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 A B S T R A C T

The effect of experiences on travel mode choices is well established in the literature. Addition-
ally, there is evidence that psychophysiological signals, such as skin conductance, can capture 
travel experiences without relying on self-reported measures, given their strong correlation with 
psychological states. However, using physiological data to estimate the effect of experiences on 
choices remains unexplored due to challenges in data collection. The advent of virtual reality 
(VR) presents a unique opportunity to gather such data under controlled laboratory conditions 
and explore how travel experiences shape future demand. This paper uses data collected from 
a set of VR experiments where participants repeatedly chose between different travel modes, 
including current (car, bus, ride-hailing) and futuristic options (autonomous vehicle, air-taxi, 
hyperloop). After making their choice, they experienced the mode in the VR environment, and 
indicated whether they would have preferred another option. This is the first experiment to 
analyse psychological states and modal choice within a VR environment, and the first to use 
physiological data to assess how experienced psychological states affect future choices. We 
estimate a dynamic hybrid model that accounts for the effects of inertia and lagged latent 
stress, meassured through Galvanic Skin Conductance. Our findings show that driving in VR 
was the most stress-inducing option, reducing the likelihood of repeating that choice. Additional 
results, methodological implications, and the potential of VR for other travel behaviour studies 
are discussed.

1. Introduction

The transportation literature has widely acknowledged the effect of experience on travel choices (De Vos et al., 2021; Abou-Zeid 
et al., 2012), as well as the backward effect of modal choices on travel satisfaction (Gärling et al., 2019; Abou-Zeid and Ben-Akiva, 
2010; De Vos, 2019; Guan et al., 2024; Susilo and Cats, 2014; Le and Carrel, 2021), by analysing ex-post questionnaires. On the other 
hand, studies that account for the relationship between past and present behaviour use inertia variables (Ramadurai and Srinivasan, 
2006; Cantillo et al., 2007; Cherchi and Manca, 2011; Gao et al., 2020, 2022). However, ex-post questionnaires are subjected to 
different types of bias and may not capture the true underlying latent travel satisfaction (Rholes et al., 1987; Abou-Zeid et al., 
2012), and inertia variables do not recognise the fact that what influences choices is the outcome of past choices not only the 
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choices themselves (Webb et al., 2024). Hence, both approaches may fail to properly capture the behavioural consequences of 
travel satisfaction.

Thus, travel behaviour analysis can benefit from enriched discrete choice models that integrate unbiased (not derived from 
individuals’ subjective responses) measures of travel satisfaction. However, the measurement of travel experience in a discrete 
choice framework is challenging since the explanatory variables in real-world trips are not controllable and hard to measure, and 
the dependent variables (non-observable psychological states) are often only accessible through post-experience questionnaires. 
Recently, psychophysiological indicators (PPI) have been proposed to be used to capture complex latent psychological states, which 
are otherwise hard to capture (Castro et al., 2020; Hancock and Choudhury, 2023). This is possible since psychological stimuli 
affect the autonomous nervous system, triggering both changes in psychological states and variations in PPI (Cacioppo et al., 2007; 
Ganglbauer et al., 2011). PPI can change the way travel satisfaction is measured, increase the granularity and depth of the analysis 
and also be used for travel behaviour analysis. With data from a real-life experiment in Santiago, Chile, Barría et al. (2023) showed 
that skin temperature was significantly correlated with the valence of the stated emotions in a public transport trip and Henriquez-
Jara et al. (2025) used skin temperature, electrodermal activity, heart rate, and heart rate variation to estimate the latent satisfaction 
of travellers. PPIs have also been used in laboratory studies under controlled conditions, leveraging the advent of VR and augmented 
reality as a tool for travel experiments with high ecological validity (Farooq et al., 2018; Sadeghi et al., 2023b; Farooq and Cherchi, 
2024; Bogacz et al., 2021; Mudassar et al., 2021; Paschalidis et al., 2019). However, none of these studies analysed modal choice 
or the impact of travel satisfaction on future choices.

Although the current state of the art recognises an effect of the travel experience on mode choice and the use of PPI to measure 
the experience, it has not yet been shown how physiological measures can help estimate the effect of latent psychological states 
perceived in travel experiences on the choice of travel mode. In this paper, we address this gap in the literature by testing this effect 
under controlled laboratory conditions as part of the ‘Future Modes Study’ (FMS, Choudhury et al., 2025). The FMS study included 
3 waves of VR experiments . Each wave had different consideration sets: car, bus and ride-hailing; car, autonomous vehicle (AV), 
and shared autonomous vehicle (SAV); and hyperloop, air-taxi and train. Each participant chose a mode (pre-experience choice), 
experienced it, and then stated whether they would like to change their initially chosen mode (post-experience choice). Our main 
research questions are: (1) Does the latent stress associated with experiencing an alternative result in subjects avoiding reselecting 
the same alternative? In addition, we also address the following two questions: (2) Do the preferences of subjects change after 
experiencing an alternative, or do attributes that are hard to perceive in SP become more relevant after the VR experiences? and 
(3) Does the inertia effect get mediated by the effect of previous latent stress? To answer these questions, we employ a dynamic 
Integrated Choice and Latent Variable model (ICLV) (Ben-Akiva et al., 2002). This modelling approach allows us to test the influence 
of the VR experience on latent stress, measured with the galvanic skin response (GSR) of the participants, on subsequent decisions. 
GSR is related to the amount of sweat on the skin and is therefore often used as a stress indicator when other factors that may 
increase sweating are controlled (Ganglbauer et al., 2011; Bitkina et al., 2019; Scheirer et al., 2002). It is one of the most popular 
aspects of the autonomic nervous system used to study human cognition and emotions (Carter and Tranel, 2012).

The potential of VR has mainly been discussed in terms of its use for travel satisfaction analysis (e.g. Sadeghi et al., 2023a). 
We contribute by analysing its potential for the estimation of the effects of travel satisfaction on demand, which is necessary to 
capture to move towards the evaluation of projects aimed at maximising Subjective Wellbeing (Henriquez-Jara and Guevara, 2025). 
Also, we discuss the validity of VR transport-related stimuli in inducing changes in emotion and the extent to which these can be 
generalised to the real world. The remainder of this article is organised as follows. The second section shows the summary of the 
experimental design. The third section presents the modelling framework. Section four details the data and sample characteristics. 
The fifth section shows the results, and lastly we discuss the main conclusions and further research lines.

2. Experimental design

The data used in this research was collected as part of the ‘Future Modes Study’(FMS). In this section, we briefly present the 
experimental set up. The full details are available at Choudhury et al. (2025).

The experiments were conducted as part of the ‘Next Generation Travel Behaviour Models’ project using the Virtuocity facilities at 
the University of Leeds (https://uolds.leeds.ac.uk/facility/virtuocity/). It consisted of three waves, each with different consideration 
sets. In the first wave, participants chose between car, bus and ride-hailing. The second wave included car, AV and SAV. In the third 
wave, participants chose among air-taxi, hyperloop and train. Participants did four choice tasks per consideration set. The FMS data 
collection setting consisted of a VR headset connected with a static driving simulator, a Shimmer sensor (to record GSR), and an 
EEG sensor1. The Shimmer sensor measures GSR at a rate of 120 Hz. For the first and second waves, the setting included a steering 
wheel and brake and acceleration pedals for actively controlling the car in the virtual environment. Fig.  1 shows an example of the 
first wave experimental setting.

The attributes presented in each wave and how they were incorporated in VR are shown in Table  A.2, Table  A.3 and Table  A.4 
(Appendix). Each participant completed four choice tasks. Each choice task included three main parts (Fig.  2):

1. Pre-experience choice: Participants chose among three travel modes based on attribute values shown in a table as in 
traditional SP surveys. An example of the SP survey is presented in Fig.  3.

1 The data from the EEG was not used in this study, mainly because of measurement errors.
2 
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Fig. 1. Example of experiment setting of the first wave.

Fig. 2. Schematic representation of the structure of the experiment. The scheme represents one task, and was repeated 4 times per participant for each wave.

2. VR experience: The chosen alternative was experienced in a VR environment. Travel attributes experienced in the VR 
environment were mapped as a function of the attributes displayed in the pre-experience choice. For instance, 1 min of travel 
time in the SP corresponded to 10 s of travel time in the simulation. Additionally, if the comfort level in the SP was ‘low’, 
this translated to aggressive driving in the simulation, and ‘bad weather’ implied a night trip with foggy weather conditions 
(reduced visibility within the VR environment).

3. Post-experience choice: After the experience, the same SP choice task was shown to the participants, so that they could 
modify or confirm their initial choice. The choice of a different alternative implies that the participant regretted their pre-
experience choice, potentially due to an unpleasant or unexpected experience. This part of the task also aimed to test if some 
travel attributes gained importance after being experienced in the VR.

Finally, at the end of the session, participants responded to the Simulator Sickness Questionnaire (SSQ) (Walter et al., 2019) 
and stated the level of satisfaction perceived on each of the four experiences in a Likert scale. 71 participants took part in the first 
wave of the experiment, of which 50 participated in the second wave and 45 in the third wave (Table  A.1 in Appendix shows the 
sample composition). Fig.  4 shows the VR environment from the point of view of the participant while inside the modes of each 
wave. Also, to illustrate the differences between scenarios, Fig.  5 shows the view when driving at night in foggy weather.

Fig.  6 shows the VR environment from the perspective of the participants while they were waiting for the different travel modes. 
Car and AV are not included as these modes did not involve waiting.

3. Modelling framework

This section presents the structure of the model and the mathematical specification of it. We compare four models, but we 
describe the most complex of them (referred to as LS-Full) as the other three are constrained versions of it. First, we describe the 
structure and the dynamic effects. Then, we detail the specification of LS-Full.
3 
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Fig. 3. Example of SP survey.

Fig. 4. VR environment from the participant’s point of view inside each wave’s different travel modes.
4 
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Fig. 5. VR environment from the participant’s point of view while travelling by car in bad weather.

Fig. 6. VR environment from the participant’s point of view while waiting for the chosen travel mode. Car and AV are not included as these modes did not 
involve waiting.

The dynamic nature of the framework is explained in Fig.  7. In the figures of this section, ovals represent latent variables, 
rectangles are observed variables, solid lines are structural equations, and dashed lines are measurement equations. In this 
framework, in the pre-experience stage of the initial task, individuals compute a utility associated with each alternative (pre-
experience utility), based on the provided descriptive information. After making a pre-experience choice, the individual experiences 
some level of stress during the trip in the VR environment which is not observed (latent) by the analyst, but cause observable 
variation in GSR. Then, the participant is asked if, given the experience, they would like to have chosen another alternative (i.e. to 
regret the pre-experience choice). We refer to this stage as the post-experience stage of the task. For that, the participant is 
presented with the same SP table keeping the same descriptive information of the alternatives. The subject re-evaluates their pre-
experience choice, computing the post-experience utility, i.e. the utility after the VR experience phase of the experiment. We assume 
that this utility is explained by a combination of the pre-experience choice itself, the pre-experience utility, and the perceived latent 
stress. In the subsequent task, utility is additionally influenced by three intertemporal effects, labelled 𝐷1–𝐷3

2 in Fig.  7 and defined 
below:

𝐷1: Inertia: This effect assumes that the likelihood of repeating a choice increases with the difference between the utility of the 
chosen and not chosen alternatives. The most attractive the chosen alternative is in comparison to the not chosen alternatives, 
it is more likely to be chosen again. That is, there is a lagged effect caused by both the utility of the previously chosen 
alternative and the not chosen alternatives. This captures not only the tendency to repeat past behaviour, but also the fact 
that repeating a choice is more likely when the utility of that choice is higher. It captures the serial correlation of choices, 
as proposed by Cantillo et al. (2007).

2 A Markov assumption is made to ensure that the model is tractable. This assumption can be relaxed in future research. Note, however, that it is not 
necessary to model the accumulation of stress or inertia to evaluate whether travel stress causes individuals to shift modes.
5 
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Fig. 7. Dynamic representation of the model LS-Full. 𝐷1 represents the inertia effect (Cantillo et al., 2007), 𝐷2 is the dummy inertia or carrying-over 
effect (Heckman, 1981), and 𝐷3 is the latent stress effect.

𝐷2: Carrying-over effect: This effect also captures a serial correlation of choices, but assumes that an alternative is more likely 
to be chosen simply because it has been chosen in the past, regardless of how convenient (utility level) it was. That is, it 
simply captures the tendency to repeat past behaviour. It is modelled as the effect of the choice of task 𝑡 on the task 𝑡 + 1. 
This is known as carrying-over effect (Heckman, 1981), or dummy inertia (Cherchi and Manca, 2011).

𝐷3: Lagged latent stress: Finally, the lagged latent stress captures the effect of experiences on future choices. The latent stress 
is explained by attributes of the experience and is measured by features of the GSR observed during the experience.

From these effects, only the first two have been tested in previous research. The measurement of the effect of stress on future 
choices (𝐷3) represents the main research questions of this article. The inclusion of the first two aims to test the influence of previous 
preferences in future choices, while the third aims to test the effect of the experienced stress in future choices.

This model is compared with three other constrained models. The first baseline model (MNL1) is a simple multinomial logit which 
considers only two inter-temporal effects: the carrying-over and inertia effects, and does not model the post-experience choice. The 
second (MNL2) includes the post-experience choice and both inertia effects. The third baseline (LS1) considers the post-experience 
choice, but only with latent stress as a dynamic effect. The complete model is referred to as LS-Full. Fig.  8 summarises the four 
models to be analysed in this article.

3.1. Specification

This section provides the details of the main model, i.e. LS-Full (Fig.  8(d)). First, we detail the structural equations, then the 
measurement equations, and finally the likelihood functions.

Throughout this section, the indicator function 𝑦𝑛𝑡𝑖 will denote the choice in task 𝑡 (𝑦𝑛𝑡𝑖 = 1 if subject 𝑛 chooses 𝑖 in task 𝑡 and 
0 otherwise). In addition, we denote 𝑁 as the total number of individuals, 𝑇𝑛 the number of tasks faced by subject 𝑛, and 𝐽 the 
number of alternatives in the consideration set 𝐶 (equal across subjects).
Structural equations

The specification of the utility that individual 𝑛 has for alternative 𝑖 in choice task 𝑡 (𝑈𝑛𝑡𝑖) at the pre-experience choice stage can 
be expressed in general terms as a function of the systematic utility (𝑉𝑛𝑡𝑖) and the three dynamic effects: the carrying-over effect 
(𝐼𝑑𝑛𝑡𝑖), the inertia caused by previous utilities (𝐼𝑣𝑛𝑡𝑖), and the lagged latent stress (𝑆𝑛,𝑡−1,𝑖): 

𝑈 = 𝑉 + 𝜆𝑑𝐼𝑑 + 𝜆𝑣𝐼𝑣 + 𝜔 𝑆 + 𝜂 (1)
𝑛𝑡𝑖 𝑛𝑡𝑖 𝑛𝑡𝑖 𝑛𝑡𝑖 𝑖 𝑛,𝑡−1,𝑖 𝑛𝑡𝑖

6 
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Fig. 8. Four models summary (error terms are omitted). Ovals represent latent variables and boxes observed variables. The boxes behind the GSR represent the 
different features used to estimate the latent stress.

where the error term 𝜂𝑛𝑡𝑖 is assumed to have an Extreme Value (EVI) distribution with scale 1. We denote 𝑉𝑛𝑡𝑖 to the sum of the 
components of utility without the error term, i.e. 𝑉𝑛𝑡𝑖 = 𝑉𝑛𝑡𝑖+𝜆𝑑𝐼𝑑𝑛𝑡𝑖+𝜆𝑣𝐼𝑣𝑛𝑡𝑖+𝜔𝑖𝑆𝑛,𝑡−1,𝑖. Next, we detail the four explanatory elements 
of the utility. Eq.  (2) shows the systematic utility (𝑉𝑛𝑡𝑖): 

𝑉𝑛𝑡𝑖 = 𝛽0,𝑖 +
𝐾
∑

𝑘=1
𝛽𝑘𝑥𝑛𝑡𝑖𝑘 (2)

where 𝑥𝑛𝑡𝑖𝑘 represents the value of each 𝑘 attribute for alternative 𝑖, subject 𝑛 and task 𝑡; 𝐾 is the total number of attributes; 𝛽𝑘 is 
the respective parameter; and 𝛽  represents the alternative specific constant of alternative 𝑖.
0,𝑖

7 
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Then, the inertia effects can be specified as follows, where 𝐼𝑑𝑛𝑡𝑖 is the dummy inertia and 𝐼𝑣𝑛𝑡𝑖 is the inertia caused by previous 
systematic utilities (Cantillo et al., 2007): 

𝐼𝑑𝑛𝑡𝑖 =1[𝑦𝑛,𝑡−1,𝑖 = 1] (3a)

𝐼𝑣𝑛𝑡𝑖 =𝑉𝑛,𝑡−1,𝑖 − 𝑉𝑛,𝑡−1,𝑟,  with 𝑦𝑛,𝑡−1,𝑟 = 1 and 𝑟 ∈  (3b)

where 𝑉𝑛,𝑡−1,𝑟 represents the systematic utility of the alternative chosen in the choice task 𝑡 − 1. Note that, 𝐼𝑣𝑛𝑡𝑖 takes positive values 
if the chosen alternative (𝑟) in 𝑡 − 1 has lower systematic utility that the non-chosen alternative 𝑖. It is negative when the chosen 
alternative is better than the non-chosen. Then, if the parameter 𝜆𝑣 is positive (Eq.  (1)), it means that in task 𝑡 the utility of the 
previously non-chosen alternative decreases if in the past it was a dominated alternative in terms of expected outcome. If the 
parameter is negative, it is interpreted as a exploratory behaviour, as the utility of non-chosen alternatives increase even when in 
the past they were dominated by another alternative.

On the other hand, latent stress 𝑆𝑛𝑡𝑖 (Eq.  (4)) is specified as a function of the 𝑄 experience attributes and individual characteristics 
(𝑧𝑛𝑡𝑞) of subject n in task t. Recall that these attributes were scaled from the attributes presented in the SP survey. The experienced 
attributes included: travel time, comfort (aggressive driving or normal), weather (foggy or normal), an environmental cue (indicating 
if the mode was sustainable), crowding (in case of shared modes) and parking space (in the case of car). 

𝑆𝑛𝑡𝑖 =

{

𝛾0 +
∑𝑄

𝑞=1 𝛾𝑣𝑧𝑛𝑡𝑞 + 𝜂𝑆𝑛𝑡, if 𝑦𝑛𝑡𝑖 = 1

0, otherwise
(4)

Then, at the post-experience choice stage, the utility 𝑈 ′
𝑛𝑡𝑖 of each alternative is also represented by a systematic part and an 

EVI error term with unitary scale (𝜂′𝑛𝑡𝑖). The systematic utility of the alternatives in the post-experience choice is a function of the 
previous utility (𝑉𝑛𝑡𝑖) scaled by 𝜇, the stress recently experienced 𝑆𝑛𝑡𝑖 and the pre-experience choice 𝑦𝑛𝑡𝑖. The stress 𝑆𝑛𝑡𝑖, as defined 
in Eq.  (4), takes value only for the chosen and experienced alternative. The parameter 𝜔′ represents the variation in utility caused 
by the latent stress, and 𝛿𝑖 is a stickiness parameter, that is, the tendency to stick to the pre-experience choice. For example, 𝜇 = 0
and 𝛿𝑖 > 0 would represent participants sticking with the chosen alternative and not evaluating the possible alternatives again when 
given the opportunity. The parameter 𝛼0,𝑖 is an alternative-specific constant. 

𝑈 ′
𝑛𝑡𝑖 = 𝛼0,𝑖 + 𝜇𝑉𝑛𝑡𝑖 + 𝛿𝑖𝑦𝑛𝑡𝑖 + 𝜔′

𝑖𝑆𝑛𝑡𝑖 + 𝜂′𝑛𝑡𝑖 (5)

Measurement equations
The latent stress is measured by a set  of features extracted from the GSR. The value of each feature of the set is denoted 𝐺𝑝𝑛𝑡, 

with 𝑝 ∈ . Each feature is an aggregation of all the signal observed during the VR experience of task 𝑡 of subject 𝑛 (Eq.  (6)). 
𝐺𝑝𝑛𝑡 = 𝜃𝑝𝑆𝑛𝑡 + 𝜃𝐴𝐴𝑛 + 𝜃𝐸𝑇𝐸𝑇𝑛𝑡 + 𝜀𝑒𝑥𝑝𝑝𝑛𝑡 , (6)

where 𝜃𝑝 is the relation between the latent stress and the feature 𝑝 of the GSR. In order to control for other exogenous factors that 
could cause changes in GSR, we controlled for the reported use of substances by individuals prior to the experiment. However, none 
of these turned out to be significant except the level of alcohol consumption (𝐴𝑛) for participants of the second wave (as shown in 
Section 5). Also, we controlled for the elapsed time in the experiment (𝐸𝑇𝑛𝑡). The error term 𝜀𝑒𝑥𝑝𝑝𝑛𝑡  is assumed to have distribution 
𝑁(0, 𝜎𝑝).

In addition, we use the stated satisfaction with the VR experience. Participants indicated a level of satisfaction on a scale of 1–5. 
Then, we estimate the probability of stating a specific level of satisfaction using an ordered logit model. The estimated satisfaction 
with the experience of choice task 𝑡 (𝐸𝑛𝑡) is given by equation Eq.  (7), where 𝜃𝐸 is the slope parameter and 𝜀𝐸𝑛𝑡 is an EVI error term. 

𝐸𝑛𝑡 = 𝜃𝐸𝑆𝑛𝑡 + 𝜀𝐸𝑛𝑡 (7)

Likelihood functions
The probability 𝑃𝑛𝑡𝑖 of subject 𝑛 choosing an alternative 𝑖 in task 𝑡 is then given by: 

𝑃𝑛𝑡𝑖 =P(𝑦𝑛𝑡𝑖 = 1|𝑉𝑛𝑡, 𝐼𝑑𝑛𝑡, 𝐼
𝑣
𝑛𝑡, 𝑆𝑛𝑡−1, 𝛾, 𝜔)

=
𝑒𝑥𝑝(𝑉𝑛𝑡𝑖 + 𝜆𝑑𝐼𝑑𝑛𝑡𝑖 + 𝜆𝑣𝐼𝑣𝑛𝑡𝑖 + 𝜔𝑆𝑛,𝑡−1,𝑖)

∑

𝑗∈ 𝑒𝑥𝑝(𝑉𝑛𝑡𝑗 + 𝜆𝑑𝐼𝑑𝑛𝑡𝑗 + 𝜆𝑣𝐼𝑣𝑛𝑡𝑗 + 𝜔𝑆𝑛,𝑡−1,𝑗 )
(8)

The probability of observing the vector 𝐺𝑛𝑡 of PPI indicators, is given by: 

𝑃 𝑃𝑃𝐼
𝑛𝑡 = P(𝐺𝑛𝑡|𝜃, 𝑆𝑛𝑡) =

∏

𝑝∈

1
𝜎𝑝

𝜙
(𝐺𝑝𝑛𝑡 − 𝜃𝑝𝑆𝑛𝑡

𝜎𝑝

)

(9)

where 𝜙 is the standard normal distribution function, and 𝜎𝑝 is the standard deviation of the error of the measurement equation of 
the indicator 𝑝 ∈ .

For the measurement equation of the stated satisfaction, we denote 𝑒𝑛𝑙𝑡 an indicator function which takes the value of 1 if the 
subject 𝑛 ranks the experience 𝑡 with level 𝑙, and 0 in other case. In this case, a 1–5 Likert scale was used. Then, the probability of 
stating a satisfaction level 𝑙 is given by: 

𝑃𝑛𝑙𝑡 = P(𝑒𝑛𝑙𝑡 = 1|𝜃𝐸 , 𝑆𝑛𝑡) = P(𝜏𝑙−1 < 𝐸𝑛𝑡 < 𝜏𝑙|𝜃𝐸 , 𝑆𝑛𝑡)

=
𝑒𝑥𝑝(𝜏𝑙 − 𝜃𝐸𝑆𝑛𝑡) −

𝑒𝑥𝑝(𝜏𝑙−1 − 𝜃𝐸𝑆𝑛𝑡) ,
(10)
1 + 𝑒𝑥𝑝(𝜏𝑙 − 𝜃𝐸𝑆𝑛𝑡) 1 + 𝑒𝑥𝑝(𝜏𝑙−1 − 𝜃𝐸𝑆𝑛𝑡)
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where 𝜏1, . . . , 𝜏4 are estimated cut-off points of the ordered logit model. Note that 𝜏0 = −∞ and 𝜏5 = ∞. The probability 𝑃 ′
𝑛𝑡𝑖 of 

choosing the alternative 𝑖 as post-experience choice can be calculated as: 

𝑃 ′
𝑛𝑡𝑖 = P(𝑦′𝑛𝑡𝑖 = 1|𝜔′, 𝛿, 𝜇, 𝑉𝑛𝑡𝑖, 𝑆𝑛𝑡, 𝑦𝑛𝑡𝑖) =

𝑒𝑥𝑝(𝛼0,𝑖 + 𝜇𝑉𝑛𝑡𝑖 + 𝛿𝑖𝑦𝑛𝑡𝑖 + 𝜔′𝑆𝑛𝑡)
∑

𝑗∈ 𝑒𝑥𝑝(𝛼0,𝑗 + 𝜇𝑉𝑛𝑡𝑗 + 𝛿𝑗𝑦𝑛𝑡𝑗 + 𝜔′𝑆𝑛𝑡𝑗 )
(11)

Finally, the likelihood 𝐿𝑖𝑘 of the model is calculated as: 

𝐿𝑖𝑘 =
𝑁
∏

𝑛=1

( 𝑇𝑛
∏

𝑡=1
∫𝜂𝑆𝑛𝑡

([ 𝐽
∏

𝑖=1
(𝑃𝑛𝑡𝑖)𝑦𝑛𝑡𝑖 (𝑃 ′

𝑛𝑡𝑖)
𝑦′𝑛𝑡𝑖

]

𝑃 𝑃𝑃𝐼
𝑛𝑡

𝐿
∏

𝑙=1
(𝑃𝐸

𝑛𝑙𝑡)
𝑒𝑛𝑙𝑡

)

𝑑𝜂𝑆𝑛𝑡

)

(12)

The model was estimated with the maximum simulated likelihood method, using Apollo (Hess and Palma, 2019) in R4.2.0 (R 
Core Team, 2023).

4. Data

71 participants took part in the first wave, 50 of whom completed the second wave and 45 of whom also completed the third. 
The choices in all waves are shown in Fig.  9. The reason for attrition between waves is not known with certainty. However, a 
plausible reason is that some participants felt uncomfortable with the VR environment. This can be analysed by looking at the total 
scores on the motion sickness questionnaire (SSQ). The difference between the mean SSQ score of participants who dropped out 
of the experiment in the second or third wave (6.43) and those who participated in all waves (2.96) is significant (t-test = −3.98, 
p-value < 0.001). This suggests that participants who dropped out were less comfortable with VR than those who participated in 
all waves.

In the first wave, the participants preferred the bus over the car and ride-hailing. The participants changed their pre-experience 
choice in 22% of the tasks. In the second wave, the car was the preferred option, with 46.3% of the pre-experience choices. AV 
alone was the less preferred option (10.4%). In this case, the participants changed their pre-experience chosen option in 25% of the 
tasks. Finally, in the third wave, hyperloop was preferred (46.11%), followed by air-taxi (33.89%) and train (20.0%). In this case, 
the participants changed their pre-experience choice in only 10% of the choice tasks.

Fig.  10 shows an example of the GSR measures (vertical axis) of a single participant during the experiment. Red areas indicate 
the subject was riding a bus in the VR environment, the blue area highlights the use of ride-hailing and the green area is the use of 
car. Red vertical lines mark when the participant makes a pre-experience choice and blue vertical lines mark when the participant 
makes a post-experience choice. Grey areas show the time window where the participant was deliberating. The first part of the plot 
(to the left of the filled areas) corresponds to the test trials. As can be seen, the subject experienced higher skin conductance peaks 
during the deliberation process, which tended to increase with time and was higher when the participant was driving in VR.
Physiological features selection

The GSR measured for each participant was aggregated by experience, after subtracting the mean of the GSR measured before 
the choice task (i.e. the baseline GSR). Then, different features were extracted: the mean, median, minimum, maximum, logsum, 
variance, skewness, kurtosis, and minmax. The selection of features was based on previous studies in this field (Henríquez-Jara 
et al., 2023; Paschalidis et al., 2019; Braithwaite et al., 2013). Two of these features deserve further explanation: the minmax and 
the logsum. The first is based on Paschalidis et al. (2019) and Braithwaite et al. (2013). It represents the variance of the GSR 
observed in task 𝑡, scaled by the variance observed in the complete time series 𝐻 : 

𝑀𝑖𝑛𝑚𝑎𝑥𝑛𝑡 =
𝑚𝑎𝑥𝑡′∈𝑡(𝐺𝑆𝑅𝑡′𝑛) − 𝑚𝑖𝑛𝑡′∈𝑡(𝐺𝑆𝑅𝑡′𝑛)
𝑚𝑎𝑥𝑡′∈𝐻 (𝐺𝑆𝑅𝑡′𝑛) − 𝑚𝑖𝑛𝑡′∈𝐻 (𝐺𝑆𝑅𝑡′𝑛)

, (13)

where 𝑡′ represents a single observation of GSR. Recall that the GSR was measured at a rate of 120 Hz. On the other hand, the 
𝑙𝑜𝑔𝑠𝑢𝑚 is given by: 

𝐿𝑜𝑔𝑠𝑢𝑚𝑛𝑡 = 𝑙𝑛(
∑

𝑡′∈𝑡
𝑒𝑥𝑝(𝐺𝑆𝑅𝑡,𝑛)). (14)

Castro et al. (2020) proposed the use of the logsum to aggregate physiological measures, since it represents the expected 
maximum value if the true physiological measure associated with the experience 𝑡 diverges from the signal observed at each instant 
𝑡′ ∈ 𝑡 with an EVI error.

The resultant features were normalised (subtracting the mean and scaling by the standard deviation). Then an exploratory factor 
analysis (EFA) was performed for each wave of participants. The EFA helps identify which features explain a larger portion of the 
variance of the data, as it is desirable that the selected features explain the largest portion of it. In this case, the EFA was conducted 
with one factor as we only have a hypothesis about one underlying latent factor (i.e. stress). Based on the EFA results (Table  1) and 
the literature review, we selected the mean, maximum, and logsum for the first and third waves; and the logsum, maximum and 
minmax for the second wave.

To illustrate the differences in GSR observed across modes and waves of the experiment, we show in Fig.  11 the mean of the 
maximum value of the GSR observed in the VR experiences with each mode. From this analysis, it can be observed that driving a 
car in VR caused significantly higher levels of GSR relative to experiencing other modes.
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Fig. 9. Choices frequency by mode in each wave.

Table 1
Exploratory Factorial Analysis loadings (one factor) by wave.
 Feature Wave 1 Wave 2 Wave 3 
 Mean 0.984 0.681 0.942  
 Summation 0.933 0.665 0.938  
 Minimum 0.67 0.254 0.847  
 Maximum 0.72 0.998 0.841  
 Variance 0.209 0.756 0.237  
 Logsum 0.812 0.734 0.994  
 Minmax 0.379 0.829 0.335  
 Skewness 0.105 0.304 0.172  
 Kurtosis −0.123 0.185 −0.192  
 SS loadings 3.261 3.889 4.414  
 Proportion of variance 0.409 0.432 0.49  
10 
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Fig. 10. Example of GSR profile of a subject. Coloured areas indicate the mode being used in VR. Vertical lines indicate the instants where the participant made 
a choice.

Fig. 11. Maximum scaled GSR measured during the VR experience. Points indicate the mean value and bars denote a 95% confidence interval. AV = autonomous 
vehicle, SAV = shared autonomous vehicle, HL = hyperloop.

5. Results
In this section, we show the results of the models presented in Section 3 (see Fig.  8). We divide the presentation of the results 
by wave and by model. In all models, all variables that were part of the experimental design were retained, even those that were 
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not significant. Non-significant demographic variables were removed, except for age and gender, which we consider relevant as 
controls.

5.1. First wave

In the first wave, the consideration set consisted of: car, bus, and ride-hailing. The results of the structural equations are presented 
in Table  2, and the results of the measurement equations are presented in Table  3. On average, participants did not consider most of 
the information provided in the SP survey, and the inertia effect is negative in MNL1 and MNL2. From the point of view of inertia, 
this is interpreted as exploratory behaviour. This exploratory behaviour and the lack of consideration of the provided information 
hinders the fit of the models, as can be observed in Table  2. The role of inertia is less relevant when the latent stress variables are 
added, and the fit of the model increases.

As it is shown in the following sections, the exploratory behaviour was not observed in the following two waves. This might 
be a result of participants having a relatively low level of engagement in the first wave due to it presenting current travel modes, 
while the futuristic modes of the next two waves may have captured the interest of the participants in the experiment, which was 
demanding in terms of time and cognitive attention. However, interesting behavioural insights are obtained from the influence of 
experienced stress on the choice process. We now analyse the results of the different components of the models in turn.
Pre-experience choice

At the pre-experience choice stage, the travel time is significant in all models and the cost does not have a significant effect. On the 
other hand, waiting and walking time parameters are significant but do not have the expected sign in any model. According to MNL1 
and MNL2, the bus was preferred when the weather was bad, i.e. foggy weather, rather than normal (𝛽𝐵𝑎𝑑𝑤𝑒𝑎𝑡ℎ𝑒𝑟 > 0, 𝑝−𝑣𝑎𝑙𝑢𝑒 < 0.01), 
however, this effect is less significant in both dynamic hybrid models. No mode was significantly preferred for work trips. Before the 
experiment started, participants experienced each mode considered in the corresponding wave once for training (e.g. participants 
in the first wave only tested car, bus and RH). We controlled for the mode that was chosen first during this training stage, assuming 
the participant has some endogenous preference for that mode. We found a significant effect caused by experiencing ride-hailing 
first. That is, if a participant experienced ride-hailing as the first test mode, then it was more likely that they would also choose ride-
hailing during the experiment. The inertia parameters are negative and significant in MNL1 and MNL2. This implies that choices 
are mostly exploratory, i.e. individuals tend to change their previous choices. Note that the inertia effects disappears when the 
lagged latent stress is added (that is in LS-Full). This is because the tendency to change to new alternatives is not solely caused by 
exploratory tendencies, but influenced by the experienced level of stress. Notably, latent stress has a significant effect only on the 
car (𝜔𝑐𝑎𝑟 = −0.79, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.01 in LS and 𝜔𝑐𝑎𝑟 = −0.678, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 in LS-Full), which is perhaps not surprising given the 
additional demand on attention that is required when the participant has to drive.
Post-experience choice

The post-experience choice aimed to test if travel attributes gained importance after being experienced. We observed that 
participants showed little tendency to revise their initial choice during the pre-experience choice stage (the pre-experience choice 
was changed only in 22% of cases). The 𝜇 parameter was not significantly different from zero in any model (meaning that participants 
did not consider the SP information at the post-experience choice), and the stickiness parameter is positive and significant in all 
models with large effect size. In addition, the latent stress perceived after the pre-experience choice does not have a significant 
effect. A more detailed analysis could be done considering only the participants who change their pre-experience choice (as they 
are more likely to have changed their preferences), but the sample size does not allow for this analysis.
Latent stress

Regarding the latent stress parameters, travel time did not have a significant effect, the stated perception of realism of the 
VR scenario decreased the stress (low significance), and travelling with good weather conditions also decreased the stress (low 
significance). Travel by car was the most important factor in inducing stress. Travel by bus has a lower effect, which is not 
significantly different from the effect of travelling by ride-hailing. No other attribute caused significant changes in the latent stress. 
Table  3 shows the results of the four measurement functions. The first three are the PPIs’ features (estimated with a normal density 
function) and the fourth is the stated satisfaction (estimated as an ordered logit). The three features of GSR increased with the latent 
stress, but also with the elapsed time in the experiment. There was no significant relationship between latent stress and the reported 
satisfaction with VR experience.

Despite driving a car was shown to be the most important factor in inducing stress, it cannot be ruled out that this was an 
artefact of the experiment itself. Driving implied a more active participation of the subject, as participants had to use the steering 
wheel, drive, and park the car. In other modes, participants only observed the VR environment but did not actively participate in 
it. Further work is needed to ensure that these effects can be replicated in the real world.

5.2. Second wave

In the second wave, the consideration set consisted of: car, AV, and SAV. The results of the structural equations are presented 
in Table  4. Measurement equations results are shown in Table  5.
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Table 2
Comparison of structural equations first wave’s models. Consideration set: car, bus and ridehailing.
 Component Parameter MNL1 MNL2 LS LS-Full  
 Estimate Estimate Estimate Estimate  
 (Rob.t.test) (Rob.t.test) (Rob.t.test) (Rob.t.test)  
 

Pre-
experience
choice (𝛽)

ASC, car 1.151 (2.105) 1.369 (1.968) 0.93 (1.857) 1.144 (2.028)  
 ASC, bus 0.974 (1.552) 1.444 (1.659) 0.656 (1.716) 1.001 (1.706)  
 Cost 0.044 (0.551) 0.007 (0.091) 0.045 (0.559) 0.015 (0.183)  
 Travel time −0.25 (−2.02) −0.299 (−2.557) −0.259 (−3.08) −0.29 (−2.747)  
 Walking time 0.52 (3.475) 0.517 (3.154) 0.408 (1.723) 0.484 (2.853)  
 Waiting time 0.369 (2.435) 0.377 (2.176) 0.347 (2.482) 0.425 (2.799)  
 Crowding 0.08 (0.48) 0.095 (0.597) 0.219 (1.503) 0.149 (0.922)  
 Comfort −0.087 (−0.196) −0.299 (−0.718) 0.368 (1.556) −0.07 (−0.143)  
 Bad weather, car 0.448 (0.796) 0.66 (1.244) 0.425 (1.196) 0.634 (1.105)  
 Bad weather, bus 1.471 (2.129) 1.5 (2.199) 0.943 (1.467) 1.455 (1.779)  
 Work trip, car −0.507 (−1.449) −0.547 (−1.519) −0.514 (−0.906) −0.536 (−1.4)  
 Work trip, bus −0.355 (−0.869) −0.447 (−1.14) −0.455 (−1.078) −0.374 (−1.007)  
 Carbon −0.026 (−0.25) −0.102 (−0.936) −0.08 (−0.6) −0.096 (−0.776)  
 Female, car −0.26 (−0.441) −0.223 (−0.32) 0.036 (0.103) 0.005 (0.008)  
 Age young, car −0.228 (−0.65) −0.352 (−1.055) −0.081 (−0.534) −0.249 (−0.81)  
 Female, bus 0.344 (0.645) 0.305 (0.506) 0.068 (0.243) 0.266 (0.471)  
 Age young, bus 0.06 (0.251) 0.029 (0.124) 0.076 (0.622) 0.065 (0.346)  
 First test choice, RH 1.083 (2.171) 1.379 (2.434) 0.867 (3.379) 1.258 (2.478)  
 Inertia (𝛾𝑣) −0.524 (−1.765) −0.651 (−2.705) −0.522 (−1.332)  
 Dummy Inertia (𝛾𝑑 ) −0.356 (−2.037) −0.32 (−1.877) −0.201 (−0.844)  
 Car Stress (𝜔𝑐𝑎𝑟) −0.79 (−2.404) −0.678 (−1.882)  
 Bus Stress (𝜔𝑏𝑢𝑠) −0.056 (−0.3) −0.08 (−0.356)  
 RH Stress (𝜔𝑅𝐻 ) 0.354 (0.661) 0.131 (0.227)  
 

Post-
experience
choice

ASC, car 0.584 (1.703) 0.706 (1.219) 0.749 (1.276)  
 ASC, bus 0.605 (1.694) 0.758 (1.11) 0.839 (1.244)  
 Scale (𝜇) −0.409 (−3.728a) −0.564 (−1.916a) −0.354 (−2.766a) 
 Stickiness (𝛿) 2.032 (12.327) 2.11 (8.029) 2.072 (8.272)  
 Car Stress (𝜔′

𝑐𝑎𝑟) −0.121 (−0.373) −0.119 (−0.343)  
 Bus Stress (𝜔′

𝑏𝑢𝑠) 0.411 (1.567) 0.422 (1.56)  
 RH Stress (𝜔′

𝑅𝐻 ) −0.131 (−0.175) −0.113 (−0.173)  
 

Latent stress (𝛾)

Constant −0.205 (−0.354) −0.222 (−0.393)  
 Travel time 0.001 (0.002) 0.008 (0.028)  
 Good weather −0.496 (−1.746) −0.493 (−1.726)  
 Realism −0.824 (−1.61) −0.806 (−1.6)  
 Age 0.115 (0.748) 0.114 (0.748)  
 Female 0.178 (0.496) 0.172 (0.469)  
 Car 1.91 (3.712) 1.852 (3.655)  
 Bus 0.798 (1.483) 0.783 (1.493)  
 Work trip 0.181 (0.653) 0.2 (0.748)  
 Environmental cue −0.275 (−1.296) −0.271 (−1.296)  
 Comfort 0.028 (0.122) 0.026 (0.121)  
 Crowding −0.175 (−0.733) −0.17 (−0.713)  
 Parking space −0.067 (−0.249) −0.069 (−0.245)  
 𝜎𝑆 1 (–) 1 (–)  
 𝐿𝐿(0) pre-experience choice −304.32 −304.32 −275.75 −275.75  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) pre-experience choice −278.19 −279.04 −252.15 −249.71  
 𝐿𝐿(0) post-experience choice −304.32 −275.75 −275.75  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) post-experience choice −186.24 −171.25 −170.41  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) whole model −278.19 −465.28 −1793.52 −1792.34  
 𝜌̄2 pre-experience choice 0.02 0.02 0.1 0.1  
 𝜌̄2 post-experience choice 0.37 0.41 0.42  
a Denote a t-test against 1, otherwise the t-tests are against 0.

Pre-experience choice
The travel attribute parameters have the expected sign in the pre-experience choice component. However, in the baseline MNL1, 

the travel time is not significant. This significance of the travel time turns out to be higher when incorporating the post-experience 
choice (MNL2). That is, the joint estimation of the pre-experience and post-experience choice, helps in finding the true value of 
the travel time parameter. This may be explained by an underestimation of the importance of this attribute by the participants at 
the pre-experience choice, which is reverted after experiencing the travel time in the VR environment. In addition, the comfort 
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Table 3
Measurement equations parameters first wave’s models. Consideration set: car, bus and ridehailing.
 Component Parameter LS LS-Full  
 Estimate Estimate  
 (Rob.t.test) (Rob.t.test)  
 Mean GSR (𝜃) Alcohol −0.021 (−0.343) −0.014 (−0.229)  
 Exp. Time 0.152 (1.386) 0.155 (1.412)  
 Stress 0.414 (6.75) 0.417 (6.566)  
 𝜎 0.833 (18.99) 0.834 (18.767)  
 Logsum (GSR) Alcohol 0 (0.006) 0.005 (0.107)  
 Exp. Time 0.143 (1.553) 0.146 (1.566)  
 Stress 0.365 (4.261) 0.374 (4.123)  
 𝜎 0.878 (3.886) 0.874 (3.899)  
 Max (GSR) Alcohol −0.033 (−0.655) −0.028 (−0.53)  
 Exp. Time 0.067 (0.641) 0.069 (0.662)  
 Stress 0.346 (4.465) 0.351 (4.417)  
 𝜎 0.897 (18.151) 0.896 (18.324)  
 Stated Stress −0.131 (−0.496) −0.129 (−0.487)  
 Satisfaction 𝜏1 −2.266 (−11.391) −2.262 (−11.435) 
 𝜏2 −0.626 (−3.382) −0.623 (−3.364)  
 𝜏3 0.868 (4.481) 0.871 (4.475)  

parameter is significant and positive in all models. The inertia parameters are not significant in any of the models. However, similar 
to the first wave, LS-Full shows that the stress caused only significant effects on the utility of the car. This means that participants 
were less likely to choose a car after experiencing a stressful car trip (𝜔𝑐𝑎𝑟 = −0.489, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.1). We also controlled for the 
mode that was experienced first during this training stage, but no significant effect was found and the variable was dropped from 
the reported models.
Post-experience choice

Regarding the post-experience choice, the 𝜇 parameter is not significantly different from 1, which means that the informed value 
of the attributes of the alternatives had an effect on the post-experience choice, i.e. participants revise their pre-experience choice 
and do not just stick to it. However, there is still a tendency to stick to their pre-experience choice (stickiness 𝛿 > 0 and significant). 
Recall that in this wave the participants changed their pre-experience choice in 25% of the tasks. The experienced latent stress did 
not have a significant effect at this stage, despite the stress being significant in the pre-experience choice component. Note that 
this result might be explained by the presence of confirmation bias, i.e. people tend to think their initial beliefs or intuitions were 
correct and therefore have no intrinsic motivation to state they would like to have chosen an alternative experience (Mercier, 2022; 
Mynatt et al., 1977).
Latent stress

In the latent stress component, the variance was mainly explained by the use of the car, which is consistent with the results of 
the first wave. Also, the perceived level of realism of the experience, and the comfort level of SAV and AV turned out to be relevant 
variables. Again, the car triggered the highest levels of stress during the VR experience (𝛾𝑐𝑎𝑟 = 2.122, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.01), and the 
level of realism increases the stress (𝛾𝑟𝑒𝑎𝑙𝑖𝑠𝑚 = 0.974, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.01). However, the comfort level does not have the expected sign 
(𝛾𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 0.428, 𝑝−𝑣𝑎𝑙𝑢𝑒 < 0.01), suggesting that higher comfort (normal driving) increases the stress in comparison to low comfort 
(aggressive driving). This fact is counter-intuitive and deserves further investigation. A possible explanation is that aggressive driving 
could have been perceived as faster, which would imply that normal driving made participants more anxious or stressed. Also, note 
that from GSR we can only infer the level of arousal of the underlying emotion, however it is hard to disentangle the valence of it 
(i.e. if the emotion is positive or negative). Also participants are exposed to a level of comfort they freely chose, as it was informed in 
the pre-experience choice stage. This potentially alters the effect of the stimuli. Future research should test the effect of experiencing 
unexpected stimuli.

Table  5 shows the results of measurement equations. Latent stress increased the three features of GSR (logsum, maximum and 
minmax). However, these measures were also affected by the elapsed time on the experiment and the amount of alcohol consumed 
by the participant before the experiment. There is previous evidence suggesting that alcohol may increase the GSR measures (Li 
et al., 2022; Enewoldsen, 2016), however, it is not clear why this effect was found only for the second wave of participants. The 
stated satisfaction with the VR experience was not significantly correlated with the latent stress.

5.3. Third wave

In the third wave, the consideration set was: air-taxi, hyperloop and train. The results of structural equations are presented in 
Table  6. The estimates of the measurement equations are shown in Table  7.
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Table 4
Comparison of structural equations second wave’s models. Consideration set: car, bus and ridehailing.
 Component Parameter MNL1 MNL2 LS LS-Full  
 Estimate Estimate Estimate Estimate  
 (Rob.t.test) (Rob.t.test) (Rob.t.test) (Rob.t.test)  
 

Pre-
experience
choice (𝛽)

ASC, car −0.942 (−0.997) −0.532 (−0.644) −0.33 (−0.445) −0.365 (−0.437) 
 ASC, SAV −0.162 (−0.185) 0.197 (0.217) 0.587 (0.702) 0.498 (0.504)  
 Cost −0.17 (−3.535) −0.136 (−3.2) −0.143 (−2.907) −0.137 (−2.905) 
 Travel time −0.037 (−0.701) −0.079 (−2.089) −0.075 (−1.954) −0.067 (−1.634) 
 Waiting time −0.107 (−0.846) −0.016 (−0.188) −0.014 (−0.177) −0.019 (−0.224) 
 Crowding −0.047 (−0.222) 0 (0.003) −0.06 (−0.41) −0.037 (−0.266) 
 Comfort 0.542 (3.686) 0.524 (4.235) 0.613 (5.25) 0.588 (5.028)  
 Weather, car 0.399 (0.569) 0.279 (0.531) 0.095 (0.213) 0.251 (0.467)  
 Weather, SAV 0.519 (0.878) 0.739 (1.495) 0.62 (1.267) 0.703 (1.422)  
 Work trip, car 0.505 (0.921) 0.366 (0.931) 0.467 (1.195) 0.46 (1.174)  
 Work trip, SAV 0.203 (0.273) −0.014 (−0.028) −0.028 (−0.061) 0.021 (0.044)  
 Female, car −0.243 (−0.447) 0.08 (0.153) 0.019 (0.039) 0.019 (0.039)  
 Age young, car 1.084 (1.104) 1.28 (1.41) 0.947 (1.356) 1.165 (1.336)  
 Female, SAV −0.139 (−0.235) 0.01 (0.018) −0.031 (−0.065) −0.074 (−0.145) 
 Age young, SAV 1.118 (1.321) 0.847 (0.872) 0.469 (0.596) 0.66 (0.646)  
 Inertia (𝜆𝑣) −0.172 (−0.501) −0.163 (−0.677) −0.165 (−0.724) 
 Dummy Inertia (𝜆𝑑 ) 0.035 (0.11) 0.173 (0.727) 0.231 (0.902)  
 Car Stress (𝜔𝑐𝑎𝑟) −0.356 (−1.404) −0.446 (−1.65)  
 AV Stress (𝜔𝐴𝑉 ) −0.074 (−0.218) 0.041 (0.102)  
 SAV Stress (𝜔𝑆𝐴𝑉 ) −0.288 (−0.95) −0.171 (−0.555) 
 

Post-
experience
choice

ASC, car −0.173 (−0.372) 0.003 (0.005) −0.037 (−0.054) 
 ASC, SAV −0.369 (−0.774) −0.399 (−0.542) −0.437 (−0.616) 
 Scale (𝜇) 0.812 (−0.774a) 0.864 (−0.412a) 0.863 (−0.417a)  
 Stickiness (𝛿) 1.321 (6.777) 1.27 (4.738) 1.265 (4.62)  
 Car Stress (𝜔′

𝑐𝑎𝑟) −0.364 (−1.078) −0.355 (−1.008) 
 SAV Stress (𝜔′

𝑆𝐴𝑉 ) −0.538 (−1.322) −0.559 (−1.298) 
 AV Stress (𝜔′

𝐴𝑉 ) −0.235 (−0.573) −0.212 (−0.496) 
 

Latent stress (𝛾)

Constant −1.836 (−3.403) −1.82 (−3.384)  
 Travel time 0.471 (2.364) 0.47 (2.332)  
 Good weather −0.013 (−0.041) 0.003 (0.009)  
 Age 0.113 (0.804) 0.112 (0.787)  
 Female −0.142 (−0.415) −0.134 (−0.392) 
 Car 2.122 (4.605) 2.134 (4.566)  
 SAV −0.069 (−0.148) −0.079 (−0.168) 
 Realism 0.974 (2.517) 0.957 (2.438)  
 Work trip −0.055 (−0.215) −0.075 (−0.285) 
 Environmental cue −0.227 (−1.049) −0.23 (−1.072)  
 Comfort 0.773 (2.262) 0.777 (2.211)  
 Crowding −0.229 (−1.082) −0.216 (−0.988) 
 Parking space −0.253 (−1.069) −0.267 (−1.106) 
 𝜎𝑆 1 (–) 1 (–)  
 𝐿𝐿(0) pre-experience choice −208.74 −208.74 −208.74 −208.74  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) pre-experience choice −149.56 −151.45 −151.73 −151.43  
 𝐿𝐿(0) post-experience choice −208.74 −208.74 −208.74  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) post-experience choice −121.66 −120.04 −119.99  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) whole model −149.56 −273.1 −1247.34 −1246.69  
 𝜌̄2 pre-experience choice 0.2 0.19 0.19 0.18  
 𝜌̄2 post-experience choice 0.4 0.39 0.39  
a Denote a t-test against 1, otherwise the t-tests are against 0.
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Table 5
Measurement equations parameters second wave’s models. Consideration set: car, AV and SAV.
 Component Parameter LS LS-Full  
 Estimate Estimate  
 (Rob.t.test) (Rob.t.test)  
 Logsum GSR (𝜃) Alcohol 0.173 (2.138) 0.172 (2.149)  
 Exp. Time 0.225 (3.143) 0.225 (3.132)  
 Stress 0.362 (4.344) 0.364 (4.327)  
 𝜎 0.867 (16.049) 0.866 (16.06)  
 Max GSR (𝜃) Alcohol 0.194 (4.477) 0.193 (4.345)  
 Exp. Time 0.168 (2.337) 0.168 (2.332)  
 Stress 0.445 (7.25) 0.445 (7.073)  
 𝜎 0.818 (15.767) 0.817 (15.742)  
 Minmax GSR (𝜃) Alcohol 0.104 (2.489) 0.104 (2.482)  
 Exp. Time 0.222 (3.018) 0.222 (3.003)  
 Stress 0.413 (6.864) 0.413 (6.748)  
 𝜎 0.784 (15.368) 0.785 (15.349)  
 Stated Stress 0.169 (0.81) 0.165 (0.793)  
 Satisfaction (𝜃𝐸 ) 𝜏1 −2.027 (−8.73) −2.025 (−8.79)  
 𝜏2 −0.461 (−2.068) −0.458 (−2.059) 
 𝜏3 1.218 (5.228) 1.219 (5.216)  

Pre-experience choice
The utility of each alternative at the pre-experience choice was affected the most by cost and travel time. Air-taxi and hyperloop 

were preferred over the train, possibly due to the novelty of those alternatives. No other travel attribute played a role in these 
models. Note that the only significant dynamic effect is the inertia dummy in the model MNL1 (𝜆𝑑 = −0.604, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.01). 
However, this effect disappears with the inclusion of the post-experience choice in MNL2 and the latent stress in the following 
models. In this wave, the latent stress did not cause significant effects in utility in the pre-experience choice stage. As explained 
next, no travel mode caused significant variations in the latent stress. This may be explained by how travel modes are simulated, 
as previously discussed. In the first and second wave, participants were asked to drive the car in the VR environment. In this wave, 
no mode required participants to actively engage in the task. We also controlled for the mode that was experienced first during this 
training stage, but no significant effect was found and the variable was dropped from the reported models.
Post-experience choice

In the post-experience choice stage, information about each alternative was still considered (scale 𝜇 < 1, not significantly different 
from 1). However, they also tended to maintain their pre-experience choice (stickiness 𝛿 > 1 with 𝑝− 𝑣𝑎𝑙𝑢𝑒 < 0.01 in all models). In 
this wave, the measured latent stress did not cause participants to regret their pre-experience choices.
Latent stress

In the third wave, latent stress was mainly explained by the age of the participants, with older participants experiencing a lower 
stress (𝛾𝑎𝑔𝑒 = −1.096 in LS and 𝛾𝑎𝑔𝑒 = −1.056 in LS-Full with 𝑝− 𝑣𝑎𝑙𝑢𝑒 < 0.01), and the purpose of the trip (a work trip caused higher 
stress in 𝐿𝑆 and 𝐿𝑆 − 𝐹𝑢𝑙𝑙).

Regarding the measurement equations of the latent stress (Table  7), it was obtained that the three GSR features increased with 
the latent stress. However, the GSR also increases consistently with the elapsed time in the experiment. Finally, the stated satisfaction 
with the experience was not significantly correlated with the latent stress.

6. Discussion and final remarks

It has not yet been shown how physiological measures can help to estimate the effect of latent psychological states perceived 
in travel experiences on travel mode choice. This paper addresses this question by analysing data from a VR experiment and 
estimating the latent stress associated with travel experience and decision-making using skin conductance data. In the three waves 
of the experiment, participants were exposed to different consideration sets, which included common and novel travel modes (AV, 
hyperloop and air-taxi). Each participant completed four choice tasks. In each, they first chose a mode from a SP survey (pre-
experience choice), then experienced that mode, and finally were asked if they regretted that choice by choosing another mode 
(post-experience choice). This is the first experiment analysing psychological states and modal choice inside a VR environment, and 
the first study in using physiological data to analyse the effect of experienced psychological states on future choices.

We compared four models, with different intertemporal effects. To capture the effect of: inertia as a function of the difference 
between chosen and non-chosen alternatives, only as a function of; the carrying-over effect, the tendency to repeat the same choice 
across tasks; and the effect of a lagged latent stress variable, to test the effect of stress in travel mode choices. In general, the inclusion 
of latent stress did not improve the fit of the models in all waves of the experiment. However, in this experimental context, travelling 
by car as a driver was shown to trigger the highest levels of stress, making participants less likely to choose the car in the next choice 
task. Travel modes different from the car did not significantly increase the latent stress. Our finding supports our main hypothesis: 
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Table 6
Structural equations parameters third wave’s models. Consideration set: air-taxi, hyperloop (HL), and train.
 Component Parameter MNL1 MNL2 LS LS-Full  
 Estimate Estimate Estimate Estimate  
 (Rob.t.test) (Rob.t.test) (Rob.t.test) (Rob.t.test)  
 

Pre-
experience
choice (𝛽)

ASC, air-taxi 0.509 (0.891) 0.667 (1.118) 0.604 (0.995) 0.653 (1.017)  
 ASC, HL 0.885 (1.85) 0.849 (1.901) 0.758 (1.695) 0.84 (1.81)  
 Cost −0.664 (−3.452) −0.575 (−3.182) −0.566 (−3.103) −0.571 (−3.109) 
 Travel time −0.298 (−2.55) −0.315 (−2.997) −0.308 (−2.819) −0.323 (−2.891) 
 Walking time 0.019 (0.172) −0.079 (−0.763) −0.082 (−0.822) −0.073 (−0.694) 
 Waiting time −0.182 (−1.502) −0.127 (−1.23) −0.134 (−1.344) −0.126 (−1.227) 
 Crowding −0.395 (−1.267) −0.353 (−1.327) −0.312 (−1.187) −0.354 (−1.283) 
 Comfort −0.177 (−0.637) 0.007 (0.031) 0.017 (0.076) 0.022 (0.092)  
 Work trip, air-taxi −0.322 (−0.444) −0.696 (−1.075) −0.732 (−1.127) −0.684 (−1.023) 
 Work trip, HL 0.198 (0.313) 0.115 (0.212) 0.106 (0.202) 0.137 (0.251)  
 Carbon −0.098 (−0.694) −0.133 (−1.075) −0.126 (−1.009) −0.128 (−1.019) 
 Age, air-taxi 0.155 (0.567) 0.131 (0.472) 0.169 (0.592) 0.141 (0.49)  
 Age, HL 0.179 (0.664) 0.13 (0.544) 0.165 (0.684) 0.171 (0.674)  
 Gender, air-taxi −0.116 (−0.255) −0.331 (−0.699) −0.362 (−0.739) −0.357 (−0.725) 
 Gender, HL −0.27 (−0.599) −0.224 (−0.533) −0.228 (−0.546) −0.252 (−0.575) 
 Inertia (𝜆𝑣) 0.107 (0.966) 0.057 (0.485) 0.042 (0.347)  
 Dummy Inertia (𝜆𝑑 ) −0.696 (−2.201) −0.465 (−1.533) −0.442 (−1.458) 
 Air-taxi Stress (𝜔𝑎𝑖𝑟−𝑡𝑎𝑥𝑖) 0.033 (0.083) 0.083 (0.205)  
 HL Stress (𝜔𝐻𝐿) −0.261 (−0.434) −0.281 (−0.41)  
 Train Stress (𝜔𝑇 𝑟𝑎𝑖𝑛) −0.573 (−1.091) −0.586 (−1.167) 
 

Post-
experience
choice

ASC, air-taxi −0.118 (−0.239) −0.099 (−0.161) −0.088 (−0.146) 
 ASC, HL 0.739 (1.507) 0.789 (1.867) 0.807 (2.012)  
 Scale (𝜇) 0.722 (−1.182a) 0.755 (−0.903a) 0.725 (−1.031a)  
 Stickiness (𝛿) 2.618 (6.26) 2.659 (5.084) 2.634 (5.238)  
 Air-taxi Stress (𝜔′

𝑎𝑖𝑟−𝑡𝑎𝑥𝑖) −0.122 (−0.286) −0.149 (−0.347) 
 HL Stress (𝜔′

𝐻𝐿) −1.027 (−0.363) −1.017 (−0.351) 
 Train Stress (𝜔′

𝑇 𝑟𝑎𝑖𝑛) 0.148 (0.166) 0.137 (0.158)  
 

Latent stress (𝛾)

Constant 0.265 (1.097) 0.261 (1.086)  
 Travel time 0.124 (1.456) 0.124 (1.451)  
 Age −0.831 (−4.282) −0.83 (−4.303)  
 Female 0.385 (1.2) 0.385 (1.189)  
 Air-taxi 0.256 (0.875) 0.259 (0.883)  
 HL 0.127 (0.589) 0.129 (0.595)  
 Realism −0.032 (−0.223) −0.031 (−0.221) 
 Work trip 0.253 (2.179) 0.253 (2.175)  
 Environmental cue −0.09 (−0.855) −0.09 (−0.851)  
 Comfort −0.071 (−0.896) −0.071 (−0.89)  
 Crowding −0.044 (−0.742) −0.044 (−0.743) 
 𝜎𝑆 1 (–) 1 (–)  
 𝐿𝐿(0) pre-experience choice −196.65 −196.65 −196.65 −196.65  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) pre-experience choice −124.59 −126.09 −128.86 −126.58  
 𝐿𝐿(0) post-experience choice −196.65 −196.65 −196.65  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) post-experience choice −54.39 −53.43 −54.23  
 𝐿𝐿(𝑓𝑖𝑛𝑎𝑙) whole model −124.59 180.48 −860.44 −859.09  
 𝜌̄2 pre-experience choice 0.28 0.27 0.25 0.25  
 𝜌̄2 post-experience choice 0.70 0.69 0.69  
a Denote a t-test against 1, otherwise the t-tests are against 0.

individuals who perceive higher levels of stress are less likely to choose the same alternative again, which can be identified using 
psychophysiological data. However, further research is needed to generalise this finding to a broad range of transport modes and 
to validate it out of the laboratory.

Regarding our second research question, our results suggest that the joint estimation of the pre- and post-experience choices 
helped to identify the effects of travel attributes. Importantly, the effect of travel time on the second wave was only significant after 
adding the post-experience choice to the model. This finding suggests that at the pre-experience stage, participants underweighted 
the displeasure they expected to feel per unit of time during the VR experience. Then, after the experience, they updated their 
marginal utility of the travel time. However, the overall tendency observed was to stick to the mode chosen in the pre-experience 
choice stage.

Regarding the third question, both inertia variables were significant only in the first wave, showing a negative effect, which 
means that the participants tended to explore the available alternatives. However, no inertia variables were significant when latent 
stress was present in the model. This means that the tendency to switch to other alternatives was mediated by the latent stress 
associated with previous experience, rather than only being explained by exploratory behaviour.
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Table 7
Measurement equations parameters third wave’s models. Consideration set: air-taxi, hyperloop 
(HL), and train.
 Component Parameter LS LS-Full  
 Estimate Estimate  
 (Rob.t.test) (Rob.t.test)  
 Mean GSR (𝜃) Alcohol −0.012 (−0.211) −0.012 (−0.212) 
 Exp. Time 0.372 (7.509) 0.372 (7.523)  
 Stress 0.986 (5.224) 0.986 (5.217)  
 𝜎𝑝 0.508 (15.467) 0.507 (15.44)  
 Max GSR (𝜃) Alcohol 0.073 (0.944) 0.072 (0.929)  
 Exp. Time 0.349 (6.061) 0.349 (6.068)  
 Stress 0.786 (3.827) 0.786 (3.823)  
 𝜎𝑝 0.695 (14.762) 0.695 (14.78)  
 Logsum GSR (𝜃) Alcohol 0.02 (0.418) 0.02 (0.392)  
 Exp. Time 0.291 (6.943) 0.291 (6.954)  
 Stress 0.808 (5.19) 0.808 (5.179)  
 𝜎𝑝 0.418 (15.82) 0.419 (15.843)  
 Stated 𝜏1 −4.488 (−6.312) −4.488 (−6.311) 
 satisfaction (𝜃𝐸 ) 𝜏2 −1.731 (−7.246) −1.731 (−7.244) 
 𝜏3 0.24 (1.015) 0.24 (1.014)  
 Stress 0.158 (0.74) 0.159 (0.743)  

Despite the fact that car driving was the more stressful choice in our experiment, this does not necessarily imply that in real life 
driving is more stressful. The external validity of transport-related stimuli in VR experiences deserves further research. That is, it 
is not completely clear which attributes related to transport alternatives generate psychophysiological effects in VR environments 
that can be compared to the real-life effects. In addition, the stress caused by the experiences can be affected by the fact that the 
participants where informed about the expected value of the attributes and they freely chose to be exposed to that experience. For 
example, a passenger that chooses to travel under high crowding conditions, may be less emotionally affected than an individual 
under unexpected levels of crowding. This is supported by evidence from neuroscience, showing that changes in physiological signals 
and emotions depend on exposure specifically to unexpected stimuli (Lerner et al., 2021). A relevant point of this study, is how the 
attributes were mapped from the SP survey to the VR experience (Tables  A.2–A.4). Although most attributes area easy to map, 
subjectives attributes (as the comfort level) are challenging since it is no possible to anticipate how people interpret them in order 
to adjust the VR experience to the expected level.

We found some unexpected results in the parameters of the pre-experience utility, for example not significant waiting time 
parameters, not significant cost parameter (only in first wave) and positive walking time parameters (only in first wave). In particular 
in the case of the first wave (where all modes were familiar to the participants) this could have been influenced by endogenous 
preferences or low level of engagement in the task. In the first wave, no novel travel mode was presented, which could have made 
the experiment less interesting for the participants and decreased their engagement, which is consistent with our results that show 
strong exploratory behaviour. In the second and third wave, the participants were presented with novel alternatives (AV, air-taxi, 
and hyperloop). This may have served to keep participants attentive and engaged with the experiment, which was demanding in 
terms of time and attention. In light of our results, future experiments should be designed with the following considerations in 
mind (a) the inclusion of unexpected stimuli, (b) to have an equivalent level of reality of the different alternatives, (c) to capture 
in the VR all stimuli presented in the SP survey, (d) to add novelty to the simulations in order to keep participants engaged and 
attentive during the experiment, and (e) to consider the use of multisensory VR technology, which could help increase the ecological 
validity (Melo et al., 2022a,b). Future models should consider machine learning approaches to extract embedded representations of 
the physiological data that allow for the extraction of as much variance as possible and better explain behaviour without the need 
to compute features that may be arbitrary and context dependent, which is common practice when working with PPI (e.g. Shukla 
et al., 2021), as there is not likely to be a best practice to consistently integrate the data into a model (Hancock and Choudhury, 
2023). This is a promising avenue for future work, given recent advances in the integration of machine learning with discrete choice 
models (Sifringer et al., 2020).

Our results contribute significantly to this emerging field, as it is the first experiment to integrate VR technology, travel mode 
choice, and physiological sensors. So far, the potential of VR has mainly been discussed in the context of travel satisfaction analysis. 
In contrast, this article highlights the potential of VR for the analysis of the effects of travel satisfaction on demand, which is 
necessary to capture the true benefit of transport projects and to move towards the evaluation of projects aimed at maximising 
subjective well-being (Henriquez-Jara and Guevara, 2025).
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Appendix. Sample composition and attributes levels in SP and VR

The full details of the ‘Future Modes Study’ of the ‘Next Generation Travel Behaviour Models Project’ are available at Choudhury 
et al. (2025). The key tables are reproduced below for the sake of completeness of the current paper.

Table A.1
Sample composition.
 Socio-demographic attributes Number 
 Gender Male 46  
 Female 25  
 
Job

Students 42  
 Employed 26  
 Other 3  
 

Age

18–24 27  
 25–34 23  
 35–44 15  
 45–54 4  
 55+ 2  
 
Household annual
income (Before
reduction)a

Below £10,000 7  
 £10,000–£25,000 18  
 £25,000–£50,000 18  
 Above £50,000 19  
 Prefer not to say 3  
 I do not know 5  
 
Highest level of
educationa

High School diploma 10  
 College/University certificate 11  
 Bachelor’s degree 17  
 Master’s degree 19  
 Doctorate degree 13  
 

Ethnicitya

Arab 2  
 Asian - East Asian 10  
 Asian - South Asian 9  
 Black or African heritage 3  
 White 40  
 Mixed 3  
 Any other ethnic group 2  
 Prefer not to say 1  
a One respondent did not report.
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Table A.2
First wave: Attributes values and how they were incorporated into VR.
 Attribute Private Car Ride-hailing Bus/Train Incorporation into VR  
 Trip type Work or recreational The time was shown on a 

dashboard, and displayed in 
red to highlight urgency for 
work trips.

 

 Traffic/weather
conditions

Good or bad Bad conditions shown as 
‘nighttime’ in VR

 

 In-vehicle time 12 or 20 mins + up to 10 mins 20–30 mins + up
to 10 mins

Average times used for trip 
duration

 

 Pickup time – 2 or 5 mins 5 or 10 mins Proportional waiting time 
simulated

 

 Parking 1, 5 or 10 mins – – Parking space availability 
varied

 

 Petrol/fare £2.50 or £5 £7.50 or £10 £2.50 or £5 Participants were  
 Parking £2.50,

£7.50 or
£12.50

– – incentivised to make choices 
as they would in the 
real-world

 

 Occupancy Always alone Alone or with 1–3
passengers

10%–90% full Bus passenger numbers vary 
based on SP task

 

 Comfort N/A 1 or 3 stars Noise levels (bus) and 
driving smoothness (ridehail)

 

 Carbon Emissions 50, 175 or 245 g/km 50 or 105 g/pkm Green/orange/red leaf 
displayed

 

Table A.3
Second wave: Attributes values and how they were incorporated into VR.
 Attribute Private Car Autonomous

vehicle (shared)
Autonomous 
vehicle (personal)

Incorporation into VR  

 Trip type Work or recreational The time was shown on a 
dashboard, and displayed in 
red to highlight urgency for 
work trips.

 

 Traffic/weather
conditions

Good or bad Bad conditions shown as 
‘nighttime’ in VR

 

 In-vehicle time 5 or 10 mins
+ up to
10 mins

7–15 mins + up 
to
10 mins

5 or 10 mins + 
up
to 10 mins

Average times used for trip 
duration

 

 Pickup time – 2 or 5 mins 2 or 5 mins Displayed on arrival board  
 Parking 1, 5 or 10 mins – – Time searching for a parking 

space varied
 

 Petrol/fare £2.50 or £5 £12 or £15 £16 or £20 Participants were  
 Parking £2.50,

£7.50 or
£12.50

– – incentivised to make choices 
as they would in the 
real-world

 

 Occupancy Always alone 1–3 passengers Always alone The number of AV 
passengers varied in line 
with number given in the SP 
task

 

 Comfort N/A 1 or 3 stars ‘Smooth’ or ‘jerky’ versions 
of each drive
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Table A.4
Third wave: Attributes values and how they were incorporated into VR.
 Attribute Air taxi Hyperloop Train Incorporation into VR  
 Trip type Work or recreational The time was shown on a 

dashboard, and displayed in 
red to highlight urgency for 
work trips.

 

 Traffic/weather
conditions

Good or bad Bad conditions shown as 
‘nighttime’ in VR

 

 In-vehicle time 6 or 10 mins 2 or 5 mins 45–70 mins Average times used for trip 
duration

 

 Wait time 10 or 15 mins 5 or 10 mins Proportional waiting time 
simulated

 

 Fare £45 or £65 £35–50 £11–£20 Participants were 
incentivised to make choices 
as they would in the 
real-world

 

 Occupancy 50%–75% full 50%–90% full 10%–90% full Passenger numbers varied 
based on SP task

 

 Comfort 3 stars 3 stars 1 or 3 stars Noise levels vary  
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