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 A B S T R A C T

Lithium-ion Batteries (LIBs) are central to modern energy storage, with growing demands for improved per-
formance, safety, and cost efficiency. Electrode calendering, a critical step in LIBs manufacturing, significantly 
influences the microstructure and electrochemical properties of electrodes. This review explores advances in the 
modelling of the calendering process over the past few years, focusing on empirical, numerical, and machine 
learning approaches. Empirical models, though computationally efficient, are limited by oversimplification, 
while numerical methods, such as Discrete Element Method (DEM) and Finite Element Method (FEM), offer 
more detailed insights into the structural evolution during calendering but require intensive computational 
resources. The growing application of machine learning introduces novel data-driven methods for optimising 
the process by effectively handling multiscale phenomena and high-dimensional data. A comparative analysis 
of these modelling strategies highlights the need for hybrid approaches that integrate empirical, numerical, 
and data-driven models to accurately predict electrode behaviour and optimise calendering conditions. Future 
research should aim to bridge the gap between computational accuracy and practical application to improve 
the performance and cost-efficiency of LIBs manufacturing.
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1. Introduction

In the context of pursuing sustainable development and improving 
the global climate, energy storage technology has become an essential 
area of focus for the global automotive industry and economic growth. 
Over the past decade, Lithium-ion Batteries (LIBs) have become the 
most widely used product in the energy storage field. However, along 
with their significant growth in popularity, the requirements for their 
performance also increase year by year [1]. Consumers and industries 
are demanding batteries with higher energy densities, faster charging 
capabilities, longer service life, and improved safety features while 
seeking to reduce costs [2]. In order to improve cell performance 
and reduce production expenditure, it is beginning to be recognised 
as important to investigate the effects of fabrication parameters on 
electrode structure and electrochemical performance at the microscopic 
scale [3–7]. Calendering represents a crucial stage in the electrode 
manufacturing process, where loose electrode particles are compressed 
to control the porosity of the electrode and enhance adhesion. During 
this procedure, the connectivity and volumetric energy density of the 
particles is increased. Furthermore, as the internal structure of the 
electrode evolves throughout the calendering process, other perfor-
mance parameters, including mechanical properties and electron and 
ion transport properties, are also affected [8].

However, quality control and optimisation of the LIBs calendering 
process still face many challenges. The current limitations of tradi-
tional experimental and empirical methods have been identified as 
a significant obstacle to the development of stable and consistently 
improved product quality in the context of the highly complex and 
variable nature of the manufacturing process [9]. Due to their complex 
electrochemical characteristics, the operational mechanisms of LIBs 
are difficult to quantify and correlate with specific influencing factors 
accurately. Experimental-based research methods have drawbacks such 
as long development cycles, high costs, insufficient depth in micro-
scopic mechanism analysis, and difficulty in evaluating the effects of 
multivariate synergistic, significantly increasing the challenges in the 
development of new electrodes [10]. In the past few years, the rapid 
development of computer simulation and Artificial Intelligence (AI) 
technologies has provided new opportunities to address these issues. 
Computational simulations offer an efficient alternative to complex and 
repetitive experimental optimisation processes, leading to significant 
savings in time and cost [11]. Therefore, modelling work focused on 
the calendering process of LIBs has become an essential area of research 
and practical application.

Currently, simulation studies on the macroscopic scale for LIBs 
cells, packs, and vehicle systems have become relatively mature, but 
2 
modelling research on the microscopic scale remains in its infancy. In 
this Review, we systematically examine and compare three different 
modelling approaches, empirical, numerical, and machine learning, 
for electrode calendering processes. The main contributions include 
providing a detailed evaluation of the strengths and limitations of 
each modelling method, highlighting the evolving trend towards hybrid 
approaches that integrate numerical precision with machine learning 
efficiency, and identifying critical future research directions focused on 
developing comprehensive, multiscale, and interpretable models. This 
comparative analysis uniquely positions our work to guide researchers 
in selecting and improving appropriate modelling strategies to meet 
the increasing accuracy and predictive demands of electrode manufac-
turing. The structure of the paper is as follows. Section 2 introduces 
the basic principles of electrode calendering and its impact on battery 
performance, providing a theoretical foundation for subsequent compu-
tational simulation studies. Section 3 sequentially presents the current 
research status of three modelling methods: empirical models, numer-
ical models, and machine learning models. Section 4 offers a detailed 
comparison and in-depth analysis of these three modelling approaches, 
summarises the limitations of current research, and discusses future 
research directions.

This review is of substantial significance for industry, the research 
community, and policymakers on the regional and global scales. The 
insights presented here can guide more efficient, cost-effective, and en-
vironmentally sustainable production practices, enabling battery man-
ufacturers to optimise processes and improve competitiveness. This 
review can also serve as a valuable reference for advising strategic 
investments and formulating targeted regulations aimed at advancing 
battery technologies. Furthermore, aligning with the United Nations 
Sustainable Development Goals, this paper underscores the necessity 
of optimising electrode production processes to reduce environmen-
tal footprints, improve resource efficiency, and support a sustainable 
energy infrastructure.

2. Fundamentals of LIB electrode calendering

2.1. Principles of calendering

Electrode calendering is a process used to customise the microstruc-
ture of an electrode to meet specific power density and energy density 
requirements for a given application [8]. This customisation is achieved 
by adjusting the thickness and porosity of the electrode. Typically, 
the conventional calendering method involves a two-roll compaction 
process, which ensures uniformity in both the surface and volume 
of the electrodes (Fig.  1). To promote uniform material distribution 
and minimise residual stresses during processing, this compaction is 
usually performed at elevated temperatures above the glass transition 
temperature of the binder [12].

This process, as illustrated in Fig.  2, has been simplified to allow 
a more detailed analysis of its mechanical behaviour. The electrode is 
assumed to be a homogeneous material subjected to compression by the 
action of a uniformly rotating roller. During this process, the electrode 
coating is subjected to a line load 𝑞𝐿 of: 

𝑞𝐿 =
𝐹𝑁
𝜔𝐶

(1)

where 𝐹𝑁  is the force applied to the coating and 𝜔𝐶 is the width of the 
coating.

The roll radius 𝑟𝑅, electrode width 𝜔𝐶 and thickness 𝛿𝐸𝑙,𝜌0 , and 
gap width 𝛿𝛤  together determine the effective contact area 𝐴𝛤  of the 
electrode within the gap: 

𝐴𝛤 = 𝜔𝐶 (
√

𝑟𝑅(𝛿𝐸𝑙,𝜌0 − 𝛿𝛤 ) +
√

𝑟𝑅(𝛿𝐸𝑙,𝜌𝑖 − 𝛿𝛤 )) (2)

The contact area 𝐴𝛤  and calendering speed 𝑣0 determine the resi-
dence time of the coating in the roll gap. Longer residence times mean 
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Fig. 1. Schematic illustration of the changes in electrode microstructure during the calendering process. The blue spheres represent AM, the black spheres represent carbon, and 
the yellow stripes represent binders.
Fig. 2. Simplified mechanical diagram of the calendering process, including the roll force 𝐹𝑁 , the electrode thickness before (𝛿𝐸𝑙,𝜌0 ) and after (𝛿𝐸𝑙,𝜌𝑖 ) the calendering, the in-gap 
width (𝛿𝛤 ), the roll radius 𝑟𝑅, and the inlet and outlet strings 𝑆𝐼𝑛 and 𝑆𝑂𝑢𝑡. 𝑍𝐶 describes the compaction zone and 𝑍𝑅 the relaxation zone of the coating.
Source: This figure is redrawn with permission from Abdollahifar et al. [14].
more time for particle rearrangement, heat transfer, and a smoother 
compaction process with less shear stress.

Under the line loading, the particles undergo rearrangement or 
even fracture, leading to plastic deformation (as shown in Fig.  2 𝑍𝐶
region) [13], and after leaving the roller, the electrode undergoes 
elastic recovery as line load decreases (as shown in Fig.  2 𝑍𝑅 region).

The degree of compaction of the electrode during this process can 
be expressed as: 

𝛱 = 1 −
𝛿𝐸,𝑎

𝛿𝐸,𝑖𝑛𝑖𝑡𝑖𝑎𝑙
(3)

where 𝛿𝐸,𝑎 is the electrode thickness after compaction and 𝛿𝐸,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is 
the initial thickness.

2.2. Impact of calendering on electrode performance

The calendering process affects the electrochemical properties of the 
electrode in three main ways: thickness, porosity, and tortuosity. Some-
times, particle size is also taken into account. Although calendering 
does not directly affect the particle size of the electrode composition, 
these together determine the mesostructure of the electrode.

The thickness of the electrode can affect essential parameters such 
as the active mass loading, ion transport distance, ohmic resistance, 
and mechanical integrity. In the absence of other variables, the mass 
loading of the active materials (AM) is directly proportional to the 
thickness of the electrode. It can be seen from Fig.  3(a–h) that thick 
electrodes are relatively more challenging to achieve high critical C-
rate. Hamed et al. [15] investigated the critical C-rate at which a 
steep decline in discharge capacity is observed as the current rate 
increases from 0.2 to 5C for 52 design variants of Lithium Manganese 
Oxide (LMO) electrodes (Fig.  3(i–k)). The rate-capability coefficient, 𝛾, 
indicates the multiplier performance of the cell. An increase in active 
3 
materials results in a reduction in the proportion of non-participating 
components in the electrode, thereby enhancing the energy density of 
the cell and reducing production costs (Fig.  4(a–c)) [16,17]. However, 
as the thickness of the electrodes increases, the ion transport paths 
and the ohmic resistance also increase. With these two in effect, this 
leads to an increase in energy density at the cost of losing power 
density, as shown in Fig.  4(a) [18–20]. The issue is further compounded 
at elevated C-rates. At the same time, as shown in Fig.  4(b), thin 
electrodes have better cycling performance because they are less prone 
to breakage and delamination during fabrication, which gives them 
better mechanical integrity and lower resistance to ion and electron 
transport [21].

Porosity is another critical parameter that is influenced by the 
calendering process and alters the overall performance of LIBs (Fig. 
4(d–f)). Higher porosity usually means lower tortuosity, which facili-
tates the flow of ions through the electrode structure but reduces the 
electron conduction efficiency [22]. The study found through polarisa-
tion analysis that porosity affects not only the overall characteristics of 
electrical resistance, but also the quality of contact between the active 
material, the carbon binder, and the electrolyte [15]. Higher porosity 
is likely to lead to uneven contact within the electrode and a high local 
current density, which can accelerate local ageing and microstructural 
degradation, thus affecting long-term cycle stability. Although high 
porosity facilitates electrolyte wetting and improves active material 
utilisation, its negative impact on volumetric energy density and power 
density has led commercial electrodes to typically maintain porosity 
around 0.3 to balance performance, life expectancy and cost [23]. In 
addition, low porosity is more favourable for batteries to achieve high-
rate performance. According to Hamed et al. [15], the increase in 
electrode porosity significantly increases the critical C-rate of the cell 
(Fig.  3). From another perspective, the experimental results show that, 
with the same active material loading, the low porosity (0.3) electrode 
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Fig. 3. The sensitivity of the critical C-rate of Li-LMO cells to the porosity of the LMO electrodes (0.5 and 0.3) for the four groups of AM loading. (a,e) thin electrodes (AM-
loading<18 mgcm−2); (b,f) normal electrodes (18<AM-loading<22 mgcm−2); (c,g) thick electrodes (22<AM-loading<26 mgcm−2); (d,h) ultra-thick electrodes (26<AM-loading<30 
mgcm−2). The discharge-energy rate-capability coefficients (𝛾) of the 52 Li-LMO cells as a function of (i) AM loading, (j) thickness, and (k) porosity.
Source: This figure is quoted with permission from Hamed et al. [15].
can achieve a capacity output that is about twice as high as that of 
the high porosity (0.4) electrode at a high rate (5C). This indicates 
that a lower porosity helps to form a denser, continuous electronic 
conductive network, thereby reducing ohmic polarisation losses and 
improving charge and discharge efficiency. However, it is important to 
note that LIBs are not single-purpose devices. Although a lower porosity 
is beneficial for electronic conduction, if the porosity is too low, it 
may weaken the ion transport channels in the electrolyte, resulting 
in local concentration differences and ion transport limitations. Not 
all applications require batteries to provide high charge/discharge rate 
capability. In scenarios where volumetric energy density and cell rate 
are not a priority, the high use of active materials (Fig.  4(e)) and 
high capacity retention (Fig.  4(f)) brought about by high porosity 
is an advantage that cannot be ignored. In addition, the content of 
inactive materials significantly influences the calendering process. Di-
ener et al. [24] demonstrated that an increased binder content in the 
electrode formulation results in a reduction of the rebound effect due 
to enhanced plastic deformation, which in turn leads to a marked 
decrease in porosity. Similarly, Primo et al. [25] investigated the effects 
of calender pressure and temperature on electrode performance, finding 
that while porosity and mechanical properties are primarily determined 
by the applied pressure, the electrode conductivity is predominantly 
influenced by the calendering temperature. The latter observation is 
likely attributable to the increased deformability of the binder at higher 
temperatures. The research results [15] emphasise that the relation-
ship between the macroscopic parameters of the electrode (such as 
thickness, loading, and porosity) and its performance (not just rate per-
formance) is non-linear. This shows that changes in porosity can affect 
cycling performance through complex internal polarisation mechanisms 
4 
(including solid-state diffusion, electrolyte transport, and contact re-
sistance between particles), requiring that manufacturing processes 
and subtle changes in microstructure be considered comprehensively 
in practical electrode design. Therefore, different electrode structures 
need to be designed for different LIB applications to achieve optimal 
performance.

The size of the pores and the size of the particles can work together 
to influence the tortuosity of the electrode. A high degree of tortuosity 
increases the resistance of the ions to flow through the electrodes in 
the electrolyte and reduces the wettability of the electrolyte. Fig.  4(g) 
shows two LiFePO4 electrodes with the same porosity but different pore 
diameters; the lower pore diameter results in a lower degree of tortu-
osity and, therefore, exhibits a higher area capacity [26]. However, the 
effect of pore size on electrode performance is still poorly understood, 
and a valid measurement and statistical method is lacking. Similarly, 
the size of the active material determines the diffusion resistance of 
lithium ions in the solid state. As the particle size increases, the solid-
state diffusion length increases. This is often considered one of the main 
limiting factors for the high-magnification performance of LIBs [27]. 
Nanoscale AM particles are suitable for high-rate charging and dis-
charging and improve cycle stability (Fig.  4(h) and (i)). However, too 
small particles can exacerbate side reactions and consume more lithium 
ions, resulting in a lower cycle capacity [28,29].

Overall, the electrolyte-filled electrode pores act as a temporary 
reservoir for lithium ions, ready to be incorporated into the solid active 
material. Electrodes with smaller pores require faster ion transfer rates 
to maintain high current densities, as they deplete the ions stored in the 
electrolyte more quickly, which is extremely challenging. However, it 
is important to note that the effects of the calendering process do not 
always affect the anode and cathode in the same way. Compared with 
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Fig. 4. Effects of architectural parameters (thickness, porosity, pore size) on electrode performance. (a–c) Effect of thickness on (a) energy and power density, (b) cyclability, 
(c) cost. D–F: Effect of porosity on (d) energy and power density, (e) rate capability, (f) cyclability. (g) Effect of pore size on rate capability. (h–i) Effect of particle size on (h) 
stability, and (i) cyclability.
Source: This figure is quoted with permission from Zhu et al. [30].
the anode, the Cathode Active Material exhibits a more pronounced 
electrochemical enhancement effect during the calendering process 
because of its lower conductivity in the actual performance. In this 
process, the cathode active material particles are densely packed, which 
facilitates better integration with conductive additives. Furthermore, 
the calendering process primarily reduces the plastic deformation en-
ergy of the electrode while retaining most of its elastic deformation 
energy. This effectively minimises irreversible capacity loss during 
battery cycling, thus improving cycle life and performance [31].

Nevertheless, calendering is not always beneficial; for example, it 
is essential to maintain an appropriate solid-state diffusion rate during 
this process. Excess calendering can lead to excessively low porosity, 
hindering lithium ion diffusion into the electrode matrix and causing 
polarisation during the initial stabilisation of the solid-electron interac-
tion [8]. This can degrade the high-rate performance of the battery and 
pose safety risks, particularly for electrodes composed of large particles. 
Studies [32–35] have shown that higher operating temperatures and 
smaller AM particles can overcome the reduction in reaction kinetics 
caused by a decreased porosity. However, this comes at the expense of 
safety and energy density. Furthermore, a compact pore structure also 
reduces the surface energy, making the electrode less attractive to the 
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electrolyte. This is not conducive to the infiltration of the electrolyte 
on the electrode surface and the formation of the SEI layer [36]. The 
dense electrode particles are also detrimental to the effective wetting 
of the electrolyte, which is important to ensure that the electrode can 
participate fully in the electrochemical reaction.

The dramatic changes in the mesoscopic structure of the electrode 
particles during calendering significantly impact the electrochemical 
properties compared to other process steps [38]. However, a large 
number of studies [10,39–43] have demonstrated that the range of 
densities and porosities that can provide the best mechanical and 
electrochemical properties is relatively limited. In previous years, bal-
ancing the electronic and ionic conductivities and determining the ideal 
porosity have been the main challenging objectives of the calendering 
process. Meanwhile, it is important to note that although the appli-
cation of high pressures during the electrode calendering process can 
reduce porosity and improve electronic contact and conductivity, it 
simultaneously introduces significant mechanical stresses within the 
electrode [44]. The stress concentrations that develop between AM 
particles and between particles and the binder can promote the ini-
tiation and propagation of microcracks. Over repeated cycles, these 
microcracks may eventually coalesce, compromising the mechanical 
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Fig. 5. Schematic diagram of the evolution of the microstructure and pore size of the electrode during the calendering process. (a) SEM images showing the evolution of NMC 
cathode morphology under incremental line load. (b–c) Evolution of the porosity and pore size, (b) porosity and pore size of macropores, (c) pore size of mesopores and average 
pore diameter of the NMC cathode. (d) The morphology of spherical graphite anode. (e) Evolution of the specific surface area and micropore pore size. (f) Particle rupture due to 
friction and compression. (g) SEM images of the near-surface layer (the red curve indicates the possible flow paths of the electrolyte). (h) The morphology of the layered graphite 
anode. (i–j) Electronic conductivity evolution of graphite anode, (i) spherical, (j) layered. (k–l) Relationship between the (k) line load and (l) porosity on the resistance of the 
NMC cathode. Colour backgrounds highlight the inflexion points of data changes.
Source: This figure is quoted with permission from Zhang et al. [37].
integrity of the electrode, reducing the effective use of active materials, 
and accelerating capacity decay [45]. In addition, mechanical stresses 
can induce fatigue in the binder, weakening the interfacial adhesion 
between the binder and AM particles. Such interfacial failures not only 
lead to a loose electrode structure but also disrupt localised electron 
transport, thereby increasing the internal resistance of the battery 
and hastening cycle degradation. Moreover, the mechanical stresses 
induced by the calendering can generate new surface defects within the 
electrode, which may serve as nucleation sites for the inhomogeneous 
formation of the solid electrolyte interphase. Although this layer ini-
tially acts as a protective barrier, its continuous growth consumes active 
lithium, resulting in irreversible capacity loss. Furthermore, the non-
uniform distribution of the solid electrolyte interphase can exacerbate 
localised stresses and temperature rises, potentially triggering thermal 
runaway [44]. Consequently, there is a considerable demand for studies 
6 
of electrode densification based on theoretical principles rather than 
experience.

2.3. Experimental studies on electrode calendering

Over the past few years, experimental studies on electrode calender-
ing primarily focused on tracking changes in the internal microstruc-
ture of porous electrodes using techniques such as Scanning Electron 
Microscopy (SEM) and X-ray Computed Tomography (XCT). For in-
stance, Zhang et al. [37] utilised SEM to investigate the microstructural 
and pore size evolution of NMC622 samples under progressively in-
creasing linear loads (Fig.  5(a)). SEM images clearly reveal that before 
calendering, the active particles within the cathode are widely spaced, 
the pore distribution is uniform, and the contact area with the current 
collector is minimal. As the linear load applied to the electrode sur-
face increases, large AM particles undergo deformation and fracture, 
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forming a more densified structure. When the linear load exceeds 
1960 N/mm, significant deformation and fusion occur in the Carbon 
Binder Domains (CBD), and the pore size decreases markedly. Fig.  5(b–
c) details the trends of the changes in pore size and porosity with 
increasing linear load. With higher calender density, the mode, median, 
and mean diameters of macropores (>50 nm) decrease exponentially 
until convergence, indicating a more uniform pore size distribution at 
lower porosity. In contrast, the diameters of the mesopores (2–50 nm) 
decrease linearly without a dramatic reduction.

Fig.  5(f) clearly illustrates the fracture of large AM particles due 
to compression during the calendering process. This fracture increases 
the specific surface area of the particles (Fig.  5(e)), allowing faster 
penetration of the electrolyte into the interiors of the large particles, 
thus enhancing the cycling rate. However, excessively exposed cracks 
and particle wear can lead to more severe cracking during subsequent 
charge–discharge cycles, preventing electrolyte transport (Fig.  5(g)). 
This results in the loss of cyclable AM and accelerates the formation 
of side reactions, ultimately leading to a decrease in cycling capacity.

For graphite anodes, calendering also affects their interfacial re-
sistance. Spherical graphite, which is difficult to deform plastically 
(Fig.  5(d)), experiences a significant decrease in resistivity due to 
particle rearrangement and densification caused by calendering (Fig. 
5(i)). However, the situation is markedly different for layered graphite 
electrodes. Their microstructure changes from a disordered interwo-
ven arrangement before calendering to a distinctly oriented arrange-
ment parallel to the current collector after calendering (Fig.  5(h)). 
Consequently, their resistance first increases and then decreases to a 
value comparable to the initial resistance (Fig.  5(j)). This behaviour 
is attributed to the highly anisotropic electronic conductivity of the 
graphite layers: the electron conductivity is stronger parallel to the 
graphite layers and weaker in the perpendicular direction. Therefore, 
as the linear load increases, the pathways for current to penetrate the 
graphite in the perpendicular direction become much longer, leading 
to an increase in resistance. Subsequently, as densification increases, 
the contact area between the graphite particles enlarges, resulting in a 
decrease in resistance. Fig.  5(k–l) illustrates the effect of calendering 
on the resistance of the cathode. Overall, due to conductive additives, 
even slight calendering can reduce resistance to near-critical levels.

Advancements in experimental techniques have contributed signifi-
cantly to the development of simulation methodologies. High-
resolution microscopic imaging techniques, such as SEM and XCT, 
enable the quantitative characterisation of particle size, shape, distri-
bution, and interparticle contact states. Additionally, these techniques 
provide critical insight into the distribution of binders and interfacial 
conditions. The data obtained serve as essential input parameters 
for physics-based multiscale models, allowing for a more accurate 
representation of the material heterogeneity and localised damage 
mechanisms occurring during the calendering process. Furthermore, 
experimental methods such as microscratch and peel tests facilitate 
the quantitative assessment of interfacial adhesion strength and dam-
age evolution. These measurements support the development of more 
precise contact models and fracture criteria, thereby improving the 
predictive capacity of numerical simulations for crack propagation and 
failure processes. Moreover, microscale stress and strain distributions, 
along with interparticle interaction data obtained from experiments, 
can be used to refine these parameters in models and establish cou-
plings with the mechanical response of continuum media. By system-
atically comparing experimental results with numerical simulations, 
model deficiencies can be identified, and parameters can be iteratively 
refined to enhance the accuracy of the model in representing real-world 
processes. Experimental data not only serve as validation benchmarks 
for simulation outputs, such as local stress fields, fracture energy, and 
deformation behaviour, but also provide a foundation for sensitivity 
analyses and process parameter optimisation.
7 
Fig. 6. Initial coating porosities and minimally achieved, extrapolated and predicted 
coating porosities regarding the variation of active material, mass loading, composition 
and processing.
Source: This figure is quoted with permission from Meyer et al. [46].

3. Modelling approaches for electrode calendering

3.1. Empirical models

The empirical modelling approach focuses on simplified analysis of 
existing results based on the laws of physics, leading to the derivation of 
mathematical equations using analytical methods. For example, Meyer 
et al. [38] constructed an empirical model that can represent the 
relationship between line load and electrode density (0 ≤ 𝛱 ≤ 0.25) 
based on their study of the electrode calendering process. It can be 
expressed as: 

𝑞𝐿 = 𝐴(𝜌𝐶,𝑖 − 𝜌𝐶,0)𝐵 (4)

where 𝐴 and 𝐵 are the correction factors, which are related to the 
electrode components and particle morphology. 𝜌𝐶,0 and 𝜌𝐶,𝑖 are the 
coating densities before and after calendering, respectively.

For the calendering process of NMC at lower circumferential speeds, 
the relationship between coating porosity and line load can be fitted by 
the following formula: 

𝜀𝐶 = 𝜀𝐶,𝑚𝑖𝑛 + (𝜀𝐶,0 − 𝜀𝐶,𝑚𝑖𝑛)exp(−
𝑞𝐿
𝛾𝐶

) (5)

where 𝜀𝐶,𝑚𝑖𝑛 is the minimum porosity of the coating, 𝜀𝐶,0 is the initial 
porosity of the coating and 𝛾𝐶 is the damping correction factor, and the 
relationship between it and the active mass loading 𝑀𝐶 is: 

𝛾𝐶 = (𝜇0 − 𝜉𝑇𝑅)𝑀𝐶 (6)

where 𝜇0 is the mass factor at 0 ◦C, 𝜉 is the temperature factor, and 𝑇𝑅
is the roll temperature.

They found that the electrode calendering process can be reduced 
to a sphere-filling-based model. Its initial structure can be regarded as 
a simple cubic pack consisting of rigid spheres of the same size, and its 
minimum porosity 𝜀𝐶,𝑚𝑖𝑛 is close to the theoretical porosity of a cubic 
closed pack. Therefore, a compaction factor 𝑝 can be introduced: 

𝜀𝐶,𝑚𝑖𝑛 = 𝑝𝜀𝐶,0 (7)

The experimental results — Fig.  6 — show that for some common 
cathode materials, the compaction factor 𝑝 can be used as a predictor 
of the minimum coating porosity.
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On this basis, Eq. (5) can be simplified using this compaction factor: 

𝜀𝐶 = 𝜀𝐶,0(𝑝 + (1 − 𝑝)exp(−
𝑞𝐿
𝛾𝐶

)) (8)

However, it should be noted that for NMC, LMO, and graphite an-
odes, the predicted values deviate significantly from the experimental 
values. This may be attributed to the fact that the initial structure of 
NMC and LMO has low sphericity and is not suitable for this spher-
ical simplified model. In contrast, for graphite anodes, the lamellar 
structure allows for denser compression.

In summary, the results of Meyer et al. have shown the relationship 
between the calendering load and the porosity of the electrode coating. 
Their conclusions are expressed in mathematical formulae by construct-
ing a relatively idealised model supplemented by correction factors. 
However, their limitations are obvious, and the correction factor does 
not have good applicability and generalisability.

Previous research [21,47–50] has indicated that the lithium ion 
concentration of the electrolyte within the pores of the electrode is 
distributed in a gradient during the discharge of the battery. As the 
current density increases, the decay of the lithium ion concentration 
gradually increases until the lithium ion concentration around the AM 
in close proximity to the current collector region is reduced to zero. At 
this point, the electrodes have reached the maximum current density 𝐼∗
that allows all AM to participate in the reaction, as there are no lithium 
ions in the electrolyte available for AM in this region to participate in 
the electrochemical reaction when it continues to increase.

Based on this principle, Tambio et al. [51] proposed the Penetration 
Depth Model to analyse the effect of calendering-induced microstruc-
tural changes on the electrochemical properties of electrodes. The 
penetration depth 𝐿𝑑 of lithium ions in the electrolyte can be expressed 
as: 

𝐿𝑑 = 𝜀
𝑇

𝐷0𝐶0𝐹
(1 − 𝑡Li)𝐼

(9)

where 𝜀 is the porosity of the electrode, 𝑇  is the tortuosity factor of 
the matrix, 𝐷0 is the diffusion coefficient of the lithium salt in the 
electrolyte, 𝑡Li is the number of lithium ions transported, 𝐼 is the current 
density, and 𝐹  is the Faraday constant.

The effect of porosity 𝜀 and matrix tortuosity factor 𝑇  on effective 
ionic conductivity 𝜅𝑒𝑓𝑓  and diffusivity 𝐷𝑒𝑓𝑓  can be expressed as: 

𝜅𝑒𝑓𝑓 = 𝜅0
𝜀
𝑇

(10)

𝐷𝑒𝑓𝑓 = 𝐷0
𝜀
𝑇

(11)

where 𝜅0 and 𝐷0 is the bulk electrolyte conductivity and diffusivity. If 
only considering the effect of geometric tortuosity, the matrix tortuosity 
factor can be expressed as: 
𝑇 = 𝜏2 (12)

Mathematically, the ratio of the actual capacity 𝑄𝐼  of the cell at 
a current density above the critical current density to the nominal 
capacity 𝑄0 is equal to the ratio of penetration depth 𝐿𝑑 to the thickness 
of the design electrode 𝐿: 
𝑄𝐼
𝑄0

=
𝐿𝑑
𝐿

(13)

Based on these conclusions, the Penetration Depth Model points out 
that the capacity of the battery at a high rate can be expressed as: 

𝑄𝐼 = 𝑄0
𝜀
𝑇𝐿

𝐷0𝐶0𝐹
(1 − 𝑡Li)𝐼

(14)

This Penetration Depth Model can quantitatively predict the rela-
tionship between the specific discharge capacity and the areal cur-
rent density based on the measured porosity, tortuosity, and diffusion 
coefficient (as shown in Fig.  7).

Nevertheless, it is important to note that although the Penetration 
Depth Model has been shown experimentally to be a practical tool for 
8 
Fig. 7. Areal discharge capacities as a function of the areal current density for NA3b, 
NA7b and NA4b and the corresponding Penetration Depth Model fits (dotted lines) at 
temperature 22 ◦C.
Source: This figure is quoted with permission from Tambio et al. [51].

evaluating the phenomenon of a sudden drop in the usable capacity of 
porous electrodes after a critical value of current density is reached, 
it has some obvious limitations that limit its wider applicability. For 
example, the model is only well fitted to specific electrode materials 
(NA3b and NA7b). And, as indicated by Tambio et al. [51], the model 
can only accurately simulate the electrochemical behaviour of the 
electrodes near room temperature. At high temperatures, such as 40 
◦C, the model does not provide reliable predictions. Temperature is a 
key factor in electrochemical reactions, affecting the kinetics, diffusion 
rates, and stability of the overall system. The model is unable to account 
for the effects of temperature variations.

In summary, employing empirical models to study the electrode 
calendering process is relatively straightforward and efficient. These 
models require less computational effort and time compared to more 
complex numerical simulations, making them attractive for preliminary 
analyses and for gaining fundamental insights into the calendering 
mechanisms. Empirical models can provide quick evaluations of the 
effects of various parameters on the overall behaviour of the electrode, 
which is particularly useful in the early stages of research and de-
velopment. However, due to the simplifying assumptions inherent in 
their formulation, they often fail to capture the intricate microstructural 
changes that occur during the calendering process. In addition, these 
models typically overlook the non-linear and heterogeneous nature of 
electrode materials, resulting in very significant limitations.

3.2. DEM-based numerical models

The numerical modelling approach focuses on solving complex 
differential equations based on numerical models and computer simu-
lation techniques by discretising continuous problems into independent 
elements or nodes. The commonly used solution methods are Dis-
crete Element Method (DEM), Finite Element Method (FEM) and Finite 
Difference Method (FDM). Several experimental studies have been 
conducted to investigate the impact of the calendering process on the 
electrode structure and cell performance with the assistance of numer-
ical modelling. DEM has been demonstrated to be a valuable approach 
for investigating the microstructure of electrodes by modelling the 
motion and forces of particles [53,54]. Ge et al. [52] proposed a DEM 
numerical model for analysing the structural evolution, mechanical 
stress, and transport properties of the electrode calendering process 
(e.g., tortuosity, anisotropic, force network, stress tensor, etc.), based 
on real cathode microstructure data obtained by using X-ray tomog-
raphy imaging. The 2D voxelised electrode structure information (as 
shown in Fig.  8(a)) generated by the simulation results can help predict 
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Fig. 8. Simulation schematic of electrode structure evolution under different calendering forces. (a) Voxelised 3D electrode structures and 2D cross-sections from DEM simulations 
under different compression pressures (In the 2D cross-section, the white voxels are AM particles, and black voxels are voids). (b–c) Diagonal components of (b) the deviatoric 
part of the fabric tensor, and (c) the stress tensor under different compression pressures. (d–e) Tortuosity factor with/without binder phase 2D visualisation of electrode structure 
parallel to the through-plane direction and normalised potential distribution without/with binder phase (the binder phase is coloured in red). (f) Tortuosity factor plotted as a 
function of porosity.
Source: This figure is quoted with permission from Ge et al. [52].
changes in key information such as porosity and tortuosity during the 
calendering process.

The fabric tensor and the stress tensor of the electrode material can 
be quantitatively analysed by using the simulation data from the DEM 
model. The fabric tensor 𝛷𝑖𝑗 is used to assess the directionality of the 
particle contact, which is defined as the average value of the outer 
product of the normal contact 𝑛: 

𝛷𝑖𝑗 =
1
𝑁𝑐

𝑁𝑐
∑

𝛼=1
𝑛𝑖𝑛𝑗 (15)

where 𝑛𝑖 and 𝑛𝑗 are the projections of the normal contact n in the 
Cartesian coordinate system. As shown in Fig.  8(b), as the calender 
stress increases, 𝛷′

𝑥𝑥 and 𝛷′
𝑦𝑦 show the same growth trend, while 𝛷′

𝑧𝑧
shows a completely opposite trend. Similarly, the stress tensor 𝜎𝑖𝑗 , 
which reflects the interaction force between the particles, shows the 
same trend (as shown in Fig.  8(c)) and can be described as: 

𝜎𝑖𝑗 =
1
2𝑉

𝑁𝑐
∑

𝛼=1
(𝑟1𝑖𝐹1𝑗 + 𝑟2𝑖𝐹2𝑗 ) (16)

where 𝑟1𝑖 and 𝑟2𝑖 are the relative positions of two particles in con-
tact with each other and 𝐹  and 𝐹  are the interaction forces. The 
1𝑗 2𝑗

9 
difference in the gradual increase of the components along the 𝑍-
axis reveals the inhomogeneity and anisotropy of the structure during 
the calendering process. Fig.  8(d) illustrates the effect of the potential 
distribution in porous electrodes using the level set algorithm with and 
without considering the bonding phase, respectively. On this basis, the 
tortuosity-porosity can be fitted according to the generalised effective 
medium equation 𝜏 = 𝑎𝜀𝑏. The results (Fig.  8(f)) show that the fitted 
curves are highly close to the Bruggeman equation when the bonded 
phase is not considered (𝜏 = 0.885𝜀−1.068), but the experimental results 
are closer to the fitting results when the bonded phase is considered 
(𝜏 = 1.02𝜀−0.53). This work demonstrates for the first time that the 
tortuosity of calendered electrodes can be predicted by combining DEM 
simulations and bonded phase generation algorithms.

However, it should be noted that the results of the DEM simula-
tions still differ considerably from the experimental values, which Ge 
et al. [52] attribute to the fact that the actual AM particles do not 
stay ideally spherical after compression and that the model does not 
take into account the effects of particle fragmentation. In a subsequent 
report [55], this team attempted to use ellipsoids instead of spheres in 
order to simulate the deformation and directionality of the particles.

The DEM simulation results are compared with the XCT results. The 
two methods of calculating the pore size distribution, i.e., Continuous 
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Fig. 9. Electrode microstructures and pore size distributions before and after calendering based on tomography reconstructions and analytical approximations. (a) Electrode 
structures from tomography scans, spherical approximations and ellipsoidal approximations. Porosity distribution and 50% pore radius for both (b–c) uncalendered and (d–e) 
calendered structures based on Continuous Pore Size Distribution and Mercury Intrusion Porosimetry Pore Size Distribution.
Source: This figure is quoted with permission from Ge et al. [55].
Pore Size Distribution and Mercury Intrusion Porosimetry Pore Size 
Distribution, are also considered. The comparison results are shown 
in Fig.  9. The Continuous Pore Size Distribution method calculates 
the cumulative pore size distribution by gradually adding spheres of 
increasing radius to the pores, while the Mercury Intrusion Porosimetry 
Pore Size Distribution method simulates the intrusion of mercury into 
the porous electrode. Both show the same trend in the results, but 
Mercury Intrusion Porosimetry Pore Size Distribution decreases slightly 
more in the middle phase. From the final statistics, the structure of the 
perfect spherical approximation is closer to the real performance than 
the ellipsoidal approximation. Therefore, this problem has not yet been 
effectively solved.

In order to further explore the effect of the shape of the AM particles 
on calendering simulations, Nikpour et al. [56] attempted to create par-
ticles with different morphologies to explore their potential effects. Fig. 
10 illustrates the mechanical properties, including coating thickness, 
porosity, particle surface area, and Young’s modulus, of AM particles 
with various shapes following drying and calendering processes. In 
addition, it displays their electrochemical properties, such as electronic 
conductivity and the MacMullin number 𝑁𝑀 , which is the ratio of the 
ionic conductivity of the pure electrolyte to the ionic conductivity of the 
electrolyte with separators. The simulation results show that the disk 
particles have the highest thickness variation and porosity variation 
compared to the spherical and rod particles, which indicates a higher 
degree of stacking. It reflects the same trend in the electrochemical 
performance-related parameters. However, irregular AM particles in-
duce the formation of a looser and softer porous structure, leading to 
a reduction in stiffness. In conclusion, calendering has different effects 
10 
depending on the shape of the active material. However, the increase 
in electronic conductivity and MacMullin number after calendering 
is mainly due to the compression of the micropores inside the CBD 
phase rather than the AM particle shape difference itself, which is more 
sensitive to differences in particle surface area.

Similarly, Xu et al. [57] carried out a more detailed study of this 
problem to resolve the situation where particle deformation could not 
be observed in the DEM simulation. They used the XCT results of 
the NMC111 sample as the basis for the shape data and converted 
the 2D scanning phase diagram into a 3D matrix. Subsequently, small 
spherical particles were used to populate this matrix in the DEM model 
to construct AM particles that matched the true morphology. The initial 
structure of the electrode coating model is generated by the random 
rotation and displacement of a large number of AM particles with 
different shapes (as shown in Fig.  11(a)).

The comparison of the simulation results with the experimental data 
is shown in Fig.  11(b) and (c). It can be seen that the model can 
better predict the changes in porosity and tortuosity of the electrode 
structure during the calendering process. Fig.  11(h–i) visualises the 
deformation of AM particles constructed from small spherical particles 
during calendering. However, it is also important to note that the 
accuracy of the model decreases as the AM content decreases.

In addition, Xu et al. [58] attempted to use a bonding model on this 
basis to simulate the effect of particle fracture. The maximum normal 
and shear stresses of the bond can be calculated from the following 
equations: 

𝜎𝑛 = −
|𝐹 𝑛

𝐵| +
|𝑀 𝑡

𝐵|𝑅𝑚𝑖𝑛 (17)
𝐵 𝐴𝑏 𝐼
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Fig. 10. Effect of AM morphology on electrode performance. (a–c) Simulated cross sections for (a) disk, (b) sphere, and (c) rod AM shapes at three stages of coated, dried, and 
calendered. LD and HD denote high and low-density CBDs. (d–i) The simulated dried and calendered (d) film thickness, (e) porosity, (f) AM surface area, (g) electronic conductivity, 
(h) MacMullin number, and (i) Young’s modulus.
Source: This figure is quoted with permission from Nikpour et al. [56].
𝜎𝑡𝐵 =
|𝐹 𝑡

𝐵|

𝐴𝑏
+

|𝑀𝑛
𝐵|𝑅𝑚𝑖𝑛

𝐽
(18)

where 𝐴 is the contact area, 𝐼 and 𝐽 are the moment of inertia and polar 
moment of inertia of the section, respectively. 𝑀𝑛

𝐵 and 𝑀 𝑡
𝐵 represent 

the axial and shear incremental moments of the bond, respectively. 𝐹
is the Hertzian elastic force between two pairs of particles in contact: 

𝛥𝐹 𝑛
𝐵 =

𝐸𝑏𝐴𝑏
𝑙𝑏

𝑣𝑛𝑟𝛥𝑡 (19)

𝛥𝐹 𝑡
𝐵 =

(𝐸𝑏∕2(1 + 𝑃𝑂𝑏))𝐴𝑏
𝑙𝑏

𝑣𝑡𝑟𝛥𝑡 (20)

where 𝐸𝑏 and 𝑃𝑂𝑏 are Young’s modulus and Poisson’s ratio of the bond, 
respectively. 𝑣 is the relative velocity, and 𝑙𝑏 is the length of the bond.

Fig.  12 shows the evolution of the shape of a randomly selected 
AM particle (Fig.  12(c)) during the calendering process, as well as the 
bonds to be broken (blue region in Fig.  12(d)). The fracture of the 
11 
AM particles was found to not depend on the linear variation of the 
applied force. When the pressure exceeded 120 MPa, the bond breakage 
rate within the particles reached more than 10% (as shown in Fig. 
12(b)), and there was an increased probability of particle fracture. The 
distribution of cracks within the electrode is not uniform and is related 
to the distribution or orientation of the AM particles in the coating and 
the applied force.

In conclusion, this study presents a novel electrode microstructure 
model that offers a more precise representation of the actual particle 
shape and is more closely aligned with the actual situation than pre-
vious models based on spherical particles. This model is capable of 
tracking the deformation and orientation changes of the AM particles 
throughout the calendering process, and its predictions are in good 
agreement with experimental data. In addition, this model has the 
potential to predict and visualise the pressure-induced fragmentation of 
AM particles during the calendering process. However, this modelling 
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Fig. 11. The process of DEM numerical model construction and simulation results con-
sidering the real shape of the active material in the calendering process. (a) Schematic 
representation of the NMC111 AM structure generation procedure. (b) Comparison 
between experimental and simulated porosity for both electrode compositions as a 
function of compression degree. (c) Tortuosity factor as a function of the porosity during 
the simulated calendering and comparison with 𝜇-XCT data. (d–e) The 3D structure 
resulting from the calendering model. (f–g) Pore, CBD and AM volume distribution 
along the thickness direction, represented by black, red and blue curves respectively. 
(h–i) Cross-sectional view for the electrodes. The blue represents the CBD, and the red, 
from light to dark, represents different sizes of AM.
Source: This figure is quoted with permission from Xu et al. [57].

approach requires the generation of a large number of primary spheri-
cal particles and is therefore computationally inefficient (requiring up 
to 216 h for a single run on a 2 of Intel Xeon E5-2680 v4, 2.4 GHz 14 
cores platform) and does not allow for more complex simulations due 
to computational limitations.

It is worth noting that most of the literature reviewed so far is 
based on the study of parameters such as electrode porosity, tortuosity, 
and conductivity. Compared to these fundamental parameters, the force 
and elastic recovery behaviour of the electrodes during calendering 
is more difficult to simulate accurately. In order to study in detail 
the evolution of the mechanical behaviour of electrodes during cal-
endering, Schreiner et al. [59] proposed a method for parameterising 
the calendering model and discussed in detail the effects of various 
parameters of the model on the load–displacement curves.
12 
Schreiner et al. [59] point out that the mechanical parameters of 
the model can be calibrated by nanoindentation experiments, including 
compressive strength, elastic rebound, and initial particle cohesion. 
Nanoindentation experiments are a method for determining the me-
chanical properties of a material. This is achieved by applying a tiny 
indenter to the electrode material, which allows measurement of the 
displacements and corresponding forces generated during compression. 
The study of particle contact parameters between different materials 
is particularly important because the introduction of contact models 
and corrective parameters, such as virtual bonds, makes it impossible 
to accurately calculate specific values for each parameter directly from 
mechanical tests. The study indicated that for three common types of 
offset in simulation results, the loading curve of the model could be 
adjusted by correcting the parameters of critical shear or normal stress 
and surface energy (Fig.  13(a)), the maximum compression pressure 
by correcting Young’s modulus parameter (Fig.  13(b)), and the elastic 
recovery curve by correcting the contact plasticity ratio parameter (Fig. 
13(c)).

In conclusion, the model parameterisation concept and calibration 
methodology proposed in this study are of considerable significance 
and a far-reaching influence, extending the research scope for DEM 
numerical models. Nevertheless, it is important to note that there is 
still a notable discrepancy between the simulation results and the 
experimental values obtained in this study. This highlights the need 
for further research to investigate the evolution of the mechanical 
behaviour of the electrodes.

Furthermore, Lundkvist et al. [40] indicated that electrode coatings 
have a pressure-sensitive behaviour, i.e. they have different mechanical 
properties under tension and compression. Existing models have treated 
CBD as extremely small spherical particles that adhere around AM 
particles. However, this makes it difficult to relate the mechanical 
behaviour of the active layer to the contact properties of the CBD and 
AM, and thus, to explain the differences in tensile and compressive 
processes. To solve this problem, they innovatively considered the CBD 
as flat cylinders and controlled the stiffness of the CBD by adjusting the 
radius ratio of the cylinders to characterise the mechanical properties 
of the electrode coatings in tension and compression (shown in Fig. 
14(a)). Compared to spherical particles, cylindrical particles have a 
larger contact area with neighbouring particles, and their mechanical 
behaviour is directional and anisotropic.

Four types of CBD particles with different stiffnesses were selected 
to investigate the effect of CBD elastoplastic behaviour on the active 
layer load–displacement curve during calendering. For cylindrical CBD 
with different radius ratios, the number of interparticle contacts is 
similar and increases with higher strain levels. The simulation results 
(Fig.  14(b)) show that the calender pressure is linearly related to the 
square of the binder radius ratio, while the elastic rebound remains 
relatively constant. Studies of the plastic behaviour of adhesives have 
similarly demonstrated that plastic deformation of binders, whether in 
tension or compression, does not significantly affect the stiffness of the 
unloading (Fig.  14(c) and (e)). This indicates that plastic deformation 
occurs only at the elastic-binder-particle contact. In addition, the model 
successfully reproduced the experimentally observed range of different 
variations in unloaded stiffness under tensile and compressive condi-
tions (Fig.  14(d)). However, an accurate numerical reduction was not 
achieved. This modelling framework provides a good basis for further 
analyses of the mechanics of the electrode layer, such as the expansion 
of the AM particles due to electrochemical loading.

In summary, the development of DEM numerical models for the 
electrode calendering process remains in its infancy. While numerous 
studies have employed DEM to simulate the evolution of electrode 
microstructures during calendering, significant challenges persist. The 
inherent complexity of DEM modelling has hindered the accurate and 
efficient simulation of the deformation, fracture, and fusion processes 
of AM. There is also a lack of attention to the stresses and strains 
experienced by the electrodes and the movement of the particles during 
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Fig. 12. Schematic diagram of the calendering evolution for the fracturable DEM model and its simulation results. (a) Cross-sectional diagram of the volume. The position of 
the studied particles within the electrode is indicated. (b) The pressure applied on the simulated electrode and the number of bonds break of this individual particle. (c) Particle 
shape evolution during the calendering. (d) The change of the bonds within the selected particle during the calendering. The blue indicates the bonds that will break during this 
compression, while purple indicates bonds that remain intact throughout.
Source: This figure is quoted with permission from Xu et al. [58].
Fig. 13. Experimental values and simulation results for a typical NMC622 load–displacement curve. (a) Typical load–displacement curve for an NMC622 electrode before, during 
and after compaction. (b) Comparison of the load–displacement curves for the simulation and experiment and the number of broken bonds.
Source: This figure is quoted with permission from Schreiner et al. [59].
calendering. Moreover, the CBD, being a nanoscale microporous mate-
rial with particle sizes enormously different from those of AM particles, 
presents substantial difficulties in accurately representing its physical 
properties within DEM simulations. Consequently, there is still a lack 
of convincing DEM numerical models capable of precisely replicating 
the various mechanical behaviours exhibited by electrodes during cal-
endering. Addressing these challenges is urgent and represents a critical 
focus for future research endeavours.

3.3. FEM-based numerical models

In the simulation of the electrochemical performance of electrodes, 
FEM holds a crucial position due to its effectiveness in modelling 
complex electrochemical phenomena. FEM is particularly suitable for 
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simulating electrochemical behaviour because it allows for detailed 
analysis of spatially varying fields such as potential, concentration, 
and current density within complex electrode geometries. It facili-
tates the coupling of multiple physical processes, including ion trans-
port, electron conduction, and electrochemical reactions, providing a 
comprehensive understanding of the behaviour of the electrode un-
der various operating conditions. However, since each phase within 
the porous electrode microstructure requires individual modelling and 
meshing, the computational cost of this method becomes extremely 
high when full-sized batteries are modelled. Consequently, FEM was 
initially predominantly used to study various behaviours of electrodes 
at macroscopic scales.

For example, He et al. [60] employed COMSOL Multiphysics to 
develop a 3D model of a soft-pack Lithium Iron Phosphate battery 
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Fig. 14. The electrode modelling process using columnar particles to represent CBD and its mechanical performance compared to the experiment. (a) The RVE of the positive 
electrode for the different steps in the simulation process: random packing, uncalendered electrode layer, calendering process, and in-plane mechanical loading. (b) Calendering 
surface pressure to surface height for four binder radius ratios. (c) Calendering pressure for the elastic and elastic–plastic binder. (d) Unloading stiffness for four binder radius 
ratios compared with the experimental results. (e) Unloading stiffness for the elastic and elastic–plastic binder compared with the experimental results.
Source: This figure is quoted with permission from Lundkvist et al. [40].
(LiFePO4). In their model, they neglected the volume changes of elec-
trode particles during charging and discharging, as well as the forma-
tion of the SEI and lithium dendrites. They assumed that the interior of 
the battery could be represented as a continuum comprising overlap-
ping solid and electrolyte phases. Using this model, they investigated 
the electrolyte diffusion behaviour and lithium ion transport within 
porous electrode materials under high current rates. Fig.  15(a–b), re-
spectively, present comparisons between simulated and experimental 
results for voltage and temperature variations of the battery under 
different C-rates. The simulation results closely match the experimental 
data, demonstrating the validity of the model. It is evident that dis-
tinct voltage plateaus are observed at various discharge rates, and the 
voltage plateau decreases as the discharge rate increases. This indicates 
that the model effectively captures the electrochemical dynamics of the 
battery under different operating conditions.

Fig.  15(c–e) (anode) and (f–h) (cathode) illustrate the distribution 
of the overpotential within the electrodes at a discharge rate of 5C. The 
overpotential is a critical parameter in electrochemical systems, defined 
as the difference between the actual electrode potential under load and 
its equilibrium (open-circuit) potential. The energy levity arises because 
of kinetic barriers such as charge-transfer resistance, mass-transport 
limitations, and ohmic losses within the electrode and electrolyte. The 
overpotential directly influences the cell voltage, efficiency, and overall 
battery performance. As the depth of discharge increases, the anode 
and cathode electrodes exhibit entirely opposite trends in overpoten-
tial distribution. This behaviour reflects the differing electrochemical 
reactions and kinetics of the two electrodes during discharge. However, 
regardless of the electrode type, at the initial stage of discharge, the 
regions near the current collectors (tabs) are highly utilised first due 
to shorter electronic conduction pathways and lower resistance. The 
regions farther from the tabs begin electrochemical reactions more 
slowly, likely due to increased internal resistance and longer pathways 
for ion and electron transport. This non-uniform utilisation can lead to 
uneven degradation and reduced efficiency. Furthermore, the current 
density distributions at the electrode–separator interfaces (Fig.  15(i–
k) for the anode electrode and Fig.  15(l–n) for the cathode electrode) 
corroborate this observation, showing higher current densities near the 
tabs and lower densities farther away.
14 
Over the past few years, most FEM simulations of LIBs are concen-
trated on the macroscopic scale, with relatively few studies focusing on 
the mesoscopic or even microscopic scales. However, macroscopic con-
tinuum models face significant challenges in capturing the microstruc-
tural changes induced by calendering. Specifically, these models often 
struggle to accurately represent the intricate details of particle rear-
rangement, deformation, fracture, and contact mechanics that occur 
at the micro level during the calendering process. The homogenisa-
tion inherent in macroscopic models overlooks the heterogeneities and 
anisotropies present in the electrode materials, such as variations in 
particle size distribution, binder distribution, and porosity. This sim-
plification can lead to less accurate predictions of mechanical stresses, 
electrochemical performance, and overall battery behaviour under op-
erational conditions. Moreover, macroscopic models typically assume 
uniform material properties and neglect the local interactions between 
particles and phases, thus ignoring phenomena such as crack initiation, 
propagation, and the formation of conductive pathways. As a result, 
these models may fail to predict localised failures or performance 
degradation mechanisms that originate from microstructural features. 
The inability to capture these detailed microstructural effects limits 
the effectiveness of macroscopic models in optimising electrode design 
and processing conditions. In this context, some of the outstanding 
advances in FEM simulations over the past few years at smaller scales 
will be reviewed to highlight new insights and identify future research 
directions.

Boyce et al. [61] employed XCT images alongside the standard fil-
tered back-projection algorithm [62] to reconstruct the three-
dimensional morphology of electrodes with high precision. Subse-
quently, the discrete transport and electrode dynamics equations were 
solved in FEM software to investigate the influence of electrode thick-
ness and porosity on its discharge performance. The XCT sample and 
the model construction process are shown in Fig.  16(a–c).

The simulation results show that the discharge performance of the 
electrode is strongly affected by the electrode thickness and porosity. 
When other factors are kept constant, the discharge capacity at 1C 
increases significantly when porosity increases (Fig.  16(e)). When the 
electrode thickness increases, the discharge capacity decreases dramat-
ically (Fig.  16(f)). In addition, this phenomenon is more pronounced 
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Fig. 15. The continuous medium electrochemical numerical model and the overpotential and current density distribution map. (a–b) Comparison between simulation results and 
experimental data, (a) variation of voltage and (b) variation of temperature with time. (c–h) Overpotential distribution within the electrodes at different times at the discharge rate 
of 5C, (c–e) positive electrode, and (d–h) negative electrode at 𝑡 = 60, 360, and 660 s, respectively. (i–n) Current density within the electrodes at different times at the discharge 
rate of 5C, (i–k) positive electrode, and (l–n) negative electrode at 𝑡 = 60, 360, and 660 s, respectively.
Source: This figure is quoted with permission from He et al. [60].
under high-rate discharge conditions. Fig.  16(g) shows that when the 
electrode thickness exceeds 160 μm or the porosity is less than 0.25, the 
electrode can hardly meet the 5C discharge rate.

This can be attributed to the fact that as the length of the diffusion 
path increases, the resistance of lithium ions to traversing the tortu-
ous path through the macrostructure during discharge also increases, 
resulting in a decrease in discharge capacity. In contrast, as the macro-
porosity increases, the tortuosity decreases, resulting in more uniform 
diffusion and electrolyte within the particles. The increased porosity 
also provides a larger surface area for exposure to the active particles, 
which promotes a higher utilisation rate of the active material. Fig. 
16(d) shows the lithium-ion concentration distribution and the lithi-
ation state of electrodes with different porosities at the same discharge 
rate.

Similarly, Sun et al. [63] developed a FEM numerical model based 
on XCT images to study the evolution of the electrode structure and 
electrochemical performance during calendering. Fig.  17(a) illustrates 
the pre-processing of the XCT scans to extract the necessary data 
suitable for the construction of the FEM model, which includes: im-
age filtering, normalisation, phase segmentation, particle labelling, 
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structural reconstruction, etc. Fig.  17(b) illustrates the simulation re-
sults of the electrode microstructure cross-section compared to the 
experimental results.

The experimental results reveal that when the degree of calendering 
is below 10%, compression of the electrode occurs predominantly in 
the upper surface region. As the degree of calendering reaches 20%, 
this compression trend extends to the lower layers, indicating the 
initiation of self-arrangement phenomena among AM particles. Beyond 
a calender degree of 30%, particles become densely compacted, leading 
to plastic deformation. This effect is especially pronounced in small and 
medium-sized particles, which experience stress concentration because 
of their proximity to larger particles. The emergence of these processes 
significantly impairs the electrochemical performance of electrodes 
with high calendering degrees, particularly under high-rate discharge 
conditions. For example, as illustrated in Fig.  17(g), at a low discharge 
rate of 0.5C, electrodes with a degree of calendering 40% still exhibit 
a specific capacity of approximately 146 mAh∕g. This suggests that 
at low rates, lithium-ion diffusion is primarily limited by diffusion 
within the solid AM particles themselves. However, as the current rate 
increases, the performance deteriorates markedly. At a high rate of 5C, 
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Fig. 16. Electrode discharge model on the basis of XCT image data and the results of its simulation. (a) The sample slice from an X-ray nano-CT scan with particles (white), CBD 
(grey) and pores (black). (b) Segmented and model geometry of the base sample where H = 40 μm. (c) An example of a computationally mirrored sample where the electrode 
thickness is 160 μm. The macro-porosity is 20% in B and C, and B = W = 30 μm, and 𝑡𝑐𝑐 = 𝑡𝑠𝑒𝑝 = 15 μm in all cases. (d) State of lithiation and Li+ concentration profiles at 100% 
degree of discharge for 160 μm electrodes of varying macro-porosity. All electrodes were discharged at 1C. (e) Discharge response of an electrode with varying macro-porosity, a 
fixed thickness of 160 μm and a discharge rate of 1C. (f) Discharge response of an electrode with varying thickness, fixed macro-porosity of 25% and discharge rate of 1C. (g) 
Specific capacity as a function of macro-porosity for a variety of electrode thicknesses and discharge rates.
Source: This figure is quoted with permission from Boyce et al. [61].
uncalendered and lightly calendered electrodes retain about 58% of 
their maximum capacity, while electrodes with a degree of calendering 
40% retain only about 44 mAh∕g of specific capacity. This indicates 
that a high degree of calendering leads to significant hindrance of 
ion transport, likely due to reduced porosity and increased tortuosity 
within the electrode microstructure.

In contrast, studies on volumetric capacity exhibit an opposite trend. 
Due to the higher volumetric usage in highly calendered electrodes, 
the volumetric capacity increases with increasing calendering degrees, 
especially at low discharge rates below 2C. As the porosity decreases 
to 25%, the volumetric capacity increases almost linearly, reflecting the 
denser packing of active materials, which enhances energy storage per 
unit volume. However, at high rates such as 5C, further increases in 
the calender exacerbate overpotential phenomena, leading to a decline 
in volumetric capacity. Specifically, at 5C and a porosity of 25%, a 
peak volumetric capacity of approximately 209 mAh/cm3 is achieved, 
beyond which the capacity decreases due to kinetic limitations. In 
general, this study provides a systematic analysis of how calendering 
degree influences battery performance metrics such as specific capacity, 
volumetric capacity, energy density, and power density. It elucidates 
the intricate interplay between electrode microstructure and electro-
chemical performance across different C-rates. The findings highlight 
that, while increased calendering can enhance the volumetric energy 
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density at low discharge rates by reducing porosity and increasing the 
density of active materials, it can be detrimental at high rates due to 
impeded ion transport and increased polarisation. These insights are 
crucial for optimising electrode design to balance energy and power 
requirements in practical battery applications.

In conclusion, FEM is a powerful tool for analysing the impact 
of the electrode calendering process on electrochemical performance. 
By coupling multiple physical fields, such as mechanical deformation, 
thermal effects, and electrochemical reactions, FEM enables an in-depth 
investigation of the intrinsic changes and operational principles occur-
ring during battery charging and discharging processes. The meshing 
process inherent in FEM allows for detailed spatial discretisation of the 
electrode material, facilitating simulations that account for the com-
plex, irregular geometries typical of electrode structures. This detailed 
modelling bridges the gap between theoretical predictions and prac-
tical observations, making FEM particularly well-suited for studying 
electrodes with non-uniform morphologies.

However, current FEM studies focusing on electrode microstruc-
tures are relatively limited and largely depend on XCT imaging re-
sults. This reliance constrains the development of data-driven, self-
iterative optimisation models that can adapt and improve based on 
simulation outcomes. Therefore, integrating DEM models with FEM 
presents a highly promising research direction. Using DEM to generate 
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Fig. 17. The electrochemical numerical model reconstructed by XCT to analyse the relationship between its electrochemistry and structural evolution. (a) Flow chart of image 
processing, ML segmentation and 3D reconstruction for electrode XCT image dataset: raw image dataset (the bright regions are AM particles or CBD, the dark region is pore); 
image after using non-local means filter; image after using the operation of normalise grayscale; image after ML segmentation; labelled AM particles; 3D reconstruction of the 
electrode (only AM particles) and selected cubic ROI for further meshing and FE modelling (highlighted by orange box). (b) Comparison between simulation and experimental 
examination for microstructure evolution of the electrodes: the surface and cross-section views, respectively, from the mechanical simulation at different calendering degrees, and 
the surface and cross-section views, respectively, from SEM examination at different stresses. (c-k) Simulation results of the half-cell using 3D microstructure at different C-rates. 
Comparison of specific discharge performance of electrode at different calendering degrees: (c) uncalendered, (d) 10% calendered, (e) 20% calendered, (f) 30% calendered, (g) 40% 
calendered, (h) comparison of the simulated rated specific capacity of the electrode against the C-rates, (i) comparison of the simulated rated volumetric capacity of the electrode 
against the porosity. Ragone plots: energy-power curves for (j) gravimetric and (k) volumetric analysis at different C-rates and calendering degrees. Specific capacity is calculated 
by considering the mass of AM particles in the electrode, while the volumetric capacity is determined by including the volume of the electrode (AM particles, macropore and CBD 
phases).
Source: This figure is quoted with permission from Sun et al. [63].
electrode-calendered structures and analyse their mechanical evolution 
and subsequently employing FEM for electrochemical analysis, a more 
comprehensive and predictive modelling framework can be established. 
This coupling leverages the strengths of both methods, the capability of 
DEM to simulate particle-level interactions and mechanical behaviour, 
and the proficiency of FEM in handling complex multiphysics problems, 
which is expected to deepen the understanding of how mechanical 
processes affect electrochemical performance. Such an integrated ap-
proach will hold significant potential for the advancement of battery 
17 
technology through the optimised design of electrode materials and 
structures.

3.4. Machine learning and data-driven models

Currently, the rapid advancement of AI has introduced new hori-
zons for the optimisation of computational models. Traditional mod-
elling approaches are often impeded by complex modelling procedures, 
lengthy simulation times, and limitations in handling the multiscale 
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and multiphysics nature of electrode materials. These challenges make 
it difficult to optimise electrode performance effectively. Additionally, 
traditional models may struggle with scalability and adaptability when 
dealing with the irregular and heterogeneous structures of electrodes, 
further complicating the optimisation process. Moreover, model vali-
dation is heavily dependent on a large amount of experimental data, 
which is both labour-intensive and time-consuming. This dependency 
not only slows down the development cycle, but also limits the ability 
to perform extensive parameter studies and iterative improvements.

The emergence of data-driven models based on machine learn-
ing offers a promising solution to these challenges. Machine learning 
algorithms can efficiently process large datasets to identify complex 
patterns and relationships that are difficult to capture with traditional 
modelling techniques. By incorporating techniques such as deep learn-
ing and neural networks, these models can handle high-dimensional 
data and non-linear interactions inherent in electrochemical systems. 
This approach can significantly reduce simulation times and simplify 
the modelling workflow by automating feature extraction and model 
training processes. On this basis, machine learning models can enhance 
predictive accuracy and generalisation by learning from both simu-
lation and experimental data. They enable self-iterative optimisation 
by continuously updating the model as new data become available, 
thereby improving reliability and performance over time. This reduces 
the need for extensive experimental validation and accelerates the 
development of optimised electrode materials.

Deep neural networks (DNNs) represent one of the most prominent 
machine learning architectures today and are widely applied across 
diverse fields. A DNN is a type of artificial neural network characterised 
by the presence of multiple hidden layers between the input and 
output layers. In essence, an artificial neural network is composed of 
interconnected units that aggregate several inputs to produce a single 
output. The term ‘deep’ in DNN signifies both the increased number of 
layers and the increased complexity within each layer, enabling these 
networks to model intricate non-linear relationships and hierarchical 
features in the data. This depth facilitates the extraction of high-
level abstractions from raw input, which is particularly beneficial for 
complex pattern recognition tasks.

Among the various types of DNN, multilayer perceptron (MLP), 
convolutional neural networks (CNN), and recurrent neural networks 
(RNN) have emerged as the most popular in recent years. The MLP, 
which is the most fundamental form of deep neural networks, is com-
posed of a sequence of fully connected layers. In an MLP, each layer 
transforms the weighted sum of outputs from the previous layer using 
a set of non-linear activation functions, thereby allowing the network 
to capture complex patterns within structured data. This architecture 
makes MLPs especially suitable for tasks that involve inputs with fixed 
dimensions and independent features. Over the past few years, MLPs 
have been employed by researchers to predict the microstructural evo-
lution of slurries during drying and calendering processes. For example, 
Tan et al. [64] pointed out that the electrode manufacturing process 
involves multiple subprocesses, each characterised by highly nonlinear 
behaviours and interwoven with high-dimensional data. To address this 
limitation, they proposed a data-driven machine learning model that 
bypasses the need for an in-depth understanding of complex physical 
phenomena (as shown in Fig.  18(a)).

In their study, Tan et al. employed an experimental design method 
that combines both experimental and computational approaches. They 
generated a dataset based on experimental data to train a general ma-
chine learning model to study electrode manufacturing. To enhance the 
density and diversity of the dataset, they expanded it through computa-
tional means. This approach ensured that the model had sufficient data 
to learn from. Recognising the significant correlations between different 
Intermediate Product Properties, the model first used a graph clustering 
algorithm to group these properties. This method involved analysing 
the correlation coefficients between the properties and grouping highly 
correlated attributes together (as shown in Fig.  18(b) and (c)). This 
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reduced redundancy and multicollinearity in the dataset, improving 
the predictive accuracy of the model, and streamlining the learning 
process. Subsequently, on the basis of the clustered data, appropri-
ate machine learning algorithms which are well-suited for modelling 
complex nonlinear relationships and can handle high-dimensional data 
effectively were employed to establish the electrode production process 
model. Specifically, algorithms such as Multilayer Perceptron, Support 
Vector Regression, and Gaussian Process Regression were used to pre-
dict the relationships between process parameters and Intermediate 
Product Properties. The structure and training process of the model was 
optimised through hyperparameter tuning, which involved adjusting 
parameters like learning rates, regularisation coefficients, and network 
architectures to achieve the best performance. This comprehensive ap-
proach was able to reveal the impact of variations in process parameters 
on electrode characteristics and identify the Key Process Parameters 
(as shown in Fig.  18(d–i)). This study demonstrates the potential of 
machine learning models to effectively navigate the complexities of 
electrode manufacturing processes, providing high-dimensional data 
correlations that traditional physical models cannot capture.

Convolutional neural networks (CNNs) constitute another promi-
nent category within DNNs. Unlike fully connected layers found in 
MLP, CNN models incorporate one or more convolutional layers that 
extract features from input data through convolution operations. In 
these layers, a set of nonlinear functions is applied to a weighted sum 
calculated over spatially adjacent subsets of the outputs of the preced-
ing layer. This approach facilitates the repeated use of weights across 
different spatial locations, thereby reducing the number of trainable 
parameters and enhancing computational efficiency. The hierarchical 
application of convolution and pooling operations enables CNN to 
learn high-level abstract representations of the input, making them 
particularly well suited for image processing tasks. Recent studies have 
used models based on convolutional neural networks to predict char-
acteristic changes in electrode microstructures, including variations in 
contact surface area, porosity, diffusivity, and bending coefficients. 
For example, Galvez-Aranda et al. [65] present a novel deep learning 
framework to bridge the computational gap between detailed simula-
tions based on physics and the need for rapid process optimisation in 
lithium-ion battery manufacturing. In doing so, the study seeks to facil-
itate real-time adjustments in manufacturing parameters to achieve the 
desired electrode properties. They integrate a physics-informed deep 
learning approach with a time-series analysis framework. Specifically, 
a one-dimensional convolutional neural network is established, which 
is trained on a dataset generated through a sequential computational 
workflow that couples Coarse-Grained Particle Dynamics for simulating 
the slurry preparation and drying stages with DEM simulations for the 
calendering process. The microstructures, initially represented as three-
dimensional voxelised data, are reconstructed into a time-series dataset 
via a sliding window method. This transformation enables CNN to 
capture sequential dependencies and local spatial correlations inherent 
to the dynamic calendering process (as shown in Fig.  19(a)).

Furthermore, another key methodological innovation in this work is 
the rigorous and efficient hyperparameter tuning using the Optuna ap-
proach. This optimisation process not only ensured rapid convergence 
of the model, but also mitigated overfitting, as evidenced by the low 
mean squared error and high R2 scores observed during validation (as 
shown in Fig.  19(b–g)). In particular, the model successfully captures 
intricate phenomena such as elastic recovery (spring-back effect) after 
compression, thereby reproducing both the transient and steady-state 
microstructural characteristics of the electrode. This study introduces 
the first known application of a time-dependent deep learning model to 
predict the three-dimensional evolution of battery electrode microstruc-
tures during calendering. By combining physics-based simulation data 
with an efficient CNN architecture, they achieve a dramatic reduction 
in computational cost, transitioning from simulation times on the order 
of tens of minutes per time step to approximately 15 s per step with 
the deep learning model. The model not only replicates key electrode 
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Fig. 18. Flow diagram of the process for modelling the electrode manufacturing process based on machine learning and the results for the calendering process. (a) Methodology of 
electrode production process modelling, including data generation, data clustering, machine learning modelling, and post-modelling analyses. (b–c) Correlation analysis of calendered 
electrode IPAs. (d–i) Responses of calendered electrode IPAs to over temperature and residence time.
Source: This figure is quoted with permission from Tan et al. [64].
functional metrics (e.g. porosity, diffusivity, and tortuosity) with high 
fidelity but also provides a robust tool for potential integration into 
high-throughput screening and optimisation loops in battery manu-
facturing. Among the three primary types of deep neural networks, 
RNN has not yet been reported in the literature for modelling the 
electrode calendering process. Nevertheless, both RNNs and state-of-
the-art architectures such as the Transformer, which excels at capturing 
long-range dependencies and sequential patterns, may offer valuable 
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avenues for future research, particularly in scenarios where temporal 
dynamics play a critical role.

In addition, compared to complex deep learning algorithms that 
learn intricate non-linear mappings through numerous neurones and 
multilayered structures, some researchers have explored alternative 
methodologies. For example, methods based on compressed sensing, 
such as Sure Independence Screening and Sparsifying Operator, have 
been employed to perform feature selection and sparse regression. 
SISSO is capable of extracting the most informative low-dimensional 
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Fig. 19. Workflow and simulation results of a CNN-based machine learning model for the evaluation of the calendering process and its structural evolution. (a) Schematic 
representation of the framework, starting from the 3D microstructure data reconstruction from DEM data, to train a CNN over a time series. After training, the model performance 
is assessed through evaluation and electrode functional metrics. (b–g) Evolution of the volume of the four different phases (AM, CBD, Pores and Void) in the number of voxel units 
versus time of the testing data, microstructure II at (b) 35% calendering degree and microstructure III at (d) 25% and (f) 45% calendering degree. R2 score comparing DEM target 
versus deep learning predicted over time of the testing data, microstructure II at (c) 35% calendering degree and microstructure III at (e) 25% and (g) 45% calendering degree.
Source: This figure is quoted with permission from Galvez-Aranda et al. [65].
descriptors from a large pool of candidate descriptors, and it yields 
explicit mathematical formulations. These approaches not only simplify 
the model, but also enhance interpretability by providing clear, analyt-
ical expressions that can be directly related to the underlying physical 
processes. Duquesnoy et al. [66] proposed an empirical model based on 
experimental results to fit the relationship between the initial electrode 
parameters and the porosity after calendering. With the help of this 
curve, a large number of electrode structures were randomly generated 
using an electrode generation programme to form a training dataset. 
Based on this dataset, a machine learning algorithm was trained to 
identify and map the dependence between the manufacturing process 
and the electrode properties (as shown in Fig.  20(a)).

This machine learning model is mainly used to analyse the effect of 
the calendering pressure on the structure of the electrode. Fig.  20(b–e) 
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shows the evolution of the porosity after calendering electrodes with 
different initial porosities and AM contents. The simulation results show 
that electrodes with higher initial porosities and lower AM content 
can exhibit lower final porosities after calendering. This indicates that 
as the AM content increases, the degree of freedom in the electrode 
structure increases, and can more easily rearrange to form a denser 
solid-phase network when pressure is applied. Fig.  20(f–i) shows the 
variation in the tortuosity of the solid network predicted by the ma-
chine learning model. The tortuosity of the solid network increases with 
increasing AM mass fraction, indicating that a higher AM content leads 
to larger pore sizes, increasing the tortuosity of the solid phase paths. 
When pressure was applied, the volume fraction of the solid phase 
increased, as did the contact between particles, resulting in a larger 
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Fig. 20. Workflow and simulation results of a data-driven machine learning model for the evaluation of the calendering process and its structural evolution. (a) The hybrid 
methodology workflow. Experimental data is used to develop a mathematical equation, which is then embedded into a data-driven stochastic electrode generator that calculates 
the electrode mesostructure properties associated with different process conditions. The developed dataset is used to train and validate the ML algorithm, which allows to map 
and identify the interdependencies between electrode properties prior to the manufacturing, process parameters (reported in the Figure as electrode and process variables) and 
electrode properties after the manufacturing process is investigated. (b–e) 𝜀𝑐𝑎𝑙 Obtained by polynomial fitting of the experimental dataset, in terms of the applied calender pressure 
and the AM mass fraction for different initial electrode porosities (𝜀𝑖𝑛𝑖𝑡). (f–i) ML-predicted in terms of the applied calendar pressure and the AM mass fraction for different initial 
electrode porosities (𝜀𝑖𝑛𝑖𝑡). As a reference, the electrode porosity after the calendering (𝜀𝑐𝑎𝑙) is reported next to the cross symbols for AM mass fractions equal to 93% and 96% at 
pressures equal to 40, 80, 120 and 160 MPa. (j–m) ML-predicted %𝐶𝐶−𝐶𝐵𝐷 in terms of the pressure applied during the calendering and the AM mass fraction for different initial 
electrode porosities (𝜀𝑖𝑛𝑖𝑡). As a reference, the electrode porosity after the calendering (𝜀𝑐𝑎𝑙) is reported next to the cross symbols for AM mass fractions equal to 93% and 96% 
at pressures equal to 40, 80, 120 and 160 MPa. (n-q) ML-predicted active surface in terms of the pressure applied during the calendering and the AM mass fraction for different 
initial electrode porosities (𝜀𝑖𝑛𝑖𝑡). As a reference, the electrode porosity after the calendering (𝜀𝑐𝑎𝑙) is reported next to the cross symbols for AM mass fractions equal to 93% and 
96% at pressures equal to 40, 80, 120 and 160 MPa.
Source: This figure is quoted with permission from Duquesnoy et al. [66].
and more connected solid network, which reduced the tortuosity. Fig. 
20(j–m) shows the percentage of the current collector area covered by 
CBD as predicted by the machine learning model. The results show that 
at lower calender pressures, it increases with pressure up to a specific 
limit, after which the value almost stabilises. In addition, the effect of 
initial porosity on the percentage of current collector covered by CBD 
is small, indicating that, as the electrode structure becomes denser, an 
increase in initial porosity has no significant effect. Fig.  20(n–q) shows 
the evolution of the area of the AM phase in contact with the elec-
trolyte. This is an essential mesoscale characteristic of the electrode, 
as it determines the effective rate of the lithium-ion reaction under 
kinetically limited conditions (such as high current density operation). 
Simulation results show that a higher initial porosity leads to a decrease 
in contact area, especially under high calendering conditions. Although 
it helps to reduce the final porosity after calendering and is beneficial 
for improving the volumetric energy density and power density of the 
battery, it is detrimental to the contact area between the AM phase and 
the electrolyte, which means limiting the lithium-ion reaction rate.
21 
In a subsequent study by the same research group, Duquesnoy 
et al. [67] extended the multi-objective optimisation machine learning 
model to identify optimal parameters for electrode manufacturing. 
They expanded the scope of their empirical models by incorporating 
additional computational methods, such as Coarse-Grained Molecular 
Dynamics and the Lattice Boltzmann Method. The inclusion of Coarse-
Grained Molecular Dynamics allowed them to simulate larger systems 
over longer timescales by simplifying the representation of molecular 
interactions. The Lattice Boltzmann Method, on the other hand, pro-
vided a powerful tool for simulating fluid dynamics and mass transport 
within the porous electrode structures, enabling a more comprehensive 
understanding of ionic diffusion and electrolyte flow. By integrating 
these methods, they generated a much larger and more diverse dataset. 
They then used Sobol sequence sampling to efficiently explore the high-
dimensional parameter space associated with the extended model (as 
shown in Fig.  21(b)).

Sobol sequences are a type of quasi-random, low-discrepancy se-
quence that ensures more uniform and thorough coverage of the param-
eter space compared to pure random sampling methods. This approach 
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Fig. 21. Model based on SISSO machine learning algorithms for evaluating the optimisation parameters of the electrode calendering process and its output results. (a) Schematic 
representation of the link between the different software for the handling of the 3D electrode mesostructures for the data acquisition generated by the physics-based modelling 
workflow. (b) Design of experiments for the synthetic dataset through the Sobol sequences after the sampling modifications within the input space. A 2D representation of the 
generated sequences based on the CD% values as a function of SC% values displays the quasi-randomness of the input space-filling. (c–f) Radar chart plots comparing the optimised 
electrode properties with extreme cases from the synthetic dataset. Each plot is interested in obtaining the optimal case (red) instead of having a high-performance electrode for only 
one property. Replace electronic conductivity by conductivity, tortuosity factor by tortuosity, and active surface area by active surface in this Figure. (g–i) Partial dependence plots 
allowing to interpret the GP model’s predictions. A 2D representation was straightforward to better visualise how manufacturing parameter values influence values for the search 
for the optimal manufacturing condition. The results are colour-coded where warmed values suggest less variability in the predictions when changing the hidden input parameter 
values, contrary to cooler values which suggest higher variability. The yellow stars point out the pairwise optimal manufacturing conditions predicted by the BO framework. The 
black dots represent each new possible candidate of manufacturing parameters to be explored as the solution in the optimisation loop, with most concentrated around the global 
minimum.
Source: This figure is quoted with permission from Duquesnoy et al. [67].
improves the convergence and robustness of the sampling process, 
providing a more reliable training set for machine learning algorithms. 
Based on the synthesised dataset, they conducted deterministic training 
of the machine learning algorithm, specifically focusing on supervised 
learning techniques that map the relationships between manufacturing 
parameters and electrode performance metrics. Deterministic training 
ensures that the learning process is reproducible and that the model 
converges to a consistent solution, which is essential for predictive 
accuracy in optimisation tasks. Finally, they used Bayesian optimisa-
tion methods to perform multi-objective optimisation of the electrode 
properties. Bayesian optimisation is particularly well-suited for opti-
mising complex functions that are expensive to evaluate, as it builds 
a probabilistic model of the objective function and selects the most 
promising candidates based on expected improvement. This method 
allows for efficient balancing of multiple competing objectives. By 
22 
iteratively updating the probabilistic model with new data, Bayesian 
optimisation converges towards the global optimum in the parameter 
space. Fig.  21(g–i) shows the optimal manufacturing conditions cal-
culated by the optimisation algorithm. The result aims to maximise 
the effective electronic conductivity, density, and active surface area 
between the AM and the pores of the electrode, and to minimise the 
tortuosity factor. Fig.  21(c–f) compares the parameters of the optimised 
electrode with the edge of the dataset. However, it is important to note 
that, in contrast to the aforementioned deep neural network algorithms, 
the Sure Independence Screening and Sparsifying Operator method is 
primarily suited for small datasets. Additionally, SISSO faces limitations 
such as a reduced capacity for capturing highly non-linear or complex 
interactions in large-scale data, sensitivity to noise, and potential chal-
lenges in generalising beyond the specific conditions of the training 
set. Consequently, this method is currently considered an alternative 
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to deep learning models, particularly in scenarios where interpretability 
and the derivation of explicit mathematical relationships are prioritised 
over predictive performance in large datasets.

In conclusion, the integration of machine learning models has el-
evated the optimisation research of electrode parameters to a higher 
dimension. Using their exceptional data analysis and processing capa-
bilities, machine learning algorithms can simultaneously balance the 
relationships among multiple parameters and performance outcomes. 
This provides significant assistance and support in optimising electrode 
performance. However, data-driven machine learning models require 
large datasets for effective training and calibration, which presents a 
significant challenge in the context of electrode calendering. Acquiring 
such extensive datasets through experiments alone is often imprac-
tical due to the time-consuming and costly nature of experimental 
procedures. Moreover, the complexity of electrode calendering pro-
cesses, with their high dimensionality and nonlinear interdependencies 
among Key Process Parameters, further complicates data collection 
efforts. Consequently, existing data-driven machine learning models 
for electrode calendering predominantly rely on generating training 
datasets through a combination of experimental data and empirical 
models. This hybrid approach involves supplementing limited exper-
imental observations with synthetic data derived from empirical or 
semi-empirical models that approximate the behaviour of the sys-
tem. While this method helps in amassing sufficient data for model 
training, as previously discussed, empirical models have inherent lim-
itations, often involve oversimplifications, and may not accurately 
capture the complex microstructural phenomena occurring during elec-
trode calendering, which means it may introduce inherent biases and 
inaccuracies associated with the simplifications and assumptions of 
empirical models. Therefore, while machine learning offers powerful 
tools for optimisation, utilising models trained on such datasets may 
not fully realise their potential. A substantial journey remains ahead 
in the effective application of machine learning models to optimise 
the electrode calendering process. Future research should focus on 
incorporating more accurate and representative data sources, such as 
those obtained from DEM or FEM simulations, to enhance the reliability 
and applicability of machine learning in this domain.

4. Comparative analysis of modelling approaches for calendering

In the preceding sections, we have thoroughly reviewed the appli-
cation examples of three modelling methods in electrode calendering 
processes: empirical, numerical, and machine learning models. This 
section will provide a detailed comparative analysis of the advantages 
and disadvantages of these three modelling approaches.

Empirical models were the first to be developed and have been 
relatively thoroughly studied. They use simple mathematical functions 
to describe the physical phenomena observed in experiments. By con-
tinuously introducing new correction factors, these models adjust their 
function curves to fit the experimental results as closely as possible. 
This modelling approach is straightforward and efficient, offering good 
interpretability because the relationships between variables are explic-
itly defined. However, the inherent philosophy of empirical modelling 
limits its broad applicability and accuracy. Since this approach requires 
simplifying and abstracting complex, tangible phenomena to extract 
critical information, it tends to overlook the intricate structural changes 
and various nonlinear behaviours occurring during the electrode calen-
dering process. This method is more suitable for quickly assessing the 
overall behaviour of the system, and has extremely low computational 
resources and time costs. Therefore, empirical models are typically 
suitable for the initial stages of research, serving as tools for gaining 
a preliminary understanding of electrode calendering theory or for 
applications where high model precision is not critical.

Numerical models have been the focus of research interest in the 
past few years. They employ computer simulations and numerical 
solution methods to discretise continuous problems into independent 
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elements or nodes, solving complex differential equations that gov-
ern the behaviour of the system. This modelling approach can effec-
tively track complex structural changes, offering excellent applicability 
and interpretability. However, numerical models face significant chal-
lenges. High-precision models consume enormous computational re-
sources, leading to very slow solution speeds, which can be prohibitive 
for long-term or large-scale simulations. Furthermore, substantial dif-
ferences exist between various numerical modelling techniques. For 
example, mechanical studies of the calendering process often rely on 
the DEM, which models individual particles and their interactions, 
while electrochemical studies typically depend on the FEM, which 
solves continuum equations for fields like electric potential and ion 
concentration. Coupling these different models is relatively difficult 
due to their fundamentally different formulations and scales, and this 
remains a key focus of current research. Developing efficient and 
accurate multiscale and multiphysics coupling strategies is essential to 
advance the predictive capabilities of numerical models in this area. 
For example, Sandooghdar et al. [68] are attempting to combine the 
DEM with computational fluid dynamics to simultaneously capture 
the mechanical deformation of electrode structures and the fluid flow 
through the resulting porous networks. In their study, DEM was em-
ployed to simulate the calendering process, thereby generating detailed 
microstructural configurations at varying degrees of compression. Sub-
sequently, computational fluid dynamics was applied at the pore scale 
to address electrolyte transport phenomena, enabling the computation 
of key parameters such as porosity, tortuosity, and permeability. This 
integrated approach established a direct connection between structural 
evolution during calendering and the subsequent transport properties 
for the first time. Moreover, the predicted pore-scale characteristics 
can be incorporated into three-dimensional electrochemical-thermal 
models, facilitating an in-depth exploration of the relationship between 
microstructural changes induced by calendering and overall battery 
performance metrics, such as discharge behaviour and thermal man-
agement. Finally, it is essential to note that the accuracy of numerical 
models is highly dependent on thorough calibration and validation 
using experimental data or in situ measurements. However, obtaining 
high-quality, comprehensive experimental data remains a significant 
challenge in many practical engineering applications. This limitation 
represents one of the primary obstacles in the transition of numerical 
models from laboratory research to industrial implementation.

Data-driven machine learning models have emerged in recent years, 
along with the rapid advancement of AI. Through continuous self-
iterative optimisation, they can effectively handle potential correlations 
among multi-dimensional parameters, uncovering complex relation-
ships that may be difficult to model explicitly. This modelling approach 
does not aim to reproduce the structural changes during the calendering 
process but focuses solely on learning the mapping logic between inputs 
and outputs from data, making it highly efficient and widely applicable. 
However, the black-box nature of machine learning models results in 
a significant loss of interpretability. Since the internal workings of 
these models are often opaque, it is challenging to extract meaningful 
insights into the underlying physical processes or to explain why certain 
predictions are made. This lack of transparency can hinder the accep-
tance of machine learning models in scientific research and engineering 
applications where understanding causality is important. It should be 
noted that machine learning models require large and high-quality 
datasets for training, which can be difficult to obtain in experimental 
contexts. Moreover, pure data-driven methods often ignore physical 
laws. In the future, it is urgent to incorporate physical information 
into machine learning (e.g., physical information neural networks) to 
improve the physical consistency of models and prediction accuracy.

The progression from empirical models to numerical models and 
eventually to machine learning models reflects the growing demand for 
increased accuracy and predictive capabilities in electrode calendering 
modelling. In light of this, the integration of numerical models with 
machine learning models holds promise as a new direction for future 
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Table 1
Comparison of different modelling approaches based on various evaluation dimensions.
 Evaluation dimension Empirical model DEM model FEM model ML model  
 Model accuracy Low High High Moderate-High 
 Computational efficiency High Low Moderate High  
 Interpretability High High High Low  
 Data requirement Low Moderate Moderate High  
 Complex-System applicability Low Moderate High High  
 Microstructure sensitivity Low High High Moderate-High 
 Multiscale capability Low Low Moderate High  
 Scalability and Flexibility Low Moderate Moderate High  
 Ease of Use High Low Low Moderate  
 Method maturity High Moderate Low Low  
research. This combined approach leverages the strengths of both meth-
ods: the detailed physical insights and interpretability of numerical 
models, as well as the efficiency and predictive power of machine learn-
ing algorithms. By using data generated from numerical simulations 
to train machine learning models, researchers can develop surrogate 
models that approximate complex system behaviours at a fraction of the 
computational cost. These surrogate models can then be used for rapid 
optimisation, sensitivity analysis, and real-time predictions. On this 
basis, developing novel architectures that couple multiple algorithms to 
offset the inherent limitations of individual machine learning methods 
can offer improved solutions to the challenges mentioned above. For 
example, Vijay et al. [69] are developing an ensemble deep learn-
ing model, Slurry-NN, which employs a data-driven approach using 
simulation data from coarse-grained molecular dynamics and DEM to 
predict the final microstructure of electrodes. The model incorporates 
two CNNs and two MLPs, which are tailored to process spatio-temporal 
features (such as particle coordinates and image descriptors) and static 
categorical features (such as particle radius and type), respectively. This 
modular architecture allows each branch to specialise in capturing dis-
tinct aspects of the simulation data, which is expected to improve both 
the interpretability and predictive accuracy of the overall model. In 
addition, machine learning techniques can help overcome the coupling 
difficulties between different numerical models. For instance, machine 
learning algorithms can learn the relationships between parameters in 
DEM and FEM simulations, facilitating a more seamless integration of 
mechanical and electrochemical analyses. This hybrid modelling strat-
egy will not only improve computational efficiency but also enhance 
model accuracy by capturing the multifaceted interactions within the 
electrode during calendering (see Table  1).

5. Conclusion

In conclusion, this review has highlighted various modelling ap-
proaches, including empirical, numerical, and machine learning-based 
models, each of which has a unique role to play in the calendering 
process.

1. Empirical models provide simplified yet practical relationships 
between calendering parameters and electrode properties, but 
face limitations in addressing the complex nature of real mate-
rials.

2. Numerical approaches, such as DEM and FEM, provide deeper 
insight into microstructural evolution and mechanical-
electrochemical interactions, but at the cost of high computa-
tional demands.

3. The integration of DEM and FEM emerges as a promising re-
search direction, capable of linking microstructural mechanics 
with macroscopic electrochemical performance. This synergistic 
approach could provide a more comprehensive and predictive 
modelling framework.

4. Machine learning models promise rapid, data-driven optimisa-
tion by handling complex, non-linear relationships and high-
dimensional data. The application of machine learning repre-
sents an exciting frontier in this field, promising increased ef-
ficiency and adaptability in the face of growing manufacturing 
challenges.
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However, it should be noted that although this review provides 
a systematic and comprehensive analysis of the prevailing modelling 
methodologies used for electrode calendering, several limitations re-
main. Firstly, the methodological approach relies heavily on existing 
published literature, potentially overlooking the complexity or un-
solved coupling issues inherent to each modelling strategy. For in-
stance, the unresolved multiscale coupling challenges between DEM 
and FEM may not be thoroughly captured. Secondly, the comparative 
analysis presented in this review involves a degree of subjectivity. 
The classification of empirical models solely as preliminary tools, for 
example, may underestimate their potential value in rapid, industry-
orientated decision-making contexts. Thirdly, this review primarily 
concentrates on traditional modelling paradigms (empirical, numeri-
cal, machine learning), thereby neglecting emerging technologies with 
significant potential. Quantum computing, digital twin technologies 
for real-time process optimisation, and generative artificial intelligence 
for microstructure generation exemplify promising alternatives that 
were not discussed herein. Lastly, there exists a notable gap between 
theoretical academic research emphasised in this review and practical 
industrial applications. Addressing industrial practicality, feasibility, 
and direct application scenarios, along with clearly demonstrating how 
theoretical insights translate into tangible improvements in manufac-
turing processes, would greatly enhance the practical relevance of this 
work. Future reviews could further bridge this divide by incorporating 
industry-driven case studies and investigating real-world applicability 
alongside theoretical advancements.

Looking ahead, future research should focus on the continued in-
tegration of these modelling strategies, especially in bridging the gap 
between computational accuracy and practical applicability. The de-
velopment of hybrid models that draw on the strengths of empirical, 
numerical, and data-driven approaches to provide a reliable predictive 
model for LIBs electrode calendering will be the focus of future re-
search. In summary, the comparative analysis of the modelling methods 
outlined here highlights the pathways to achieve significant improve-
ments in battery performance while reducing environmental impacts, 
aligning closely with global priorities such as climate change mitigation 
and carbon neutrality. Ultimately, by facilitating more intelligent and 
data-driven optimisation in electrode calendering processes, this review 
aims to promote more sustainable environmental, social, economic, and 
governance practices within the energy storage sector.
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