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ABSTRACT

Context. The evolution of binary stellar systems involves a wide range of physical processes, many of which are not yet well under-
stood. This is particularly true for close binary systems formed of a white dwarf and a main-sequence star. For instance, characterizing
certain mass transfer episodes that may lead to a common-envelope phase and its subsequent evolution is still an open problem. For-
tunately, the observational capabilities of current surveys, coupled with the feasibility of population synthesis models, enable us to
reconstruct the past history of these systems, shedding light on their evolution and theoretical modeling.
Aims. We aim to build a general-purpose algorithm based on inverse population synthesis techniques, able to reconstruct the past
history of binary systems, particularly those involving a white dwarf and a main-sequence star. This algorithm will be applied to a
sample of eclipsing binaries, aiming to ascertain their progenitors and past histories. Additionally, the resulting input space parameters
will be analyzed, with a specific focus on the common-envelope phase.
Methods. With the help of a consolidated population synthesis code, MRBIN, we developed an algorithm able to find the progenitor
parameters of a given evolved binary system. The performance of the algorithm was tested on a set of synthetic binary systems. Once
validated, it was applied to a sample 30 white dwarf plus main-sequence eclipsing binaries observed by the Zwicky Transient Facility
survey.
Results. We determined the input space parameters of the progenitors for the 30 eclipsing binary systems to which the algorithm was
applied. These parameters included the initial primary and secondary masses, the orbital separation and eccentricity, the common-
envelope efficiency (αCE), and the age at which the system was formed. Furthermore, the analysis of the global properties revealed
some important features: a mild anticorrelation between the common-envelope efficiency parameter and the secondary mass, the ab-
sence of a universal value of αCE along with no need for internal energy, although in the low-mass regime, the high values of αCE

suggest a possible contribution, and an initial thermalized eccentricity distribution.
Conclusions. Although a strong degeneracy among the input parameters exists in the reconstruction of post-common envelope binary
systems, the high accuracy obtained for the eclipsing-binary systems analyzed here has allowed our algorithm to make a reasonable
determination of the initial parameters without the need to include external constraints. The global properties found here so far, can
be substantially improved when analyzing a future volume-complete sample.

Key words. binaries: close – binaries: eclipsing – white dwarfs

1. Introduction

A significant fraction of stellar systems in our Galaxy are formed
by binary stars (e.g. Moe & Di Stefano 2017; Niu et al. 2021;
Torres et al. 2022). The physical processes involved in the evo-
lution of such systems are more varied and, at the same time,
often more complex than those describing the evolution of
their single counterparts. Angular momentum transfer, magnetic
braking, gravitational wave emission, rejuvenation and ageing,
orbital synchronization, and, especially, mass transfer episodes,
are some examples of such physical processes characteristic of
binary evolution.

Unfortunately, many aspects of these processes remain
poorly understood. Precise observational data coupled with com-

⋆ Corresponding author: santiago.torres@upc.edu

prehensive statistical analyses are essential to constrain certain
theoretical models. Of particular interest are those binary sys-
tems formed by at least a white dwarf. These objects represent
the most common remnant among stellar evolution and their
physical properties are reasonably well understood from a the-
oretical point of view (see Althaus et al. 2010; Isern et al. 2022,
for recent reviews). This understanding enables the derivation of
precise evolutionary cooling models, thereby establishing white
dwarfs as reliable cosmochronometers (Fontaine et al. 2001).
The photometric magnitudes of white dwarfs are thus correlated
with their cooling age. Hence, with an appropriate initial-to-final
mass relationship we can derive the mass of the progenitor stars,
their lifetime in the main sequence, and ultimately, the total
age of the system. This information, when coupled with other
properties of the non-evolved companion, such as their metal-
licity, kinematics, or activity, can lead to important age-relation
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estimates (e.g Rebassa-Mansergas et al. 2021, 2023; Raddi et al.
2022).

However, during a mass transfer episode, the inference
of the initial progenitor’s parameters can be especially chal-
lenging. This is particularly true when dynamically unstable

mass transfer occurs, thus leading to mass overflow through
the Roche lobe. This generally results in a common envelope

phase through which the binary separation decreases dramati-
cally. When formed of a white dwarf and a main-sequence star,

the resulting system typically exhibits a short orbital period rang-
ing from a few hours to a few days (Rebassa-Mansergas et al.

2008; Nebot Gómez-Morán et al. 2011). These systems are of
special interest as precursors of cataclysmic variables (e.g.
Pala et al. 2022), super-soft X-ray sources (e.g. Parsons et al.

2015) and double degenerates (e.g. Napiwotzki et al. 2020). All
these exotic objects may later result in a type Ia supernovae (e.g.

Wang & Han 2012).

Several attempts to reconstruct the progenitors of these kinds
of systems, that is, the initial conditions of the parent stars,

can be found in the literature (e.g. Nelemans & Tout 2005;

Zorotovic et al. 2010; Davis et al. 2011; Hernandez et al. 2021,
and references therein). However, given the irreversible nature
of many stellar processes (particularly the common-envelope

phase), reversing this process to precisely reconstruct the com-
plete past history solely from final observable parameters is a

tough task. An approach to avoid these issues is to adopt fixed
values for certain parameters or relying on a grid of predefined

models. However, this limits the exploration of the initial param-
eter space, which, in our opinion, is one of the major drawbacks
of the methodologies used so far.

Detailed binary evolution codes, such as MESA (Paxton et al.
2015) or BINSTAR (Siess et al. 2013), allow for precise track-
ing of the physical processes governing the evolution of binary
systems. However, these tools are generally time-consuming and
can only simulate stellar evolution forward in time based on ini-
tial conditions. On the other hand, binary population synthesis
allows for faster, although less precise, simulations of a sam-
ple of binary stars from a given set of conditions. Hence, tech-
niques to effectively identify the progenitors of a specific set
of binary stars using population synthesis are required. Recent
advances, such as the dart_board code (Andrews et al. 2018),
integrate Markov Chain Monte Carlo methods with rapid binary
evolution models, improving efficiency and allowing for flexible
modeling of both populations and individual binaries, while nat-
urally incorporating observational uncertainties and additional
constraints.

In this paper, we aim to develop an algorithm based on a pop-
ulation synthesis code capable of identifying the initial parame-
ters that, through binary evolution, result in a set of final param-
eters consistent with the observable ones. No restrictions are
imposed on the initial parameters, allowing us to identify possi-
ble correlations among these parameters. Time efficiency and the
ability to be applied to a wide range of binary systems are also
two desirable characteristics of our algorithm. Finally, the algo-
rithm will be applied to a set 30 white dwarf plus main-sequence
(WDMS) eclipsing binaries identified by the Zwicky Transient
Facility survey (Brown et al. 2023). The accurate estimation of
stellar parameters in these systems represents a clear advantage
over previously used samples subjected to substantially larger
observational uncertainties and will result in a restricted sam-
ple of compatible progenitors. Consequently, this restriction will
refine the conditions of theoretical models and shed light on the
evolution of these systems.

2. Population synthesis code

In this work, the MRBIN population synthesis code is used for the
simulation of binary systems. It was initially based on the binary
stellar evolution code (BSE) developed by Hurley et al. (2002)
but incorporated several updates provided by Camacho et al.
(2014), Cojocaru et al. (2017) and Canals et al. (2018). The code
is a multipurpose binary population synthesis simulator, but in
particular it has been widely used for the study of the white dwarf
population in binary systems (see, for instance, Torres et al.
2022, and references therein).

Our code belongs to a family of synthetic stellar evo-
lution codes (other examples include, binary_c-python
Hendriks & Izzard (2023); StarTrack Belczynski et al. (2008);
SeBa Toonen et al. (2012), and references therein). These algo-
rithms stand out for being relatively fast, as they rely on
a set of adjustments of analytical formulas that replace pre-
cise and highly time-consuming calculations such as detailed
stellar-structure and binary-evolution codes, for example MESA
(Paxton et al. 2015) or BINSTAR (Siess et al. 2013). Despite this,
the error introduced in the approximation does not exceed 5%
and they also enable a broader parameter analysis space com-
pared to the more detailed evolution code counterparts (see
Fragos et al. 2023, for a recent and detailed analysis).

Consequently, the use of MRBIN is justified as an initial proxy
for the progenitor’s solution. A detailed analysis of each system
using a binary evolution code is beyond the scope of the present
study and deferred to future work.

Several input parameters are needed to be considered for the
evolution of a binary system. Among them, the most relevant are
the mass of the primary star (the initially more massive main-
sequence star), the mass of the secondary star, the eccentricity,
the separation, and orbital period, the efficiency of the common-
envelope phase, the metallicity, and the age when the system was
formed (in our analysis we assumed that the formation of both
stars are coeval). Additionally, the code incorporates a set of pre-
scriptions that account for other aspects of binary evolution such
as tidal evolution, stellar winds, gravitational radiation, magnetic
braking, and angular momentum losses. All these processes intro-
duce an additional set of parameters as described in Hurley et al.
(2002), which are kept constant throughout our simulations.

For the treatment of the common-envelope phase we used
the α prescription (Webbink 1984; Tout et al. 1997). This for-
malism, essentially based on the energy conservation principle,
introduces the αCE parameter as a measure of the efficiency of the
orbital energy to unbind the common envelope of the system:

Ebin = αCE∆Eorb, (1)

where Ebin is the binding energy of the envelope, and ∆Eorb is the
change in orbital energy. An approximation in a compact form
for the binding energy is commonly employed:

Ebin = −
GMdonorMenv

λR1

, (2)

where Mdonor, Menv, and R1 are the total mass, the envelope
mass, and the radius, respectively, of the primary star at the
beginning of the common-envelope phase, and λ is the binding
energy parameter (de Kool et al. 1987; Hurley et al. 2002). This
parameter accounts for the approximation of the previous equa-
tion with respect to the exact value of the gravitational binding
energy. The λ parameter is approximated by a series of values
that mainly depend on the type of star and its envelope mass
(see Claeys et al. 2014, and references therein). In addition to
the binding energy, we can take into account the internal energy,
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Fig. 1. Schematic representation of the problem. The space that contains
all possible initial values (Σ) is projected, after binary evolution, onto
the output space (Ω). Only those points within S lead to a final set of
parameters, called O, that are at a distance, d < σ, from a certain set of
observed parameters. See text for details.

mainly due to the hydrogen recombination energy. However, it
has been estimated that this internal energy is negligible in the
case of post-common envelope WDMS binaries (Zorotovic et al.
2010; Camacho et al. 2014), as the systems in our study sample.
Consequently, we have adopted a null internal energy contribu-
tion in our model.

Finally, our code incorporates some updates with respect
to BSE version. For instance, we used the PARSEC evolution-
ary tracks (Bressan et al. 2012), providing an updated version
of the mass-radius and, thus, effective temperature-luminosity
relation for the main-sequence stars. Analogously, the white
dwarf evolution is followed according to La Plata cooling tracks
(Althaus et al. 2015, 2021; Camisassa et al. 2016, 2017, 2019)
and the corresponding photometry by using Koester’s (Koester
2010) hydrogen-rich atmospheric models. The set of La Plata
models incorporate the most updated physical processes in white
dwarf evolution, such as crystallization, phase separation and
sedimentation of major species such as Ne22, as well as covering
the full range of chemical core compositions (helium, carbon-
oxygen, and oxygen-neon).

3. Methodology: inverse population synthesis

Reconstructing the past history of post-common envelope WDMS
binaries involves determining the parameters of their progenitors:
their masses, separations, eccentricities, ages, and ultimately, a
set of initial parameters. In the following sections, we outline the
strategy presented in our work, which is based on the population
synthesis code, MRBIN, described in the previous section.

3.1. The inverse population synthesis algorithm

In Figure 1 we show a schematic representation of the prob-
lem. Σ is the space containing all possible initial values, while Ω
represents the space containing all possible output values after
binary evolution. Our goal is to find the subset S ⊂ Σ, such
that a system, xin = (x1, x2, . . . , xn)in, that belongs to S , after
binary evolution leads to the final set of parameters, yout =

(y1, y2, . . . , ym)out, that is at a distance, d, smaller than a certain
σ from the set of observed parameters, yobs = (y1, y2, . . . , ym)obs.
As an initial assumption we can adopt a Euclidean normalized
distance between the output point and the observed point:

d =

√

(

y1,out − y1,obs

y1,obs

)2

+

(

y2,out − y2,obs

y2,obs

)2

+ . . . +

(

ym,out − ym,obs

ym,obs

)2

.

(3)

Fig. 2. Schematic representation of our adaptive random walk algo-
rithm. See text for details.

The goal of the algorithm is to find S in an efficient and com-
putationally low-cost way. In order to do that the algorithm per-
forms a random walk in the initial space (Σ) to identify all pos-
sible combinations of parameters that lead to a desired result in
the observable space (Ω). That is, by applying random displace-
ments, the algorithm explores a set of initial parameters which
are evolved using the MRBIN population synthesis code into a set
of output parameters. Next, we calculate the distance (Eq. 3) of
this output point to a given point in the observable space. This
distance is compared with an arbitrary σ, which represents the
allowed error threshold (e.g., 1%, 5%, 10%, etc.). If the result
is within the allowed error range (i.e., d ≤ σ), the set of initial
parameters is considered valid and saved. Otherwise, the point is
discarded and the algorithm returns to the previous point. Then,
a new set of random displacements is applied and the process is
repeated.

To maximize the efficiency of the algorithm (that is, to find
the border that delimits the solution space, S , in the minimum
number of steps), adaptive steps between points can be used.
This means that if the initial generated point is considered valid,
the next step taken from that point will be larger than the previ-
ous one. However, if the new point exceeds the maximum error
allowed, the algorithm will return to the previous point and gen-
erate another one using a smaller step size. In our case, we adopt
a scaling factor, ǫ, of 1.25; that is, we increase or decrease each
new random displacement by 25%.

In Figure 2 we plot an example of the random walk pro-
cess in a 2-dimensional space. It starts from point 1 (green cir-
cle) inside the solution space S . It makes a first step of length
∆1→2 to point 2, that is, a random displacement in each of the
n-dimension of the input space Σ. The new point is evolved and
checked to be valid (i.e., d ≤ σ), so that the algorithm contin-
ues from it. The next step is now increased by the scaling factor,
ǫ = 1.25, so that ∆2→3 is on average a 25% larger than before.
The algorithm falls to point 3, which is also valid. The next step
is even larger, but in this case point 4 is invalid (i.e., d > σ), so
the algorithm has to return to point 3 and do a new step from
there, now a 25% smaller. After two valid points (5 and 6), the
same happens with point 7, implying that the algorithm goes
back to point 6 and continues in another direction with a smaller
step. Points 8, 9, and 10 are consecutively valid, so that larger
and larger steps are taken.

To minimize the time required for the algorithm to explore
the solution space, we initiate a new random walk from any arbi-
trary solution point that has been found thus far. For instance,
point 9 is adopted as the new starting point for the random walk,
with points 2′, 3′, and 4′ marked in blue. Since this new random
walk operates independently from the previous one, both can be
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executed in parallel. Moreover, since this process can be applied
iteratively, it leads to a significant reduction in the overall com-
putation time.

Finally, if the initial guess does not belong to the solution
space, S , a similar adaptive random walk process is applied until
we locate a solution within S . In our example of Fig. 2 that
would be the case when starting with point 1′′ (red circle). If the
new point, 2′′, is at a distance, d, larger than the previous one,
we return to the original point since we find a new one, point
3′′, whose distance is smaller. This process is repeated until we
finally find a point, 4′′, that belongs to the solution space, S . It
then continues as a random walk as previously described.

3.2. Validation of the algorithm

We have tested the feasibility of our algorithm with the assis-
tance of our population synthesis code, MRBIN. Since, for syn-
thetic systems, we know both the initial and final values, we can
thus verify the capability of our algorithm to find solutions given
a set of final values that would play the role of observed values.
Different combinations of input and output parameters have been
tested, as well as different error thresholds (σ).

In all cases, we have been able to verify that the algorithm
based on adaptive random walks can find a stable set of solu-
tions. That is, the distribution of the initial parameters is suf-
ficiently smooth, and they are independent of the algorithm’s
starting point. This is accomplished as long as the number of
generated points is sufficiently high (on the order of 106), and a
minimum of 100 random walks are generated.

For illustrative purposes we have chosen here three represen-
tative cases that correspond to WDMS systems with final periods
of the order of a few hours, ten hours, and days (P = 1.16, 15.50,
and 41.73 h, respectively). The output space consists of five vari-
ables (these five variables are the ones that we can get observa-
tionally, see Section 4): the masses and effective temperatures
of the WDMS, and the orbital period of the system. The free
parameters correspond to six variables of the input space: the
initial masses of the stars, the initial period and eccentricity, the
common envelope efficiency parameter, and the age of the sys-
tem. The metallicity has been fixed to the solar value, and for the
three systems shown here we adopted αCE = 0.3.

Results are displayed in Figure A.1 using a corner plot,
which represents the marginal distribution of each of our con-
sidered input parameters (top histograms) and density maps of
possible projections between any two parameters (rest of sub-
panels). Furthermore, correlation matrices are also generated in
order to identify any potential relationships between parameters.
Each term of the matrix, Pearson correlation coefficient, is cal-
culated as:

r =

∑

((X − X) · (Y − Y))
√

∑

(X − X)2 ·
√

∑

(Y − Y)2

, (4)

where X and Y represent the respective values of two parameters,

while X and Y denote the means of the X and Y variables, respec-
tively. We recall here that correlation coefficients range between
−1 and 1 in the off-diagonal elements of a correlation matrix.
A value of −1 indicates a perfect negative linear dependence, +1
indicates a perfect positive linear dependence, and 0 indicates no
linear dependence at all.

The analysis of the results presented in Fig. A.1 reveals a
similar behavior of the space parameter regardless of the final
period of the systems. In all cases, a smooth distribution of

the input parameters is found, indicative that the algorithm has
reached a stable set of solutions. Moreover, a positive linear
dependence, r ∼ 0.9, is presented between the common enve-
lope efficiency, αCE, and the mass of the white dwarf progenitor,
M1. Similarly, a negative dependence is found between the age
of the system and M1 and αCE. These dependencies reflect the
fact that a specific final period can be achieved by a more mas-
sive primary progenitor in a shorter time when using a larger
αCE parameter. Conversely, when the primary progenitor is less
massive, a smaller αCE is required, but a longer age is needed.

The previously mentioned high correlation reflects a strong
degeneracy in the solution space, S . Different combinations of
the initial parameters (see left panels of Fig. A.1) reproduce a
set of similar final parameters within a certain σ threshold (1%
in the case of the systems represented in Fig. A.1). Among the
set of possible solutions, xs ∈ S , we have adopted the most rep-
resentative or optimal one, xopt, as the most probable one. We
estimated the optimal solution as that which maximizes the joint
probability distribution,

p(xopt) = max
∏

i

fXi
(xi) | x ∈ S , (5)

where fXi
(xi) is the marginal distribution of the input param-

eter Xi. The fact that the probability is constrained to those
points, x, belonging to the solution space, S , implicitly incor-
porates the possible correlations between parameters. Moreover,
we can estimate the error in the optimal solution from those
points, xerr, whose likelihood-based confidence region is within
1σ from the probability of the optimal solution, xopt, that is,

p(xerr) ≥ p(xopt)/
√

e.
In Table 1, we present the synthetic input parameters for the

three systems analyzed here, along with the corresponding val-
ues for the optimal solution (the one that maximizes the joint
probability, Eq. (5)) for the three threshold distances: 0.1%, 1%,
and 10%, respectively. The analysis of Table 1 reveals that the
input parameters found by our algorithm are either perfectly
close or quite close to the synthetic ones for threshold distances
of 0.1% and 1%, respectively. However, this is not the case when
the threshold distance is increased to 10%. In that situation, some
of the input parameters, such as the period or eccentricity, clearly
diverge from the synthetic ones. Even though, it is important
to emphasize here that the solution found by our algorithm in
that case is still completely valid. When enlarging the threshold
distance, the space of possible solutions, S , is also enlarged. In
that situation, the synthetic input values used as a reference for
our validation systems do not necessarily represent the ones that
maximize the joint probability distribution. Given the high cor-
relation between some of the input parameters, solutions with a
higher probability than the one derived from the synthetic values
can be found.

Nevertheless, some caveats and warnings regarding the
method should be addressed. First, provided that a sufficiently
large number of random walkers are generated, we can reason-
ably assume that the method recovers the entire solution space
consistent with the observational constraints. Second, observa-
tional uncertainties must be small enough so that the correspond-
ing solution space, S , is also narrow. In this limited region, we
assume that prior distributions (such as the initial mass func-
tion) can be approximated as approximately constant. Thus, the
impact of including full priors would introduce only second-
order corrections to the recovered parameter distributions.

As long as these two conditions are met, we can approx-
imate the optimal solution by maximizing the product of
the marginal distributions, thereby minimizing the effects of
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Table 1. Validation test.

M1,in (M⊙) M2,in (M⊙) Pin (days) ein αCE Age (Myr) dmin (%)

System 1 1.477 0.103 3613.3 0.781 0.300 4496.6 0
Joint prob. 1.476 0.103 3552.1 0.778 0.300 4506.4 0.1
Joint prob. 1.603 0.151 3294.5 0.802 0.236 3795.0 1
Joint prob. 1.506 0.134 840.0 0.381 0.255 4219.6 10

System 2 1.201 0.156 3117.56 0.751 0.300 6976.77 0
Joint prob. 1.203 0.156 3205.18 0.749 0.292 6937.81 0.1
Joint prob. 1.318 0.156 1068.40 0.349 0.443 6597.66 1
Joint prob. 1.446 0.157 7046.16 0.897 0.745 3961.19 10

System 3 1.926 0.493 2432.85 0.574 0.300 1508.59 0
Joint prob. 1.922 0.493 2442.10 0.575 0.298 1511.57 0.1
Joint prob. 1.947 0.493 3880.81 0.723 0.327 1503.77 1
Joint prob. 2.345 0.500 1996.82 0.776 0.996 930.14 10

Notes. Synthetic input parameters for the three systems analyzed here (Systems 1–3, rows), along with the corresponding values for the optimal
solution (Joint prob., rows) for the three threshold distances: 0.1%, 1%, and 10%, respectively.

possible correlations between parameters. While this approach
has both advantages and limitations, one of our broader goals is
to ultimately derive an estimate of the priors from the collective
properties of the final set of solutions (see Section 5.2).

In this sense, our method is not strictly a Markov Chain
Monte Carlo method, as described in Andrews et al. (2018),
since it does not apply a probability criterion based on the
posterior distribution to guide the random walks. Instead, our
approach is closer to a density estimation technique, aiming to
approximate the probability density function rather than merely
sampling from it. In conclusion, the algorithm presented here for
inverse population synthesis reconstruction can be considered as
a feasible tool for exploring the entire space of initial variables
and efficiently finding the set of solutions and their possible cor-
relations, within a reasonable low computational cost.

4. The observed sample

In this work we analyze the sample presented in Brown et al.
(2023). In their work, they conducted a photometric follow-up
of 43 eclipsing WDMS binaries detected by the Zwicky Tran-
sient Facility (ZTF) survey1, performing an extensive photomet-
ric campaign, and acquiring precise light curves for each object.
Of the 43 systems that they followed-up, 9 do not have mea-
sured parameters because they harbor magnetic white dwarfs.
In addition, the light-curve fits of 4 objects suggest the white
dwarf companions to be brown dwarfs, so that the best fit sec-
ondary masses can only be regarded as upper limits. Taking this
into account we will apply the algorithm to the remaining 30
systems. After fitting the best model to each observed system,
Brown et al. (2023) found a set of stellar parameters for each
component of the system. In Table B.1 we show the most rele-
vant stellar parameters obtained in that work and the correspond-
ing observational errors. Among the parameters available in their
study, we adopted the more representative ones, including the
observed masses and effective temperatures of both components,
as well as the orbital period of the system. Typical observational
errors for these parameters are of the order of 5%.

To accurately reconstruct the past histories of these sys-
tems, it is also necessary to incorporate the metallicities of the
stars, a parameter that is not provided by Brown et al. (2023).
We utilized the PARSEC isochrones (Bressan et al. 2012) for

1 https://www.ztf.caltech.edu/

this purpose. Using the observed values of effective temper-
ature and mass, we calculate the metallicities by performing
multivariable interpolation on the corresponding isochrones.
This procedure has been applied to our observed sample,
obtaining a metallicity proxy value for all systems except for
ZTF J140537.34+103919.0. Due to its lowest mass companion
(reported as just above the hydrogen-burning limit, Brown et al.
2023), proper determination of its metallicity is not feasible.
Therefore, a solar value of Z = 0.014 has been adopted. The
list of metallicities derived is presented in the right column of
Table B.1. An average value of Z = 0.0145 with a disper-
sion of σZ = 0.003 has been found, thus indicating the thin
disk origin of the vast majority of this sample and the per-
fect agreement with metallicity estimates of WDMS binaries
(Rebassa-Mansergas et al. 2021).

5. Results

5.1. Reconstructing individual binary systems

Our algorithm has been applied to each of the 30 systems from
Brown et al. (2023) presented in Table B.1. We remind the reader
that the observed space parameter consists of the masses and
effective temperatures of both stars, and the orbital period of the
system. For the input space parameter (that is, our free param-
eters) we adopted a six-dimensional space, consisting in the
masses of the progenitor stars, the initial eccentricity and orbital
period, the common envelope efficiency, and the age when the
system was born. For each system we adopted the metallicity
presented in Table B.1 as a constant value along the simulation.

In Figure C.1 we present the distribution of input param-
eters found for three representative cases and the associated
corner plots (left panels), together with the corresponding cor-
relation matrices (right panels): ZTF J041016.82-083419.5,
ZTF J063808.71+091027.4, and ZTF J122009.98+082155.0.
We remark that the distribution found for each parameter (his-
togram panels of each corner plot) is reasonable smooth, thus
indicating that a stable solution has been found.

A closer look reveals that, while the progenitor masses have
a symmetric, near Gaussian distribution, that is not the case for
the rest of parameters. In these cases, the asymmetric distribu-
tion implies that the average value (mean) does not agree with the
most probable value (mode). Inspection of the correlation matri-
ces also revealed a strong correlation among some input parame-
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Fig. 3. Parameter comparison of output values for the solution that provides the minimum distance, (M1,M2,Teff,1,Teff,2, P)out, with respect to the
observed values, (M1,M2,Teff,1,Teff,2, P)obs. As it can be seen, all parameters perfectly agree except Teff,2, which shows a clear shift between the
output versus observed values. See text for details.

ters. That is the case of the common-envelope efficiency param-
eter, αCE, and the mass of the primary, M1, where a positive cor-
relation exits (r ∼ 0.9 ∼ 0.95) for most of the systems. Similarly,
a negative or anticorrelation arises between the age and M1 and
between the age and αCE (r ∼ −0.9 ∼ −0.95). These facts imply
that the initial parameters are not independent variables. There-
fore, if we were to adopt a solution set comprising the most prob-
able or average value for each individual parameter, it would likely
yield an incompatible solution with the observed values. Conse-
quently, we have adopted the set of input values that correspond to
the optimal solution, that is the solution that maximizes the joint
probability distribution of the initial parameters (see Section 3.2),
for the remainder of the discussion.

In Table C.1 we show the values corresponding to the opti-
mal solution of our analyzed systems. Also, for sake of com-
pleteness, we include in the Appendix C Tables C.2 and C.3, cor-
responding to the mean and mode values, respectively. However,
we should remark, as previously stated, that the initial conditions
derived from the mean and mode values for each individual ini-
tial parameter, given the strong correlation among some of them,
may not necessarily represent a solution of the binary system.

For the set of optimal solutions we computed the distance to
the observed values following Equation (3). In Table C.1 these
distances are shown as a percentage under column dmin. Like-
wise, we display in the last column of the table, the observational
error, σobs; calculated as the sum in quadrature from the error
estimates presented in Table B.1 for M1, M2, Teff,1, Teff,2, and,
as a result of error propagation, 2.5% for the period. This σobs is
adopted as our threshold error in the computation of solutions.
An initial analysis revealed that for only 11 systems, the set of
solutions provide a distance below the observed error threshold.

To investigate this result in more detail, we have depicted
in Figure 3 the output set of values for our optimal solution,
(M1,M2,Teff,1,Teff,2, P)out, with respect to the corresponding
observed values, (M1,M2,Teff,1,Teff,2, P)obs. As a visual aid, we

marked (solid black line) the 1:1 relationship between parame-
ters. A practically perfect agreement is achieved for all parame-
ters except for Teff,2. In that case, the obtained solution is system-
atically hotter than the observed value. This issue was reported
in Brown et al. (2023, see Fig. 5.).

From this analysis we conclude than the main source of error
arises from the discrepancy in the effective temperature of the sec-
ondary. We can account for this problem by adopting an ad hoc
shift of 310 K (dashed black line) in the observed effective tem-
perature estimates or, equivalently, in theoretical model. The new
distances for Equation (3) we would obtain in this case are writ-
ten in Table C.1 under the column d′

min
. With the exception of two

cases, all the others now exhibit a distance below the observed
threshold error. These two (ZTF J125620.57+211725.8 and ZTF
J140537.34+103919.0) and have been reported in Brown et al.
(2023) as systems of special interest.

ZTF J125620.57+211725.8 was originally identified in
Rebassa-Mansergas et al. (2021) as an unresolved binary sys-
tem formed by a extremely low mass (below 0.2 M⊙) white
dwarf. On the other hand, the mass estimate of the white dwarf
by Brown et al. (2023) was notably larger, specifically 0.48 ±
0.01 M⊙. Our inverse population synthesis study reveals that is
not possible to find a set of progenitor parameters that repro-
duce the observed fitted values presented in Brown et al. (2023).
Thus, we reinforce the idea of conducting spectroscopic follow-
up alongside a detailed analysis of binary evolution for this par-
ticular system.

Regarding ZTF J140537.34+103919.0, this system was
reported in Brown et al. (2023) as a binary with a possi-
ble sub-stellar companion, whose secondary star exhibits an
effective temperature hotter than expected for its mass. The same
authors suggested the possibility of it being a triple system to
explain their observed peculiarities. Nevertheless, a thorough
analysis of this system is deserved to determine the progenitors
and understand their past history.
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Fig. 4. Distribution of parameters for the entire sample.

Finally, it is important to note that, although the data quality
of the sample analyzed here is sufficient to yield observational
uncertainties on the order of a few percent, this level of uncer-
tainty slightly surpasses the ideal conditions (see Section 3.2)
required to accurately recover the input parameters. Conse-
quently, some caution should be exercised in the interpretation
of the results presented here and in the forthcoming sections.

5.2. Global properties of the progenitors

Once each individual system was analyzed, we studied the prop-
erties of the entire sample (28 systems that have compatible
solutions with the observed errors; see Table C.1). Recall that
we adopted as progenitor solutions the set of parameters that
resulted in the maximum joint probability within the observed
parameter space. In Figure 4 we display a corner-plot for the
progenitor parameters (left panel) and the respective correlation
matrices (right panel). As input parameters we have used the
masses of the progenitor stars, M1 and M2, the eccentricity and
orbital period, e and P, the common envelope efficiency parame-
ter, αCE, the age of the system, Tage, and we have also added the
metallicity, Z, as computed in Section 4.

Some correlations between the parameters are detected.
First, a clear anticorrelation, r = −0.801, arises between the
total age and the mass M1. As expected from stellar evolution
theory, primary low-mass progenitors (roughly around 1 M⊙),
spend more time until they overfill their Roche-lobes. This natu-
ral effect is also increased if we consider that we have estimated
low-metallicities for those low-mass primaries.

Second, a mild anticorrelation, r = −0.285, is shown
between the αCE parameter and the mass of the secondary. For
a better analysis, we plot in Figure 5 αCE versus M2 with its
corresponding error bars and marked as a dashed red line the
linear decreasing trend. The confidence interval for the slope
is [−1.656, 0.359] (M⊙)−1 at a 95% confidence level, indicating
that a null or even positive slope cannot be entirely excluded.
However, the relation found suggests that the largest values of
the common-envelope efficiency parameter correspond to low-
mass secondaries, although not all of these systems present a
large αCE. On the other hand, more massive secondaries present
low-values of αCE. Moreover, the analysis of the distribution
of the common-envelope efficiency parameter reveals that there
is not a unique value (on the contrary there is a wide range

Fig. 5. Common envelope efficiency parameter, αCE, as a function of
the mass of the secondary. The decreasing linear trend is marked by the
dashed red line.

from αCE = 0.087 to 0.977) capable of reproducing the entire
sample. The average value of the common-envelope efficiency
for the whole sample result to be 〈αCE〉 = 0.588, which is
slightly larger than in previous analysis of post-common enve-
lope WDMS binaries that assigned a low efficiency parameter,
αCE ∼ 0.2−0.4, (e.g. Zorotovic et al. 2010; Toonen & Nelemans
2013; Camacho et al. 2014). This is partially due to the fact that
some of the systems with the lowest secondary-mass require
a higher efficiency, in some cases αCE is nearly as high as 1.
For instance, this is the case for ZTF J164441.18+243428.2
and ZTF J102653.47-101330.3, both with M2 < 0.11 M⊙ and
with αCE = 0.932 and 0.942, respectively. This result also
suggests that for low-mass secondaries, the inclusion of other
sources of energy, in addition to the orbital energy, such as
the thermal envelope energy or internal energy due to dissoci-
ation and ionization energy of the envelope, may be considered
(Rebassa-Mansergas et al. 2012).

The aforementioned suggestion seems to be in line with pre-
vious analysis by De Marco et al. (2011), Davis et al. (2011).
These authors hypothesized that lower mass companions require
more time than a stellar dynamical time to spiral into the core
of the giant. This prolonged process enables the giant to use its
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Fig. 6. Initial eccentricity distribution for the systems analyzed in this
work. Despite the scarcity of the data, the distribution seems to be
consistent with the canonical thermal distribution (red line), f = 2e,
although some initially already circularized systems appear in the
sample.

internal thermal energy to facilitate the unbinding of its enve-
lope. This effect should be more evident in the case of brown
dwarf companions instead of M dwarfs. However, in a recent
analysis of a sample of close detached white dwarf plus brown
dwarf binaries Zorotovic & Schreiber (2022) indicated that these
systems can be reconstructed with a low-efficiency parameter
without the need to include other sources of internal energy for
expelling the envelope. However, it should be noted that this
result is achieved by imposing the condition that the age of the
analyzed systems should be above a minimum age derived from
the literature. If this condition is omitted, larger values of the
efficiency parameter are recovered, indicating in that case the
contribution of a certain amount of internal energy.

It is worth mentioning here that our algorithm does not
impose any restrictions on the input parameters, which include
the total age of the system. Furthermore, since our observational
sample includes a precise estimation of the temperatures of both
stars, the algorithm is thus able to properly constrain the total
age of the system.

Continuing our analysis of the output parameters, we also
observed a certain anticorrelation between the common enve-
lope efficiency and the age of the system. Large values of αCE

are linked to young ages. However, the opposite is not entirely
true, as low efficiency values are associated with both young and
old systems. This fact implies that, at least for the sample ana-
lyzed here, there is no clear anticorrelation between the common
envelope efficiency and the mass ratio, q = M2/M1, as proposed
by De Marco et al. (2011).

Another noteworthy result of the set of solutions found
by our algorithm concerns to the eccentricity distribution. In
Figure 6 we plot the initial eccentricity distribution for the sys-
tems analyzed here. For visual analysis we depict the canonical
thermal distribution (dashed red line), f = 2e. We should be
aware that a larger phase space at higher eccentricities is avail-
able for the random walkers (for instance, binary systems cir-
cularized at periastron upon Roche lobe overflow, allowing for
a much wider range of orbital separations). However, given that
the optimal solution corresponding to the product of the marginal
distributions is maximized, individual biases can, to some extent,
be compensated. For instance, binaries with shorter initial peri-
ods are naturally more prone to Roche lobe overflow and thus
tend to interact earlier (as shown in the marginal distributions

Fig. 7. Age-metallicity relationship for the objects analyzed in this work
(black points). For visual comparison we also show the linear trend of
our sample (dashed red line) and the sample of wide WDMS binaries
from (Rebassa-Mansergas et al. 2021, gray dots, RM+21).

of the corner plots in Figure A.1). These effects therefore com-
pensate for the larger phase space available at higher eccen-
tricities when determining the optimal solution for the system.
We conclude that, as long as the observational errors are small,
the optimal solution can be considered a reasonable estimate,
and therefore the distribution obtained from the analyzed sam-
ple reflects the properties of that sample. Hence, despite the fact
that our sample cannot be considered complete by far, and the
existence of some initially already circularized systems (∼10%),
the eccentricity distribution found in this work sample seems to
be compatible with the thermal one. A Kolmogorov-Smirnov test
yields a p-value of 0.2054, failing to reject the null hypothesis
that the data follows the thermal distribution. This result suggests
that close binary systems exhibit an initially thermalized distri-
bution of eccentricities, rather than a uniform or even superther-
mal distribution found in wide binaries (e.g., Geller et al. 2019;
Hwang et al. 2022).

Finally, our study of the sample of eclipsing binary sys-
tems from Brown et al. (2023) has allowed us to estimate the
metallicities (see Section 4) and, through our reconstruction
algorithm, the ages of such binary systems. Hence, we can
analyze the resulting age-metallicity distribution for objects in
our sample. In Figure 7 we show the distribution obtained
(black dots) along with a best-fit linear trend (dashed red line).
For visual comparison we also plot the age-metallicity val-
ues (gray dots) for the sample of wide WDMS binaries from
Rebassa-Mansergas et al. (2021). The dispersion in metallici-
ties presented in our sample for younger ages (up to ∼3 Gyr)
is in agreement with that presented in Rebassa-Mansergas et al.
(2021). However, a noticeable trend towards lower metallicities
is shown in our sample. Although the 95% confidence interval
for the slope, [−3 870, 799] (yr−1), reveals that it is not entirely
incompatible with a null slope. In any case, the lack of older
high-metallicity objects in our sample, in contrast to the sam-
ple of Rebassa-Mansergas et al. (2021), where this dispersion in
metallicities is consistently maintained across all ages, can be
attributed to the shorter main-sequence lifetime of these objects
compared to their low-metallicity counterparts. Hence, they can
enter the common-envelope phase earlier and spend more time
cooling, becoming too faint to be detected, or even lead to a
merger of the binary system. A complete volume-limited sam-
ple would provide valuable insight into this issue.
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6. Conclusions

We have developed a binary stellar reconstruction algorithm
based on inverse population synthesis techniques. The algorithm,
employing adaptive random walks, efficiently explores the input
parameter space and identifies a set of solutions. This set con-
sists of initial parameters that, when the binary system evolves,
result in output parameters compatible with the observed ones
within a certain error threshold.

The algorithm was validated with the aid of MRBIN, a popu-
lation synthesis code devoted to binary evolution and based on
BSE code. We verified that our algorithm can identify a stable
solution after computing approximately 106 points per system
and around 100 random walks in parallel, representing a reduced
computational time. At the same time, this solution is obtained
without the need to impose any restriction on the input variables.

Once validated, we applied our algorithm to a set of eclipsing
WDMS binaries detected by the ZTF survey. The high-precision
parameters of this set of observed systems allows us to obtain
an accurate estimate of the progenitor parameters without the
need to impose any external constraints. Out of the 30 systems
analyzed, we found a valid solution, meaning that the distance
between the output parameters and the observed values is below
the error threshold, for 28 of them.

The input parameter space for those 28 systems is defined
by the masses of the progenitor stars, M1 and M2, the eccen-
tricity and orbital period, e and P, the common envelope effi-
ciency parameter, αCE, and the age of the system, Tage. We
have also made a priori estimates of the metallicity, Z, com-
puted through interpolation of PARSEC sequences, and kept
fixed throughout the application of the algorithm. The out-
put parameters correspond to the masses and effective temper-
atures of the observed objects, as well as their orbital peri-
ods: (M1,M2,Teff,1,Teff,2, P)obs. The output parameter values
provided by our algorithm perfectly match the observed ones,
except for Teff,2. In this case, a shift of 310 K is adopted due to a
calibration issue in the synthetic evolutionary tracks.

The analysis of the global properties has revealed significant
trends and correlations among certain parameters. They can be
summarized in the following points:

– A high degeneracy exists in the input parameter space,
although the excellent precision of the observational data
to which we apply our algorithm allows us to constrain the
input values to a reasonable extent.

– Not a universal value of the common envelope efficiency,
αCE, allows for the reconstruction of all systems; instead, a
wide range of values is needed. In fact, the average αCE value
we find is ≃0.6, which is slightly higher than the 0.3–0.4 val-
ues generally assumed in previous works.

– The αCE parameter exhibits a mild anticorrelation with the
secondary mass. Although no internal energy is required for
the systems analyzed here, larger values found for the lowest
secondary masses suggest that internal energy may be con-
sidered in this regime. Furthermore, the extrapolation of this
result also suggests that the inclusion of this extra source of
energy can be present and may even play a major role in sys-
tems with brown-dwarf companions.

– Initial eccentricities are compatible with a thermal distribu-
tion, although a small fraction (∼10%) of systems are ini-
tially circularized.

– The age-metallicity relation found in this work resembles
that obtained for wide binary systems, although in our sam-
ple of post-common-envelope binaries, there is a lack of old
and high-metallicity objects, probably due to an observa-
tional bias against these objects.

Although preliminary, the results presented in this work high-
light important trends. A more detailed and robust analysis,
incorporating a complete sample along with the effects of selec-
tion biases and prior assumptions, will be necessary to fully con-
firm and refine these findings.
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Appendix A: Validation input space parameters

Fig. A.1. Inverse population synthesis validation test: corner plots (left panels) and correlation matrices (right panels) corresponding to the three
synthetic binary systems with final periods P = 1.16, P = 15.5, and P = 41.73 hours (top, middle, and bottom panels, respectively). Corner plots
represent the set of solutions found by our algorithm within a 1% error threshold.
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Appendix B: Observed stellar parameters

Table B.1. Observed sample

Target M1 (M⊙) Teff1
(K) M2 (M⊙) Teff2

(K) P (days) Z

ZTF J041016.82-083419.5 0.355+0.015
−0.011

14690+560
−550

0.123+0.009
−0.008

2840+110
−110

0.0811093 0.008

ZTF J051902.06+092526.4 0.391+0.019
−0.029

10750+770
−580

0.177+0.014
−0.019

2800+140
−110

0.0929131 0.026

ZTF J052848.24+215629.0 0.787+0.025
−0.025

12100+700
−630

0.184+0.014
−0.013

3130+110
−110

0.2259952 0.008

ZTF J053708.26-245014.6 0.3970.009
−0.007

16100+440
−410

0.204+0.012
−0.011

2970+100
−100

0.3277936 0.019

ZTF J061530.96+051041.8 0.560+0.011
−0.011

15220+600
−510

0.533+0.030
−0.029

3380+110
−110

0.3481742 0.017

ZTF J063808.71+091027.4 0.604+0.013
−0.011

22500+1200
−1000

0.410+0.024
−0.022

3320+110
−110

0.6576453 0.029

ZTF J063954.70+191958.0 0.701+0.011
−0.009

15980+520
−520

0.210+0.011
−0.011

3200+100
−100

0.2593556 0.008

ZTF J064242.41+131427.6 0.633+0.011
−0.008

14560+540
−500

0.150+0.008
−0.008

3110+100
−100

0.1710542 0.006

ZTF J065103.70+145246.2 0.515+0.019
−0.020

13140+560
−670

0.242+0.018
−0.019

3170+120
−110

0.1677075 0.012

ZTF J070458.08-020103.3 0.500+0.012
−0.015

9280+230
−250

0.344+0.018
−0.020

3300+100
−100

0.1413708 0.013

ZTF J071759.04+113630.2 0.528+0.016
−0.017

21110+720
−750

0.296+0.020
−0.022

3150+120
−110

0.4527638 0.018

ZTF J071843.68-085232.1 0.794+0.019
−0.018

18940+870
−880

0.306+0.020
−0.019

3120+110
−110

0.2158113 0.025

ZTF J080542.98-143036.3 0.393+0.013
−0.013

26500+1200
−9000

0.291+0.020
−0.023

3250+120
−110

0.1981669 0.011

ZTF J094826.35+253810.6 0.504+0.026
−0.024

11290+480
−450

0.16+0.015
−0.014

3120+120
−120

0.1418270 0.006

ZTF J102254.00-080327.3 0.605+0.027
0.025

8330+260
−250

0.405+0.030
−0.029

3170+110
−110

0.2314179 0.033

ZTF J102653.47-101330.3 0.376+0.012
−0.010

19320+710
−670

0.105+0.008
−0.006

2840+110
−110

0.0929868 0.004

ZTF J104906.96-175530.7 0.426+0.010
−0.007

13000+440
−460

0.198+0.012
−0.010

3170+100
−110

0.2447332 0.008

ZTF J122009.98+082155.0 0.580+0.017
−0.018

10170+270
−260

0.275+0.019
−0.020

3140+110
−110

1.2329254 0.018

ZTF J125620.57+211725.8 0.479+0.010
−0.009

5073+79
−79

0.101+0.005
−0.005

2950+100
−100

0.5560572 0.002

ZTF J130228.34-003200.2 0.811+0.021
−0.016

11790+400
−330

0.179+0.012
−0.010

3030+100
−100

0.1661310 0.012

ZTF J134151.70-062613.9 0.509+0.038
−0.035

58300+8400
−8700

0.126+0.015
−0.009

2800+210
−220

0.0969505 0.010

ZTF J140036.65+081447.4 0.563+0.009
−0.008

13340+650
−610

0.232+0.012
−0.012

2970+100
−100

0.2602766 0.026

ZTF J140423.86+065557.7 0.736+0.016
−0.015

14980+470
−460

0.409+0.023
−0.023

3100+100
−100

0.1683096 0.039

ZTF J140537.34+103919.0 0.404+0.008
−0.008

29900+1100
−9000

0.085+0.005
−0.005

3430+130
−140

0.2714122 0.014

ZTF J140702.57+211559.7 0.406+0.018
−0.014

10870+350
−350

0.263+0.021
−0.016

3160+110
−110

0.1432802 0.017

ZTF J162644.18-101854.3 0.499+0.015
−0.012

36700+2700
−2700

0.212+0.013
−0.011

3180+110
−110

0.2530067 0.010

ZTF J163421.00-271321.7 0.436+0.042
−0.054

10680+790
−630

0.134+0.016
−0.020

2400+130
−120

0.0780396 0.026

ZTF J164441.18+243428.2 0.382+0.020
−0.018

13270+520
−460

0.103+0.009
−0.009

2500+110
−110

0.0801054 0.015

ZTF J180256.45-005458.3 0.458+0.019
−0.021

10770+630
−500

0.150+0.010
−0.011

3150+110
−110

0.2690033 0.005

ZTF J195456.71+101937.5 0.509+0.015
−0.012

21500+1000
−1100

0.449+0.028
−0.026

3480+110
−110

0.3102884 0.021

Notes. Stellar parameters obtained for 30 selected eclipsing binaries from Brown et al. (2023) and the metallicity value, Z, derived in this work.
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Appendix C: Stellar input parameters

Fig. C.1. Input space parameter obtained through our inverse population synthesis algorithm for three observed cases: ZTF J041016.82-083419.5,
ZTF J063808.71+091027.4, and ZTF J122009.98+082155.0 (top, middle, and bottom panels, respectively.
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Table C.1. Stellar input parameters for the optimal solution

Target M1,in M2,in Pin ein αCE Age dmin d′
min

σobs

(M⊙) (M⊙) (days) (Myr) (%) (%) (%)

ZTF J041016.82-083419.5 1.316+0.032
−0.044

0.119+0.002
−0.002

11599+790
−11235

0.977+0.002
−0.253

0.977+0.023
−0.132

3870+448
−267

10.1 3.4 10.4

ZTF J051902.06+092526.4 1.878+0.030
−0.100

0.172+0.003
−0.005

3690+693
−3317

0.884+0.022
−0.720

0.651+0.138
−0.054

2226+266
−132

13.0 3.5 13.0

ZTF J052848.24+215629.0 3.189+0.047
−0.028

0.180+0.002
−0.001

10162+5916
−6282

0.820+0.051
−0.202

0.529+0.008
−0.019

1002+19
−18

9.8 2.1 11.0

ZTF J053708.26-245014.6 1.382+0.173
−0.053

0.197+0.004
−0.002

296+21622
−42

0.000+0.977
0.000

0.606+0.393
−0.028

4066+516
−1303

12.1 3.3 8.0

ZTF J061530.96+051041.8 2.198+0.071
−0.055

0.514+0.006
−0.007

1109+2045
−567

0.825+0.038
−0.177

0.687+0.076
−0.380

1287+85
−92

13.7 5.3 8.2

ZTF J063808.71+091027.4 2.707+0.026
−0.049

0.405+0.004
−0.005

2303+1038
−974

0.805+0.037
−0.195

0.898+0.102
−0.376

701+39
−15

9.6 1.2 9.2

ZTF J063954.70+191958.0 2.835+0.093
−0.069

0.206+0.005
−0.004

2281+28101
−729

0.739+0.207
−0.211

0.827+0.173
−0.291

705+26
−30

10.2 1.9 7.5

ZTF J064242.41+131427.6 2.431+0.042
−0.046

0.147+0.002
−0.002

1848+1037
−269

0.623+0.159
−0.104

0.642+0.356
−0.049

960+40
−29

7.5 3.2 7.8

ZTF J065103.70+145246.2 1.612+0.128
−0.197

0.237+0.004
−0.005

1555+10215
−686

0.597+0.313
−0.510

0.205+0.064
−0.047

2503+1118
−446

11.1 2.4 10.4

ZTF J070458.08-020103.3 1.344+0.020
−0.027

0.338+0.004
−0.004

777+130
−101

0.042+0.185
−0.040

0.087+0.012
−0.012

4635+293
−175

11.5 3.5 7.4

ZTF J071759.04+113630.2 1.941+0.045
−0.044

0.289+0.005
−0.006

923+605
−214

0.363+0.329
−0.164

0.449+0.325
−0.061

1552+0
−20

13.4 4.0 9.3

ZTF J071843.68-085232.1 3.603+0.118
−0.090

0.297+0.007
−0.005

20746+30474
−10428

0.872+0.058
−0.090

0.317+0.011
−0.014

459+18
−17

13.3 3.9 9.4

ZTF J080542.98-143036.3 1.320+0.494
−0.055

0.288+0.003
−0.005

5050+403
−2624

0.944+0.005
−0.034

0.388+0.429
−0.028

4004+606
−2540

11.6 2.4 9.9

ZTF J094826.35+253810.6 1.094+0.123
−0.036

0.165+0.001
−0.002

627+756
−82

0.466+0.230
−0.185

0.141+0.045
−0.032

7017+783
−1959

10.8 4.3 12.4

ZTF J102254.00-080327.3 2.659+0.087
−0.085

0.396+0.009
−0.006

864+403
−327

0.540+0.121
−0.534

0.882+0.069
−0.033

1733+67
−61

14.2 4.7 10.1

ZTF J102653.47-101330.3 1.294+0.090
−0.039

0.103+0.001
−0.001

687+1606
−198

0.795+0.108
−0.106

0.942+0.058
−0.176

3469+370
−639

2.6 9.4 10.1

ZTF J104906.96-175530.7 1.645+0.089
−0.052

0.194+0.004
−0.004

254+32
−30

0.003+0.309
−0.003

0.852+0.120
−0.117

2261+195
−251

10.1 1.8 8.4

ZTF J122009.98+082155.0 2.238+0.045
−0.073

0.268+0.004
−0.005

1686+247
−162

0.067+0.455
−0.066

0.645+0.317
−0.075

1641+105
−32

12.5 3.3 9.0

ZTF J125620.57+211725.8∗ 1.459+0.045
−0.040

0.102+0.000
+0.000

974+28
−76

0.072+0.093
−0.070

0.838+0.098
−0.049

5033+217
−239

1.6 11.7 7.0

ZTF J130228.34-003200.2 3.438+0.220
−0.105

0.174+0.004
−0.004

29577+11907
−2758

0.915+0.007
−0.025

0.466+0.036
−0.043

1041+41
−44

10.8 3.7 9.0

ZTF J134151.70-062613.9 1.793+0.018
−0.018

0.122+0.001
−0.002

1180+57
−74

0.697+0.017
−0.027

0.756+0.064
−0.069

1632+42
−39

11.0 5.9 21.6

ZTF J140036.65+081447.4 2.303+0.163
−0.121

0.225+0.006
−0.006

15143+4218
−13521

0.957+0.005
−0.163

0.933+0.067
−0.528

1272+192
−148

13.0 3.7 8.4

ZTF J140423.86+065557.7 2.918+0.059
−0.055

0.399+0.006
−0.006

9034+635
−732

0.886+0.006
−0.014

0.491+0.024
−0.054

838+41
−32

16.3 6.9 7.9

ZTF J140537.34+103919.0∗ 0.908+0.026
−0.036

0.096+0.002
−0.001

2702+227
−2033

0.928+0.005
−0.124

0.696+0.210
−0.075

8814+1397
−838

21.0 28.7 8.5

ZTF J140702.57+211559.7 1.788+0.058
−0.087

0.257+0.005
−0.005

33240+3390
−32227

0.981+0.002
−0.196

0.585+0.058
−0.087

2317−268
−121

11.1 2.1 10.6

ZTF J162644.18-101854.3 1.144+0.016
−0.030

0.206+0.004
−0.004

1432+152
−248

0.578+0.038
−0.021

0.100+0.021
−0.009

6497+617
−306

10.1 3.6 10.9

ZTF J163421.00-271321.7 1.731+0.077
−0.128

0.126+0.001
−0.002

780+90
−77

0.208+0.115
−0.206

0.426+0.079
−0.058

2524+826
−185

23.9 11.8 18.0

ZTF J164441.18+243428.2 1.515+0.039
−0.087

0.096+0.002
−0.001

339+202
−35

0.345+0.233
−0.089

0.932+0.067
−0.133

3020+540
−223

9.0 9.2 12.0

ZTF J180256.45-005458.3 1.591+0.017
−0.025

0.147+0.001
−0.001

484+684
−230

0.797+0.051
−0.028

0.941+0.057
−0.051

2189+75
−68

7.8 2.9 10.7

ZTF J195456.71+101937.5 1.371+0.055
−0.007

0.443+0.004
−0.004

2011+598
−567

0.698+0.044
−0.113

0.122+0.022
−0.022

4249+71
−509

6.6 2.6 9.2

Notes. The asterisks mark the only two systems for which their solution distance is above the observational error threshold. The last three columns
represent, as percentage, the distance of the output parameters to the observed values, the distance once the shift in effective temperature is added,
and the observational error threshold, respectively. See text for details.
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Tables C.2 and C.3 correspond to the mean (average) and mode (most probable value) solution for the stellar input parameters of the
sample analyzed in this work. It should be recalled that, due to the correlation between the parameters, the set of input values for a
certain system does not guarantee that it should be a solution. That is, after evolving the system with these initial set of parameters,
the output values can be in disagreement with the observed values (see Section 5).

Table C.2. Mean (average) solution for the stellar input parameters.

Target M1,in M2,in Pin ein αCE Age
(M⊙) (M⊙) (days) (Myr)

ZTF J041016.82-083419.5 1.235 0.119 3916.2 0.891 0.789 5078.4
ZTF J051902.06+092526.4 1.544 0.171 2738.3 0.716 0.503 4174.6
ZTF J052848.24+215629.0 3.129 0.180 10918.2 0.668 0.401 1020.0
ZTF J053708.26-245014.6 1.397 0.198 12082.5 0.871 0.731 4293.7
ZTF J061530.96+051041.8 2.171 0.514 3980.3 0.723 0.463 1344.5
ZTF J063808.71+091027.4 2.533 0.404 4780.8 0.601 0.500 867.2
ZTF J063954.70+191958.0 2.733 0.206 11332.5 0.691 0.534 775.0
ZTF J064242.41+131427.6 2.306 0.147 4438.9 0.603 0.573 1110.1
ZTF J065103.70+145246.2 1.538 0.237 5187.4 0.705 0.214 3065.4
ZTF J070458.08-020103.3 1.273 0.337 6390.6 0.650 0.080 5708.9
ZTF J071759.04+113630.2 1.755 0.289 5901.1 0.698 0.493 2182.7
ZTF J071843.68-085232.1 3.638 0.299 23906.9 0.722 0.264 459.0
ZTF J080542.98-143036.3 1.507 0.287 3735.6 0.869 0.559 2916.7
ZTF J094826.35+253810.6 1.140 0.164 3282.9 0.696 0.149 6380.2
ZTF J102254.00-080327.3 2.561 0.397 2351.7 0.545 0.645 1867.7
ZTF J102653.47-101330.3 1.245 0.103 2643.1 0.859 0.778 4237.7
ZTF J104906.96-175530.7 1.380 0.194 2297.8 0.692 0.583 4344.9
ZTF J122009.98+082155.0 1.995 0.268 7057.0 0.628 0.558 2103.4
ZTF J125620.57+211725.8 1.346 0.102 3565.5 0.577 0.679 5920.2
ZTF J130228.34-003200.2 3.495 0.175 21428.7 0.684 0.387 1041.9
ZTF J134151.70-062613.9 1.783 0.122 1820.4 0.717 0.660 1660.7
ZTF J140036.65+081447.4 2.233 0.225 10978.5 0.738 0.542 1454.0
ZTF J140423.86+065557.7 3.020 0.398 6120.1 0.812 0.591 819.3
ZTF J140537.34+103919.0 0.944 0.096 2169.9 0.844 0.778 7951.8
ZTF J140702.57+211559.7 1.517 0.257 9139.6 0.845 0.433 4101.0
ZTF J162644.18-101854.3 1.127 0.206 1910.0 0.613 0.094 7043.6
ZTF J163421.00-271321.7 1.614 0.126 4008.4 0.605 0.382 3330.4
ZTF J164441.18+243428.2 1.375 0.096 2186.4 0.691 0.729 4482.0
ZTF J180256.45-005458.3 1.331 0.147 2572.3 0.810 0.612 4085.2
ZTF J195456.71+101937.5 1.434 0.443 2361.5 0.618 0.129 3772.4
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Table C.3. Most probable solution (mode) for the stellar input parameters.

Target M1,in M2,in Pin ein αCE Age
(M⊙) (M⊙) (days) (Myr)

ZTF J041016.82-083419.5 1.314 0.119 300 0.976 0.972 3900
ZTF J051902.06+092526.4 1.885 0.171 300 0.900 0.355 2250
ZTF J052848.24+215629.0 3.194 0.180 3900 0.825 0.526 1003
ZTF J053708.26-245014.6 1.482 0.198 600 0.975 0.990 2820
ZTF J061530.96+051041.8 2.193 0.514 500 0.980 0.335 1275
ZTF J063808.71+091027.4 2.695 0.404 1000 0.890 0.260 710
ZTF J063954.70+191958.0 2.850 0.206 600 0.920 0.550 702
ZTF J064242.41+131427.6 2.427 0.147 1700 0.915 0.640 965
ZTF J065103.70+145246.2 1.515 0.236 900 0.905 0.184 2180
ZTF J070458.08-020103.3 1.341 0.338 600 0.920 0.085 4650
ZTF J071759.04+113630.2 1.880 0.289 800 0.930 0.445 1560
ZTF J071843.68-085232.1 3.598 0.299 4200 0.918 0.315 460
ZTF J080542.98-143036.3 1.315 0.286 200 0.960 0.385 1470
ZTF J094826.35+253810.6 1.096 0.164 600 0.920 0.116 5010
ZTF J102254.00-080327.3 2.660 0.398 550 0.820 0.870 1730
ZTF J102653.47-101330.3 1.293 0.103 500 0.957 0.955 2950
ZTF J104906.96-175530.7 1.645 0.194 250 0.930 0.330 2300
ZTF J122009.98+082155.0 2.220 0.268 1600 0.885 0.558 1650
ZTF J125620.57+211725.8 1.455 0.102 900 0.905 0.835 4980
ZTF J130228.34-003200.2 3.514 0.174 2400 0.915 0.465 1038
ZTF J134151.70-062613.9 1.782 0.122 1100 0.685 0.770 1640
ZTF J140036.65+081447.4 2.295 0.225 400 0.955 0.510 1225
ZTF J140423.86+065557.7 2.910 0.399 8600 0.880 0.460 680
ZTF J140537.34+103919.0 0.912 0.096 200 0.925 0.695 6250
ZTF J140702.57+211559.7 1.810 0.257 200 0.980 0.240 2350
ZTF J162644.18-101854.3 1.140 0.206 1350 0.570 0.098 6500
ZTF J163421.00-271321.7 1.806 0.126 700 0.910 0.452 2480
ZTF J164441.18+243428.2 1.521 0.096 300 0.910 0.993 3000
ZTF J180256.45-005458.3 1.590 0.147 1350 0.924 0.440 2200
ZTF J195456.71+101937.5 1.368 0.444 1200 0.730 0.108 3900
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