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Abstract

The effect of experiences on travel mode choices is well established in the literature. Addi-

tionally, there is evidence that psychophysiological signals, such as skin conductance, can capture

travel experiences without relying on self-reported measures, given their strong correlation with

psychological states. However, using physiological data to estimate the effect of experiences on

choices remains unexplored due to challenges in data collection. The advent of virtual reality (VR)

presents a unique opportunity to gather such data under controlled laboratory conditions and ex-

plore how travel experiences shape future demand. This paper uses data collected from a set of VR

experiments where participants repeatedly chose between different travel modes, including current

(car, bus, ride-hailing) and futuristic options (autonomous vehicle, air-taxi, hyperloop). After mak-

ing their choice, they experienced the mode in the VR environment, and indicated whether they

would have preferred another option. This is the first experiment to analyse psychological states

and modal choice within a VR environment, and the first to use physiological data to assess how

experienced psychological states affect future choices. We estimate a dynamic hybrid model that

accounts for the effects of lagged latent stress and inertia. Galvanic skin conductance is used to

measure latent stress. Our findings show that driving in VR was the most stress-inducing option,

reducing the likelihood of repeating that choice. Additional results, methodological implications,

and the potential of VR for other travel behaviour studies are discussed.

Keywords: virtual reality, physiological data, latent stress, travel experience, dynamic hybrid

model
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Highlights:

• We use data from VR modal choice experiments to test the effect of experiences on choices.

• Galvanic Skin Response data allows to identify the stress of travel experiences in the VR exper-

iment.

• Driving in VR was the most stress-inducing alternative.

• Stressful experiences reduced the likelihood of reselecting stress-inducing choices.

• VR technology has the potential to be used to analyse the impact of travel satisfaction on

demand.
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I. INTRODUCTION

The transportation literature has widely acknowledged the effect of experience on travel choices

(Gärling et al., 2019; De Vos et al., 2021), as well as the backward effect of modal choices on travel

satisfaction (Abou-Zeid & Ben-Akiva, 2010; Abou-Zeid et al., 2012; Susilo & Cats, 2014; De Vos, 2019;

Le & Carrel, 2021; Guan et al., 2024), by analyzing ex-post questionnaires. On the other hand, studies

that account for the relationship between past and present behavior use inertia variables (Ramadurai

& Srinivasan, 2006; Cantillo et al., 2007; Cherchi & Manca, 2011; Gao et al., 2020, 2022). However,

ex-post questionnaires are subjected to different types of bias and may not capture the true underlying

latent travel satisfaction (Rholes et al., 1987; Abou-Zeid et al., 2012), and inertia variables do not

recognise the fact that what influences choices is the outcome of past choices not only the choices

themselves (Webb et al., 2024). Hence, both approaches may fail to properly capture the behavioural

consequences of travel satisfaction.

Thus, travel behaviour analysis can benefit from enriched discrete choice models that integrate

unbiased (not derived from individuals’ subjective responses) measures of travel satisfaction. How-

ever, the measurement of travel experience in a discrete choice framework is challenging since the

explanatory variables in real-world trips are not controllable and hard to measure, and the dependent

variables (non-observable psychological states) are often only accessible through post-experience ques-

tionnaires. Recently, psychophysiological indicators (PPI) have been proposed to be used to capture

complex latent psychological states, which are otherwise hard to capture (Castro et al., 2020; Han-

cock & Choudhury, 2023). This is possible since psychological stimuli affect the autonomous nervous

system, triggering both changes in psychological states and variations in PPI (Cacioppo et al., 2007;

Ganglbauer et al., 2011). PPI can change the way travel satisfaction is measured, increase the granular-

ity and depth of the analysis and also be used for travel behaviour analysis. With data from a real-life

experiment in Santiago, Chile, Barŕıa et al. (2023) showed that skin temperature was significantly

correlated with the valence of the stated emotions in a public transport trip and Henriquez-Jara et al.

(2025) used skin temperature, electrodermal activity, heart rate, and heart rate variation to estimate

the latent satisfaction of travellers. PPIs have also been used in laboratory studies under controlled

conditions, leveraging the advent of VR and augmented reality as a tool for travel experiments with

high ecological validity (Farooq et al., 2018; Paschalidis et al., 2019; Bogacz et al., 2021; Mudassar

et al., 2021; Sadeghi et al., 2023; Farooq & Cherchi, 2024). However, none of these studies analysed

modal choice or the impact of travel satisfaction on future choices.
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Although the current state of the art recognises an effect of the travel experience on mode choice

and the use of PPI to measure the experience, it has not yet been shown how physiological measures

can help estimate the effect of latent psychological states perceived in travel experiences on the choice

of travel mode. In this paper, we address this gap in the literature by testing this effect under

controlled laboratory conditions as part of the ’Future Modes Study’ (FMS, Choudhury et al., 2025).

The FMS study included 3 waves of VR experiments . Each wave had different consideration sets:

car, bus and ride-hailing; car, autonomous vehicle (AV), and shared autonomous vehicle (SAV); and

hyperloop, air-taxi and train. Each participant chose a mode (pre-experience choice), experienced

it, and then stated whether they would like to change their initially chosen mode (post-experience

choice). Our main research questions are: 1) Does the latent stress associated with experiencing an

alternative result in subjects avoiding reselecting the same alternative? In addition, we also address the

following two questions: 2) Do the preferences of subjects change after experiencing an alternative,

or do attributes that are hard to perceive in SP become more relevant after the VR experiences?

and 3) Does the inertia effect get mediated by the effect of previous latent stress? To answer these

questions, we employ a dynamic Integrated Choice and Latent Variable model (ICLV) (Ben-Akiva

et al., 2002). This modelling approach allows us to test the influence of the VR experience on latent

stress, measured with the galvanic skin response (GSR) of the participants, on subsequent decisions.

GSR is related to the amount of sweat on the skin and is therefore often used as a stress indicator

when other factors that may increase sweating are controlled (Scheirer et al., 2002; Ganglbauer et al.,

2011; Bitkina et al., 2019). It is one of the most popular aspects of the autonomic nervous system

used to study human cognition and emotions (Carter & Tranel, 2012).

The potential of VR has mainly been discussed in terms of its use for travel satisfaction analysis.

We contribute by analysing its potential for the estimation of the effects of travel satisfaction on

demand, which is necessary to capture to move towards the evaluation of projects aimed at maximising

Subjective Wellbeing (Henŕıquez-Jara & Guevara, 2024). Also, we discuss the validity of VR transport-

related stimuli in inducing changes in emotion and the extent to which these can be generalised to

the real world. The remainder of this article is organised as follows. The second section shows the

summary of the experimental design. The third section presents the modelling framework. Section

four details the data and sample characteristics. The fifth section shows the results, and lastly we

discuss the main conclusions and further research lines.
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II. EXPERIMENTAL DESIGN

The data used in this research was collected as part of the ’Future Modes Study’(FMS). In this section,

we briefly present the experimental set up. The full details are available at Choudhury et al., 2025.

The experiments were conducted as part of the ’Next Generation Travel Behaviour Models’ project

using the Virtuocity facilities at the University of Leeds

(https://uolds.leeds.ac.uk/facility/virtuocity/). It consisted of three waves, each with different con-

sideration sets. In the first wave, participants chose between car, bus and ride-hailing. The second

wave included air-taxi, AV and SAV. In the third wave, participants chose among air-taxi, hyperloop

and train. Participants did four choice tasks per consideration set. The FMS data collection setting

consisted of a VR headset connected with a static driving simulator, a Shimmer sensor (to record

GSR), and an EEG sensor1. The Shimmer sensor measures GSR at a rate of 120 Hz. For the first

and second waves, the setting included a steering wheel and brake and accelration pedals for actively

controlling the car in the virtual environment. Figure 1 shows a participant during the first wave

during a simulation of a driving experience.

Figure 1: Participant and experiment setting of the first wave.

Each participant completed four choice tasks. The attributes presented in each round and how

they were incorporated in VR are shown in Table A2, Table A3 and Table A4 (Appendix A). Each

choice task included three main parts (Figure 2):

1. Pre-experience choice: Participants chose among three travel modes based on attribute values

shown in a table as shown in traditional SP surveys. An example of the SP survey is presented

1The data from the EEG was not used in this study, mainly because of measurement errors.
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Figure 2: Schematic representation of the structure of the experiment. The scheme represents one
task, and was repeated 4 times per participant for each wave.

in Figure 3.

2. VR experience: The chosen alternative was experienced in a VR environment. Travel at-

tributes experienced in the VR environment were mapped as a function of the attributes dis-

played in the pre-experience choice. For instance, 1 minute of travel time in the SP corresponded

to 10 seconds of travel time in the simulation. Additionally, if the comfort level in the SP was

‘low’, this translated to aggressive driving in the simulation, and ‘bad weather’ implied a night

trip with foggy weather conditions (reduced visibility within the VR environment).

3. Post-experience choice: After the experience, the same SP choice task was shown to the

participants, so that they could modify or confirm their initial choice. The choice of a different

alternative implies that the participant regretted their pre-experience choice, potentially due to

an unpleasant or unexpected experience. This part of the task also aimed to test if some travel

attributes gained importance after being experienced in the VR.

Finally, at the end of the session, participants responded to the Simulator Sickness Questionnaire

(SSQ) (Walter et al., 2019) and to state the level of satisfaction perceived on each of the four expe-

riences in a Likert scale. 71 participants took part in the first wave of the experiment, of which 50

participated in the second wave and 45 in the third wave (Table A1 in Appendix A shows the sample

composition). Figure 4 shows the VR environment from the point of view of the participant while

inside the modes of each wave. Also, to illustrate the differences between scenarios, Figure 5 shows

the view when driving at night in foggy weather.

Figure 6 shows the VR environment from the perspective of the participants while they were
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Figure 3: Example of SP survey

(a) Wave 1 - Bus (b) Wave 1 - Car (c) Wave 1 - Ride-hailing

(d) Wave 2 - Car (e) Wave 2 - Personal AV (f) Wave 2 - Shared AV

(g) Wave 3 - Air-Taxi (h) Wave 3 - Hyperloop (i) Wave 3 - Train

Figure 4: VR environment from the participant’s point of view inside each wave’s different travel
modes
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Figure 5: VR environment from the participant’s point of view while travelling by car in bad weather.

waiting for the different travel modes. Car and AV are not included as these modes did not involve

waiting.

(a) Wave 1 - Bus waiting (b) Wave 1 - Ride-hailing waiting (c) Wave 2 - Shared AV waiting

(d) Wave 3 - Air-Taxi waiting (e) Wave 3 - Hyperloop waiting (f) Wave 3 - Train waiting

Figure 6: VR environment from the participant’s point of view while waiting for the chosen travel
mode. Car and AV are not included as these modes did not involve waiting.

III. MODELLING FRAMEWORK

This section presents the structure of the model and the mathematical specification of it. We compare

four models, but we describe the most complex of them (refered to as LS-Full) as the other three are

constrained versions of it. First, we describe the structure and the addressed dynamic effects. Then,

we detail the specification of LS-Full.

The dynamic nature of the framework is explained in Figure 7. In the figures of this section,

ovals represent latent variables, rectangles are observed variables, solid lines are structural equations,

and dashed lines are measurement equations. In this framework, in the pre-experience stage of

the initial task, individuals compute a utility associated with each alternative (pre-experience utility),
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based on the provided descriptive information. After making a pre-experience choice, the individual

experiences some level of stress during the trip in the VR environment which is not observed (latent)

by the analyst, but cause observable variation in GSR. Then, the participant is asked if, given the

experience, they would like to have chosen another alternative (i.e. to regret the pre-experience

choice). We refer to this stage as the post-experience stage of the task. For that, the participant

is presented with the same SP table keeping the same descriptive information of the alternatives.

The subject re-evaluates their pre-experience choice, computing the post-experience utility, i.e. the

utility after the VR experience phase of the experiment. We assume that this utility is explained by

a combination of the pre-experience choice itself, the pre-experience utility, and the perceived latent

stress. In the subsequent task, utility is additionally influenced by three intertemporal effects, labeled

D1 ´ D3
2 in Figure 7 and defined below:

D1: Inertia: This effect assumes that the likelihood of repeating a choice increases with the difference

between the utility of the chosen and not chosen alternatives. The most attractive the chosen

alternative is in comparison to the not chosen alternatives, it is more likely to be chosen again.

That is, there is a lagged effect caused by both the utility of the previously chosen alternative

and the not chosen alternatives. This captures not only the tendency to repeat past behaviour,

but also the fact that repeating a choice is more likely when the utility of that choice is higher.

It captures the serial correlation of choices, as proposed by Cantillo et al. (2007).

D2: Carrying-over effect: This effect also captures a serial correlation of choices, but assumes

that an alternative is more likely to be chosen simply because it has been chosen in the past,

regardless of how convenient (utility level) it was. That is, it simply captures the tendency to

repeat past behaviour. It is modelled as the effect of the choice of task t on the task t ` 1. This

is known as carrying-over effect (Heckman, 1981), or dummy inertia (Cherchi & Manca, 2011).

D3: Lagged latent stress: Finally, the lagged latent stress captures the effect of experiences on

future choices. The latent stress is explained by attributes of the experience and is measured by

features of the GSR observed during the experience.

From these effects, only the first two have been tested in previous research. The measurement of

the effect of stress on future choices (D3) represents the main research questions of this article. The

2A Markov assumption is made to ensure that the model is tractable. This assumption can be relaxed in future
research. Note, however, that it is not necessary to model the accumulation of stress or inertia to evaluate whether travel
stress causes individuals to shift modes.
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inclusion of the first two aims to test the influence of previous preferences in future choices, while the

third aims to to test the effect of the experienced stress in future choices.

Figure 7: Dynamic representation of the model LS-Full. D1 represents the inertia effect Cantillo et al.
(2007), D2 is the dummy inertia or carrying-over effect (Heckman, 1981), and D3 is the latent stress
effect.

This model is compared with three other constrained models. The first baseline model (MNL1)

is a simple multinomial logit which considers only two inter-temporal effects: the carrying-over and

inertia effects, and does not model the post-experience choice. The second (MNL2) includes the post-

experience choice and both inertia effects. The third baseline (LS1) considers the post-experience

choice, but only with latent stress as a dynamic effect. The complete model is referred to as LS-Full.

Figure 8 summarises the four models to be analysed in this article.

III.A. SPECIFICATION

This section provides the details of the main model, i.e. LS-Full (Figure 8d). First, we detail the

structural equations, then the measurement equations, and finally the likelihood functions.

Throughout this section, the indicator function ynti will denote the choice in task t (ynti “ 1

if subject n chooses i in task t and 0 otherwise). In addition, we denote N as the total number

of individuals, Tn the number of tasks faced by subject n, and J the number of alternatives in the
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(a) MNL1 (b) MNL2

(c) LS (d) LS-Full

Figure 8: Four models summary (error terms are omitted). Ovals represent latent variables and boxes
observed variables. The boxes behind the GSR represent the different features used to estimate the
latent stress.

consideration set C (equal across subjects).

Structural equations

The specification of the utility that individual n has for alternative i in choice task t (Unti) at the

pre-experience choice stage can be expressed in general terms as a function of the systematic utility
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(Vnti) and the three dynamic effects: the carrying-over effect (Idnti), the inertia caused by previous

utilities (Ivnti), and the lagged latent stress (Sn,t´1,i):

Unti “ Vnti ` λdIdnti ` λvIvnti ` ωiSn,t´1,i ` ηnti (1)

where the error term ηnti is assumed to have an Extreme Value (EVI) distribution with scale

1. We denote Ṽnti to the sum of the components of utility without the error term, i.e. Ṽnti “

Vnti`λdIdnti`λvIvnti`ωiSn,t´1,i. Next, we detail the four explanatory elements of the utility. Equation 2

shows the systematic utility (Vnti):

Vnti “ β0,i `
K
ÿ

k“1

βkxntik (2)

where xntik represents the value of each k attribute for alternative i, subject n and task t; K is the

total number of attributes; βk is the respective parameter; and β0,i represents the alternative specific

constant of alternative i.

Then, the inertia effects can be specified as follows, where Idnti is the dummy inertia and Ivnti is the

inertia caused by previous systematic utilities (Cantillo et al., 2007):

Idnti “1ryn,t´1,i “ 1s (3a)

Ivnti “Vn,t´1,i ´ Vn,t´1,r, with yn,t´1,r “ 1 and r P C (3b)

where Vn,t´1,r represents the systematic utility of the alternative chosen in the choice task t´ 1. Note

that, Ivnti takes positive values if the chosen alternative (r) in t ´ 1 has lower systematic utility that

the non-chosen alternative i. It is negative when the chosen alternative is better than the non-chosen.

Then, if the parameter λv is positive (Equation 1), it means that in task t the utility of the previously

non-chosen alternative decreases if in the past it was a dominated alternative in terms of expected

outcome. If the parameter is negative, it is interpreted as a exploratory behaviour, as the utility of

non-chosen alternatives increase even when in the past they were dominated by another alternative.

On the other hand, latent stress Snti (Equation 4) is specified as a function of the Q experience

attributes and individual characteristics (zntq) of subject n in task t. Recall that these attributes

were scaled from the attributes presented in the SP survey. The experienced attributes included:

travel time, comfort (aggressive driving or normal), weather (foggy or normal), an environmental cue
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(indicating if the mode was sustainable), crowding (in case of shared modes) and parking space (in

the case of car).

Snti “

$

’

’

&

’

’

%

γ0 `
řQ

q“1 γvzntq ` ηSnt, if ynti “ 1

0, otherwise

(4)

Then, at the post-experience choice stage, the utility U 1

nti of each alternative is also represented

by a systematic part and an EVI error term with unitary scale (η1

nti). The systematic utility of the

alternatives in the post-experience choice is a function of the previous utility (Vnti) scaled by µ, the

stress recently experienced Snti and the pre-experience choice ynti. The stress Snti, as defined in

Equation 4, takes value only for the chosen and experienced alternative. The parameter ω1 represents

the variation in utility caused by the latent stress, and δi is a stickiness parameter, that is, the tendency

to stick to the pre-experience choice. For example, µ “ 0 and δi ą 0 would represent participants

sticking with the chosen alternative and not evaluating the possible alternatives again when given the

opportunity. The parameter α0,i is an alternative-specific constant.

U 1

nti “ α0,i ` µVnti ` δiynti ` ω1

iSnti ` η1

nti (5)

Measurement equations

The latent stress is measured by a set G of features extracted from the GSR. The value of each

feature of the set is denoted Gpnt, with p P G. Each feature is an aggregation of all the signal observed

during the VR experience of task t of subject n (Equation 6).

Gpnt “ θpSnt ` θAAn ` θETETnt ` ε
exp
pnt , (6)

where θp is the relation between the latent stress and the feature p of the GSR. In order to control

for other exogenous factors that could cause changes in GSR, we controlled for the reported use of

substances by individuals prior to the experiment. However, none of these turned out to be signifi-

cant except the level of alcohol consumption (An) for participants of the second wave (as shown in

section V). Also, we controlled for the elapsed time in the experiment (ETnt). The error term ε
exp
pnt is

assumed to have distribution Np0, σpq.

In addition, we use the stated satisfaction with the VR experience. Participants indicated a level of
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satisfaction on a scale of 1-5. Then, we estimate the probability of stating a specific level of satisfaction

using an ordered logit model. The estimated satisfaction with the experience of choice task t (Ent) is

given by equation Equation 7, where θE is the slope parameter and εEnt is an EVI error term.

Ent “ θESnt ` εEnt (7)

Likelihood functions

The probability Pnti of subject n choosing an alternative i in task t is then given by:

Pnti “Ppynti “ 1|Vnt, I
d
nt, I

v
nt, Snt´1, γ, ωq

“
exppVnti ` λdIdnti ` λvIvnti ` ωSn,t´1,iq

ř

jPC exppVntj ` λdIdntj ` λvIvntj ` ωSn,t´1,jq

(8)

The probability of observing the vector Gnt of PPI indicators, is given by:

PPPI
nt “ PpGnt|θ, Sntq “

ź

pPG

1

σp
ϕp

Gpnt ´ θpSnt

σp
q (9)

where ϕ is the standard normal distribution function, and σp is the standard deviation of the error of

the measurement equation of the indicator p P G.

For the measurement equation of the stated satisfaction, we denote enlt an indicator function which

takes the value of 1 if the subject n ranks the experience t with level l, and 0 in other case. In this

case, a 1-5 Likert scale was used. Then, the probability of stating a satisfaction level l is given by:

Pnlt “ Ppenlt “ 1|θE , Sntq “ Ppτl´1 ă Ent ă τl|θE , Sntq

“
exppτl ´ θESntq

1 ` exppτl ´ θESntq
´

exppτl´1 ´ θESntq

1 ` exppτl´1 ´ θESntq
,

(10)

where τ1,...,τ4 are estimated cut-off points of the ordered logit model. Note that τ0 “ ´8 and τ5 “ 8.

The probability P 1

nti of choosing the alternative i as post-experience choice can be calculated as:

P 1

nti “ Ppy1

nti “ 1|ω1, δ, µ, Ṽnti, Snt, yntiq “
exppα0,i ` µṼnti ` δiynti ` ω1Sntq

ř

jPC exppα0,j ` µṼntj ` δjyntj ` ω1Sntjq
(11)
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Finally, the likelihood Lik of the model is calculated as:

Lik “
N

ź

n“1

˜

Tn
ź

t“1

ˆ

ηSnt

˜«

J
ź

i“1

pPntiq
yntipP 1

ntiq
y1

nti

ff

PPPI
nt

L
ź

l“1

pPE
nltq

enlt

¸

dηSnt

¸

(12)

The model was estimated with the maximum simulated likelihood method, using Apollo (Hess &

Palma, 2019) in R4.2.0 (R Core Team, 2023).

IV. DATA

71 participants took part in the first wave, 50 of whom completed the second wave and 45 of whom

also completed the third. The choices in all waves are shown in Figure 9. The reason for attrition

between waves is not known with certainty. However, a plausible reason is that some participants felt

uncomfortable with the VR environment. This can be analysed by looking at the total scores on the

motion sickness questionnaire (SSQ). The difference between the mean SSQ score of participants who

dropped out of the experiment in the second or third wave (6.43) and those who participated in all

waves (2.96) is significant (t-test=-3.98, p-value¡0.001). This suggests that participants who dropped

out were less comfortable with VR than those who participated in all waves.

In the first wave, the participants preferred the bus over the car and ride-hailing. The participants

changed their pre-experience choice in 22% of the tasks. In the second wave, the car was the preferred

option, with 46.3% of the pre-experience choices. AV alone was the less preferred option (10.4%). In

this case, the participants changed their pre-experience chosen option in 25% of the tasks. Finally, in

the third wave, hyperloop was preferred (46.11%), followed by air-taxi (33.89%) and train (20.0%). In

this case, the participants changed their pre-experience choice in only 10% of the choice tasks.

Figure 10 shows an example of the GSR measures (vertical axis) of a single participant during the

experiment. Red areas indicate the subject was riding a bus in the VR environment, the blue area

highlights the use of ride-hailing and the green area is the use of car. Red vertical lines mark when the

participant makes a pre-experience choice and blue vertical lines mark when the participant makes

a post-experience choice. Grey areas show the time window where the participant was deliberating.

The first part of the plot (to the left of the filled areas) corresponds to the test trials. As can be seen,

the subject experienced higher skin conductance peaks during the deliberation process, which tended

to increase with time and was higher when the participant was driving in VR.

Physiological features selection
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Figure 9: Choices frequency by mode in each wave.

The GSR measured for each participant was aggregated by experience, after subtracting the mean

of the GSR measured before the choice task (i.e. the baseline GSR). Then, different features were

extracted: the mean, median, minimum, maximum, logsum, variance, skewness, kurtosis, and minmax.

The selection of features was based on previous studies in this field (Braithwaite et al., 2013; Paschalidis

et al., 2019; Henŕıquez-Jara et al., 2023). Two of these features deserve further explanation: the

minmax and the logsum. The first is based on Paschalidis et al. (2019) and Braithwaite et al. (2013).

It represents the variance of the GSR observed in task t, scaled by the variance observed in the

complete time series H:
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Figure 10: Example of GSR profile of a subject. Coloured areas indicate the mode being used in VR.
Vertical lines indicate the instants where the participant made a choice.

Minmaxnt “
maxt1

PtpGSRt1nq ´ mint1
PtpGSRt1nq

maxt1
PHpGSRt1nq ´ mint1

PHpGSRt1nq
, (13)

where t1 represents a single observation of GSR. Recall that the GSR was measured at a rate of

120 Hz. On the other hand, the logsum is given by:

Logsumnt “ lnp
ÿ

t1
Pt

exppGSRt,nqq. (14)

Castro et al. (2020) proposed the use of the logsum to aggregate physiological measures, since it

represents the expected maximum value if the true physiological measure associated with the experi-

ence t diverges from the signal observed at each instant t1 P t with an EVI error.

The resultant features were normalised (subtracting the mean and scaling by the standard devia-

tion). Then an exploratory factor analysis (EFA) was performed for each wave of participants. The

EFA helps identify which features explain a larger portion of the variance of the data, as it is desirable

that the selected features explain the largest portion of it. In this case, the EFA was conducted with
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one factor as we only have a hypothesis about one underlying latent factor (i.e. stress). Based on the

EFA results (Table 1) and the literature review, we selected the mean, maximum, and logsum for the

first and third waves; and the logsum, maximum and minmax for the second wave.

Table 1: Exploratory Factorial Analysis loadings (one factor) by wave

Feature Wave 1 Wave 2 Wave 3

Mean 0.984 0.681 0.942
Sumation 0.933 0.665 0.938
Minimum 0.67 0.254 0.847
Maximum 0.72 0.998 0.841
Variance 0.209 0.756 0.237
Logsum 0.812 0.734 0.994
Minmax 0.379 0.829 0.335
Skewness 0.105 0.304 0.172
Kurtosis -0.123 0.185 -0.192

SS loadings 3.261 3.889 4.414
Proportion of variance 0.409 0.432 0.49

To illustrate the differences in GSR observed across modes and waves of the experiment, we show

in Figure 11 the mean of the maximum value of the GSR observed in the VR experiences with each

mode. From this analysis, it can be observed that driving a car in VR caused significantly higher

levels of GSR relative to experiencing other modes.

Figure 11: Maximum scaled GSR measured during the VR experience. Points indicate the mean
value and bars denote a 95% confidence interval. AV=autonomous vehicle, SAV= shared autonomous
vehicle, HL= hyperloop.
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V. RESULTS

In this section, we show the results of the models presented in the section III (see Figure 8). We divide

the presentation of the results by wave and by model. In all models, all variables that were part of the

experimental design were retained, even those that were not significant. Non-significant demographic

variables were removed, except for age and gender, which we consider relevant as controls.

V.A. FIRST WAVE

In the first wave, the consideration set consisted of: car, bus, and ride-hailing. The results of the

structural equations are presented in Table 2, and the results of the measurement equations are

presented in Table 3. On average, participants did not consider most of the information provided in

the SP survey, and the inertia effect is negative in MNL1 and MNL2. From the point of view of inertia,

this is interpreted as exploratory behaviour. This exploratory behaviour and the lack of consideration

of the provided information hinders the fit of the models, as can be observed in Table 2. The role of

inertia is less relevant when the latent stress variables are added, and the fit of the model increases.

As it is shown in the following sections, the exploratory behaviour was not observed in the following

two waves. This might be a result of participants having a relatively low level of engagement in the

first wave due to it presenting current travel modes, while the futuristic modes of the next two waves

may have captured the interest of the participants in the experiment, which was demanding in terms of

time and cognitive attention. However, interesting behavioural insights are obtained from the influence

of experienced stress on the choice process. We now analyse the results of the different components

of the models in turn.

Pre-experience choice

At the pre-experience choice stage, the travel time is significant in all models and the cost does not

have a significant effect. On the other hand, waiting and walking time parameters are significant but

do not have the expected sign in any model. According to MNL1 and MNL2, the bus was preferred

when the weather was bad, i.e. foggy weather, rather than normal (βBadweather ą 0, p´value ă 0.01),

however, this effect is less significant in both dynamic hybrid models. No mode was significantly

preferred for work trips. Before the experiment started, participants experienced each mode considered

in the corresponding wave once for training (e.g. participants in the first wave only tested car, bus

and RH). We controlled for the mode that was chosen first during this training stage, assuming the
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participant has some endogenous preference for that mode. We found a significant effect caused

by experiencing ride-hailing first. That is, if a participant experienced ride-hailing as the first test

mode, then it was more likely that they would also choose ride-hailing during the experiment. The

inertia parameters are negative and significant in MNL1 and MNL2. This implies that choices are

mostly exploratory, i.e. individuals tend to change their previous choices. Note that the inertia

effects disappears when the lagged latent stress is added (that is in LS-Full). This is because the

tendency to change to new alternatives is not solely caused by exploratory tendencies, but influenced

by the experienced level of stress. Notably, latent stress has a significant effect only on the car

(ωcar “ ´0.79, p ´ value ă 0.01 in LS and ωcar “ ´0.678, p ´ value ă 0.05 in LS-Full), which is

perhaps not surprising given the additional demand on attention that is required when the participant

has to drive.

Post-experience choice

The post-experience choice aimed to test if travel attributes gained importance after being ex-

perienced. We observed that participants showed little tendency to revise their initial choice during

the pre-experience choice stage (the pre-experience choice was changed only in 22% of cases). The µ

parameter was not significantly different from zero in any model (meaning that participants did not

consider the SP information at the post-experience choice), and the stickiness parameter is positive

and significant in all models with large effect size. In addition, the latent stress perceived after the

pre-experience choice does not have a significant effect. A more detailed analysis could be done con-

sidering only the participants who change their pre-experience choice (as they are more likely to have

changed their preferences), but the sample size does not allow for this analysis.

Latent stress

Regarding the latent stress parameters, travel time did not have a significant effect, the stated

perception of realism of the VR scenario decreased the stress (low significance), and travelling with

good weather conditions also decreased the stress (low significance). Travel by car was the most

important factor in inducing stress. Travel by bus has a lower effect, which is not significantly different

from the effect of travelling by ride-hailing. No other attribute caused significant changes in the latent

stress. Table 3 shows the results of the four measurement functions. The first three are the PPIs’

features (estimated with a normal density function) and the fourth is the stated satisfaction (estimated

as an ordered logit). The three features of GSR increased with the latent stress, but also with the

elapsed time in the experiment. There was no significant relationship between latent stress and the

21



Table 2: Comparison of structural equations first wave’s models. Consideration set: car, bus and
ridehailing. Stars denote a t-test against 1, otherwise the t-tests are against 0.

MNL1 MNL2 LS LS-Full

Component Parameter
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)

Pre-
experience
choice (β)

ASC, car 1.151 (2.105) 1.369 (1.968) 0.93 (1.857) 1.144 (2.028)
ASC, bus 0.974 (1.552) 1.444 (1.659) 0.656 (1.716) 1.001 (1.706)
Cost 0.044 (0.551) 0.007 (0.091) 0.045 (0.559) 0.015 (0.183)
Travel time -0.25 (-2.02) -0.299 (-2.557) -0.259 (-3.08) -0.29 (-2.747)
Walking time 0.52 (3.475) 0.517 (3.154) 0.408 (1.723) 0.484 (2.853)
Waiting time 0.369 (2.435) 0.377 (2.176) 0.347 (2.482) 0.425 (2.799)
Crowding 0.08 (0.48) 0.095 (0.597) 0.219 (1.503) 0.149 (0.922)
Comfort -0.087 (-0.196) -0.299 (-0.718) 0.368 (1.556) -0.07 (-0.143)
Bad weather, car 0.448 (0.796) 0.66 (1.244) 0.425 (1.196) 0.634 (1.105)
Bad weather, bus 1.471 (2.129) 1.5 (2.199) 0.943 (1.467) 1.455 (1.779)
Work trip, car -0.507 (-1.449) -0.547 (-1.519) -0.514 (-0.906) -0.536 (-1.4)
Work trip, bus -0.355 (-0.869) -0.447 (-1.14) -0.455 (-1.078) -0.374 (-1.007)
Carbon -0.026 (-0.25) -0.102 (-0.936) -0.08 (-0.6) -0.096 (-0.776)
Female, car -0.26 (-0.441) -0.223 (-0.32) 0.036 (0.103) 0.005 (0.008)
Age young, car -0.228 (-0.65) -0.352 (-1.055) -0.081 (-0.534) -0.249 (-0.81)
Female, bus 0.344 (0.645) 0.305 (0.506) 0.068 (0.243) 0.266 (0.471)
Age young, bus 0.06 (0.251) 0.029 (0.124) 0.076 (0.622) 0.065 (0.346)
First test choice, RH 1.083 (2.171) 1.379 (2.434) 0.867 (3.379) 1.258 (2.478)
Inertia (γv) -0.524 (-1.765) -0.651 (-2.705) -0.522 (-1.332)

Dummy Inertia (γd) -0.356 (-2.037) -0.32 (-1.877) -0.201 (-0.844)
Car Stress (ωcar) -0.79 (-2.404) -0.678 (-1.882)
Bus Stress (ωbus) -0.056 (-0.3) -0.08 (-0.356)
RH Stress (ωRH) 0.354 (0.661) 0.131 (0.227)

Post-
experience
choice

ASC, car 0.584 (1.703) 0.706 (1.219) 0.749 (1.276)
ASC, bus 0.605 (1.694) 0.758 (1.11) 0.839 (1.244)
Scale (µ) -0.409 (-3.728*) -0.564 (-1.916*) -0.354 (-2.766*)
Stickiness (δ) 2.032 (12.327) 2.11 (8.029) 2.072 (8.272)
Car Stress (ω1

car) -0.121 (-0.373) -0.119 (-0.343)
Bus Stress (ω1

bus) 0.411 (1.567) 0.422 (1.56)
RH Stress (ω1

RH) -0.131 (-0.175) -0.113 (-0.173)

Latent stress
(γ)

Constant -0.205 (-0.354) -0.222 (-0.393)
Travel time 0.001 (0.002) 0.008 (0.028)
Good weather -0.496 (-1.746) -0.493 (-1.726)
Realism -0.824 (-1.61) -0.806 (-1.6)
Age 0.115 (0.748) 0.114 (0.748)
Female 0.178 (0.496) 0.172 (0.469)
Car 1.91 (3.712) 1.852 (3.655)
Bus 0.798 (1.483) 0.783 (1.493)
Work trip 0.181 (0.653) 0.2 (0.748)
Environmental cue -0.275 (-1.296) -0.271 (-1.296)
Comfort 0.028 (0.122) 0.026 (0.121)
Crowding -0.175 (-0.733) -0.17 (-0.713)
Parking space -0.067 (-0.249) -0.069 (-0.245)
σS 1 (-) 1 (-)

LLp0q pre-experience choice -304.32 -304.32 -275.75 -275.75
LLpfinalq pre-experience choice -278.19 -279.04 -252.15 -249.71
LLp0q post-experience choice -304.32 -275.75 -275.75
LLpfinalq post-experience choice -186.24 -171.25 -170.41
LLpfinalq whole model -278.19 -465.28 -1793.52 -1792.34
ρ̄2 pre-experience choice 0.02 0.02 0.1 0.1
ρ̄2 post-experience choice 0.37 0.41 0.42

reported satisfaction with VR experience.

Despite driving a car was shown to be most important factor in inducing stress, it cannot be ruled

22



out that this was an artefact of the experiment itself. Driving implied a more active participation of

the subject, as participants had to use the steering wheel, drive, and park the car. In other modes,

participants only observed the VR environment but did not actively participate in it. Further work is

needed to ensure that these effects can be replicated in the real world.

Table 3: Measurement equations parameters first wave’s models. Consideration set: car, bus and
ridehailing.

LS LS-Full

Component Parameter
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)

Mean GSR (θ) Alcohol -0.021 (-0.343) -0.014 (-0.229)
Exp. Time 0.152 (1.386) 0.155 (1.412)
Stress 0.414 (6.75) 0.417 (6.566)
σ 0.833 (18.99) 0.834 (18.767)

Logsum (GSR) Alcohol 0 (0.006) 0.005 (0.107)
Exp. Time 0.143 (1.553) 0.146 (1.566)
Stress 0.365 (4.261) 0.374 (4.123)
σ 0.878 (3.886) 0.874 (3.899)

Max (GSR) Alcohol -0.033 (-0.655) -0.028 (-0.53)
Exp. Time 0.067 (0.641) 0.069 (0.662)
Stress 0.346 (4.465) 0.351 (4.417)
σ 0.897 (18.151) 0.896 (18.324)

Stated Stress -0.131 (-0.496) -0.129 (-0.487)
Satisfaction τ1 -2.266 (-11.391) -2.262 (-11.435)

τ2 -0.626 (-3.382) -0.623 (-3.364)
τ3 0.868 (4.481) 0.871 (4.475)

V.B. SECOND WAVE

In the second wave, the consideration set consisted of: car, AV, and SAV. The results of the structural

equations are presented in Table 4. Measurement equations results are shown in Table 5.

Pre-experience choice

The travel attribute parameters have the expected sign in the pre-experience choice component.

However, in the baseline MNL1, the travel time is not significant. This significance of the travel

time turns out to be higher when incorporating the post-experience choice (MNL2). That is, the

joint estimation of the pre-experience and post-experience choice, helps in finding the true value of

the travel time parameter. This may be explained by an underestimation of the importance of this

attribute by the participants at the pre-experience choice, which is reverted after experiencing the

travel time in the VR environment. In addition, the comfort parameter is significant and positive

in all models. The inertia parameters are not significant in any of the models. However, similar to

the first wave, LS-Full shows that the stress caused only significant effects on the utility of the car.

This means that participants were less likely to choose a car after experiencing a stressful car trip
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(ωcar “ ´0.489, p ´ value ă 0.1). We also controlled for the mode that was experienced first during

this training stage, but no significant effect was found and the variable was dropped from the reported

models.

Post-experience choice

Regarding the post-experience choice, the µ parameter is not significantly different from 1, which

means that the informed value of the attributes of the alternatives had an effect on the post-experience

choice, i.e. participants revise their pre-experience choice and do not just stick to it. However, there is

still a tendency to stick to their pre-experience choice (stickiness δ ą 0 and significant). Recall that in

this wave the participants changed their pre-experience choice in 25% of the tasks. The experienced

latent stress did not have a significant effect at this stage, despite the stress being significant in

the pre-experience choice component. Note that this result might be explained by the presence of

confirmation bias, i.e. people tend to think their initial beliefs or intuitions were correct and therefore

have no intrinsic motivation to state they would like to have chosen an alternative experience (Mynatt

et al., 1977; Mercier, 2022).

Latent stress

In the latent stress component, the variance was mainly explained by the use of the car, which

is consistent with the results of the first wave. Also, the perceived level of realism of the experience,

and the comfort level of SAV and AV turned out to be relevant variables. Again, the car triggered

the highest levels of stress during the VR experience (γcar “ 2.122, p ´ value ă 0.01), and the level of

realism increases the stress (γrealism “ 0.974, p ´ value ă 0.01). However, the comfort level does not

have the expected sign (γcomfort “ 0.428, p ´ value ă 0.01), suggesting that higher comfort (normal

driving) increases the stress in comparison to low comfort (aggressive driving). This fact is counter-

intuitive and deserves further investigation. A possible explanation is that aggressive driving could

have been perceived as faster, which would imply that normal driving made participants more anxious

or stressed. Also, note that from GSR we can only infer the level of arousal of the underlying emotion,

however it is hard to dissentangle the valence of it (i.e. if the emotion is positive or negative). Also

participants are exposed to a level of comfort they freely chose, as it was informed in the pre-experience

choice stage. This potentially alters the effect of the stimuli. Future research should test the effect of

experiencing unexpected stimuli.

Table 5 shows the results of measurement equations. Latent stress increased the three features of

GSR (logsum, maximum and minmax). However, these measures were also affected by the elapsed
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Table 4: Comparison of structural equations second wave’s models. Consideration set: car, bus and
ridehailing. Stars denote a t-test against 1, otherwise the t-tests are against 0.

MNL1 MNL2 LS LS-Full

Component Parameter
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)

Pre-
experience
choice (β)

ASC, car -0.942 (-0.997) -0.532 (-0.644) -0.33 (-0.445) -0.365 (-0.437)
ASC, SAV -0.162 (-0.185) 0.197 (0.217) 0.587 (0.702) 0.498 (0.504)
Cost -0.17 (-3.535) -0.136 (-3.2) -0.143 (-2.907) -0.137 (-2.905)
Travel time -0.037 (-0.701) -0.079 (-2.089) -0.075 (-1.954) -0.067 (-1.634)
Waiting time -0.107 (-0.846) -0.016 (-0.188) -0.014 (-0.177) -0.019 (-0.224)
Crowding -0.047 (-0.222) 0 (0.003) -0.06 (-0.41) -0.037 (-0.266)
Comfort 0.542 (3.686) 0.524 (4.235) 0.613 (5.25) 0.588 (5.028)
Weather, car 0.399 (0.569) 0.279 (0.531) 0.095 (0.213) 0.251 (0.467)
Weather, SAV 0.519 (0.878) 0.739 (1.495) 0.62 (1.267) 0.703 (1.422)
Work trip, car 0.505 (0.921) 0.366 (0.931) 0.467 (1.195) 0.46 (1.174)
Work trip, SAV 0.203 (0.273) -0.014 (-0.028) -0.028 (-0.061) 0.021 (0.044)
Female, car -0.243 (-0.447) 0.08 (0.153) 0.019 (0.039) 0.019 (0.039)
Age young, car 1.084 (1.104) 1.28 (1.41) 0.947 (1.356) 1.165 (1.336)
Female, SAV -0.139 (-0.235) 0.01 (0.018) -0.031 (-0.065) -0.074 (-0.145)
Age young, SAV 1.118 (1.321) 0.847 (0.872) 0.469 (0.596) 0.66 (0.646)
Inertia (λv) -0.172 (-0.501) -0.163 (-0.677) -0.165 (-0.724)

Dummy Inertia (λd) 0.035 (0.11) 0.173 (0.727) 0.231 (0.902)
Car Stress (ωcar) -0.356 (-1.404) -0.446 (-1.65)
AV Stress (ωAV ) -0.074 (-0.218) 0.041 (0.102)
SAV Stress (ωSAV ) -0.288 (-0.95) -0.171 (-0.555)

Post-
experience
choice

ASC, car -0.173 (-0.372) 0.003 (0.005) -0.037 (-0.054)
ASC, SAV -0.369 (-0.774) -0.399 (-0.542) -0.437 (-0.616)
Scale (µ) 0.812 (-0.774*) 0.864 (-0.412*) 0.863 (-0.417*)
Stickiness (δ) 1.321 (6.777) 1.27 (4.738) 1.265 (4.62)
Car Stress (ω1

car) -0.364 (-1.078) -0.355 (-1.008)
SAV Stress (ω1

SAV ) -0.538 (-1.322) -0.559 (-1.298)
AV Stress (ω1

AV ) -0.235 (-0.573) -0.212 (-0.496)

Latent stress
(γ)

Constant -1.836 (-3.403) -1.82 (-3.384)
Travel time 0.471 (2.364) 0.47 (2.332)
Good weather -0.013 (-0.041) 0.003 (0.009)
Age 0.113 (0.804) 0.112 (0.787)
Female -0.142 (-0.415) -0.134 (-0.392)
Car 2.122 (4.605) 2.134 (4.566)
SAV -0.069 (-0.148) -0.079 (-0.168)
Realism 0.974 (2.517) 0.957 (2.438)
Work trip -0.055 (-0.215) -0.075 (-0.285)
Environmental cue -0.227 (-1.049) -0.23 (-1.072)
Comfort 0.773 (2.262) 0.777 (2.211)
Crowding -0.229 (-1.082) -0.216 (-0.988)
Parking space -0.253 (-1.069) -0.267 (-1.106)
σS 1 (-) 1 (-)

LLp0q pre-experience choice -208.74 -208.74 -208.74 -208.74
LLpfinalq pre-experience choice -149.56 -151.45 -151.73 -151.43
LLp0q post-experience choice -208.74 -208.74 -208.74
LLpfinalq post-experience choice -121.66 -120.04 -119.99
LLpfinalq whole model -149.56 -273.1 -1247.34 -1246.69
ρ̄2 pre-experience choice 0.2 0.19 0.19 0.18
ρ̄2 post-experience choice 0.4 0.39 0.39

time on the experiment and the amount of alcohol consumed by the participant before the experiment.

There is previous evidence suggesting that alcohol may increase the GSR measures (Enewoldsen,

2016; Li et al., 2022), however, it is not clear why this effect was found only for the second wave of

participants. The stated satisfaction with the VR experience was not significantly correlated with the
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latent stress.

Table 5: Measurement equations parameters second wave’s models. Consideration set: car, AV and
SAV.

LS LS-Full

Component Parameter
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)

Logsum GSR (θ) Alcohol 0.173 (2.138) 0.172 (2.149)
Exp. Time 0.225 (3.143) 0.225 (3.132)
Stress 0.362 (4.344) 0.364 (4.327)
σ 0.867 (16.049) 0.866 (16.06)

Max GSR (θ) Alcohol 0.194 (4.477) 0.193 (4.345)
Exp. Time 0.168 (2.337) 0.168 (2.332)
Stress 0.445 (7.25) 0.445 (7.073)
σ 0.818 (15.767) 0.817 (15.742)

Minmax GSR (θ) Alcohol 0.104 (2.489) 0.104 (2.482)
Exp. Time 0.222 (3.018) 0.222 (3.003)
Stress 0.413 (6.864) 0.413 (6.748)
σ 0.784 (15.368) 0.785 (15.349)

Stated Stress 0.169 (0.81) 0.165 (0.793)
Satisfaction (θE) τ1 -2.027 (-8.73) -2.025 (-8.79)

τ2 -0.461 (-2.068) -0.458 (-2.059)
τ3 1.218 (5.228) 1.219 (5.216)

V.C. THIRD WAVE

In the third wave, the consideration set was: air-taxi, hyperloop and train. The results of structural

equations are presented in Table 6. The estimates of the measurement equations are shown in Table 7.

Pre-experience choice

The utility of each alternative at the pre-experience choice was affected the most by cost and

travel time. Air-taxi and hyperloop were preferred over the train, possibly due to the novelty of those

alternatives. No other travel attribute played a role in these models. Note that the only significant

dynamic effect is the inertia dummy in the model MNL1 (λd “ ´0.604, p ´ value ă 0.01). However,

this effect disappears with the inclusion of the post-experience choice in MNL2 and the latent stress

in the following models. In this wave, the latent stress did not cause significant effects in utility in

the pre-experience choice stage. As explained next, no travel mode caused significant variations in

the latent stress. This may be explained by how travel modes are simulated, as previously discussed.

In the first and second wave, participants were asked to drive the car in the VR environment. In

this wave, no mode required participants to actively engage in the task. We also controlled for the

mode that was experienced first during this training stage, but no significant effect was found and the

variable was dropped from the reported models.

Post-experience choice
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In the post-experience choice stage, information about each alternative was still considered (scale

µ ă 1, not significantly different from 1). However, they also tended to maintain their pre-experience

choice (stickiness δ ą 1 with p ´ value ă 0.01 in all models). In this wave, the measured latent stress

did not cause participants to regret their pre-experience choices.

Table 6: Structural equations parameters third wave’s models. Consideration set: air-taxi, hyperloop
(HL), and train. Stars denote a t-test against 1, otherwise the t-tests are against 0.

MNL1 MNL2 LS LS-Full

Component Parameter
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)

Pre-
experience
choice (β)

ASC, air-taxi 0.509 (0.891) 0.667 (1.118) 0.604 (0.995) 0.653 (1.017)
ASC, HL 0.885 (1.85) 0.849 (1.901) 0.758 (1.695) 0.84 (1.81)
Cost -0.664 (-3.452) -0.575 (-3.182) -0.566 (-3.103) -0.571 (-3.109)
Travel time -0.298 (-2.55) -0.315 (-2.997) -0.308 (-2.819) -0.323 (-2.891)
Walking time 0.019 (0.172) -0.079 (-0.763) -0.082 (-0.822) -0.073 (-0.694)
Waiting time -0.182 (-1.502) -0.127 (-1.23) -0.134 (-1.344) -0.126 (-1.227)
Crowding -0.395 (-1.267) -0.353 (-1.327) -0.312 (-1.187) -0.354 (-1.283)
Comfort -0.177 (-0.637) 0.007 (0.031) 0.017 (0.076) 0.022 (0.092)
Work trip, air-taxi -0.322 (-0.444) -0.696 (-1.075) -0.732 (-1.127) -0.684 (-1.023)
Work trip, HL 0.198 (0.313) 0.115 (0.212) 0.106 (0.202) 0.137 (0.251)
Carbon -0.098 (-0.694) -0.133 (-1.075) -0.126 (-1.009) -0.128 (-1.019)
Age, air-taxi 0.155 (0.567) 0.131 (0.472) 0.169 (0.592) 0.141 (0.49)
Age, HL 0.179 (0.664) 0.13 (0.544) 0.165 (0.684) 0.171 (0.674)
Gender, air-taxi -0.116 (-0.255) -0.331 (-0.699) -0.362 (-0.739) -0.357 (-0.725)
Gender, HL -0.27 (-0.599) -0.224 (-0.533) -0.228 (-0.546) -0.252 (-0.575)
Inertia (λv) 0.107 (0.966) 0.057 (0.485) 0.042 (0.347)

Dummy Inertia (λd) -0.696 (-2.201) -0.465 (-1.533) -0.442 (-1.458)
Air-taxi Stress
(ωair´taxi)

0.033 (0.083) 0.083 (0.205)

HL Stress (ωHL) -0.261 (-0.434) -0.281 (-0.41)
Train Stress (ωTrain) -0.573 (-1.091) -0.586 (-1.167)

Post-
experience
choice

ASC, air-taxi -0.118 (-0.239) -0.099 (-0.161) -0.088 (-0.146)
ASC, HL 0.739 (1.507) 0.789 (1.867) 0.807 (2.012)
Scale (µ) 0.722 (-1.182*) 0.755 (-0.903*) 0.725 (-1.031*)
Stickiness (δ) 2.618 (6.26) 2.659 (5.084) 2.634 (5.238)
Air-taxi Stress
(ω1

air´taxi)
-0.122 (-0.286) -0.149 (-0.347)

HL Stress (ω1

HL) -1.027 (-0.363) -1.017 (-0.351)
Train Stress (ω1

Train) 0.148 (0.166) 0.137 (0.158)

Latent stress
(γ)

Constant 0.265 (1.097) 0.261 (1.086)
Travel time 0.124 (1.456) 0.124 (1.451)
Age -0.831 (-4.282) -0.83 (-4.303)
Female 0.385 (1.2) 0.385 (1.189)
Air-taxi 0.256 (0.875) 0.259 (0.883)
HL 0.127 (0.589) 0.129 (0.595)
Realism -0.032 (-0.223) -0.031 (-0.221)
Work trip 0.253 (2.179) 0.253 (2.175)
Environmental cue -0.09 (-0.855) -0.09 (-0.851)
Comfort -0.071 (-0.896) -0.071 (-0.89)
Crowding -0.044 (-0.742) -0.044 (-0.743)
σS 1 (-) 1 (-)

LLp0q pre-experience choice -196.65 -196.65 -196.65 -196.65
LLpfinalq pre-experience choice -124.59 -126.09 -128.86 -126.58
LLp0q post-experience choice -196.65 -196.65 -196.65
LLpfinalq post-experience choice -54.39 -53.43 -54.23
LLpfinalq whole model -124.59 180.48 -860.44 -859.09
ρ̄2 pre-experience choice 0.28 0.27 0.25 0.25
ρ̄2 post-experience choice 0.70 0.69 0.69
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Latent stress

In the third wave, latent stress was mainly explained by the age of the participants, with older

participants experiencing a lower stress (γage “ ´1.096 in LS and γage “ ´1.056 in LS-Full with

p´value ă 0.01), and the purpose of the trip (a work trip caused higher stress in LS and LS ´Full).

Regarding the measurement equations of the latent stress (Table 7), it was obtained that the

three GSR features increased with the latent stress. However, the GSR also increases consistently

with the elapsed time in the experiment. Finally, the stated satisfaction with the experience was not

significantly correlated with the latent stress.

Table 7: Measurement equations parameters third wave’s models. Consideration set: air-taxi, hyper-
loop (HL), and train.

LS LS-Full

Component Parameter
Estimate

(Rob.t.test)
Estimate

(Rob.t.test)

Mean GSR (θ) Alcohol -0.012 (-0.211) -0.012 (-0.212)
Exp. Time 0.372 (7.509) 0.372 (7.523)
Stress 0.986 (5.224) 0.986 (5.217)
σp 0.508 (15.467) 0.507 (15.44)

Max GSR (θ) Alcohol 0.073 (0.944) 0.072 (0.929)
Exp. Time 0.349 (6.061) 0.349 (6.068)
Stress 0.786 (3.827) 0.786 (3.823)
σp 0.695 (14.762) 0.695 (14.78)

Logsum GSR (θ) Alcohol 0.02 (0.418) 0.02 (0.392)
Exp. Time 0.291 (6.943) 0.291 (6.954)
Stress 0.808 (5.19) 0.808 (5.179)
σp 0.418 (15.82) 0.419 (15.843)

Stated τ1 -4.488 (-6.312) -4.488 (-6.311)
satisfaction (θE) τ2 -1.731 (-7.246) -1.731 (-7.244)

τ3 0.24 (1.015) 0.24 (1.014)
Stress 0.158 (0.74) 0.159 (0.743)
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VI. DISCUSSION AND FINAL REMARKS

It has not yet been shown how physiological measures can help to estimate the effect of latent psy-

chological states perceived in travel experiences on travel mode choice. This paper addresses this

question by analysing data from a VR experiment and estimating the latent stress associated with

travel experience and decision-making using skin conductance data. In the three waves of the exper-

iment, participants were exposed to different consideration sets, which included common and novel

travel modes (AV, hyperloop and air-taxi). Each participant completed four choice tasks. In each,

they first chose a mode from a SP survey (pre-experience choice), then experienced that mode, and

finally were asked if they regretted that choice by choosing another mode (post-experience choice).

This is the first experiment analysing psychological states and modal choice inside a VR environment,

and the first study in using physiological data to analyse the effect of experienced psychological states

on future choices.

We compared four models, with different intertemporal effects. To capture the effect of: inertia

as a function of the difference between chosen and non-chosen alternatives, only as a function of; the

carrying-iver effect, the tendency to repeat the same choice across task; and the effect of a lagged

latent stress variable, to test the effect stress in travel mode choices. In general, the inclusion of

latent stress did not improve the fit of the models in all waves of the experiment. However, in this

experimental context, travelling by car as a driver was shown to trigger the highest levels of stress,

making participants less likely to choose the car in the next choice task. Travel modes different

from the car did not significantly increase the latent stress. Our finding supports our main hypothesis:

individuals who perceive higher levels of stress are less likely to choose the same alternative again, which

can be identified using psychophysiological data. However, further research is needed to generalize

this finding to a broad range of transport modes and to validate it out of the laboratory.

Regarding our second research question, our results suggest that the joint estimation of the pre-

and post-experience choices helped to identify the effects of travel attributes. Importantly, the effect

of travel time on the second wave was only significant after adding the post-experience choice to

the model. This finding suggests that at the pre-experience stage, participants underweighted the

displeasure they expected to feel per unit of time during the VR experience. Then, after the experience,

they updated their marginal utility of the travel time. However, the overall tendency observed was to

stick to the mode chosen in the pre-experience choice stage.
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Regarding the third question, both inertia variables were significant only in the first wave, showing

a negative effect, which means that the participants tended to explore the available alternatives.

However, no inertia variables were significant when latent stress was present in the model. This means

that the tendency to switch to other alternatives was mediated by the latent stress associated with

previous experience, rather than only being explained by exploratory behaviour.

Despite the fact that car driving was the more stressful choice in our experiment, this does not

necessarily imply that in real life driving is more stressful. The external validity of transport-related

stimuli in VR experiences deserves further research. That is, it is not completely clear which attributes

related to transport alternatives generate psychophysiological effects in VR environments that can be

compared to the real-life effects. In addition, the stress caused by the experiences can be affected by

the fact that the participants where informed about the expected value of the attributes and they

freely chose to be exposed to that experience. For example, a passanger that chooses to travel under

high crowding conditions, may be less emotionally affected than an individual under unexpected levels

of crowding. This is supported by evidence from neuroscience, showing that changes in physiological

signals and emotions depend on exposure specifically to unexpected stimuli (Lerner et al., 2021).

A relevant point of this study, is how the attributes were mapped from the SP survey to the VR

experience (Tables A2-A4). Although most attributes area easy to map, subjectives attributes (as the

comofort level) are chagelling since it is no possible to anticipate how people interpret that subjective

attribute in order to adjust the VR experience to the expected level of comfort.

We found some unexpected results in the parameters of the pre-experience utility, for example not

significant waiting time parameters, not significant cost parameter (only in first wave) and positive

walking time parameters (only in first wave). In particular in the case of the first wave (where all

modes were common for participants) this could have been influenced by endogenous preferences or

low level of engagement in the task. In the first wave, no novel travel mode was presented, which

could have made the experiment less interesting for the participants and decreased their engagement,

which is consistent with our results that show strong exploratory behaviour. In the second and third

wave, the participants were presented with novel alternatives (AV, air-taxi, and hyperloop). This may

have served to keep participants attentive and engaged with the experiment, which was demanding in

terms of time and attention. In light of our results, future experiments should be designed with the

following considerations in mind a) the inclusion of unexpected stimuli, b) to have an equivalent level

of reality of the different alternatives, c) to capture in the VR all stimuli presented in the SP survey,

d) to add novelty to the simulations in order to keep participants engaged and attentive during the
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experiment, and e) to consider the use of multisensory VR techonology, which could help increase the

ecological validity (Melo, Coelho, et al., 2022; Melo, Gonçalves, et al., 2022). Future models should

consider machine learning approaches to extract embedded representations of the physiological data

that allow for the extraction of as much variance as possible and better explain behaviour without the

need to compute features that may be arbitrary and context dependent, which is common practice

when working with PPI (e.g. Shukla et al., 2021), as there is not likely to be a best practice for how

to consistently integrate the data into a model (Hancock & Choudhury, 2023). This is a promising

avenue for future work, given recent advances in the integration of machine learning with discrete

choice models (Sifringer et al., 2020).

Our results contribute significantly to this emerging field, as it is the first experiment to integrate

VR technology, travel mode choice, and physiological sensors. So far, the potential of VR has mainly

been discussed in the context of travel satisfaction analysis. In contrast, this article highlights the

potential of VR for the analysis of the effects of travel satisfaction on demand, which is necessary

to capture the true benefit of transport projects and for the move towards the evaluation of projects

aimed at maximising subjective well-being (Henŕıquez-Jara & Guevara, 2024).
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A. APPENDIX: SAMPLE COMPOSITION AND ATTRIBUTES LEVELS IN SP

AND VR

The full details of the ‘Future Modes Study’ of the ‘Next Generation Travel Behaviour Models Project’

are available at Choudhury et al., 2025. The key tables are reproduced below for the sake of com-

pleteness of the current paper.

Table A1: Sample composition

Socio-demographic attributes Number

Gender
Male 46
Female 25

Job
Students 42
Employed 26
Other 3

Age

18-24 27
25-34 23
35-44 15
45-54 4
55+ 2

Household annual
income (Before
reduction)*

Below £10,000 7
£10,000 - £25,000 18
£25,000 - £50,000 18
Above £50,000 19
Prefer not to say 3
I don’t know 5

Highest level of
education*

High School diploma 10
College/University cer-
tificate

11

Bachelor’s degree 17
Master’s degree 19
Doctorate degree 13

Ethnicity*

Arab 2
Asian - East Asian 10
Asian - South Asian 9
Black or African her-
itage

3

White 40
Mixed 3
Any other ethnic group 2
Prefer not to say 1

*One respondent did not report.
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Table A2: First wave: Attributes values and how they were incorporated into VR

Attribute Private Car Ride-hailing Bus/Train Incorporation into VR

Trip type Work or recreational The time was shown on
a dashboard, and dis-
played in red to high-
light urgency for work
trips.

Traffic/weather
conditions

Good or bad Bad conditions shown
as ’nighttime’ in VR

In-vehicle time 12 or 20 mins + up to 10 mins 20-30 mins + up
to 10 mins

Average times used for
trip duration

Pickup time - 2 or 5 mins 5 or 10 mins Proportional waiting
time simulated

Parking 1, 5 or 10
mins

- - Parking space availabil-
ity varied

Petrol/fare £2.50 or £5 £7.50 or £10 £2.50 or £5 Participants were
incentivised to make
choices as they would
in the real-world

Parking £2.50,
£7.50 or
£12.50

- -

Occupancy Always
alone

Alone or with 1-3
passengers

10-90% full Bus passenger numbers
vary based on SP task

Comfort N/A 1 or 3 stars Noise levels (bus) and
driving smoothness
(ridehail)

Carbon Emissions 50, 175 or 245 g/km 50 or 105 g/pkm Green/orange/red leaf
displayed
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Table A3: Second wave: Attributes values and how they were incorporated into VR

Attribute Private Car Autonomous ve-
hicle (shared)

Autonomous ve-
hicle (personal)

Incorporation into VR

Trip type Work or recreational The time was shown on
a dashboard, and dis-
played in red to high-
light urgency for work
trips.

Traffic/weather
conditions

Good or bad Bad conditions shown
as ’nighttime’ in VR

In-vehicle time 5 or 10 mins
+ up to 10
mins

7-15 mins + up to
10 mins

5 or 10 mins + up
to 10 mins

Average times used for
trip duration

Pickup time - 2 or 5 mins 2 or 5 mins Displayed on arrival
board

Parking 1, 5 or 10
mins

- - Time searching for a
parking space varied

Petrol/fare £2.50 or £5 £12 or £15 £16 or £20 Participants were
incentivised to make
choices as they would
in the real-world

Parking £2.50,
£7.50 or
£12.50

- -

Occupancy Always
alone

1-3 passengers Always alone The number of AV pas-
sengers varied in line
with number given in
the SP task

Comfort N/A 1 or 3 stars ’Smooth’ or ’jerky’ ver-
sions of each drive
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Table A4: Third wave: Attributes values and how they were incorporated into VR

Attribute Air taxi Hyperloop Train Incorporation into VR

Trip type Work or recreational The time was shown on
a dashboard, and dis-
played in red to high-
light urgency for work
trips.

Traffic/weather
conditions

Good or bad Bad conditions shown
as ’nighttime’ in VR

In-vehicle time 6 or 10 mins 2 or 5 mins 45-70 mins Average times used for
trip duration

Wait time 10 or 15 mins 5 or 10 mins Proportional waiting
time simulated

Fare £45 or £65 £35-50 £11-£20 Participants were incen-
tivised to make choices
as they would in the
real-world

Occupancy 50-75% full 50-90% full 10-90% full Passenger numbers var-
ied based on SP task

Comfort 3 stars 3 stars 1 or 3 stars Noise levels vary
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