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Abstract
The growing interest in applying Artificial Intelligence (AI) to software engineering has accelerated

since the release of ChatGPT 3.5 in 2022. This paper investigates how Large Language Models (LLMs)

support applications’ modular development and testing. We introduce AIPyCraft, a novel AI-assisted

framework that facilitates the end-to-end lifecycle of software projects. Our approach leverages Google

Gemini 2.5 Pro model to generate, correct, and manage software components within a semi-automated

and incremental workflow. AIPyCraft enables project creation, environment setup, error correction, and

feature evolution in an integrated manner. We develop and test a blockchain-based Oracle component

designed for 6G wireless network environments, i.e., a complex, real-world scenario that demands secure

data integration and modular extensibility. Preliminary experiments demonstrate AIPyCraft’s potential to

accelerate small-scale software project development through an “understand-by-building” methodology.

Our findings show that using an LLM to generate effective TOML jobs for Off-chain 6G functions is

feasible, with an average of 1.05 iterations to correct the TOML code and mean experiment time of 27.8

seconds.
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1. Introduction

The release of ChatGPT 3.5 on November 30, 2022, marked a significant milestone in the evo-

lution of Large Language Models (LLMs) for code generation tasks [1]. The performance and

accessibility introduced in version 3.5 sparked widespread interest across industry, academia,

and the broader developer community [2]. Initial experiments commonly involved short in-

teractions to assess the model’s ability to generate and manipulate source code. However,

more in-depth exploration revealed practical limitations: (i) iteratively prompting the model,

(ii) copying generated code, and (iii) manually testing outputs can be time-consuming and

cognitively demanding. Moreover, as projects grow in complexity, i.e., requiring multiple files,

interdependent modules, and isolated virtual environments, developers frequently encounter

challenges related to environment configuration, dependency management, and scalability.
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These barriers have highlighted the need for more structured and automated approaches to

support the development of modular, testable, and maintainable software systems using LLMs.

Given these challenges, a more fitness approach would involve using autonomous agents

capable of directly generating, testing, and refining code, eliminating the need for manual

copy-and-paste operations and enabling project-level validation beyond isolated files. For such

solutions to be practically applicable, it is essential that new features can be incrementally

added and seamlessly integrated into previously validated components [3]. An incremental

development strategy plays a key role in maintaining manageable levels of complexity while

allowing iterative refinement. In real-world scenarios, developers begin with a general idea of

the desired functionality and benefit from evolving the system through progressivemodifications

rather than attempting to define and fully implement the entire solution up front. Intelligent

software systems that support human-in-the-loop development, combining the generative

capabilities of Artificial Intelligence (AI) with human guidance, offer considerable value [4].

Recent studies in AI-assisted software development have explored the integration of LLMs

into stages of the engineering workflow, including code generation [5, 6], error correction

[7], configuration validation [8], and test automation [9]. While these efforts have yielded

promising results, most solutions are limited in scope, e.g., focusing on narrow tasks rather

than supporting the complete software lifecycle. Typical limitations include the absence of

modular project design, lack of orchestration across components, and insufficient handling

of environment setup or integration with virtual environments. Moreover, tools that embed

LLMs into developer environments lack structured control over incremental project evolution

and rely heavily on manual oversight [4]. Although techniques can be applied to emerging

domains such as blockchain-enabled Sixth Generation Networks (6G) components, such as

decentralized oracles and smart contract-based network automation, no comprehensive solution

in the literature addresses these challenges in this context. These gaps highlight the need

for holistic approaches that enable coherent, end-to-end development workflows, supporting

iterative refinement, automation, and scalability.

This paper explores the subject of the AI-assisted coding lifecycle from a practical perspective,

trying to answer the question: Could LLMs help with the modular development and testing of 6G

components? Our central hypothesis is that LLMs can assist in the incremental and modular

development of projects with virtual environments. Moreover, LLMs can help automate tasks

such as code generation, virtual environment preparation, debugging, incremental feature

addition, and project structuring. AI-powered tools can offer new paradigms to help developers

with the growing complexity of software development while testing new ideas "understanding

by building" prototypes experimenting with new features and directions on new developments.

We present the AIPyCraft1, an open-source collaborative project development assisted by LLMs,

integrating rapid prototyping with a virtual environment for automated code running and

checking. AIPyCraft is a first-look proposal for human-machine collaboration in software

development, exploring how AI Application Programming Interfaces (APIs) are integrated to

generate, manage, correct, and improve code iteratively. Moreover, AIPyCraft creates an entirely

new project, prepares its virtual environment, runs the project from its main program, collects

the obtained results, corrects the components according to errors, and adds new features to a

1Source code available at: https://github.com/antonioalberti/AIPyCraft

https://github.com/antonioalberti/AIPyCraft


created project. The main contributions of this paper are:

• Open-source development automation: the proposal uses LLM APIs to generate

code, manage environments, iteratively correct errors, and integrate versions, offering a

single-person end-to-end solution.

• A software component correction tool: corrects code based on existing running errors.

The prompts focus on preserving existing functionality while correcting a failing module.

• AI-assisted development and testing: the analysis is performed on a blockchain-based

Oracle component designed for 6G wireless network environments.

Our findings indicate that using an LLM to generate effective TOML jobs in the domain of

Off-chain 6G functions, is feasible with a satisfactory number of interactions (1.05 average

interactions) and a reasonable time duration (27.80 seconds). The remainder of this paper

is structured as follows. Section II presents the fundamental background, including our 6G

development application. Section III presents the related work. Section IV describes our

proposed agent architecture. Section V presents a proof of concept, outlining how AIPyCraft

was evaluated to support the central hypothesis of the paper. Section VII concludes the study.

2. Background

Deep Learning has emerged as a dominant reference in various subfields of AI, leveraging

artificial neural networks to model complex data distributions and achieving significant break-

throughs in applications such as speech recognition, computer vision, and Natural Language

Processing (NLP). A pivotal advancement in NLP was Vaswani et al.’s [10] introduction of the

Transformer architecture in the seminal work "Attention Is All You Need". This architecture

innovation laid the groundwork for the development of LLMs [11], such as Google Gemini2,

OpenAI ChatGPT-4o3, DeepSeek4, and Anthropic Claude5, which are trained on extensive texts

and demonstrate remarkable proficiency in generating, interpreting, and manipulating natural

language in a human-like fashion. Adopting LLMs has influenced various domains, including

software engineering, education, and content generation. This adoption underscores their

potential to augment productivity and enable novel forms of human-AI collaboration.

The growing complexity of software development has driven the adoption of technologies

to enhance the efficiency and quality of the development lifecycle [12]. LLMs have attracted

attention for their remarkable ability to understand and generate source code. While initially

applied to machine translation, text summarization, and image generation tasks, LLMs have been

integrated into software engineering workflows [13]. Their capabilities extend to synthesis,

autocompletion of code snippets, and support for testing, debugging, and documentation,

positioning them as tools in development environments. The integration of LLMs into software

development workflows is facilitated through APIs, offering a programmatic interface for

accessing the models’ capabilities [5]. These APIs allow developers to send prompts or input

queries to the LLM and receive generated text responses, which can be parsed, transformed into

2Google Gemini. Available at: https://gemini.google.com
3OpenAI ChatGPT-4o. Available at: https://openai.com/chatgpt
4DeepSeek. Available at: https://www.deepseek.com
5Anthropic Claude. Available at: https://www.anthropic.com/index/claude

https://gemini.google.com
https://openai.com/chatgpt
https://www.deepseek.com
https://www.anthropic.com/index/claude


source code, and incorporated into local projects within an Integrated Development Environment

(IDE). Through this mechanism, LLMs assist in various stages of the software engineering

process, including automated code generation, unit test creation, and debugging support, thereby

contributing to increased development productivity and reduced manual effort [14].

Prompt engineering has become a fundamental interface for human-AI interaction, particu-

larly in LLM-assisted software development. To fully harness the potential of LLMs, it is crucial

to devise effective strategies for designing and optimizing prompts. High-quality prompt design

is vital in improving generated content’s accuracy, relevance, and utility, enhancing the efficiency

and reliability of AI-assisted development workflows. By carefully structuring input queries

and layering them with contextual instructions, developers can guide the model’s behavior to

achieve more predictable and purposeful outputs. Moreover, managing virtual environments

represents another key aspect of LLM-assisted software development. A virtual environment

encapsulates a dedicated interpreter, project-specific libraries, and binaries, ensuring isolation

from environments and system-wide installations. This isolation is essential for maintaining

reproducibility, avoiding dependency conflicts, and supporting modular development prac-

tices. Integrating LLMs with virtual environments enables robust and streamlined development

workflows, as the models can assist in code generation, environment setups, and configuration.

In more advanced scenarios, LLMs may be employed to identify and solve package conflicts,

enhancing the automation and reliability of the software development process.
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Figure 1: On-chain, Off-chain, and external data.

Adopting LLMs across domains such as software engineering becomes relevant to emerg-

ing domains such as 6G network architectures, which demand programmable, resilient, and

autonomous systems. One application scenario involves blockchain-based oracle components

[15], which secure bridges between Off-chain data sources and smart contracts deployed in

6G-enabled environments [16]. These oracles enable mission-critical applications, such as

cognitive spectrum management, smart cities, and industrial, to access verified real-time in-

formation while addressing key challenges such as scalability, interoperability, and latency.

Combining LLM-assisted development with 6G-oriented architectures represents a promising

research frontier, enabling the rapid prototyping of modular and trustworthy components

for next-generation wireless systems. Oracle components in the context of 6G networks act

as secure middleware between Off-chain data sources and smart contracts operating within

blockchain-based systems. These oracles are essential for applications that rely on real-world



data, such as dynamic spectrum management, decentralized authentication, and trustworthy

telemetry. They provide an interface for data acquisition, verification, and delivery of smart

contracts, ensuring the integrity and reliability of network services. Figure 1 illustrates a con-

ceptual oracle architecture integrating a 6G network with a blockchain layer. The architecture

is composed of three core components: (i) a Smart Contract Interface operating on a Distributed

Ledger Technology (DLT), defining and enforcing On-chain validation and storage rules [17],

(ii) an Off-chain Oracle, which manages job execution, data processing, and the coordination of

trust policies [15], and (iii) an External Data Layer [18], consisting of distributed data sources

that provide real-time information to be retrieved, verified, and delivered by the oracle.

3. Related Work

Recent advances in AI-assisted software development have increasingly focused on integrating

LLMs into stages of the software engineering lifecycle. Works have emerged targeting tasks

such as code generation, testing, error correction, and configuration management. This section

discusses the contributions of these works and highlights how each relates to AIPyCraft.

Liu et al. [6] proposed PromptV, a collaborative multi-agent framework for Verilog code

generation, where LLMs specialize in hardware description. Although the work emphasizes

coordination among agents, it lacks mechanisms for managing execution environments or

addressing the broader development lifecycle regarding testing and integration. PromptV focuses

only on isolated code-generation tasks. In contrast, AIPyCraft supports iterative construction

and orchestration of the lifecycle beyond the code synthesis. A complementary direction is

explored in LLMSecConfig [8], applying retrieval-augmented generation techniques to detect

and remediate misconfigurations in containerized environments. This solution incorporates

an automated correction pipeline and highlights the potential of LLMs in infrastructure-level

validation tasks. Nonetheless, its scope focuses on configuration-level errors and does not

encompass modular software design or lifecycle integration. In this context, AIPyCraft expands

this mode by integrating code generation with modular assembly and tracking artifacts.

Plein et al. [7] investigate test automation based on natural language input, employing Chat-

GPT and CodeGPT to generate test cases from bug reports. Their results reinforce the feasibility

of leveraging LLMs for targeted development tasks. This investigation shows the viability of

generating tests from natural language, but it lacks integration with modular codebases or

version-controlled pipelines, which AIPyCraft enables through structured orchestration. In a

similar context, Nettur et al. introduced Cypress Copilot [9], offering an AI assistant for gener-

ating end-to-end test scripts in Web applications using Behavior Driven Development (BDD)

techniques. The tool generates structured and runnable code snippets by adopting few-shot

prompting with GPT-4o. While it effectively guides code creation, it does not address component

orchestration or project-level modularity. In contrast, AIPyCraft extends beyond isolated test

generation, offering modular construction and integration across the development workflow.

Cline [4] is a project initiative integrating Claude 3.5/3.7 into the VSCode IDE, facilitating

autonomous, agent-based development workflows. Cline showcases how LLMs can be em-

bedded into the developer’s IDE to execute commands, edit files, and manage context with

human oversight through manual approval mechanisms. Unlike AIPyCraft, which emphasizes



modularity and full-lifecycle project construction, Cline operates within existing codebases,

offering flexibility but lacking structural guidance. Moreover, Cline does not target 6G network

code generation projects or deployment contexts. Table 1 reinforces the position of AIPyCraft as

a framework that unifies prompt engineering, modular orchestration, and lifecycle support. The

comparison includes key dimensions such as support for the development lifecycle, execution

within virtual environments, automated error correction, component-level structuring, modular

architecture, and relevance to 6G networks. While existing approaches tend to cover some of

these aspects in isolation, only AIPyCraft integrates them as a system.

Table 1

Comparison of AIPyCraft with related work.

Articles/Projects
Complete

Lifecycle

Virtual

Environment

Error

Correction
Components Modularity 6G

Articles

Liu et al. [6] ✗ ✗ ✗ ✓ ✓ ✗

Ye et al. [8] ✓ ✓ ✓ ✓ ✓ ✗

Plein et al. [7] ✗ ✗ ✓ ✗ ✗ ✗

Nettur et al. [9] ✗ ✗ ✗ ✓ ✓ ✗

Projects

Cline [4] ✓ ✓ ✓ ✓ ✓ ✗

AIPyCraft (this work) ✓ ✓ ✓ ✓ ✓ ✓

4. AIPyCraft Architecture

Leveraging LLM capabilities, AIPyCraft supports the creation and management of software so-

lutions in an automated and modular fashion, using an LLM API to help users generate, manage,

and run code solutions. The interaction with the tool occurs through a simple menu of options.

Moreover, AIPyCraft manages multiple stages of the open-source project lifecycle, including

creating, loading, running, and updating code. Figure 2 depicts our AI agent. AIPyCraft contains

three main abstractions: (i) Solution, (ii) Components, and (iii) Dispatcher. A Solution is an

abstraction representing a simple open-source project with multiple Components. Components

represent individual code files within a Solution Folder. An abstraction of a component con-

tains methods to execute the component and convert it to and from a dictionary format. The

Dispatcher holds the main menu of AIPyCraft, managing the lifecycle of solutions, including

creating, saving, loading, preparing virtual environments, and running them. Through the

Dispatcher, human users interact with the tool, selecting the actions and giving inputs that

complement pre-defined tuned prompts.

One of the main characteristics of AIPyCraft is the solution management of LLMs using

APIs. In this context, AIPyCraft has: (i) AIConnector to analyze each solution component

remotely by employing an LLM, (ii) SolutionCreator to create new solutions and their com-

ponents using LLM assistance, (iii) SolutionLoader to load existing solutions from folders,

(iv) SolutionImporter to import external folders as solutions, and (v) SolutionImporter

to import repositories as a solution inside the tool. After creating a solution, AIPyCraft of-

fers: (vi) InstallationScriptGenerator function to install solution packages according
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to their dependencies and avoid conflict, (vii) SolutionRunner to run solution calls and

automatically collects possible errors, (viii) SolutionDisplay to show solution details and

code, (ix) SolutionCorrecting (x), SolutionUpdater (xi), ComponentCorrector (xii),

and SolutionFeatureAdding to correct and improve a solution, and (xiii) AICodeParser

to extract, save, and detect the language of code blocks from AI responses.

Figure 3 illustrates the workflow of AIPyCraft usage, showing the main steps while collabora-

tively developing a new open-source project. SolutionCreator manages to create solutions

with multiple components/files and includes human approval in the feedback loop. This process

creates isolated environments within a solution’s directory, ensuring each solution has its

contained development environment with necessary dependencies installed. The user inputs a

solution name and semantic description. After, LLM generates a plan for components needed,

such as classes, accessory files, text, and main program. Each component is created individually

with AI assistance. Solutions are saved in the specified directory and rejected solutions are

stored so users can adjust the creative process in partnership with the LLM.

The process begins by prompting the user to describe a desired new feature. AIPyCraft

constructs a detailed prompt for the LLM API, including the solution’s name, component

details, and the new feature description. AIPyCraft checks for a valid solution and locates

the required main program component. Moreover, AIPyCraft has an error correction system

that automatically fixes code/scripts when solutions fail during execution. In this context,

AIPyCraft works by (i) generating targeted prompts for AI code correction, (ii) analyzing each

solution component remotely by employing an LLM, (iii) handling code updates with proper

file I/O operations when required, (iv) trying to maintain naming conventions and parameter
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consistency via prompt engineering, and (v) ensures proper imports to the main program.

Therefore, AIPyCraft writes the new code to the appropriate component file if updates are

found, ensuring its name remains unchanged. Finally, the process of code construction concludes

when no additional execution errors are detected or the user declines further feature additions.

5. Proof-of-Concept

We test AIPyCraft with Google Gemini 2.5 Pro to correct a TOML script named config.toml.

This TOML script creates and runs the Off-chain Oracle using the Chainlink tool that requests

jobs for 6G based on the D6G architecture [16]. We automated the execution of multiple

independent test runs (trials) for each Chainlink direct request job specification tested, as

illustrated in Figure 4. An initialization script is performed for each trial, passing the target

solution name and base path, to ensure that a TOML Script Tester starts from a known consistent

state. The Chainlink direct request job specification script is cleared before each test.
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Figure 4: Experimental trials using AIPyCraft, Gemini 2.5 Pro, and Chainlink node.



Our multi-trial test script runs a Python-developed tester.py, providing it with the max-

imum number of internal correction loops allowed (-LoopsValue), a unique identifier for the

trial (–run-id), the target solution name (–solution-name), the base path (–solutions-base-path),

and the specific correction instructions (–correction-prompt) to be used by the AI during that

trial’s correction phase. A total of 20 trials have been performed for each evaluated Chainlink

direct request job specification script. Table 2 shows our test configuration parameters. In each

trial, tester.py invokes AIPyCraft to load a TOML script tester containing the config.toml

Chainlink job specification and two human-developed testing programs. Two scenarios have

been evaluated: Scenario 1, which only verifies the syntax of the TOML script using the tomli

Python library, and Scenario 2, which provides successful Job script testing. In Scenario 1,

success means a call to tomli.load(f) returned without syntax errors. In Scenario 2, the

TOML script tester sends a new config.toml version created by the LLM to a Chainlink node

running on a virtual machine. A Job is created with the TOML script received and then run. In

this case, success means that the LLM generated a TOML script that enabled the creation of a

Job in the VM Chainlink node and ran without errors.

Table 2

Python Tester Script Parameters for Automated Multi-Trial Testing.

Parameter Name Value/Setting Description

-LoopsValue 20 Maximum number of internal correction loops allowed per trial

–run-id Unique per trial A unique identifier assigned to each individual test trial

–solution-name Target specific The name of the target solution being tested in the trial

–solutions-base-path Path specific The base directory path where solutions are located

–correction-prompt Instruction specific AI provides the correction instructions of a trial

Figure 5a shows the number of interactions required to correct Chainlink direct request Job

syntax using tomli Python package, i.e., Scenario 1. In all trials, our solution successfully

corrected the Job script. The mean number of interactions was only 1, meaning the first

correction proposed succeeded. Moreover, Figure 5b shows the total time spent in each trial.

The mean Job correction time was 27.80 s, with a minimum value of 19.09 s and a maximum of

35.20 s. The results highlight that using an LLM API to create useful TOML jobs for a Chainlink

node in the context of off-chain 6G functions is possible with acceptable time.
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Figure 5: Syntax analysis to correct Job script with tomli.



Figure 6a shows the results for Scenario 2, which evaluated the TOML script more thoroughly.

The mean number of correction interactions was 1.05 since two were required in one trial.

Figure 6b shows the time needed in Scenario 2. The mean correction time was 37.61 s, with

a maximum time equal to 74.67 s and a minimum of 27.61 s. The results indicate that the

integration of AIPyCraft with Gemini 2.5 Pro proved efficacious in generating TOML scripts

(Jobs) capable of execution on a local Chainlink node within a reasonable timeframe.
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Figure 6: Semantic analysis to correct Job script in Chainlink node.

6. Conclusion

We have integrated a new AI-assisted development tool called AIPyCraft with Gemini 2.5 Pro

to successfully correct and run TOML scripts (Jobs) in a local Chainlink node. The Jobs created

were able to listen to Off-chain Oracle requests within a real Chainlink implementation. Such

AI-generated Jobs are essential to a disruptive 6G (D6G) wireless mobile network proposal being

developed by the authors. The Jobs will connect On-chain public smart contracts with Off-chain

6G service instances. Our experimental tests showed that the mean number of correction

interactions required to run a Job created by an LLM successfully was 1.05 attempts of 20

allowed. The mean time to achieve this result was 37.61 s, which is acceptable in deploying

new 6G services connected to On-chain smart contracts. In conclusion, these results prove

that our solution can be successfully applied in the modular development and testing of 6G

components with acceptable performance. Future work includes comparison among different

LLMs, evaluation of additional AI models for multi-agent collaboration, different AI-assisted

decision-making, expanding to other programming languages and environments, improving

security for AI-assisted workflows, and evaluation of different purpose Chainlink Jobs for 6G.
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