_change =
(∣∣∣∣ body_ort − body_ort_old

body_ort_old

∣∣∣∣)× 100% (20)

In this formulation, body_ort represents the ACB angle, defined as the inclination angle
formed by a lower body COG, the hip center, and the upper body COG. This angle is
computed using Equation (17) and serves as a scalar descriptor of sagittal body posture.
Since it is a single angular feature rather than a multi-dimensional vector, the relative
change in Equation (20) does not require normalization or feature weighting. A fixed
threshold of 15% is applied directly to the scalar change value to determine whether
the posture remains sufficiently stable to qualify as a long-lie condition. The use of a
15-min monitoring threshold is intentionally conservative, reflecting the nature of our
experimental setup with healthy participants in a controlled environment. While clinical
studies suggest that adverse consequences can begin within minutes after a fall [2,5,11–13],
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the longer threshold was chosen to reduce false alarms and validate system behavior
under realistic, privacy-preserving deployment scenarios. This rule-based logic, which
combines time-based monitoring and posture stability, is computationally lightweight and
well-suited for implementation on embedded platforms. It enhances long-lie detection
specificity by filtering out transient inactivity and allowing timely alerts only for prolonged,
motionless conditions.

4. Experimental Results
This section presents the real-time implementation, evaluation, and validation of

the proposed long-lie detection system using thermal imaging on a resource-constrained
edge device. The assessment focuses on classification performance, latency, and system
robustness under various environmental and lighting conditions with healthy volunteers.

4.1. Real-Time System Deployment on Edge Device

To assess its real-world applicability, the complete pipeline was deployed on a Rasp-
berry Pi 5 (Raspberry Pi Foundation, Cambridge, UK), chosen for its balance between com-
putational capability and energy efficiency. The device features a 64-bit ARM Cortex-A76
CPU and runs Debian 12 (64-bit). A TOPDON TC001 thermal camera (Topdon Technology
Co., Ltd., Shenzhen, China) with a resolution of 256 × 192 pixels and a lightweight design
(30 g) was integrated into the system to ensure privacy-preserving monitoring. Both the
Raspberry Pi and the camera were mounted on a portable tripod stand with adjustable
height (up to 170 cm) and powered by a 5 V/3 A rechargeable battery, enabling flexible and
unobtrusive deployment in indoor environments such as homes and clinics. The prototype
setup is illustrated in Figure 5.

Figure 5. Prototype of the long-lie identification system, featuring a thermal camera and Raspberry Pi
5 mounted on a tripod with a 5 V/3 A battery pack. The system operates in real time while preserving
user privacy.

4.2. Classifier Evaluation and Inference Performance

Table 3 presents a detailed comparison of performance metrics across five individual
classifiers—KNN, SVC, MLP, DT, and LR—alongside the proposed soft-voting ensemble
method. The evaluation metrics include accuracy, precision, recall, specificity, F1 score,
the area under the ROC curve (AUC), and the average time of execution per prediction
(ATE). The proposed ensemble classifier, which integrates the three best-performing models
(KNN, SVC, and MLP), consistently outperforms the individual classifiers across all pri-
mary evaluation metrics—achieving 0.98 in accuracy, precision, recall, and F1 score, with a
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specificity of 0.99 and an AUC of 0.993. These results not only highlight the predictive ca-
pabilities of each constituent model but also demonstrate the synergistic effect of ensemble
voting in improving overall classification robustness compared with standalone models.

To further contextualize the contribution of our approach, Table 4 provides a compara-
tive overview of representative vision-based fall detection methods in the literature. While
many existing methods achieve high accuracy in detecting fall events, few support real-time
deployment on edge hardware, and even fewer explicitly address the long-lie scenario.

Our system uniquely combines high accuracy with real-time edge deployability
and explicit long-lie tracking. It utilizes thermal input to ensure privacy, incorporates
lightweight, handcrafted features for efficiency and interpretability, and employs a
soft-voting ensemble for robust fall classification. In contrast to deep learning methods,
which typically require high computational resources and offer limited transparency,
our approach is explainable and optimized for practical deployment on low-power
platforms, such as the Raspberry Pi.

Table 4. Comparative analysis of vision-based fall detection methods using thermal, RGB cameras,
and mmWave radar. Privacy: high = de-identified human forms, low = identifiable images. Real-time:
suitable for online/faster-than-video-rate processing. Edge Deployable: feasible on edge hardware
(e.g., SBCs). Long-Lie Estimation: explicit immobility tracking.

Method Sensor Type Algorithm Acc 1 Pri 2 RT 3 ED 4 LLE 5 Notes

Ours Thermal cam
(256 × 192)

Ensemble
(KNN, SVC,
MLP)

98% High Yes Yes Yes Real-time on edge; low computation;
supports long-lie tracking

Lau et al. [43] RGB Attention-
based GRU

96.2% Low Yes No No Deep model; high computation; no
hardware info; likely tested offline

Elshwemy et al. [22] Thermal SRAE - High No No No Offline only; moderate computation;
platform not specified

Rezaei et al. [21] Low-res Thermal CNN +
manual
features

97.9% High Yes Yes No Edge-intended; low computation; no
device reported

Zhang et al. [6] mmWave Radar Rule-based
(point cloud)

- High Yes Yes Yes Rule-based logic; medium computation;
runs on desktop CPU only

Zhong et al. [20] Thermal vision CNN +
RBFNN

98.39% High Yes No No Likely tested offline; moderate-to-high
computation; no hardware info

1 Acc: Accuracy. 2 Pri: Privacy protection. 3 RT: Real-time implementation. 4 ED: Edge deployable. 5 LLE: Long-lie
estimation.

4.3. Model Behavior Visualization

Figure 6 illustrates the confusion matrices of five individual classifiers—KNN, SVC,
MLP, DT, and LR—along with the proposed soft-voting ensemble model. These visu-
alizations provide detailed insight into the classification behavior and error patterns of
each approach.

From the confusion matrices, it is evident that each individual model exhibited distinct
performance characteristics. KNN (Figure 6a) demonstrated well-balanced predictions
with relatively low misclassification, particularly for fall-related segments. SVC (Figure 6b)
and MLP (Figure 6c) also achieved high overall accuracy but were slightly less stable in
classifying ambiguous cases near class boundaries. Decision Tree (Figure 6d) showed
signs of overfitting, as reflected in its high sensitivity but comparatively lower speci-
ficity—suggesting it may have learned patterns that do not generalize well across all
samples. Logistic regression (Figure 6e), while efficient, tended to underperform on more
complex samples, especially those representing subtle postural transitions.

In contrast, the soft-voting ensemble classifier (Figure 6f) exhibited the most balanced
classification performance across all classes, effectively minimizing both false positives
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and false negatives. This improvement is attributed to the ensemble’s ability to integrate
the complementary strengths of its constituent models. For example, KNN’s sensitivity
to neighborhood patterns, SVC’s margin-based separation, and MLP’s nonlinear feature
learning are harmonized through probabilistic averaging, resulting in a more robust and
generalizable decision boundary. These results further emphasize the strength of the en-
semble strategy—not merely in achieving higher accuracy but in producing more consistent
and reliable predictions across diverse scenarios. This is particularly critical for long-lie
detection, where misclassifying a true immobility event (false negative) could delay emer-
gency response, while false positives may cause unnecessary alarms. Overall, the confusion
matrix analysis provides compelling evidence that the ensemble classifier delivers a practi-
cal balance between performance and reliability, making it a strong candidate for real-time,
safety-critical applications such as fall aftermath monitoring in elderly care.

(a) K-Nearest Neighbors (KNN) (b) Support Vector Classifier (SVC)

(c) Multi-Layer Perceptron (MLP) (d) Decision Tree (DT)

(e) Logistic Regression (LR) (f) Soft-voting Ensemble Approach

Figure 6. Confusion matrices of various classification models for performance evaluation: (a) KNN,
(b) SVC, (c) MLP, (d) DT, (e) LR, and (f) Soft-voting Ensemble. These matrices reflect actual versus
predicted class distributions.
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4.4. Real-Time Validation with Healthy Subjects

To evaluate the real-time applicability of the proposed system, experimental trials
were conducted with two healthy adult volunteers (mean age: 35.5 ± 1.5 years; mean
height: 158 ± 8 cm; mean weight: 55 kg). Each subject performed a variety of ADLs—such
as sitting, lying, standing, crawling, and walking—along with simulated fall scenarios.
The simulated falls were categorized into forward, backward, sideways, and collapsing
falls. In total, the dataset used for testing in this phase comprised over 40 min of thermal
video, segmented into labeled clips of ADLs and fall responses.

Recordings were conducted in two distinct indoor environments: (1) a dimly lit living
room and (2) a brightly illuminated laboratory. In the living room setting (Figure 7),
the system successfully distinguished between recoverable falls and sustained immobility.
For instance, when the subject remained in a fixed posture with minimal movement, a long-
lie condition was flagged after a 15-min observation period with body orientation variation
below 15%. While this threshold may be longer than clinical recommendations, it was
conservatively chosen to minimize false positives during simulation with healthy subjects,
in line with previous long-lie literature [2,5,11–13].

In the laboratory setting (Figure 8), despite occasional occlusions or non-frontal ori-
entations, the system retained its ability to track movement trends. Notably, the posture
monitoring logic was still able to correctly identify recovery motions—such as reposi-
tioning or crawling—as indicators of non-long-lie events. However, we acknowledge
that such behaviors (e.g., crawling without successful recovery) could still reflect situa-
tions requiring assistance. Addressing this limitation requires deeper behavior modeling
beyond orientation-based immobility alone, which we identify as an important area for
future development.

Figure 7. Long-lie detection in real-time from thermal input. Subject remains immobile after a fall
beyond the 15-min threshold.

Figure 8. Recovery detection after fall. The subject repositions after impact, preventing false
long-lie detection.
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5. Discussion
The primary objective of this study was to develop a lightweight, privacy-preserving

system capable of detecting long-lie conditions following falls using thermal imaging and
a soft-voting ensemble classifier. The proposed approach demonstrated high accuracy, pre-
cision, recall, and specificity in both offline evaluation and real-time deployment. By com-
bining three complementary classifiers—KNN, SVC, and MLP—into a model-agnostic
ensemble, the system minimized classification errors and achieved robustness across var-
ious postural conditions. Analysis of confusion matrices (Figure 6) revealed that each
individual classifier had distinct strengths and limitations. KNN delivered balanced predic-
tions with low misclassification rates; SVC and MLP provided competitive but slightly less
consistent results; DT suffered from overfitting; and LR showed moderate generalization ca-
pabilities. The ensemble classifier outperformed all individual models by integrating their
complementary strengths through soft voting to produce more reliable and generalized
decisions. These findings confirm the benefit of classifier fusion, especially when working
with interpretable, handcrafted features under constrained computational resources.

While advanced deep learning architectures such as CNNs, transformers, and au-
toencoders have demonstrated strong performance in vision-based fall detection tasks,
they often require substantial computational resources, large labeled datasets, and GPU-
accelerated environments. These requirements conflict with the goals of privacy preserva-
tion, edge deployability, and interpretability. In contrast, our use of a soft-voting ensemble
based on lightweight classifiers (KNN, SVC, MLP) offers a practical tradeoff between
performance and efficiency. It enables real-time inference on resource-constrained devices,
such as the Raspberry Pi, without compromising detection accuracy. Moreover, the use
of handcrafted geometric features allows domain-level interpretability, which is particu-
larly valuable for healthcare applications where model decisions need to be explainable to
non-technical users.

In the real-time evaluation, the system was able to effectively differentiate between
typical ADLs, transient falls, and critical long-lie incidents. Trials conducted in both dimly
lit and brightly illuminated rooms confirmed that the thermal-based system maintained
consistent detection performance independent of ambient light—reinforcing the practicality
of thermal sensing for unobtrusive in-home monitoring. Moreover, the deployment on a
Raspberry Pi 5 validated the computational efficiency of the entire pipeline, confirming
the system’s viability for embedded, cloud-free implementation. The use of a 15-min
threshold for long-lie identification was a conservative choice based on two considerations:
(1) the ethical constraints of involving healthy participants in prolonged immobility and
(2) the goal of minimizing false positives during early-stage testing. While shorter clinical
thresholds (e.g., 1–5 min) may be more appropriate in emergency scenarios, our architecture
supports easy reconfiguration for real-world deployment with elderly users. Similarly,
the 15% posture variation threshold was derived empirically to balance sensitivity and
specificity in distinguishing between static immobility and voluntary recovery attempts.

To the best of our knowledge, this is the first thermal-based long-lie detection system
that integrates handcrafted geometric features, pose estimation from a reduced keypoint
set, and model-agnostic ensemble classification tailored for edge devices. While prior
research has focused on fall detection or utilized deep neural networks that are unsuitable
for embedded platforms, our approach offers a unique balance between interpretability,
efficiency, and deployment readiness. Furthermore, we introduce a rule-based immobility
monitoring logic to track postural variation over time, enabling post-fall risk assessment
without the need for additional sensors. This contribution directly addresses the research
gap, particularly regarding the need for practical, long-life detection systems that preserve
privacy, operate in real-time, and are adaptable to non-invasive sensing environments. Our



Sensors 2025, 25, 3836 18 of 22

system is also among the few that combines both pre-fall and post-fall cues—using pose
and motion data to infer long-lie states.

Despite its strengths, the system has several limitations. First, skeleton keypoint extrac-
tion from thermal images is sensitive to occlusion and side-facing orientations. The current
method mitigates short-term landmark disappearance using confidence-based filtering,
backward interpolation (Equations (3) and (4)), and temporal smoothing, which are effec-
tive against minor occlusions such as motion blur or partial self-occlusion. However, severe
occlusions—caused by furniture, extreme body curling, or low camera angles—can lead to
incomplete or noisy pose estimation. In such cases, the system conservatively interprets
unreliable input as a movement to avoid false alarms, which may result in missed long-lie
detections. Similarly, crawling is currently interpreted as active movement and excluded
from the long-lie classification, potentially overlooking individuals who remain mobile
despite being incapacitated. Despite the risk of keypoint loss during prolonged static
postures, we observed that the thermal appearance of the body in a lying position remains
stable across frames. This thermal consistency—combined with the fixed camera perspec-
tive and constant environmental conditions—facilitates persistent keypoint visibility over
time. In our dataset, long-lie sequences did not result in the systematic disappearance
of keypoints; instead, pose estimators maintained a stable set of upper body and hip
landmarks throughout. Furthermore, the temporal filtering mechanism compensates for
occasional low-confidence detections, ensuring that isolated frame-level dropout does not
lead to fragmentation of the pose sequence. Future work will address these limitations by
incorporating motion pattern classifiers and dynamic pose models to improve robustness
under challenging visual conditions.

Second, sensor placement plays a critical role in coverage and reliability. Our current
tripod-mounted, side-angled setup was selected for its portability and suitability for indoor
testing; however, a ceiling-mounted, top-down configuration may improve the visibility
of all limbs and reduce occlusion—especially during rotational motion or transitions. We
plan to evaluate such setups in future iterations. Third, the dataset used in this study
consisted of simulated falls performed by healthy adults, which may not fully reflect the
behavioral and biomechanical characteristics of older adults. The body orientation, reaction
times, and recovery attempts of elderly individuals may differ significantly. Therefore,
future validation with elderly participants in real-world environments is essential to ensure
clinical relevance. Finally, while our system focuses on skeletal-based features, integrating
physiological monitoring (e.g., heart rate or respiration) could enhance detection confidence
and allow earlier intervention. Thermal imaging opens possibilities for passive vital sign
estimation, which we intend to explore in subsequent phases of this research.

Overall, the proposed system demonstrates the feasibility of combining privacy-
preserving sensing, interpretable features, and efficient ensemble classification into a de-
ployable, edge-compatible solution. It addresses key concerns in fall aftermath monitoring,
including ethical sensing, latency, and real-time responsiveness. By bridging the gap be-
tween experimental robustness and practical deployment, this work contributes to the
growing field of unobtrusive elderly care technologies. In summary, the system repre-
sents a novel and practical approach to long-lie detection that is both privacy-aware and
resource-efficient. By addressing key limitations through future enhancements—such as
advanced behavior recognition, top-down sensing, and elderly-focused validation—this
system has strong potential to be translated into real-world applications and integrated
into homecare or clinical monitoring platforms.
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6. Conclusions
Timely detection of long-lie incidents is essential to reducing the risk of severe health

complications among elderly individuals living independently. This study proposed and
validated a privacy-preserving long-lie detection system based on thermal imaging and a soft-
voting ensemble classifier (KNN, MLP, SVC) deployed on a resource-constrained single-board
computer. The system achieved strong classification performance, with accuracy, precision,
recall, and F1 score of 0.98, specificity of 0.99, and AUC of 0.993—demonstrating its capability
to distinguish long-lie conditions from ordinary falls and activities of daily living in real
time. Despite its promising results, the study acknowledges several limitations. The system’s
detection performance may be affected by low-resolution thermal imaging, partial occlusions,
and atypical movement patterns such as crawling. Moreover, the evaluation was conducted
solely on healthy participants performing simulated scenarios, which may not fully capture
the variability in posture and recovery behaviors observed in elderly populations. The current
logic also classifies crawling as movement, potentially overlooking cases where assistance
is still required. Future work will focus on addressing these limitations by incorporating
higher-resolution thermal sensors, refining behavior recognition algorithms to detect complex
recovery attempts, and validating the system with elderly users in real-world settings. Addi-
tionally, integrating passive vital sign monitoring could further enhance the system’s ability to
assess user status and support timely medical intervention. In conclusion, this work presents
a practical, interpretable, and deployable solution for long-lie detection that balances privacy
preservation, computational efficiency, and detection accuracy. With further development
and validation, the proposed system holds strong potential to be integrated into intelligent
in-home monitoring platforms for elderly care.
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Abbreviations
The following abbreviations are used in this manuscript:

TOG Time On Ground
CSV comma separated values
KNN k-nearest neighbor
MLP multi-layer perceptron
SVC support vector classifier
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LR linear regression
DT decision tree
ADL activities of daily living
CPU central processing unit
GPU graphics processing unit
ACB angle center of body orientation
WHR width-to-height ratio
COG center of gravity
BS body segment
CUB COGs for the upper body
CWB COGs for the whole body
CLB COGs for the lower body
AUC area under the curve
ATE average execution time
CNNs convolutional neural networks
GRU Gated Recurrent Units
RBFNN Radial Basis Function Neural Network
SRAE Spatio-temporal Residual AutoEncoder
SBCs Single Board Computers
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