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Abstract We present a new method to solve the nu-

clear density functional theory (DFT) equations using a
two-center harmonic oscillator for Skyrme-like function-

als, incorporating pairing and Coulomb interactions.
The goal is to efficiently determine the őssion and fu-
sion conőgurations in nuclei. The Coulomb exchange

term is evaluated exactly, allowing for a novel approach

to neck formation without the Slater approximation,

commonly used in space coordinate-based approaches.

The new method has been implemented in the code

hfodd, enabling direct comparison with standard one-
center solutions. This őrst paper focuses on deriving

and implementing a methodology based on stable, pre-

cise, and exact applications of harmonic oscillator bases

for the two fragments, which can either overlap or be

separated by arbitrarily large distances. The implemen-

tation is tested on two proof-of-principle examples using

light nuclei, speciőcally, 8Be and 24Mg.

Keywords energy density functional · nuclear őssion ·
nuclear theory · two-center harmonic oscillator

1 Introduction

After over eighty years, őssion is still a fascinating and

hot research topic. Heavy atomic nuclei belong to the

class of mesoscopic systems that exhibit emergent phe-

nomena, which are difficult to describe using funda-

mental interactions between nucleons directly. More-
over, contrary to various nuclear properties, which a
smaller set of valence nucleons can explain, all nucleons

are simultaneously involved in őssion. Therefore, őssion

phenomena are often described in terms of phenomeno-

logical models neglecting nucleonic degrees of freedom,

ae-mail: adrian.sanchez.fernandez@ulb.be

hybrid microscopic-macroscopic models, or fully micro-

scopic models based on nuclear density functional the-

ory (DFT) [1ś6].

From a microscopic perspective, nuclear őssion pro-

vides an ideal laboratory for testing and reőning our un-

derstanding of quantum many-body systems and phe-

nomena. Advancing our theoretical grasp of őssion deep-

ens our knowledge of nuclear reactions like fusion and
α−decay and has broader implications, beneőting őelds

such as stellar evolution, energy production, or quan-

tum entanglement.

It was recently shown that angular momenta carried

by őssion fragments are intrinsically related to mass

and charge distributions after scission. Even though the

experimental data and statistical models seem to cor-

roborate that idea [7], recent results showed a strong
dependency on the scission conőgurations [8]. More-

over, we can őnd various articles that provide explana-
tory models considering even earlier stages in the őssion
path. For instance, a time-dependent calculation with
triple angular momentum projection (light and heavy

fragments and the relative motion) shows that the pre-

scission bending mode can predict the angular momen-

tum of the őssion fragments in agreement with the ex-

perimental results [9]. Alternatively, it was also demon-

strated that incorporating shell and deformation effects

in the moments of inertia of the fragments leads to simi-

lar conclusions [10]. Hence, even though statistical mod-

els give a valuable bulk approach to the problem, these
may fail where more sophisticated microscopic phenom-
ena are at play. This limitation was recently highlighted

in the computational model FREYA [11], which does

not consider the proper K-distributions [12, 13], one of

the key ingredients needed to obtain the relative spin

angle between fragments, directly connected to the ex-

periment.

https://arxiv.org/abs/2406.12545v7
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Apart from the angular momentum distribution, it

is well-known that many of the fragment properties ś
such as mass distributions or excitation energiesś are
rather sensible to the scission conőguration [4]. How-

ever, in the existing DFT approaches to őssion, rely-

ing on the adiabatic approximation, the deőnition of

the scission point is more arbitrary than physical. We

need to describe an excited nucleus that is strongly de-
formed and generally triaxial, and that can be oriented
differently in space. Most importantly, we need to link

that system to the nascent fragments. In other words, it

would be desirable to have a framework that considers

the initial nucleus internally structured in fragments,

even before the journey through the őssion path. In

this sense, combining the well-tested DFT models with

a two-center basis for building the single-particle (s.p.)

states appears to be a meaningful choice.

In recent decades, we have seen two approaches em-

ploying the two-center method. The őrst one relies on

extending an external potential (usually Wood-Saxon)

into a two-center version [14, 15] and solving it on a two-

center basis; the harmonic oscillator (HO) is the usual

choice. After this, the Schrödinger equation is solved us-

ing the Green’s function method [16]. Even though the
results shown for both light [17, 18] and heavy systems

[19, 20] look promising, the Coulomb interaction is not

accurately treated. Indeed, in some cases, it is approx-

imated as a charged spherical distribution, which does

not treat overlapping fragments properly. The compu-

tational burden associated with obtaining Green’s func-

tion for large basis sets and the bad solvability condi-
tions when s.p. crossings occur make this approach op-
timal for light masses but cumbersome when describing

the evolution of heavy nuclei along the őssion path.

The second type of approach has a stronger “molec-
ular ŕavorž as the main idea is expanding the s.p.

wave function into two different centers (usually the
HO states), in the same way as molecular orbitals are
expanded into atomic orbitals, see, e.g., Ref. [21]. In

nuclear structure studies, results exist for the α cluster-

ing, based on hybridization and covalent binding [22].

In nuclear reactions, adding molecular continuum states

improves the description of the scattering of weakly-
bound nuclei [23]. Although many applications exist,

these methods are primarily suitable for light systems.

Density Functional Theory (DFT) stands out in

pursuing suitable approaches for heavy nuclei, although
only a few groups utilized the two-center HO (TCHO)

basis expansion. Since the pioneering work of Berger

and Gogny more than 40 years ago [24], see also [25], a

handful of axial applications for the Gogny functional
exist in areas such as mass distributions [26ś28], ős-

sion barriers, and spontaneous őssion lifetimes [29, 30].

However, the Gogny implementation has never been

published, leaving its applicability largely unknown. In
addition, the Coulomb interaction was approximated
by point-like charges near the scission point [29], which

may be inadequate for accurately describing the angu-

lar momentum generation of őssion fragments. In Co-

variant DFT, more details are available on the TCHO

basis method [31, 32], although this approach relies on

axially deformed co-axial basis states. So far, no im-

plementation of the general framework of the triaxial,

shifted, and non-co-axial TCHO basis expansions exist.

While this strategy has been explored in molecular

physics [33], and some analytical expressions can be ap-
plied to the two-center expansion [34], no nuclear DFT

code exploits this formalism.

This work focuses on the fundamentals of the two-

center (Cartesian) HO basis method and its imple-

mentation, which is suitable for the Skyrme energy

density functional. We provide detailed information

on how to compute the TCHO matrix elements re-

lying on numerical integration instead of transforma-

tion of coefficients [35] and how to address the gen-
eralized eigenvalue problem in the Hartree-Fock (HF)

and HF-Bogoliubov (HFB) cases. This method has been

integrated into the latest version of the DFT solver

hfodd [36, 37], where users can specify the deformation

and separation of the bases as input data to perform the
HF or HFB calculations.

The structure of the paper is as follows. In section 2,
we present the theoretical framework, highlighting how

the usual Skyrme+Coulomb one-center HO (OCHO)

self-consistent procedure can be reformulated to be used

within the TCHO basis. In particular, we show how

to treat the Coulomb interaction exactly, both in di-

rect and exchange channels. Appendices AśC present

all details of the implementation. In sections 3 and 4,

we discuss the results of simple calculations performed

for small systems, namely, for 8Be, where the Coulomb

interaction is tested, and for the symmetric őssion chan-

nel of 24Mg. Both Proof-of-Princple TCHO calculations
are compared against the standard OCHO results. In

section 5, we provide őnal remarks and discuss potential

applications of this newly developed method in future

research.

2 Theoretical framework

In this section, we introduce the TCHO basis states

and describe the procedure for solving the Hartree-

Fock equations using that basis. Due to its relevance

to őssion, we also present the method for determining

the Coulomb energy in the direct and exchange chan-

nels. All new features were implemented in the code
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hfodd [36, 37] and we refer the reader to the őrst pub-

lication of the code [38], where the corresponding im-
plementation of the OCHO Cartesian basis was deőned.

2.1 The two-center harmonic oscillator basis

We őrst consider the co-axial case of the TCHO,

where the principal axes of the two bases coincide, and

the bases are shifted by a vector coinciding with one
of those principal axes. This restriction allows us to
present the method concisely and build the baseline for
presenting the most general case of arbitrarily shifted

and tilted bases. Note that such a restriction does not

preclude triaxial deformations of both bases.

We begin by considering the s.p. wave function, used

to compute properties of nuclei in the Hartree-Fock

method, expanded in the three-dimensional TCHO ba-

sis,

Ψα(rσ) =

B
∑

i=A

N0
∑

n=0

1/2
∑

sz=−1/2

C
n,i,sz
α ϕn,i(r)δszσ, (1)

where α is the index of a given s.p. state, Cn,i,sz
α are

the expansion coefficients, r = (rx, ry, rz) is the Carte-

sian position vector, and n = (nx, ny, nz) represents
the vector of the Cartesian HO quantum numbers. For

clarity, here and below, we omit the isospin indices of

wave functions and matrices. In the Cartesian repre-

sentation, for the i-th center (denoted by A or B), the

wave function ϕn,i(r) is the product of the shifted and
deformed one-dimensional HO basis states,

ϕn,i(r) = φnx,i(rx)φny,i(ry)φnz,i(rz). (2)

Note that the wave functions of both centers are here

represented in the common reference frame; that is, we
use shifted wave functions instead of shifted reference
frames. In Eq. (1), for each center, summation over vec-

tor n represents the sum over the HO quantum numbers

suitably restricted to Mi lowest HO states as deőned in
the OCHO case in Ref. [39].

The one-dimensional components of ϕn,i(r) are de-
őned as

φnµ,i(rµ) =

√

bµ,i√
π2nµnµ!

×Hnµ

(

bµ,i(rµ − rµ0,i)
)

e−
1
2
b2µ,i(rµ−rµ0,i)

2

,

(3)

where µ = x, y, or z and the standard HO constants

are deőned as bµ,i =
√

mωµ,i/ℏ. Absorbing the factor

(
√
π2nµnµ!)

−1/2
in the normalized Hermite polynomi-

als H
(0)
nµ , and using the dimensionless variables deőned

as

ξµ,i = bµ,i(rµ − rµ0,i), (4)

the wave functions (3) take the form:

φnµ,i(rµ) =
√

bµ,iH
(0)
nµ

(ξµ,i)e
− 1

2
ξ2µ,i . (5)

The OCHO basis is trivially obtained by setting r0,A =

r0,B = 0 and bµ,A = bµ,B .

Even though code hfodd takes advantage of sim-

plex symmetry to accelerate calculations [38], our goal
is to describe the complex motion of the őssion frag-

ments, such as bending or wriggling [40]. Hence, the

system is generally not invariant under the simplex

transformation. Nevertheless, the matrix structure of

coefficients C and of every one-body operator, O, has

the following generic form,

O =









O++
AA O++

AB O+−
AA O+−

AB

O++
BA O++

BB O+−
BA O+−

BB

O−+
AA O−+

AB O−−
AA O−−

AB

O−+
BA O−+

BB O−−
BA O−−

BB









, (6)

where the superscripts represent +i and −i simplex.

2.2 The generalized eigenvalue problem

The deformed and shifted wave functions (3) corre-

sponding to both centers are no longer mutually or-

thogonal. Hence, the HF equations represented on the

non-orthogonal basis must be rewritten as

HC = NCe. (7)

That is, we need to solve a generalised eigenvalue prob-
lem, which will be detailed in the next section. In equa-
tion (7), H represents the mean-őeld Hamiltonian ma-

trix, C is the matrix of coefficients deőned in Eq. (1), e

is the diagonal matrix of the s.p. energies, and N is the

norm overlap matrix, given by

N =

(

IAA NAB

NBA IBB

)

, (8)

where I is the identity matrix and

(NAB)nm =

∫

drϕ∗
n,A(r)ϕm,B(r). (9)

To solve the HF equations using non-orthogonal

bases, several strategies have been applied in the past:

In the two-center shell model calculations, the basis was

usually orthogonalized through the Gram-Schmidt pro-

cedure [41], whereas in the HF calculations, a new or-

thogonal basis was typically deőned by diagonalizing
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the matrix N†N [24]. In our case, as in the molecular-

physics implementations, we chose Löwdin’s canoni-
cal orthogonalization [42] method. In nuclear physics,

Löwdin’s orthogonalization has been widely used in the

generator coordinate method, leading to the so-called

Griffin-Hill-Wheeler equation [43].
The main idea of the canonical orthogonalization is

to solve the HF equations in a subspace where the eigen-
values of the norm overlap matrix (8), here referred to

as ζ, which are smaller than a certain cutoff threshold

ζcut, are removed and a smaller set of orthogonal wave

functions is built as

Λk(r) =

B
∑

i=A

N0
∑

n=0

ukn√
ζk

ϕn,i(r) =
B
∑

i=A

N0
∑

n=0

Uknϕn,i(r), (10)

where ukn are the eigenvectors of the norm overlap ma-

trix. Then, the non-rectangular transformation U fulőls

U †
NU = I and allows us to transform the generalised

eigenvalue problem into the orthogonal case.

When solving the HFB equations, one must consider

both p-h and p-p channels. In this case, the HFB matrix

in the orthogonal basis can be obtained as follows:

H′

HFB =

(

U 0

0 U∗

)(

h− λF ∆

−∆∗ −h∗ + λF

)(

U† 0

0 UT

)

,

(11)

where h and ∆ stand for the mean őeld and pairing

őeld, respectively, and λF is the usual chemical poten-

tial, which ensures the correct number of particles in the

system. Once the HF (HFB) equations are solved, the

single (quasi)-particle wave functions can be obtained

in the TCHO basis using the same transformation.

2.3 Matrix elements of the Skyrme mean őeld

One of the crucial ingredients of the local DFT is the
particle density in space, which is needed to compute
the matrix elements of the mean őeld as well as the en-

ergy of the system. The local density of nucleons reads

ρ(rσ′σ) =
∑

α

v2αΨα(rσ
′)Ψ∗

α(rσ), (12)

where v2α is the occupation factor of the α-th s.p. state.

Hence, using the TCHO basis, it can be expanded as

ρ(rσ′σ) = ρAA(rσ
′σ) + ρBB(rσ

′σ) + 2Re [ρAB(rσ
′σ)] .

(13)

Not only the local density but also all other quasi-local

densities that build the Skyrme functional [44, 45] have

the TCHO form of Eq. (13) and the arguments pre-

sented below apply also to them.

One of the principal advantages of using the HO ba-

sis in the local DFT, which stems from the particular

form of the wave functions (5), is the fact that the lo-

cal densities are always in the form of the products of
polynomials Wij and Gaussian factors [38, 46]. In the

TCHO basis, omitting for clarity the spin degrees of

freedom this gives

ρij(r) = Wij(rx, ry, rz)e
− 1

2

∑
µ(ξ

2
µ,i+ξ2µ,j). (14)

The choice of the Gauss-Hermite quadrature of an ap-
propriate order then allows for evaluating all integrals of

densities exactly, that is, overall excellent stability and
resilience to the rounding errors of the Gauss-Hermite

quadrature allow for obtaining the results within the

machine precision, usually of the order of 10−15 for the

double-precision arithmetics.

In particular, let us consider evaluating the matrix

elements of a given term associated with the Skyrme

interaction [44, 45]. Apart from the density-dependent

term, which we discuss later, all mean őelds are linear
in densities and thus also have the form of the products
of polynomials Gij and Gaussian factors

Oij(r) = Gij(rx, ry, rz)e
− 1

2

∑
µ(ξ

2
µ,i+ξ2µ,j). (15)

Then, we obtain the space part of the matrix element

as

Oni,mj(i
′j′) =

∫

R3

drϕ∗
n,i(r)Oi′j′ (r)ϕm,j(r), (16)

and from Eqs. (2), (5), and (15) we then have

Oni,mj(i
′j′) =

∫

R3

drGi′j′(rx, ry, rz)
∏

µ=x,y,z

√

bµ,ibµ,jH
(0)
nµ

(ξµ,i)

H(0)
mµ

(ξµ,j)e
− 1

2 (ξ
2
µ,i′+ξ2

µ,j′+ξ2µ,i+ξ2µ,j).

(17)

The integrand above contains products of four types of

Gaussian factors each corresponding to either center A
or B, that is, 16 possible combinations. However, it is

easy to see that only őve partitions of the products of

four Gaussian factors suffice, see Appendix A.

To use the Gauss-Hermite quadrature, we need to

transform every integral of Eq. (17) into the usual struc-

ture as

∫ +∞

−∞

f(η)e−η2

dη =

Nq
∑

q=1

ωqf(ηq), (18)

where f(η) is a polynomial, ωq and ηq are the weights
and nodes of the quadrature, respectively, and Nq is its
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order. For that purpose, we combine the exponents to

obtain one single Gaussian, which deőnes the lattice of

the quadrature in function of different combinations of

center indices.

Owing to the properties of the Gaussians, only őve

different lattices are enough (see Appendix A for full

details). However, considering the structure of densities
shown in Eqs. (13) and (14), the number of polynomials

to be evaluated is notably higher in comparison with
the usual one-center bases. In the most demanding case,
when pairing and density-dependent (DD) interactions

are considered, up to 20 different polynomials must be

computed (see Appendix B).

At this point, we note that an analogous implemen-

tation can be used for non-co-axial bases, that is, those

not only arbitrarily shifted and deformed but also ar-
bitrarily tilted. Indeed, in this case, the s.p. wave func-
tions (5) depend on dimensionless variables ξµ,i given

by

ξµ,i =
∑

ν R
i
µνbν,i(rν − rν0,i), (19)

where Ri
µν are the 3×3 orthogonal rotation matrices for

centers A and B.

Even for non-co-axial bases, the integration lattices

remain the same, as the exponent of the common Gaus-
sian is invariant under rotations. Thus, the expressions
in this section and the appendices are still valid. The

use of non-co-axial bases will be discussed in a forth-

coming publication [47].

Regarding the inclusion of pairing correlations, in-

stead of using the antisymmetric pairing tensor κ, we

use the pairing density matrix [48], deőned as:

ρ̃(rσ, r′σ′) = −2σ′ ⟨Ψ |ar′−σarσ|Ψ⟩ , (20)

which allows us to apply the same method to the matrix

elements of the p-p channel. However, it requires eval-

uating additional polynomials on the quadrature lat-

tices (see Appendix B), which leads to a substantial in-

crease in computational time. Thus, we have opted not

to include pairing correlations in our Proof-of-Principle

calculations, as they are primarily intended to demon-

strate the method’s capabilities rather than to provide

realistic results, which will be the focus of future pub-

lications.

2.4 Coulomb interaction in the TCHO basis

Proper treatment of the Coulomb interaction is cru-

cial when describing őssion or any reaction involving

two nuclei. The Coulomb force acts along the whole

őssion path, affecting the neck formation, the interac-

tion between the pre-fragments, and the evolution of

each fragment after scission [5]. The advantage of using

the TCHO basis lies in describing all stages of the ős-
sion process by employing different shifts of the bases.
Hence, the TCHO method implemented here allows us

to describe the effects of the Coulomb interactions not

only in each fragment but also between them on the

way to and after the scission. This is vital to describe,

among other observables, the total kinetic energy of
the reaction [4]. Our TCHO implementation of the ex-

act Coulomb exchange effects is critical, as its conse-

quences for neck formation and fragment distributions

have never been considered.

The Coulomb interaction can be represented as

V̂ (r1, r2) =
e2

|r1 − r2|
σ̂
(1)
0 σ̂

(2)
0 δ(1)τ,pδ

(2)
τ,p

(

1− P̂σP̂ τ P̂ r

)

,

(21)

where indices 1 and 2 pertain to coordinates of two in-

teracting particles, σ̂0 are the 2×2 diagonal spin matri-
ces, and P̂σ, P̂ τ , and P̂ r are the standard spin, isospin,

and space exchange operators, respectively. The direct,

exchange, and pairing matrix elements of the Coulomb

interaction can be effectively treated by exchanging the

space indices of the direct term, see Ref. [49]. There-

fore, below, we discuss only the space part of the direct

term, that is,

⟨n, i;m, j|V dir(r1, r2)|n′, i′;m′, j′⟩ =

e2
∫∫

dr1dr2ϕ
∗
n,i(r1)ϕ

∗
m,j(r2)

1

|r1 − r2|
ϕn′,i′(r1)ϕm′,j′(r2)

(22)

To evaluate this matrix element by employing the
Gauss-Hermite quadratures again, we use the method
introduced by Girod and Grammaticos [50] and later

implemented in numerous codes [51ś55]. The method

relies on approximating the Coulomb potential by a

sum of Gaussians,

1

|r1 − r2|
≃

NC
∑

γ=1

Aγe
−aγ(r1−r2)

2

, (23)

where at any order NC , the strengths Aγ and widths
aγ can be evaluated by simple algebraic expressions.

The key point now is that the matrix elements become
separable; that is, they are products of matrix elements
separately evaluated in each Cartesian direction,

⟨n, i;m, j|V dir(r1, r2)|n′, i′;m′, j′⟩ =

e2
NC
∑

γ=1

Aγ

∏

µ=x,y,z

vγ
nµ,i;mµ,j;n′

µ,i
′;m′

µ,j
′ ,

(24)
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where

vγ
nµ,i;mµ,j;n′

µ,i
′;m′

µ,j
′ =

∫∫

dr1µdr2µH
(0)
nµ

(ξ1µ,i)

×H(0)
mµ

(ξ2µ,j)H
(0)
n′
µ
(ξ1µ,i′)H

(0)
m′

µ
(ξ2µ,j′)

× e−
1
2
(ξ21µ,i+ξ2

1µ,i′ )e−
1
2
(ξ22µ,j+ξ2

2µ,j′ )e−aγ(r1µ−r2µ)
2

.

(25)

The last step to compute this integral by the Gauss-

Hermite quadrature is to express the product of Gaus-

sians in terms of a Gaussian of the quadratic form in

variables ξ1 and ξ2, which is presented in detail in Ap-

pendix C.

From this point on, the calculation of Coulomb ener-
gies and mean őelds in the direct, exchange, and pairing

channels proceed in close analogy to those implemented

for any other őnite range interaction, such as Yukawa

or Gogny force, which was described in Refs. [49, 52],

Fig. 1 (Color online) Difference between the exact form fac-
tor 1/r and the expansion (23) computed for different num-
bers of Gaussians NC . The gray shaded area shows a precision
of 10−4 fm−1 or better.

Even though for the one-center calculations, the

number of Gaussians NC that ensure the precision of

the 1/r expansion within the nuclear volume is less than

10 [38], for two fragments separated by large distances
this cannot be enough. This is illustrated in Fig. 1,

where we show the Coulomb form factor 1/r compared

with expansion (23) for different numbers of Gaussians

NC . We see that expansion on NC = 20 Gaussians is

sufficiently precise for distances up to about 50 fm. As

the computation time scales linearly with NC , higher

values can be easily accommodated if necessary.

3 Proof of Principle I: testing accuracy in the

case of 8Be

3.1 Ground state energies: one-center vs. two-center

calculation

The ultimate goal of the TCHO solver is to describe

the őssion path in a more accurate and, if possible,

easier way. For that, we need to tell the initial nucleus

before the reaction starts. Here, as proof for validating

the method, we have chosen the case of 8Be. Its well-

known α + α cluster structure is ideal for putting the
TCHO formalism to the test.

First, we compare the OCHO and TCHO ground-

state results for different numbers of shells included in

the calculations. For the OCHO calculations, we used

a deformed basis adapted to the deformation of the

ground state energy: for Q20 ≡ ⟨Q̂20⟩ ≈ 0.5 b we have
ℏωx = ℏωy = 31.94 MeV and ℏωz = 14.59 MeV. On

the other hand, for the two-center method, we chose

both bases adapted to the properties of spherical 4He,

ℏωx = ℏωy = ℏωz = 30.99 MeV. Furthermore, as the

average nuclear radius of 4He is around 1.90 fm (as ob-

tained from the HF OCHO calculation), we set the two

centers of the basis at zA = −2 fm and zB = 2 fm, with
a basis cutoff of ζcut = 10−4. The Skyrme functional

used is UNEDF1 [56], which will be used in realistic

őssion calculations.

In Fig. 2(a), we compare the deviation from the

asymptotic ground-state energy for both OCHO and

TCHO calculations. The asymptotic value was obtained

by extrapolating to N0 → ∞ the energies derived from

the standard one-center basis expansion. Our results

show that the TCHO basis consistently yields a lower

deviation for a given number of shells, N0, demonstrat-

ing a better variational approximation of the 8Be wave

function. However, as illustrated in Fig. 2(b), this in-

creased accuracy comes with a higher computational
cost. This is because not only the Hamiltonian matrix

elements for each center, but also those between two
different centers, need to be calculated. Fortunately,
optimizing the basis parameters can limit the number

of shells to 12 while maintaining the typical precision

expected in DFT calculations. This perfectly agrees

with the approach of practitioners of the Gogny model,

whoÐ even for heavy őssioning systemsÐonly include

up to N0 = 11 shells [30]. However, it is important to re-
call that this expansion aims to compete with the more

demanding OCHO bases needed to describe extremely

elongated shapes, rather than conőgurations near the

ground state. In such cases, one-center bases may re-

quire more than 30 shells [57, 58], making the com-

putational burden closer to our approach. Moreover,
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Fig. 2 (Color online) (a) Deviation of the 8Be ground state
energy from the asymptotic value (−41.10 MeV) as a func-
tion of the number of HO shells, calculated using the OCHO
and TCHO bases. The gray-shaded region represents the area
where the precision is equal to or better than 100 keV. (b)
CPU time per iteration for the single-core version of hfodd

using the OCHO and TCHO bases (tested on the University
of York Viking cluster, AMD EPYC 7643 @ 2.30 GHz).

to study the neck formation or post-scission evolution,
TCHO can be important, even if it is time-consuming.
Additionally, we also achieve the additional advantage

of including triaxiality at the exact computational cost.

3.2 Coulomb interaction between α particles: a test of
the numerical precision.

Fig. 3(a) displays the direct part of the Coulomb in-

teraction between the α particles clustering in 8Be for
two different numbers of Gaussians as a function of the

separation between the bases. We use NC = 10 as the

standard number of Gaussians for separations up to

20 fm, while NC = 30 provides the reference values

for highly precise Coulomb energies, accurate to within

10−7 MeV.

As seen in the őgure, the differences between using

10 or 30 Gaussians are not noticeable on the plot scale

Fig. 3 (Color online) (a) The direct part of the Coulomb
interaction between α particles within 8Be and after scission.
The TCHO basis was used for N0 = 4 shells, and SVT [59]
Skyrme functional. The inset shows the energy difference be-
tween the two curves NC = 10, 30. (b) Same as (a) but in
logarithmic scale for the exchange term.

until the curves diverge at 30 fm. In the TCHO method,

the separation between the two fragments becomes ap-

parent, as the Coulomb interaction then follows that

of two point-like charges. Speciőcally, this occurs at a

separation of ∆z0 ≈ 7.5 fm, corresponding to a total

quadrupole moment of Q20 ≈ 9 b. Beyond this point,

the electric repulsion decreases as 1/r, ultimately con-

verging to twice the direct Coulomb interaction between

the 4He fragments. The structure of two separated well-

deőned fragments can also be seen in Fig. 3(b), where

the exchange part of the Coulomb interaction is shown.

Once the fragments separate, the relative exchange in-

teraction energy rapidly reaches zero, showing an ex-

ponential decrease that can only be appreciated in the

logarithmic scale. This exponential behavior is up to
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15 fm well reproduced even for 10 Gaussians and up to

30 fm for 30 Gaussians.

In the forthcoming publications, we will systemat-

ically study the impact of the exact treatment of the

Coulomb exchange on neck formation and fragment

distributions. Indeed, in the region of low density, the

Slater approximation [60] of the Coulomb exchange is

not justiőed.

4 Proof of Principle II: 24Mg →
12C+12C

As the second Proof of Principle, we analyze the sym-
metric őssion channel in 24Mg. On the one hand, this is

a well-tested reaction in the two-center formalism [24].

On the other hand, as Berger and Gogny showed, 6 HO

shells are enough to describe the problem to avoid the

usual DFT computational burden of a heavy nucleus.

4.1 Description of the 24Mg ground state

To benchmark the results for the ground state of 24Mg,

we performed the OCHO calculation using a deformed

basis adapted to the ground state quadrupole moment

of around 1.1 b. In the direction of the z-axis, we in-

cluded 17, whereas in the perpendicular directions 12

HO shells. In the case of the TCHO calculation, we

kept the same strategy as in the 8Be test, adapting
both bases to the properties of the spherical 12C and

including up to 10 HO shells. In both calculations, we

included 572 HO states (twice the size of the spheri-

cal N0 = 10 basis). For the basis cutoff parameter in

the norm eigenvalues set to ζcut = 10−4, the TCHO

method discarded a few tens of states due to the basis

non-orthogonality; see section 2.1.

To study the dependence on the center separation,

we analyzed different values in the range between 0 and
9 fm, as larger values than those lead to two completely
separated fragments. We also varied the cutoff in the

norm overlap ζcut for completeness. In Fig. 4, we show

the ground-state energies and quadrupole moments as

functions of the separation of the basis for different cut-

offs ζcut. To avoid numerical instabilities, we used the

density-independent Skyrme functional SVT [59]; how-
ever, the same behavior was found for other Skyrme

parametrizations.

We found that the best TCHO description of the
ground-state energy was given by the separation of

4 fm between centers, which was just 75 keV above the

OCHO result, including up to 17 HO shells. Moreover,

from Fig. 4, we learned that a cutoff of 10−4 is sufficient

to include the relevant number of states for an accurate

description. Related to the deformation of the ground

Fig. 4 (Color online) Ground state energy (a) and
quadrupole moment (b) of 24Mg in function of the separation
of the centers for different cutoffs ζcut in the norm eigenval-
ues. The Coulomb interaction and pairing correlations were
neglected. The grey dashed line indicates the results obtained
using the OCHO basis.

state, we saw a weak increase of the average value of

⟨Q̂20⟩ in function of the separation of the centers. How-
ever, these variations represent less than 5%.

Using the optimum TCHO basis, we performed a

more realistic calculation using the SkM* [61] interac-
tion, including the full Coulomb interaction. Some rele-

vant quantities are summarized in Table 1, in which we
compare the results obtained for the OCHO and TCHO

bases. In either case, we did not conserve simplex, signa-

ture, or parity symmetry. In the OCHO calculation, we

enforced the axial symmetry of the solution. In contrast,

in the TCHO calculation, this symmetry was rapidly

őxed self-consistently due to the separation of the bases

along the z-axis. Despite the smaller number of shells

included in the TCHO calculation, we observe no sig-

niőcant differences in any of the results, so the TCHO

method captures the ground-state properties of 24Mg

perfectly well.
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def. OCHO sph. TCHO

Ekin (MeV) 387.09 388.15
∑

Es.p. (MeV) -492.36 -492.44
ECoul (MeV) 27.90 27.93
Es−o (MeV) -22.35 -22.41
ESky (MeV) -594.47 -595.47
Eg.s (MeV) -179.48 -179.38

⟨Q̂20⟩ (b) 1.17 1.17

⟨Q̂40⟩ (b2) 0.012 0.012

Table 1 Results of HF calculations performed for 24Mg us-
ing the deformed (def.) OCHO and spherical (sph.) TCHO
bases for the Skyrme functional SkM*. The rows of the Ta-
ble show the kinetic energy, the sum of the single-particle
energies, the Coulomb, spin-orbit, and Skyrme functional en-
ergies, the ground-state total energy, and axial quadrupole
and hexadecapole moments.

4.2 Symmetric őssion of 24Mg

The symmetric őssion process is primarily driven by

an increasing quadrupole deformation, which gradually

leads to the emergence of distinct fragments. One might

be tempted to vary the distance between fragment cen-

ters as an alternative to increasing Q20. However, we
found that varying only ∆z0 leads to two distinct out-

comes: for small distances, the calculation converged

to the ground state, while for larger separations, it ei-

ther returns to the ground state or produces two well-

separated fragments. In other words, varying ∆z0 alone
cannot capture the full range of intermediate shapesś

from the ground state to post-scission. Yet, when us-
ing the quadrupole deformation to construct a one-
dimensional őssion path, a key question arises: How
should the distance between centers be selected? In our

case, based on the nuclear radius of Mg at different de-

formations, we adopted the following simple prescrip-

tion:

(i) Ground state: Q20 ≤ 2 b. ∆z0 = 4 fm.

(ii) Small deformations up to the development of a

reasonably populated neck: 2 b < Q20 ≤ 5 b. ∆z0
= 6 fm.

(iii) Larger deformations where the neck becomes thin-

ner and approaches scission: 5 b < Q20 ≤ 9 b. ∆z0
= 10 fm.

(iv) Two fully separated fragments: Q20 > 9 b. We

varied ∆z0 gradually, from 10 to 20 fm.

Based on the weak dependence of the total energy

on the separation parameter, as shown in Fig. 4, the

variations observed for different values are expected

to be on the order of a few keV. Recent studies have

also reported this behavior using axial two-center states

within covariant DFT[32].

Fig. 5 (Color online) Total energies of 24Mg in function
of the quadrupole moment, determined for the Skyrme func-
tional SkM*. Panel (a) shows the TCHO results obtained for
the N0 = 10 spherical shells with or without Coulomb in-
teraction. Panel (b) compares the results obtained in TCHO
(N0 = 10) and OCHO (N0 = 12 or 30 with 1000 HO states),
both with the full Coulomb interaction included.

In Fig. 5(a), we show the TCHO results sep-

arately for the cases without Coulomb interaction,
with the Coulomb direct term only, and with the
full direct+exchange terms included. Although the no-
Coulomb results are not physically realistic, they serve

to test the method’s ability to describe the őssioning

system: from Q20 ≃ 8 b onward, the curve stabilizes at
the energy of two spherical 12C fragments, computed

using the same basis parameters as in the TCHO 24Mg
calculation. When the Coulomb interaction is included,

we observe a small barrier at Q20 ≃ 7 b for both the di-

rect and direct+exchange curves. Furthermore, the en-

ergy difference between the direct and direct+exchange

Coulomb curves remains almost constant, with only a

slight increase starting at Q20 ≈ 5 b. This suggests

that the exchange term has minimal impact on this

particular reaction, as it only shifts the energy curves

downward. Beyond Q20 ≃ 8 b, the electrostatic repul-

sion starts behaving like 1/r, corresponding to the two

point-like charged separated particles. Hence, we can
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identify the scission occurs in the region around 8 b.

This is also conőrmed by the particle density distri-

bution, shown in Fig. 6 for Q20 =7.5 and 8.0 b. We ob-

serve that the low-density neck vanishes at 8.0 b, result-

ing in two independent fragments with nearly spherical

shapes.

In Fig. 5(b), we present the TCHO results alongside

the OCHO results, both including the full Coulomb in-
teraction. For the OCHO basis, the energy was not ac-
curately reproduced at very high quadrupole moments,

even with the inclusion of 30 HO shells and the addi-

tional constraints previously discussed.

Another important aspect is that the TCHO results

were obtained without any additional constraints aside

from the quadrupole moment. In contrast, we needed

to impose a constraint on the hexadecapole moment,

Q40, for the OCHO case to ensure continuity and, in

some instances, even convergence. This is due to the

variational nature of the problem, where the nucleus

may reorganize its collective degrees of freedom when

converging to the minimum energy solution, potentially

leading to discontinuities. On the other hand, the struc-

ture of the pre-fragments in the TCHO basis naturally

reinforces the desired shape, providing extra stability

for different Q40 solutions existing at a given Q20.

In Fig. 7, we show the 24Mg twelve lowest proton

and neutron s.p. energies calculated in the TCHO ba-

sis, in function of the quadrupole moment, cf. Ref. [24].

To better appreciate the evolution of the levels, we

included the values for Q20 = 0.5 b computed with
∆z0 = 0 fm. This scenario is equivalent to using the

OCHO basis, as the frequencies used in both centers

are the same. Even though the lines connect the or-

bitals ordered by their energies, we can see a high degree

of crossing for deformations smaller than 5 b. Beyond

that point, most of the s.p. states can be easily identi-

őed until they become (asymptotically) degenerate due
to the structure of two separate 12C fragments (whose

states are represented by the dashed lines). In the case

of the proton energies, shown in panel (b), the match is

imperfect due to the Coulomb repulsion between frag-

ments, which is still noticeable after scission. Our re-

sults agree with those obtained with the two-center shell

model [15], showing the equivalence between exploring
parameters ∆z0 and Q20 in such a symmetric case.

Finally, related to the Coulomb interaction, we
found that both direct and exchange terms present the

same behavior when OCHO or TCHO basis is used. Due

to the maximum distance between fragments, given by

the largest quadrupole deformation considered, we ap-

proximated the form factor by NC = 10 Gaussians.
For the direct part, shown in Fig. 8(a), the TCHO

and OCHO curves exhibit similar behavior, although

Fig. 6 (Color online) The 24Mg total density contour plots
for Q20 = 7.5 b (a) and Q20 = 8.0 b (b) calculated using the
TCHO method.

slight differences are noticeable near the scission point,

around 7.5-8.0 b. For the exchange part, Fig. 8(b), due
to the scale in which it is represented, the differences

appear more clearly, with the TCHO results converging

to the doubled exchange energies of the fragments and

the OCHO results missing about 50 keV asymptotically.

5 Conclusions and future work

In this work, we presented for the őrst time an

unabridged 3D two-center harmonic oscillator basis

method implemented in a sef-consistent solver that

allows for the breaking of symmetries such as time-

reversal, parity, simplex, and axiality. This initial pub-

lication aimed to establish and apply the formalism to

two simple systems to test the method’s accuracy. In

both 8Be and 24Mg, we discovered that the post-scission

conőgurations could be perfectly described due to the

ability to choose the separation of the centers. We also

demonstrated that the electrostatic direct and exchange

interaction is well reproduced, provided the Coulomb

form factor is approximated accurately enough.
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Fig. 7 (Color online) Twelve lowest Kramers-degenerate
s.p. neutron (a) and proton (b) energies of 24Mg in function
of Q20 calculated in the TCHO basis (two highest unbound
states that end up in the 1d5/2 orbitals of the fragments are
not shown). The dashed lines show the OCHO energies of
12C calculated with the same basis parameters as those used
in 24Mg for each TCHO center. For easier identiőcation, we
used the spherical HO quantum numbers of the fragments.

Regarding the pre-scission states, we observed that

the TCHO basis method can accurately describe cluster
conőgurations, even for a few HO shells in both bases.
However, one must select a reasonable center separation

to characterize different deformed states. Fortunately,

the range of these separations is quite broad, and the

penalty of not choosing the optimum value is not sig-

niőcant enough to be concerning. Comparing the same

symmetric őssion channel in 24Mg, using OCHO and
TCHO bases, we found that the latter produces the

same results. Considering that the number of states in

the TCHO method was relatively small and we did not

include constraints on the neck density or higher-order

multipole moments, the two-center method provides a

more straightforward and natural tool to describe com-

plex phenomena such as őssion.

Now that the foundational framework of the method
is established, the forthcoming publication will focus on

analyzing the tilting of the two-center bases and its im-

pact on both scission and post-scission conőgurations

of a heavy nucleus, such as 240Pu. Speciőcally, the role

of the exchange term in the Coulomb interaction will be

examined in realistic őssion paths. In addition, a newly

developed technique will enable us to track the evolu-

tion of both mass and deformation of the resulting ős-

sion fragments. However, considerable work remains to

be done. To properly analyze the generation and evolu-

tion of angular momenta in the őssion fragments, allow-

Fig. 8 (Color online) (a) Direct and (b) exchange terms of
the Coulomb interaction in function of Q20 computed with
OCHO and TCHO bases and 10 Gaussians to approximate
the form factor. The dotted lines represent the value of twice
the interaction within the 12C nucleus, computed with 10 HO
shells.

ing the bases to have distinct orientations will be essen-

tial. Furthermore, to rigorously test the adiabatic ap-

proximation, we must permit the two HO basesÐalong

with their separations and orientationsÐto evolve over

time [62].

Acknowledgments

This work was partially supported by the STFC

Grant No. ST/W005832/1, ST/P003885/1 and

ST/V001035/1 and by the Fonds de la Recherche

Scientiőque - FNRS and the Fonds Wetenschappelijk

Onderzoek - Vlaanderen (FWO) under the EOS

Project No O000422. We acknowledge the CSC-IT

Center for Science Ltd., Finland, for allocating compu-

tational resources. This project was partly undertaken

on the Viking Cluster, a high-performance computing



12

facility provided by the University of York. We are

grateful for computational support from the University

of York High-Performance Computing service, Viking,

and the Research Computing team.

Appendix A: Integration of the mean-őeld

matrix elements and energy density

From Eq. (16), we see that the general matrix element

between the HO states belonging to centers i, j is com-

puted as

Oni,mj =
B
∑

i′j′=A

∫

R3

drϕ∗
n,i(r)Oi′j′ (r)ϕn,j(r). (A.1)

The problem, as stated in section 2, is to evalu-

ate this integral numerically using the Gauss-Hermite

quadratures. Considering the structure of the opera-

tors, each integral is the sum of three terms (only one

off-diagonal block is enough due to hermiticity):

OnA,mA = bx,Aby,Abz,A·
∫

R3

dr

[

GAA(r)
∏

µ

H(0)
nµ

(ξµ,A)H
(0)
mµ

(ξµ,A)e
−2ξ2µ,A+

GBB(r)
∏

µ

H(0)
nµ

(ξµ,A)H
(0)
mµ

(ξµ,A)e
−(ξ2µ,A+ξ2µ,B)+

2Re [GAB(r)]
∏

µ

H(0)
nµ

(ξµ,A)H
(0)
mµ

(ξµ,A)e
− 1

2
(3ξ2µ,A+ξ2µ,B)

]

,

(A.2)

OnB,mB = bx,Bby,Bbz,B ·
∫

R3

dr

[

GAA(r)
∏

µ

H(0)
nµ

(ξµ,B)H
(0)
mµ

(ξµ,B)e
−(3ξ2µ,A+ξ2µ,B)+

GBB(r)
∏

µ

H(0)
nµ

(ξµ,B)H
(0)
mµ

(ξµ,B)e
−2ξ2µ,B+

2Re [GAB(r)]
∏

µ

H(0)
nµ

(ξµ,B)H
(0)
mµ

(ξµ,B)e
− 1

2
(ξ2µ,A+3ξ2µ,B)

]

,

(A.3)

OnB,mA =
√

bx,Aby,Abz,Abx,Bby,Bbz,B ·
∫

R3

dr

[

GAA(r)
∏

µ

H(0)
nµ

(ξµ,B)H
(0)
mµ

(ξµ,A)e
− 1

2
(3ξ2µ,A+ξ2µ,B)+

GBB(r)
∏

µ

H(0)
nµ

(ξµ,B)H
(0)
mµ

(ξµ,A)e
− 1

2
(ξ2µ,A+3ξ2µ,B)+

2Re [GAB(r)]
∏

µ

H(0)
nµ

(ξµ,B)H
(0)
mµ

(ξµ,A)e
−(ξ2µ,A+ξ2µ,B)

]

,

(A.4)

Hence, in Eqs. (A.2)-(A.4), there appear őve differ-
ent Gaussians, which translates into őve different lat-

tices where the quadratures need to be computed. Af-

ter several algebraic steps, we then deőne őve different

scaled coordinates, shown in Table (2).

#A−#B ηiji′j′

4-0 1√
2bµ,A

η + rµ0,A

3-1
√

2

3b2
µ,A

+b2
µ,B

η +
3b2

µ,A
rµ0,A+b2

µ,B
rµ0,B

3b2
µ,A

+b2
µ,B

2-2 1√
b2
µ,A

+b2
µ,B

η +
b2
µ,A

rµ0,A+b2
µ,B

rµ0,B

b2
µ,A

+b2
µ,B

1-3
√

2

b2
µ,A

+3b2
µ,B

η +
b2
µ,A

rµ0,A+3b2
µ,B

rµ0,B

b2
µ,A

+3b2
µ,B

0-4 1√
2bµ,B

η + rµ0,B

Table 2 Different scaling of space coordinates rµ for Gaus-
sians appearing in Eqs. (A.2-A.4). The őrst column shows
how many times the widths bµ,A and bµ,B appear in the

quadratures. Factors ηiji′j′
denote variables η scaled and

shifted depending on the integrands indices i, j, i′, j′.

To simplify the expressions (and the computational
burden), we can rewrite the product of the two Hermite

polynomials involved as a őnite sum of another Hermite

polynomial in the style of [38]:

H(0)
nµ

[bµ,i(η
iji′j′

µ − rµ0,i)]H
(0)
mµ

[bµ,j(η
iji′j′

µ − rµ0,j)] =

nµ+mµ
∑

kµ=0

Ciji′j′

nµmµkµ
H

(0)
kµ

(ηµ),

(A.5)

where coefficients Ciji′j′

nµmµkµ
can be computed numeri-

cally via the Gauss-Hermite quadrature again. Taking

this fact and the proper algebraic modiőcations into

account, the general TCHO matrix element reads
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Oni,mj =
∑

i′j′

kxkykz

Ωiji′j′Ciji′j′

nxmxkx
Ciji′j′

nymyky
Ciji′j′

nzmzkz
Oiji′j′

kxkykz
,

(A.6)

where

Oiji′j′

kxkykz
=

∫

R3

dη⃗Gi′j′(η⃗
iji′j′)

∏

µ

H
(0)
kµ

(ηiji
′j′

µ )e−η2
µ .

(A.7)

Coefficients Ciji′j′

nµmµkµ
contain hidden factors

√

bµ,ibµ,j
and

Ωiji′j′ =
∏

µ

√

2

b2µ,i + b2µ,j + b2µ,i′ + b2µ,j′
e−

1
2
B̄iji′j′

µ ,

(A.8)

where the exponent depends on the HO constants and

bases’ shifts,

B̄iji′j′

µ =b2µ,ir
2
µ0,i + b2µ,jr

2
µ0,j + b2µ,i′r

2
µ0,i′ + b2µ,j′r

2
µ0,j′

−
(

b2µ,irµ0,i + b2µ,jrµ0,j + b2µ,i′rµ0,i′ + b2µ,j′rµ0,j′
)2

b2µ,i + b2µ,j + b2µ,i′ + b2µ,j′
.

(A.9)

The same strategy can be used to evaluate the en-

ergy of the functional, where the integrands are prod-
ucts of pairs of densities. Therefore, again, we deal with
the products of four Gaussians with different combina-

tions of the HO constants and shifts. However, the lat-

tices to compute the quadratures are the same, and the

polynomials required are evaluated again at the same

points. The only difference is that we need to perform

the sum over all four indices instead of computing only

one cross-term as before.

Appendix B: Evaluation of densities

In Appendix A, we saw that őve different lattices are

needed to perform the numerical integration for the ma-

trix elements or energy of the functional. This is be-

cause the four indices i, j, i′, j′ deőne just őve different

combinations of shifts and scaling, summarized in Ta-

ble 2. However, from Eq. (A.7), we see that we need to

evaluate polynomials Gi′j′ that deőne densities in the

different lattice points of ηiji
′j′ .

In the density-dependent (DD) term, the coupling

constants are proportional to ργ0(r), with ρ0(r) =

ρp(r) + ρn(r) and γ being (usually) a non-integer pa-

rameter of the interaction [63]. Therefore, the Gauss-
Hermite quadratures are no longer exact because,

in general, the integrands are not polynomials but

products of polynomials and non-integer powers of

polynomials. Since the total densities are relatively

smooth functions, quadratures deőned for the density-

independent terms can still be quite precise. Never-
theless, as discussed below, those terms require special
treatment in the implementation of TCHO.

To determine how many different polynomials Gi′j′

must be evaluated, we use the following principles:

ś Due to Gi′j′ = G∗
j′i′ we only explicitly compute

those for j′ ≤ i′. Hence, three different polynomi-

als in őve lattices make a total of 15. In the case

of the pairing densities, though, this doesn’t apply

because left and right wave functions are related,

respectively, to the lower and upper components of

the quasiparticle wave functions [48], giving. As a

result, 20 different polynomials.

ś The polynomial Gi′j′ already őxes two of the four

indices of the lattice to be used. As a result, if DD

terms are not considered, only 3 out of 5 possible

lattices must be used. For example, if we take GAA,
only those lattices with #A ≥ 2 in Table 2 are used

(which are 4-0,3-1,2-2). Then, their number can be
reduced to 9 polynomials or 12 when including pair-
ing in the calculation.

To summarize these results, in Table 3, we show the

number of different polynomials needed in the function

of the complexity of the calculation.

w/o pairing dens.
(HF)

w/ pairing dens.
(HFB)

no DD terms
(SV, SVT,...)

9 12

with DD terms
(SkM*,UDF1,...)

15 20

Table 3 Total number of polynomials in the quadrature lat-
tices needed for different methods and interactions.

When using the DD interactions, the so-called re-

arrangement term is required in the mean őeld, whose

structure is different from the rest of the terms [38]:

U rear(r) ∝ γργ−1
0 (r)ρ2(r), (B.10)

where to simplify the presentation, we omitted the part

related to the spin density. Then, the matrix elements
of the rearrangement term read

(U rear
ij )nm ∝ γ

∫

R3

drϕ∗
n,i(r)ρ

γ−1
0 (r)ρ2ϕm,j(r). (B.11)
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One last remark related to the numerical evaluation

of this integral is in order. In the calculations performed
in the TCHO basis, we can encounter situations where
the true density (not its polynomial part) is extremely

small. This is the case, for instance, when the two cen-

ters are separated to describe the őssion fragments far

away from one another. In that case, the rearrangement

term can lead to numerical issues when the power γ of
the interaction is smaller than one due to the division

by extremely small values. To avoid this behavior, the

rearrangement term must be set to zero at small densi-

ties.

Appendix C: TCHO matrix elements of the

Coulomb interaction

To compute the integrals appearing in (25) we need to
transform the expression in such a way that rµ1 and rµ2
are separable. Let’s treat only the exponent, recalling:

E(rµ1, rµ2) =

1

2

[

(ξ21µ,i + ξ21µ,i′) + (ξ22µ,j + ξ22µ,j′) + 2aγ(rµ1 − rµ2)
2
]

,

(C.12)

so that, the total Gaussian function in (25) is sim-
ply e−E(rµ1,rµ2). Expanding all the terms involved in

(C.12), we have the following quadratic form

E(rµ1, rµ2) = ar2µ1 + br2µ2 + crµ1rµ2 + drµ1 + erµ2 + f,

(C.13)

where

a =
1

2
(b2µ,i + b2µ,i′ + 2aγ), (C.14a)

b =
1

2
(b2µ,j + b2µ,j′ + 2aγ), (C.14b)

c = −2aγ , (C.14c)

d = −(b2µ,irµ0,i + b2µ,i′rµ0,i′), (C.14d)

e = −(b2µ,jrµ0,j + b2µ,j′rµ0,j′), (C.14e)

f =
1

2
(b2µ,ir

2
µ0,i + b2µ,i′r

2
µ0,i′ + b2µ,jr

2
µ0,j + b2µ,j′r

2
µ0,j′),

(C.14f)

which can be transformed into a new one of the type

E′ (η1, η2) = Aη21 +Bη22 + C. (C.15)

For that purpose, let’s write (C.13) in matrix nota-

tion:

E(rµ1, rµ2) = x
TAx+Bx+ f, (C.16)

where

x =

(

rµ1
rµ2

)

, (C.17a)

A =

(

a c/2

c/2 b

)

, B =
(

d e
)

(C.17b)

then, we can apply a linear transformation to elimi-
nate the cross-term in the coordinates (proportional to
rµ1rµ2). If we insert the next transformation

x = Px
′ −→

(

rµ1
rµ2

)

=

(

P11 P12

P21 P22

)(

r′µ1
r′µ2

)

(C.18)

into (C.13) we have,

E′(r′µ1, r
′
µ2) = x

′TA′
x
′ +B′

x
′ + f, (C.19)

where A′ is diagonal. In other words, P is the unitary
matrix that diagonalizes A. Then, in terms of its eigen-

values,

A′ = PTAP =

(

π1 0

0 π2

)

, (C.20a)

B′ = BP =
(

d′ e′
)

, (C.20b)

where

d′ = P11d+ P21e, (C.21a)

e′ = P12d+ P22e. (C.21b)

Then, expression (C.19) reads as

E′(r′µ1, r
′
µ2) = π1r

′2
µ1+π2r

′2
µ2+d′r′µ1+ e′r′µ2+f. (C.22)

Going back to equation (25) and taking into account

that P is orthogonal śas it diagonalizes the symmetric

matrix Aś we can change the variables of integration
as follows
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vγnimjn′
i′
m′

j′
=

e2Aγ

√

bµ,ibµ,jbµ,i′bµ,j′

∫∫

dr′µ1dr
′
µ2·

H(0)
nµ

(ξ1µ,i)H
(0)
mµ

(ξ2µ,j)H
(0)
n′
µ
(ξ1µ,i′)H

(0)
m′

µ
(ξ2µ,j′)e

−E′(r′µ1,r
′
µ2),

(C.23)

If one őnally completes the squares and makes the right

changes of variables, the matrix elements can be com-

puted numerically with the double quadrature as

vγnimjn′
i′
m′

j′
= e2AγTii′jj′

∑

αβ

wαwβ ·

H(0)
nµ

(η1,α, η2,β)H
(0)
mµ

(η1,α, η2,β)

H
(0)
n′
µ
(η1,α, η2,β)H

(0)
m′

µ
(η1,α, η2,β),

(C.24)

where

Tii′jj′ =

√

bµ,ibµ,jbµ,i′bµ,j′

π1π2
e−f ′

, (C.25a)

f ′ = f − d
′2

4π1
− e

′2

4π2
, (C.25b)

and the new lattice is related to the rotated coordinates

as

η1 =
√
π1r

′
µ1 +

d′

2
√
π1

, (C.26a)

η2 =
√
π2r

′
µ2 +

e′

2
√
π2

. (C.26b)
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