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Abstract 1 

Geotechnical engineers rely on accurate soil property information for engineering analyses. However, 2 

it is challenging for spatial learning of soil attributes because in-situ geotechnical testing is typically 3 

performed sparsely at discrete locations, and soil properties also exhibit inherent spatial variability. 4 

Traditional geostatistical methods for predicting spatial properties at these unsampled locations exhibit 5 

high computational complexity and require pre-determination of hyper-parameters, while pure data-6 

driven methods fail to integrate geotechnical knowledge. In this study, a hybrid and parameter-free 7 

framework that uses random field theory and machine learning is proposed to model 3D subsurface 8 

field with reduced computational complexity. The framework constructs site-specific basis functions 9 

for characterizing the spatial variations of soil properties by decomposing a correlation matrix through 10 

principal component analysis. To further reduce the computational complexity involved in processing 11 

high-dimensional correlation matrices, a sparse sampling strategy is adopted to map correlation matrix 12 

onto lower-rank principal component space. A series of synthetic random field examples are generated 13 

to illustrate the impact of scale of fluctuation and autocorrelation functions on the accuracy and 14 

sensitivity of subsurface modeling. The performance of the proposed method is further validated using 15 

both synthetic cases and two real case histories. It is demonstrated that the proposed method generally 16 

achieves higher R² and lower root mean square error (RMSE) and mean absolute percentage error 17 

(MAPE) compared to state-of-the-art methods, such as Kriging and Bayesian compressive sensing. 18 

Moreover, the proposed method facilitates the explicit quantification of uncertainty associated with 19 

the subsurface models, providing valuable insights for engineering design and analysis. The data and 20 

code used in this study are available at https://github.com/Data-Driven-RFT/Sparse-Learning. 21 

 22 

Keywords: Geotechnical spatial variability; Machine learning aided geotechnics; Random field theory; 23 

Geotechnical site investigation; Principal component analysis 24 
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1 Introduction 25 

The earth’s historical geological and environmental processes have resulted in significant spatial 26 

variability in near-surface soil deposits and thus geotechnical engineering properties (Gong et al., 2021; 27 

Phoon et al., 2022; Shi and Wang, 2023). It is widely accepted in engineering geology and geotechnical 28 

engineering that this spatial variability affects the interaction between geotechnical structures and the 29 

soil, serving as a major source of engineering uncertainty (Jiang et al., 2024b; Liu et al., 2023; Wang 30 

and Shi, 2023; Zhang et al., 2020). Accurate subsurface models which characterize the spatial 31 

distribution of soil properties, can aid engineers in conducting more rational analyses and optimized 32 

designs (Chen et al., 2023; Qiu et al., 2024; Wang et al., 2020; Zhao et al., 2020). Despite its importance, 33 

time constraints, financial considerations, and site-specific limitations often restrict investigation to 34 

sparsely located spot-testing. For example, cone penetration test (CPT) is widely used for its simplicity 35 

and cost-effectiveness, but CPT tests are typically conducted at intervals of tens of meters along the 36 

surface, providing only sparse information about the complex spatial distribution of soil properties 37 

(Collico et al., 2024; Guan et al., 2020; Xie et al., 2022b). Consequently, constructing accurate and 38 

reliable subsurface models using such sparse investigation information is often challenging (Shi and 39 

Wang, 2021; Xie et al., 2024). 40 

Currently, two-dimensional (2D) stratigraphic profiles are commonly used to guide the design and 41 

construction of engineering projects (Guan et al., 2024a; Hu et al., 2024). Selecting representative 42 

stratigraphic profiles to comprehensively reflect the spatial distribution of soil properties largely 43 

depends on the engineer's experience. For large geotechnical projects with complex geological 44 

conditions, detailed three-dimensional (3D) subsurface models are needed to thoroughly characterize 45 
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the spatial distribution of soil properties (Jiang et al., 2024a; Shi et al., 2023; Shi and Wang, 2022). 46 

Additionally, detailed 3D subsurface models can help mitigate uncertainties caused by human factors. 47 

Subsurface modelling using interpolation or data-driven methods is an active area of study (Hu et al., 48 

2024; Z. Z. Wang et al., 2023; Yang et al., 2023a, 2023b). The Kriging method, proposed in 1960, has 49 

been widely applied for the interpolation of 2D and 3D soil properties (Zou et al., 2017). As a 50 

geostatistical model, Kriging infers the properties of unknown points through the weighted averaging 51 

of known properties within a certain range, making it an optimal linear unbiased estimator. However, 52 

the Kriging method requires the estimation of model parameters to ensure reliability of predictions 53 

(Nag et al., 2023). Moreover, when simulating large-scale or high-resolution 3D random fields, the 54 

Kriging method may consume substantial computational resources in the storage and processing of 55 

large correlation matrices. As a solution, Yang and Ching (2021) applied the conditional random field 56 

method to 3D site modeling with reduced computational complexity based on the assumption of 57 

separable autocorrelation function. Bayesian Compressive Sensing (BCS), a non-parametric and data-58 

driven method, has also been extensively used for modelling non-stationary processes and fields, but 59 

BCS lacks site-specific basis functions for geotechnical modeling (Cami et al., 2020). Alternatively, 60 

Xie et al. (2022b) proposed a data-driven modeling method based on geotechnical distance fields, but 61 

it has yet to be extended to 3D subsurface modeling cases. Additionally, soil properties exhibit location 62 

dependency, and the properties at a given location are only correlated with those at another location 63 

within a certain scale of fluctuation (SoF) (Phoon et al., 2003). Therefore, predicting soil properties at 64 

unsampled points solely based on correlation distance may overlook this fact. 65 

Incorporating domain knowledge, such as random field theory into data-driven machine learning 66 
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models is a promising approach (Lyu et al., 2024; Wu et al., 2023). It addresses challenges related to 67 

the weak interpretability, poor generalization, and physical inconsistency of machine learning models. 68 

For example, Chen et al. (2023) used a large number of 2D synthetic samples derived from random 69 

field theory as 'prior' information to generate deep learning models. These models, enriched with prior 70 

information, then guided subsurface modeling for site-specific 2D applications. However, generating 71 

and storing large numbers of 3D random field synthetic samples and inputting them into models for 72 

training is challenging. Furthermore, Chen et al. (2024) used the correlation matrix from random field 73 

theory to characterize the spatial positions of soil cells within a site, embedding random field theory 74 

into a data-driven model. Nevertheless, calculating the correlation matrix requires additional random 75 

field parameters. Estimating these parameters for 3D sites is particularly challenging when borehole 76 

data is sparse (Qi et al., 2022; Xiao et al., 2018; J.-Z. Zhang et al., 2022; Zhang et al., 2021). 77 

Additionally, the number of soil cells in a 3D site increases significantly compared to a 2D site, making 78 

the storage and processing of large correlation matrices time-consuming (Z. Yang et al., 2022). It is 79 

worth noting that in geotechnical subsurface modeling, 'prior' information encompasses not only the 80 

domain knowledge (random field theory) but also measurement data from neighboring or similar sites 81 

(Guan et al., 2024b) and multi-source measurement data (Xie et al., 2022a). This study primarily 82 

focuses on embedding random field theory as 'prior' information into data-driven models, which proves 83 

particularly beneficial in scenarios where similar measurement data are challenging to obtain. 84 

To address the described issues above, this paper proposes a data-driven framework that uses 85 

random field theory to achieve 3D subsurface modeling with reduced computational complexity and 86 

no parameters. The framework employs a correlation matrix processed through principal component 87 
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analysis (PCA) to characterize the spatial positions of soil cells, providing a rich set of basis functions 88 

for subsurface modeling. Additionally, to reduce the computational complexity of processing large 89 

correlation matrices with PCA, a strategy is proposed that involves sparse sampling followed by 90 

projection into the principal component space. A series of synthetic random field samples are 91 

statistically analyzed to investigate the impact of scale of fluctuation on subsurface modeling accuracy, 92 

aiming to eliminate correlated parameters. The performance of the proposed method is validated using 93 

a large number of synthetic cases and two real case histories. The remainder of this study is organized 94 

as follows: Section 2 introduces the proposed enhanced subsurface modeling framework. Section 3 95 

discusses the improvements and simplification strategies of the proposed framework through a series 96 

of synthetic cases. Section 4 provides a detailed description of the implementation procedures of the 97 

proposed method. Sections 5 and 6 compare and validate the method using both 2D and 3D examples, 98 

followed by the conclusion. 99 

2 Proposed Subsurface Modeling Methods 100 

The essence of data-driven subsurface modeling lies in using sparse measurement information to infer 101 

soil properties at multiple unmeasured locations. This study aims to integrate random field theory into 102 

data-driven models through Geotechnical Correlation Fields (GCFs) to reduce uncertainty in 103 

subsurface modeling and enhance model reliability.  104 

2.1 Three-dimensional Geotechnical Correlation Field 105 

The geological and environmental processes during soil deposition result in spatial variability in 106 

near-surface soils. Random Field Theory (RFT), as a powerful tool for evaluating the spatial variability 107 

of soil properties, is widely used for modeling the inherent variability of soils (Stuedlein et al., 2012a). 108 
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RFT adheres to the fact that soil properties at a given site exhibit spatial dependency, meaning that soil 109 

properties are correlated only within a certain lag distance. In RFT, the inherent variability of soil 110 

properties is described not only by mean and variance but also by autocorrelation functions (ACFs) 111 

and scales of fluctuation (SoF) (Cami et al., 2020). Eq. (1) demonstrates a commonly used ACF—the 112 

Single Exponential (SNX) model. ACFs quantify the correlation 𝜌𝑖,𝑗 between soil cells 𝑖 and 𝑗, rather 113 

than relying solely on the distance between them. It is important to note that before implementing RFT, 114 

the site must be discretized into 𝑁 soil cells (cubic elements) based on engineering requirements, with 115 

each cell assumed to be homogeneous internally. 116 

𝜌𝑖,𝑗 = exp [−2(|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥 + |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦 + |𝜏𝑖,𝑗𝑧 |𝑆𝑂𝐹𝑧)]   (𝑖, 𝑗 ∈ [1, 𝑁]) (1) 117 

where 𝜏𝑖,𝑗𝑥 , 𝜏𝑖,𝑗𝑦 , and 𝜏𝑖,𝑗𝑧  represent the distances between soil cells i and j along the x-, y-, and z-axis 118 

directions, respectively. 𝑆𝑜𝐹𝑥, 𝑆𝑜𝐹𝑦, and 𝑆𝑜𝐹𝑧 correspond to the scales of fluctuation for a specific site 119 

in the x-, y-, and z-axis directions. Table A1 in Appendix A presents seven common types of ACFs 120 

(Cami et al., 2020; Ching et al., 2019). 121 

To calculate the correlation 𝜌 between every pair of soil cells, a correlation matrix C of dimension 122 𝑁×𝑁 is constructed, as shown in Eq. (2). In this matrix, 𝜌𝑖,𝑗 = 1 when i=j, and C is symmetric (𝜌𝑖,𝑗 =123 𝜌𝑗,𝑖). The first row of C, denoted as 𝐂𝐕1, represents the correlation vector between the first soil cell 124 

and all other soil cells. Using 𝐂𝐕1, the relative spatial position of the first soil cell within the site can 125 

be expressed. Similarly, the relative spatial positions of the remaining soil cells can be represented as 126 𝐂𝐕𝑖(𝑖 ∈ [1, 𝑁]). As shown in Fig. 1(a), the correlation vectors for soil cells A–E are illustrated for the 127 

case where SoF𝑥 and SoF𝑦=100 m, and SoF𝑧=1.0 m. The correlation decreases as the distance from 128 

soil cells A–E increases, indicating that soil properties exhibit correlation only within the scale of 129 
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fluctuation. 130 

𝐂𝑁×𝑁 = [   
  𝜌1,1 𝜌1,2 ⋯𝜌2,1 𝜌2,2 ⋯⋯ ⋯ ⋯ 𝜌1,𝑗 ⋯ 𝜌1,𝑁𝜌2,𝑗 ⋯ 𝜌2,𝑁⋯ ⋯ ⋯𝜌𝑖,1 𝜌𝑖,2 ⋯⋯ ⋯ ⋯𝜌𝑁,1 𝜌𝑁,2 ⋯ 𝜌𝑖,𝑗 ⋯ 𝜌𝑖,𝑁⋯ ⋯ ⋯𝜌𝑁,𝑗 ⋯ 𝜌𝑁,𝑁]  

   =
[  
   
𝐂𝐕1𝐂𝐕2⋯𝐂𝐕𝑖⋯𝐂𝐕𝑁]  

   (𝑖, 𝑗 ∈ [1, 𝑁]) (2) 131 

 132 

 133 
Fig. 1 Visual representation of the 3D correlation matrix and geotechnical correlation fields: (a) 134 

Correlation of soil cells A–E with all other soil cells (SoF𝑥 and SoF𝑦=100 m, and SoF𝑧=1.0 m); (b) 135 

Forms of geotechnical correlation fields (GCFs) corresponding to different principal components. 136 

Note: Each GCF has been normalized to a range of 0–1. 137 

 Conventional subsurface modeling methods such as conditional random fields or Kriging often 138 

require operations like matrix inversion of the correlation matrix C, which can be computationally 139 

intensive when N (the number of soil cells) is large. A simplified approach proposed by Chen et al. 140 

(2024) involves the following steps: ① Data Collection: Gather measured soil cell properties 𝑞𝑖(𝑖 ∈141 [measured cells]) and their corresponding correlation vectors 𝐂𝐕𝑖; ② Data-Driven Modeling: Use a 142 

data-driven model to establish a complex nonlinear relationship between 𝐂𝐕𝑖 and 𝑞𝑖 . ③Prediction: 143 
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Apply the trained data-driven model to predict the properties of unmeasured soil cells. 144 

It is important to note that soil properties are only correlated within the range of the scale of 145 

fluctuation, leading to a sparse matrix with many zero elements in C. Therefore, directly using the 146 

correlation vector 𝐂𝐕𝑖 as input features for the data-driven model is not ideal. This approach may result 147 

in excessively high input dimensions with a significant number of redundant zero features, which can 148 

substantially reduce both the training and prediction efficiency of the model. To address this issue, this 149 

study first applies dimensionality reduction to C using Principal Component Analysis (PCA). The top 150 

k eigenvectors with the largest eigenvalues are used to represent 𝐏𝐂(𝑁×𝑘), as shown in Eq. (2). Since k 151 

is much smaller than N, 𝐏𝐂(𝑁×𝑘) is easier to store compared to the original correlation matrix 𝐂𝑁×𝑁. In 152 

this study, 𝐏𝐂(𝑁×𝑘) is referred to as the geotechnical correlation field, which encapsulates the main 153 

information from the correlation matrix. 154 

𝐏𝐂(𝑁×𝑘) = PCA(𝐂𝑁×𝑁) = [  
   
𝑃1,1 𝑃1,2𝑃2,1 𝑃2,2⋯ ⋯𝑃𝑖,1 𝑃𝑖,2⋯ ⋯𝑃𝑁,1 𝑃𝑁,2

   
⋯ 𝑃1,𝑘⋯ 𝑃2,𝑘⋯ ⋯⋯ 𝑃𝑖,𝑘⋯ ⋯⋯ 𝑃𝑁,𝑘]  

   =
[  
   
𝐏𝐕1𝐏𝐕2⋯𝐏𝐕𝑖⋯𝐏𝐕𝑁]  

   (𝑖 ∈ [1, 𝑁]) (2) 155 

 As shown in Fig. 1(b), ten geotechnical correlation fields (GCFs) of a specific site are presented, 156 

highlighting the significant differences in the forms of different GCFs. GCF #1([𝑃1,1, 𝑃2,1, ⋯ , 𝑃𝑁,1]T), 157 

representing the geotechnical correlation field corresponding to the first principal component, exhibits 158 

relatively smooth variations in the xz and yz planes. Compared to GCF #1, GCF #12 shows notable 159 

distinctions in the xy plane, while GCF #20 exhibits more complex fluctuations in the xz and yz planes 160 

relative to GCF #12. Overall, the complexity of GCFs increases with the growth of k. Consequently, 161 

GCFs effectively capture the spatial variability of soil properties within the site, encompassing both 162 
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low-frequency and high-frequency information. Additionally, the diverse forms of GCFs offer a robust 163 

set of basis functions for accurately characterizing spatial variations of soil properties. 164 

2.2 Simplified Strategy for Generating 3D GCFs 165 

GCFs effectively address the challenges of low computational efficiency in data-driven models 166 

caused by the sparsity and high dimensionality of the original correlation matrix. Additionally, GCFs 167 

provide diverse basis functions for data-driven subsurface modeling and embed random field theory 168 

knowledge into the input features of the model. However, for large-scale or high-resolution 3D sites, 169 

the number of soil cells 𝑁 can reach tens of thousands. Directly processing such massive correlation 170 

matrices to obtain GCFs can be exceedingly time-consuming. Therefore, it is necessary to propose a 171 

simplified approach to enhance the efficiency of GCF generation, thereby expanding the applicability 172 

of GCF-based data-driven subsurface modeling methods. 173 

(1) Simplifying 3D GCFs into a Combination of 2D GCFs on xy, xz, and yz Planes 174 

As shown in Fig. 2(a), horizontal scale of fluctuations in geotechnical sites are typically larger, 175 

ranging from 5 to 105 m, while vertical scale of fluctuations are relatively smaller, between 0.1 and 176 

3.1 m (Chen et al., 2023). Figs. 2(d)-(e) illustrate two 3D GCFs generated with SoF𝑥 and SoF𝑦=100 m, 177 

and SoF𝑧=1.0 m. Interestingly, directly calculating GCFs on the xy plane and the xz/yz 2D planes yields 178 

GCFs with cross-sectional forms consistent with those of the 3D GCFs. This observation indicates that 179 

3D GCFs essentially represent a superposition of a series of 2D GCFs. 180 

Therefore, this study adopts a combination of GCFs from the xy, xz, and yz planes to represent the 181 

spatial positions of soil cells in 3D space, referencing the representation of (x, y, z) coordinates in 3D 182 

Euclidean space, as shown in Fig. 2(b). This approach eliminates the need for direct generation and 183 
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processing of large correlation matrices in 3D sites, substituting them with more manageable 2D planes. 184 

To do so, the GCFs for the xy, yz, and xz planes are calculated separately. The projection points 185 

for soil cell i in these three planes (denoted as points A, B, and C in Fig. 2(c)) are identified. Combining 186 

the GCFs of the projection points from the three planes, the representation of the soil cell is obtained 187 

in 3D space as  {[𝑃A,1, 𝑃A,2, ⋯ , 𝑃A,𝑘1]  & [𝑃B,1, 𝑃B,2,⋯ , 𝑃B,𝑘2]  & [𝑃C,1, 𝑃C,2,⋯ , 𝑃C,𝑘3]} , where k1, k2, 188 

and k3 represent the number of principal components retained in the xy, yz, and xz planes. The values 189 

of k for different planes are discussed in Section 3.2. 190 

 191 

Fig. 2 Transforming 3D GCFs into a combination of 2D GCFs: (a) Schematic of a 3D geotechnical 192 

site and its SoFs; (b) Representation of soil cell spatial positions using 3D coordinates; (c) 193 

Representation of soil cell spatial positions using a combination of GCFs on the xy, xz, and yz planes; 194 

(d)-(e) Decomposition of 3D GCFs into GCFs on the xy, xz, and yz planes. 195 

(2) Reducing the Computational Complexity of GCFs via Sparse Sampling 196 

It is worth noting that simplifying 3D GCFs into a combination of GCFs on the xy, xz, and yz 197 



12 

 

planes, can effectively improve the efficiency of GCF generation. However, in large-scale or high-198 

resolution sites, the number of soil cells in a 2D plane remains substantial, making subsequent PCA 199 

operations computationally challenging. Therefore, this study proposes a sparse sampling strategy to 200 

reduce the computational complexity of generating 2D GCFs. For clarity, Fig. 3 illustrates the process 201 

of generating GCFs and subsurface modeling using the xy-plane. Similar processes repeat for the xz 202 

and yz planes. The key steps are summarized as follows: 203 

Simplified Step 1: Divide the site into 𝑁 soil cells according to the requirements of the 204 

engineering project. 205 

Simplified Step 2: A total of G soil cells are sampled at regular intervals from the N total cells, 206 

referred to as GCFs cells. The impact of the sampling interval is discussed in Section 3.1. 207 

Simplified Step 3: As shown in Eqs. (3) and (4), the correlation matrix CN×G is computed for the 208 

N soil cells and the sampled G cells, resulting in an N×G dimensional matrix. Simultaneously, the 209 

correlation matrix CG×G for the G soil cells is calculated, yielding a G×G dimensional matrix. It is 210 

noteworthy that both CN×G and CG×G have lower dimensions than 𝐂𝑁×𝑁, which facilitates storage. 211 

𝐂𝑁×𝐺 = [   
  𝜌1,1 𝜌1,2 ⋯𝜌2,1 𝜌2,2 ⋯⋯ ⋯ ⋯ 𝜌1,𝑗 ⋯ 𝜌1,𝐺𝜌2,𝑗 ⋯ 𝜌2,𝐺⋯ ⋯ ⋯𝜌𝑖,1 𝜌𝑖,2 ⋯⋯ ⋯ ⋯𝜌𝑁,1 𝜌𝑁,2 ⋯ 𝜌𝑖,𝑗 ⋯ 𝜌𝑖,𝐺⋯ ⋯ ⋯𝜌𝑁,𝑗 ⋯ 𝜌𝑁,𝐺]  

   (𝑖 ∈ [1, 𝑁], 𝑗 ∈ [1, 𝐺] ) (3) 212 

𝐂𝐺×𝐺 = [   
  𝜌1,1 𝜌1,2 ⋯𝜌2,1 𝜌2,2 ⋯⋯ ⋯ ⋯ 𝜌1,𝑗 ⋯ 𝜌1,𝐺𝜌2,𝑗 ⋯ 𝜌2,𝐺⋯ ⋯ ⋯𝜌𝑖,1 𝜌𝑖,2 ⋯⋯ ⋯ ⋯𝜌𝐺,1 𝜌𝐺,2 ⋯ 𝜌𝑖,𝑗 ⋯ 𝜌𝑖,𝐺⋯ ⋯ ⋯𝜌𝐺,𝑗 ⋯ 𝜌𝐺,𝐺]  

            (𝑖, 𝑗 ∈ [1, 𝐺] )       (4) 213 

where 𝜌𝑖,𝑗 represents the correlation between the i-th and j-th soil cells, which is calculated using the 214 

ACFs and the corresponding SoFs. The detailed calculation formula can be found in Table A1 of 215 
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Appendix A. However, accurately determining these parameters is challenging in the presence of 216 

sparse survey information (Qi et al., 2022; Xiao et al., 2018; Zhang et al., 2021). Section 3.2 provides 217 

a detailed discussion on the impact of these parameters. 218 

Simplified Step 4 & 5: PCA is applied to CG×G to obtain a projection matrix with k principal 219 

components. Subsequently, CN×G is projected onto the selected k principal components, resulting in an 220 

N×k dimensional 𝐏𝐂(𝑁×𝑘) matrix, as shown in Eq. (5). Notably, this approach significantly reduces 221 

computational complexity compared to directly performing PCA on the CN×N, especially when N is 222 

large. The PCA operations are implemented using Python's scikit-learn v1.1.3 (Pedregosa et al., 2018). 223 

Further discussion can be found in Section 3.1.  224 𝐏𝐂(𝑁×𝑘) = 𝐂𝑁×𝐺 × (PCA(𝐂𝐺×𝐺))𝐺×𝑘 (𝑖 ∈ [1, 𝑁]) (5) 225 

Simplified Step 6: Determine the survey locations and collect the measured CPT results q (e.g., 226 

cone tip resistance, sleeve friction) or other soil parameters (e.g., penetration pore water pressure, 227 

undrained shear strength). The measured properties of n soil cells are used to form the training set, 228 

while the remaining m (m=N−n) soil cells, with unknown properties, form the test set. The input 229 

features of the training set (i.e., N×k matrix) are the row vectors corresponding to n soil cells in the 230 𝐏𝐂 matrix, and the outputs are the measured values of the soil properties for n soil cells. A data-driven 231 

model is used to learn the nonlinear relationship between the input features and outputs in the training 232 

set. Once trained, the model can be used to predict the properties of m unsampled soil cells. This study 233 

integrates random field theory into the data-driven model through input features, making the proposed 234 

method highly flexible and applicable to any data-driven model. The Shortcut-Connected Neural 235 

Network (SCNN) and the Extra Trees (ET) models are adopted and compared. A detailed description 236 
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of the SCNN and ET models is provided in Appendix B. 237 

 238 

Fig. 3 Process of generating GCFs and performing subsurface modeling, illustrated using the xy-239 

plane as an example. 240 

2.3 Characterization of Uncertainty in Subsurface Modeling 241 

The task of subsurface modeling requires inferring soil properties at unmeasured locations based on 242 

sparse measurement data. Typically, the number of soil cells in unknown areas far exceeds the number 243 

of measured cells, leading to significant uncertainties in the subsurface modeling results. Accurate 244 

quantification of the uncertainty in subsurface modeling is crucial for guiding the investigation and 245 

design processes in geotechnical engineering (Yan et al., 2023; Zhang et al., 2024; C. Zhao et al., 2023). 246 

Prioritizing investigation points in areas of high uncertainty can effectively reduce the uncertainty of 247 

the subsurface model and mitigate the risk of geotechnical disasters caused by spatial variability in soil 248 

properties. 249 

The data-driven models used in this study are the ET model and the SCNN model. The ET model, 250 
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as an ensemble learning method, approximates the true hypothesis by combining multiple weak 251 

learners. A common strategy to quantify the predictive uncertainty of ensemble learning models is to 252 

perform statistical analysis on the multiple weak learners (Xie et al., 2022a). According to the central 253 

limit theorem, the resampling distribution of the predicted values will approximate a gaussian 254 

distribution. The standard deviation (σ) of the predictions from all weak learners can be used to 255 

estimate the uncertainty of the prediction results: 256 

𝜎 = √∑ [𝑓ET𝑖 (𝐏𝐕) − 𝑓ET̅̅ ̅̅ ]2𝑛𝑖=1 𝑛 − 1 (6) 257 

where𝑓ET𝑖 (𝐏𝐕) is the prediction result from the 𝑖-th weak learner; 𝑓ET̅̅ ̅̅  is the average prediction result 258 

from the 𝑛 weak learners, 259 

 For the SCNN model, uncertainty can be quantified using Monte Carlo dropout (MC dropout) and 260 

random weight initialization methods to quantify uncertainty in model predictions. MC dropout 261 

operates by randomly disconnecting a certain proportion of neural connections, resulting in an altered 262 

model architecture (T. Wang et al., 2023; P. Zhang et al., 2022). Given that the model architecture 263 

changes each time, the standard deviation of the predictions after performing 𝑡 Monte Carlo dropout 264 

sampling runs can be calculated as follows: 265 

𝜎 = √∑ [𝑓SCNN𝑖 (𝐏𝐕, dropout(𝐖, 𝐛)) − 𝑓SCNN̅̅ ̅̅ ̅̅ ̅]2𝑡𝑖=1 𝑡 − 1 (7) 266 

where 𝐖 and 𝐛 are the weights and biases of the neural network; dropout(𝐖, 𝐛) refers to randomly 267 

deactivating a portion of the neural connections during the 𝑡-th prediction, effectively altering the 268 

network's architecture and introducing variability; 𝑓SCNN𝑖 (𝐏𝐕, dropout(𝐖, 𝐛))  represents the 269 

prediction result from the 𝑖-th random forward pass of the network, where dropout is applied each time; 270 
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𝑓SCNN̅̅ ̅̅ ̅̅ ̅ is the mean prediction result across all 𝑡 forward passes (predictions). The MC dropout method 271 

is simple and efficient. However, the uncertainty in prediction results is often closely related to the 272 

design of the dropout structure, such as the dropout rate and the number of dropout layers. 273 

Consequently, selecting an appropriate dropout structure generally requires engineers to have 274 

substantial experience and time to conduct repeated trials.  275 

 The random weight initialization method does not require any additional user-defined parameters. 276 

It introduces variability into the model by assigning different initial trainable parameters to the neural 277 

network, causing the model to follow different optimization paths during the iterative optimization 278 

process. As a result, this method generates different predictions based on the distinct paths taken by 279 

the model. However, the random weight initialization method requires training 𝑚 neural networks, 280 

each with different initial parameters. This can be computationally expensive, particularly for complex 281 

models that are time-consuming to train. The uncertainty in the prediction results can be represented 282 

as: 283 

𝜎 = √∑ [𝑓SCNN𝑖 (𝐏𝐕,𝐖𝑖 , 𝐛𝑖) − 𝑓SCNN̅̅ ̅̅ ̅̅ ̅]2𝑚𝑖=1 𝑚 − 1 (8) 284 

where 𝐖𝑖 and 𝐛𝑖 are the weights and biases of the i-th neural network; 𝑓SCNN𝑖 (𝐏𝐕,𝐖𝑖 , 𝐛𝑖) represents 285 

the prediction from the 𝑖-th neural network, trained with different initial parameters; 𝑓SCNN̅̅ ̅̅ ̅̅ ̅  is the 286 

average prediction result from the m networks. It is important to note that the SCNN model structure 287 

employed in this study is relatively simple and easy to train. Therefore, random weight initialization 288 

is employed to quantify uncertainty in subsurface modeling. 289 

2.4 Model Interpretability 290 

Regarding deep learning for geotechnical engineering, the relationship between inputs and outputs 291 
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remains difficult to analyze and interpret. SHapley Additive exPlanations (SHAP) is a game-theory-292 

based method for interpreting black-box models. This study uses SHAP to interpret the ET and SCNN 293 

models used for subsurface modeling, providing deeper insights into the model's internal mechanisms 294 

and evaluating the contribution of each input feature (i.e., GCFs) to the random field predictions. SHAP 295 

method avoids the necessity of heuristically selecting methods to linearize components. Instead, it 296 

derives an effective linearization directly from the SHAP values calculated for each component 297 

(Lundberg and Lee, 2017). 298 

The TreeSHAP method can be used to interpret the output of the ET model and measure the 299 

importance of each dimension of the GCFs in contributing to the subsurface modeling results. Similarly, 300 

for the SCNN model, the DeepSHAP method, which is specifically designed for deep learning models, 301 

can be applied to explain the model's predictions. In both cases, these methods provide a way to 302 

quantify the contribution of each dimension of the GCFs to the final model output. This is particularly 303 

useful for understanding the underlying factors driving the predictions of complex models, where 304 

interpretability is crucial for ensuring model reliability and trustworthiness. By using TreeSHAP and 305 

DeepSHAP for SCNN models, it is possible to gain insight into how different GCFs, as well as their 306 

individual components, influence the model’s predictions, and identify which features are most 307 

important for making accurate subsurface predictions. This study uses the Python-based SHAP library 308 

v0.46.0 (Lundberg and Lee, 2017) for model interpretation. 309 

2.5 Evaluation Metrics 310 

Three types of evaluation metric are employed to assess the accuracy of subsurface modeling: (1) 311 

R-squared (R2) is used to evaluate the goodness of fit, with values closer to 1 indicating better model 312 
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performance (see Eq. (7)); (2) the root mean square error (RMSE) is used to evaluate the model's error 313 

from the perspective of absolute error (see Eq. (8)); (3) the mean absolute percentage error (MAPE) is 314 

employed to assess model accuracy from the perspective of relative error (see Eq. (9)). It is important 315 

to note that when the measured value (e.g., cone tip resistance) of a soil cell is close to zero, MAPE 316 

may not adequately assess the model's performance. Therefore, the symmetric mean absolute 317 

percentage error (sMAPE) is introduced as a supplementary metric (see Eq. (10)). 318 

𝑅2 = 1 − ∑ (𝑞𝑖 − �̂�𝑖)2𝑁𝑖=1∑ (𝑞𝑖 − �̅�)2𝑁𝑖=1 (7) 319 

𝑅𝑀𝑆𝐸 = √1𝑁∑(𝑞𝑖 − �̂�𝑖)2𝑁
𝑖=1 (8) 320 

𝑀𝐴𝑃𝐸 = 1𝑁∑|𝑞𝑖 − �̂�𝑖𝑞𝑖 |𝑁
𝑖=1 × 100% (9) 321 

𝑠𝑀𝐴𝑃𝐸 = 1𝑁∑ |𝑞𝑖 − �̂�𝑖|(𝑞𝑖 + �̂�𝑖)/2𝑁
𝑖=1 × 100% (10) 322 

where N is the total number of soil cells; 𝑞𝑖 and �̂�𝑖 are the measured and predicted properties of soil 323 

cell i. 324 

3 Validation of two simplified strategies 325 

A set of synthetic zero-mean stationary gaussian random fields with different horizontal and 326 

vertical SoF are used to illustrate the performance and sensitivity of the proposed method with the 327 

special focus on the following aspects: (1) how to sample as few soil cells as possible to generate 328 

accurate GCFs, bypassing the storage of large correlation matrices and reducing the computational 329 

complexity of PCA; (2) the impact of RFT parameters on subsurface modeling. The synthetic 3D site 330 

spans 100 m horizontally (x and y) and has a depth (z) of 10 m. The site is simulated with resolutions 331 
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of 1.0 m horizontally and 0.1 m vertically. The mean (μ) and stand deviation (σ) of the synthetic 332 

samples are set as 11 MPa and 3 MPa, respectively. The horizontal SoFs of the synthetic data are 10, 333 

30, 50, 70, and 90 m, while the vertical SoFs are 0.1, 0.5, 1.0, 1.5, and 2.0 m. For each combination of 334 

SoFs, 50 samples are randomly simulated using the Cholesky decomposition method (Y. Yang et al., 335 

2022), yielding a total of 3,750 synthetic samples. 336 

3.1 Reducing the Computational Complexity of GCF Generation 337 

This study uses a combination of three 2D-plane GCFs (xy, xz, and yz) to represent the spatial 338 

locations of soil cells within a 3D site. Since there is no essential difference between the yz and xz 339 

planes, only the xy and xz planes are analyzed in subsequent steps. To avoid redundancy, the SoF values 340 

in the x and y directions are set to 100 m, and the SoF in the z direction is set to 0.5 m for the 341 

presentation. For detailed procedures, see Section 2.2. 342 

As shown in Fig. 4 (a), a comparison is made between the GCFs generated using all soil cells (first 343 

row) and those generated with a sampling interval of 10 m (second row). The GCFs are arranged in 344 

order of decreasing eigenvalue as part of the PCA operation. It is observed that the GCFs exhibit an 345 

increasing trend in complexity from front to back. Furthermore, the GCFs generated using the sparse 346 

sampling strategy demonstrate a high degree of consistency with the original GCFs. It is worth noting 347 

that each GCF is normalized to ensure it remains within the gradient-sensitive range of the neural 348 

network, thus accelerating the model's training process. Some of the simplified GCFs exhibit values 349 

that are inversely related to those of the original GCFs. However, this does not affect the ML model's 350 

performance. 351 

As shown in Fig. 4(b), the GCFs generated using all soil cells (first row) closely resemble those 352 
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produced with a 0.2 m sampling interval in the z direction (second row). However, when a 0.5 m 353 

sampling interval is applied in the z direction, the generated GCFs exhibit noticeable striping. This 354 

phenomenon is primarily due to the site's SoF in the z direction being set at 0.5 m. Therefore, the 355 

sampling interval must be smaller than the SoF of the site. Additionally, there are significant 356 

differences in the morphology of GCFs between the xz and xy planes. The first 20 GCF components in 357 

the xz plane resemble vertical waves, with progressively shorter periods and higher frequencies as the 358 

components advance. Beyond the 21st component, the GCFs resemble overlapping transverse and 359 

vertical waves, with an increasing frequency. These diverse GCF components will serve as basis 360 

functions, providing a robust foundation for subsequent subsurface modeling. 361 

 362 

Fig. 4 Performance of generating GCFs using the simplified strategy: (a) Morphology of GCFs at 363 

different sampling intervals when the SoFs in the x and y directions of the xy plane are set to 100 m, 364 

with the first row showing the original GCFs and the second row showing the simplified GCFs at a 365 
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10 m sampling interval; (b) Morphology of GCFs when the SoFs in the x and z directions of the xz 366 

plane are set to 100 m and 0.5 m, respectively, with the first row showing the original GCFs and the 367 

second and third rows showing the simplified GCFs at sampling intervals of 0.2 m and 0.5 m. 368 

Fig. 5 illustrates the performance of generating GCFs using soil cells with different sampling 369 

intervals in the xy plane. It can be observed that when the sampling intervals in the x and y directions 370 

are set between 2 and 10 m, the GCFs generated using the simplified strategy show a high similarity 371 

to those generated using all soil cells, with an R2 value approaching 1. When the sampling interval 372 

exceeds 15 m, the accuracy of the GCFs generated using the simplified strategy gradually decreases, 373 

leading to increased uncertainty. Therefore, it is recommended that the sparse sampling interval for 374 

generating the GCFs in the xy-plane should be smaller than 0.1 times the SoFx or SoFy. It is noteworthy 375 

that generating GCFs directly using all soil cells (10,000 in total) requires the PCA to process a 10,000 376 

× 10,000 correlation matrix. However, when the sampling interval is set to 10 m, only 121 soil cells 377 

are available, requiring PCA to process a correlation matrix of size 121 × 121. This significantly 378 

reduces the computational complexity of the PCA operation and confines the generation time of the 379 

GCFs to approximately 0.02 s.  380 

 381 

Fig. 5 Impact of different sampling intervals in the x and y directions on the performance of GCFs 382 
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generated in the xy plane. 383 

As shown in Fig. 6, the performance of generating GCFs using soil cells with different sampling 384 

intervals in the xz plane is evaluated. Given that sampling in the x direction at 10 m intervals in the xy 385 

plane has minimal impact on the accuracy of the generated GCFs, the sampling interval in the x 386 

direction is fixed at 10 m for this analysis. It can be observed that when the sampling interval in the z 387 

direction is between 0.2 and 0.3 m, the GCFs generated closely resemble those produced using all soil 388 

cells, with an R2 value approaching 1. However, when the sampling interval exceeds 0.3 m, the 389 

accuracy of the simplified GCFs declines rapidly. Therefore, it is recommended that the sparse 390 

sampling interval for generating the GCFs in the xz and yz planes should be smaller than 0.6 times the 391 

SoFz. When the interval is smaller than the resolution in the z-direction of the site, no sparse sampling 392 

should be performed. Notably, only 550 GCF cells are used when the sampling interval in the x 393 

direction is 10 m and in the z direction is 0.2 m. This significantly reduces the size of the correlation 394 

matrix and confines the generation time of the GCFs to approximately 0.2 s. 395 

 396 

Fig. 6 Effect of different sampling intervals in the z direction on the performance of GCFs generated 397 

in the xz plane 398 
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3.2 Impact of RFT Parameters on Subsurface Modeling Results 399 

The GCFs generation process is controlled by random field theory. Therefore, it is necessary to 400 

investigate the influence of RFT parameters (SoF and ACF type) on subsurface modeling. To achieve 401 

this, a series of xy and xz sections with different combinations of SoFs are extracted from synthetic 3D 402 

samples. Each SoF combination is randomly sampled 50 times. In the xy plane, 25 measurement points 403 

are arranged at grid points corresponding to x and y coordinates of 0.5 m, 25.5 m, 50.5 m, 75.5 m, and 404 

99.5 m. In the xz plane, 5 boreholes are arranged along sample paths corresponding to x coordinates 405 

of 0.5 m, 25.5 m, 50.5 m, 75.5 m, and 99.5 m. 406 

(1) The impact of SoFs on modeling accuracy 407 

As shown in Figs. 7(a) and (b), different SoFx and SoFz values are used to generate GCFs and 408 

perform subsurface modeling. For brevity, only 500 sets of the synthetic field with an SoFx of 50 m 409 

are presented. To eliminate the impact of other factors on modeling accuracy, the GCF dimensions 410 

used for the xy and xz planes are set to 50 and 300, respectively. 411 

For the xy plane, the modeling error (RMSE) decreases as the SoFx used for generating GCFs 412 

increases, up to the SoFx of 50 m.  This indicates that in the sparsely measured xy plane, using a larger 413 

SoF to generate GCFs is beneficial, as it allows more measured data to be used for inferring the 414 

properties of unsampled locations. Therefore, selecting a horizontal SoF as 2 times the borehole 415 

spacing is a more general choice. Additionally, the horizontal SoF can be treated as a hyperparameter 416 

and optimized using a cross-validation method to ensure the rationality of the generated GCFs. 417 

Additionally, it can be observed that as the true scale of fluctuation at the site increases, the spatial 418 

variability of soil properties becomes smoother, and the modeling error decreases. For the xz plane, the 419 
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modeling error increases as SoFz increases. Using a larger SoFz to generate GCFs results in predictions 420 

that reflect the average trend of the site, thus reducing prediction accuracy. However, given that 421 

measurement data in the z direction are abundant, using a smaller SoFz to generate GCFs and perform 422 

subsurface modeling is reasonable. This approach helps to accurately reflect the spatial variability of 423 

soil properties with depth. Overall, setting SoFz equal to the resolution of the site in the z direction is 424 

statistically the optimal choice for generating GCFs. 425 

 426 

Fig.7 Impact of SoF used to generate GCFs on subsurface modelling results: (a) The impact of 427 

different SoFx values on the modeling accuracy of the xy plane. (b) The impact of different SoFz 428 

values on the modeling accuracy of the xz plane. 429 

(2) Impact of GCFs dimension on modeling accuracy 430 

Figs. 8(a) and (b) illustrate the impact of using different numbers of GCFs (i.e. PCAs) on the 431 

accuracy of subsurface modeling in the xy and xz planes. To avoid redundancy, only 500 synthetic 432 

cases with SoFx of 70m are shown. For clarity and comparison with Fig. 4, the SoFs used to generate 433 

GCFs are consistent with those in Section 3.1. As shown in Fig. 8(a), the error in subsurface modeling 434 

results decreases gradually with the increase in the number of GCFs. Specifically, when SoFy is large, 435 

the accuracy of subsurface modeling is sufficiently high even with a small number of GCFs. 436 

(a)

(b)
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Conversely, when SoFy is small, the spatial variability of the soil properties is higher, thus requiring 437 

more GCFs for accurate modeling. As shown in Fig. 9(a), when SoFy is large, the first few GCFs have 438 

greater importance to the model. Overall, for the xy plane, choosing at least 10 GCFs as input features 439 

for the subsurface model is a reasonable choice. Increasing the number of GCFs helps to capture high-440 

frequency information. In practical cases, the number of GCFs in the xy plane can be treated as a 441 

hyperparameter and optimized using cross-validation methods. 442 

 443 

Fig.8 The impact of retaining different numbers of GCFs (number of PCAs) on the modeling 444 

accuracy in the xy and xz planes. 445 

As shown in Fig. 8(b), in the xz plane, the accuracy of subsurface modeling is low when the 446 

number of GCFs is fewer than 21. However, once the 21st GCF is incorporated into the modeling 447 

process, there is a significant improvement in model accuracy. As illustrated in Fig. 4(b), the first 20 448 

GCFs in the xz plane only describe the vertical correlation of the site, while the 21st GCF captures the 449 

horizontal correlation. The inclusion of the 21st GCF in subsurface modeling enhances accuracy 450 

significantly due to the combined effects of both horizontal and vertical correlations. As shown in Fig. 451 

9(b), the 21st GCF plays a significant role in the subsurface modeling results, confirming the validity 452 

of the previous analysis. Overall, for the xz plane, selecting at least 25 GCFs as input parameters for 453 
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the subsurface model is a reasonable choice. In practical applications, the number of GCFs in the xz 454 

plane should also be optimized using cross-validation methods. 455 

 456 

Fig.9 The importance of different GCFs on the modeling results in the xy and xz planes. 457 

(3) ACFs Type and Its Impact on Modeling Accuracy 458 

As shown in Figs. 10(a) and (b), the impact of different ACF types on the accuracy of subsurface 459 

modeling in the xy and xz planes is compared. The primary distinction among the ACFs lies in the 460 

roughness of the synthetic sample paths. To avoid redundancy, only 500 synthetic cases with SoFx of 461 

50 m are presented. In these cases, the SoFx and SoFy used to generate GCFs are both set at 100 m, 462 

while the SoFz is set at 0.5 m. Statistical results indicate that the impact of different ACFs on modeling 463 

accuracy is negligible. Theoretically, when the number of GCFs actively participating in subsurface 464 

modeling is sufficiently large, the results should reflect the characteristics of the different ACFs. 465 

However, as shown in Figs. 8(a) and (b), even with an increased number of GCFs participating in 466 

subsurface modeling, the accuracy does not continuously improve. This is primarily due to the fact 467 

that the number of measured soil cells during the modeling process is significantly lower than that of 468 

the unmeasured cells. Therefore, even if more GCFs are included as input features, the model cannot 469 

learn the relationships between higher-order GCFs and soil cell properties from sparse data, leading to 470 
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the inevitable ignoring of higher-order GCFs by the model. Consequently, discussing the impact of 471 

ACF types on subsurface modeling results is only necessary when sufficient measurement data is 472 

available. However, in engineering practice, it is often not feasible to obtain copious measurement data, 473 

making the influence of different ACF types on subsurface modeling results negligible. 474 

 475 

Fig.10 The impact of using different types of ACFs on the subsurface modeling results in the xy and 476 

xz planes. 477 

4 Implementation Procedures 478 

A Python script has been developed to perform the subsurface modeling process based on GCFs. 479 

For detailed code, please refer to https://github.com/Data-Driven-RFT/Sparse-Learning. The proposed 480 

workflow is illustrated in Fig. 11, with the key steps summarized as follows: 481 

 (1) Data collection. Collect survey data, including locations and measurement data (q). Based on 482 

the site conditions, set reasonable resolution parameters and discretize the 3D site into N soil cells. 483 

 (2) Define the range of GCFs hyperparameters. For SoFx and SoFy, the range is set to [x or y 484 

direction resolution, site x or y direction length]. For SoFz, it is set to the z direction resolution. For the 485 

xy plane, the initial GCFs dimension should range between [10, 100]. For the xz and yz planes, the 486 

initial GCFs dimension should range between [25, 300]. 487 
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 (3) Sparse sampling to generate GCFs. The corresponding GCFs are calculated according to Eqs. 488 

(3)-(5) and then combined. It is important to note that the sampling intervals in the x and y directions 489 

should be less than or equal to 0.1 × SoF𝑥/𝑦, and in the z direction, the sampling interval should be 490 

less than or equal to 0.6 × SoF𝑧 . If the sampling interval is smaller than the resolution in the 491 

corresponding direction, sparse sampling is not performed. 492 

 (4) Optimize the hyperparameters for GCFs. Pair the GCFs (input features) with the corresponding 493 

soil properties (output) for the n measured soil cells, and organize them as training samples. Use cross-494 

validation strategies to train the data-driven model and optimize the best hyperparameters for GCFs. 495 

It is important to select smaller GCFs dimensions that ensure modeling accuracy while accelerating 496 

modeling efficiency. 497 

 (5) Optimize the hyperparameters of the ML model. Use grid search to optimize the 498 

hyperparameters of the chosen machine learning model. Based on extensive synthetic case studies, it 499 

was found that for the SCNN model, the main adjustments involve the number of neural network layers 500 

and the number of neurons in each layer. For the ET model, the main adjustment involves the number 501 

of trees, while other parameters remain default. Detailed configuration and description of the SCNN 502 

and ET models can be found in Appendix B. 503 

 (6) Subsurface modeling. Use all measurement samples to train the machine learning model with 504 

the best hyperparameters. Once the model is trained, it can directly be applied to predict the properties 505 

of all soil cells across the entire site. 506 

 (7) Uncertainty estimation. Based on Eqs. (6)-(8), estimate the uncertainty in the subsurface 507 

modeling.  508 
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 509 

Fig.11 Process flow of the proposed subsurface modeling method based on GCFs. 510 

5 Illustrative Example 511 

To validate the performance of the proposed method, the model is tested on a large number of 2D 512 

stationary and nonstationary synthetic cases and compared with the alternative BCS and Kriging 513 

methods. Subsequently, the proposed method is applied to a set of 3D synthetic cases to verify its 514 

applicability for 3D sites. The BCS method is implemented using ASSD-BCS v1.2 SoFtware, which 515 

features a user-friendly visual interface (Lyu et al., 2023). The Kriging method is implemented using 516 

the Python-based Gstools v1.5.0 (Müller et al., 2022). 517 

5.1 Comparison with SOTA Methods for 2D Stationary Cases 518 

From the 3D synthetic samples generated in Section 3, 50 xy and xz cross-sections with different 519 

combinations of SoFs are extracted. Specifically, in the xy plane, the SoFs in both the x and y directions 520 

are 50 m, while in the xz plane, the SoFs in the x and y directions are 70 m and 1.5 m, respectively. In 521 
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the xy plane, 25 measurement points are arranged at grid points corresponding to x and y coordinates 522 

of 0.5 m, 25.5 m, 50.5 m, 75.5 m, and 99.5 m. In the xz plane, 5 boreholes are arranged along sample 523 

paths corresponding to x coordinates of 0.5 m, 25.5 m, 50.5 m, 75.5 m, and 99.5 m. 524 

It is worth noting that the Kriging method uses the same ACF as the synthetic samples, and the 525 

model parameters are fitted using Gstools v1.5.0 based on measurement data. As shown in Figs. 12(a) 526 

and (b), the prediction results from the Kriging method are smooth, approximating the average trend 527 

within a local range. The Kriging method is a parametric method, and accurately estimating random 528 

field parameters is crucial for its performance. However, in engineering, only sparse measurement 529 

results are often available, making it difficult to accurately estimate random field parameters, which 530 

can limit the performance of the Kriging method. In contrast, both the BCS method and the proposed 531 

method do not require additional parameters and exhibit good performance, as they can also estimate 532 

the spatial variability of soil properties smoothly. As shown in the third case of Fig. 12(a), the proposed 533 

method accurately estimates soil connectivity, which is important in soil stratification processes (T. 534 

Zhao et al., 2023). 535 



31 

 

 536 

Fig. 12 Comparison of the proposed method's subsurface modeling performance with SOTA 537 

methods: (a) Comparison of three synthetic cases in the xy plane with SoFs of 50 m in both x and y 538 

directions; (b) Comparison of three synthetic cases in the xz plane with SoFs of 70 m and 1.5 m in 539 

the x and z directions, respectively. 540 

As shown in Fig. 13, the performance of the Kriging, BCS, and the proposed methods is 541 

summarized. In the xy plane, the evaluation metrics of the Kriging and BCS methods are close, with 542 

both capturing the average trend of the field. The proposed method achieves an average R2 greater than 543 

0.5, and RMSE and sMAPE less than 2 and 15%, respectively, outperforming both Kriging and BCS. 544 

In the xz plane, the R2 values of the BCS and proposed methods are greater than those of the Kriging 545 

method, and their RMSE and sMAPE are lower. This indicates the BCS and the proposed methods have 546 

significant advantages when more sample points are known. Moreover, the proposed method achieves 547 

an R2 close to 1, and RMSE and sMAPE less than 1 and 7%, respectively, further validating its superior 548 

performance. 549 
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 550 

Fig. 13 Statistical analysis of R², RMSE, and sMAPE for different modeling methods. 551 

As shown in Figs. 14(a) and (c), the model uncertainty for the first case in Figs. 12(a) and (b) is 552 

displayed. The uncertainty of the proposed method is characterized by the standard deviation of the 553 

prediction results from 50 randomly initialized SCNN models, and the detailed calculation process is 554 

provided in Section 2.3. It can be observed that the model uncertainty is zero at the measurement 555 

locations, and the uncertainty increases as the distance from the measurement location grows. 556 

Additionally, the model uncertainty is also related to the spatial variability of the surrounding soil 557 

properties. Moreover, the uncertainty in the xy plane is significantly higher than in the xz plane, 558 

indicating that an increase in measurement data can substantially reduce the model uncertainty. As 559 

shown in Figs. 14(b) and (d), the model uncertainty of the proposed method is compared with that of 560 

the BCS method. The BCS method shows high uncertainty at the measurement locations because the 561 

predictions from the BCS method do not match the measured data exactly at the measurement locations, 562 

which clearly contradicts the reality. Overall, the uncertainty range of the proposed method is in close 563 

agreement with the BCS method, validating the effectiveness of the proposed approach. 564 
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  565 

Fig. 14 Comparison of modeling uncertainty (standard deviation) between the proposed method and 566 

the BCS method in the (a) & (b) xy plane, (c) & (d) xz plane. 567 

5.2 Comparison with BCS Method for 2D Nonstationary Cases 568 

To more comprehensively validate the performance of the proposed method, trend terms are 569 

introduced into the 100 stationary random fields used in Section 5.1. A random linear trend α×x(or y) 570 

is assumed in the x and y directions, where the random coefficient α ranges from 0.02 to 0.05. Similarly, 571 

a random linear trend β×z is assumed in the z direction, with the random coefficient β ranging from 572 

0.2 to 0.5. This section primarily evaluates the ability of the proposed method to perform subsurface 573 

modeling directly based on non-stationary data. This approach helps reduce the uncertainty caused by 574 

manual detrending and enhances the efficiency of automated modeling. Since Kriging requires 575 

additional detrending when applied to non-stationary random fields, only the proposed method and the 576 

BCS method are compared here. As shown in Fig. 15, the R2 values of BCS and the proposed method 577 
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fluctuate between 0.4 and 0.85 in the xy-plane. This variation is primarily due to the limited number 578 

of known data points (25 points), which account for only 0.25% of the total soil cells. In the xz-plane, 579 

where the number of known data points increases significantly (500 points), both BCS and the 580 

proposed method perform well, with R2 values exceeding 0.8. However, the proposed method 581 

demonstrates more consistent performance, with smaller fluctuations in R2, RMSE, and SMAPE 582 

compared to the BCS method. This indicates that the proposed method improves modeling accuracy 583 

and is suitable for both stationary and non-stationary data with mild trends. 584 

 585 

Fig. 15 Performance comparison between the BCS method and the proposed method in nonstationary 586 

cases. 587 

5.3 Performance of the Proposed Method for 3D Cases 588 

Three 3D cases are extracted from the synthetic random field samples in Section 3 to validate the 589 

proposed method: Case #1 (SoFx: 50 m, SoFy: 50 m, SoFz: 1 m), Case #2 (SoFx: 90 m, SoFy: 50 m, 590 

SoFz: 0.5 m), and Case #3 (SoFx: 90 m, SoFy: 50 m, SoFz: 1 m), as illustrated in Figs. 16(a), (e), and 591 

(i). For each synthetic site, the measurement points are established at grid points corresponding to x 592 

and y values of 0.5 m, 25.5 m, 50.5 m, 75.5 m, and 99.5 m, resulting in a total of 25 sample paths used 593 

as training data. 594 
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 595 

Fig.16 Performance of the proposed method in synthetic 3D cases: (a)-(d) show the synthetic site for 596 

Case #1, along with the modeling results using ET, SCNN and BCS; (e)-(h) present the modeling 597 

results for Case #2; (i)-(l) depict the modeling results for Case #3. 598 

It is important to note that the framework proposed is flexible, meaning that after generating the 599 

GCFs, various machine learning models can be employed for subsurface modeling. The primary 600 

subsurface modeling approach employed in this study is the SCNN model. To conduct a more 601 

comprehensive comparison, the ET approach is used due to its strong fitting capabilities. Figs. 16(a) 602 

to (d) illustrate the true distribution of soil properties for synthetic Case #1, the results obtained using 603 

ET, SCNN, and BCS modeling, respectively. Figs. 16(e) to (h) and Figs. 16(i) to (l) present the 604 

prediction results for Case #2 and Case #3, respectively. It is observed that using the proposed method 605 

yields subsurface modeling results consistent with the true distribution, regardless of whether ET or 606 

SCNN is used. However, the results obtained from ET and BCS modeling tend to approximate the 607 
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average more closely. In contrast, the results from SCNN modeling align more closely with the true 608 

distribution. As shown in Table 1, the predictive results of the SCNN model demonstrate a higher R2 609 

compared to the ET and BCS models, further validating the superiority of the SCNN approach. The 610 

RMSE and MAPE values for the ET and SCNN models are relatively similar. Therefore, averaging the 611 

predictive results of the ET and SCNN models reveals that while the R2 of the average model decreases 612 

relative to the SCNN model, the RMSE and MAPE for the average model achieve lower values in Case 613 

#1 and Case #2. Thus, adopting the average model may be a more robust choice, especially when faced 614 

with sparse known information, as stacking multiple algorithms often enhances the model's reliability. 615 

Furthermore, both the ET and SCNN models take only 2-3 minutes for modeling and prediction, with 616 

the ET model being slightly faster than the SCNN model. Therefore, for engineering applications, it is 617 

acceptable to integrate multiple algorithms for subsurface modeling to obtain more robust prediction 618 

results. 619 

Table 1 Comparison of subsurface modeling performance of different models in 3D synthetic cases 620 

 Model R2 RMSE (MPa) MAPE (%) 

Case #1 

(SoFx=50, SoFy=50, 
SoFz=1) 

BCS 0.571 1.903 17.437 

ET 0.499 1.745 14.513 

SCNN 0.750 1.598 14.909 

Mean 0.683 1.576 13.574 

Case #2 

(SoFx=90, SoFy=50, 
SoFz=0.5) 

BCS 0.489 1.937 15.133 

ET 0.545 1.350 10.249 

SCNN 0.730 1.350 10.769 

Mean 0.689 1.267 9.738 

Case #3 

(SoFx=90, SoFy=50, 
SoFz=1) 

BCS 0.473 1.742 17.797 

ET 0.445 1.573 11.975 

SCNN 0.772 1.344 10.469 

Mean 0.682 1.373 10.507 

Note: 'Mean' refers to the average of the prediction results from the ET and SCNN models. 621 
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6 Real Data Case Study 622 

6.1 Baytown, TX, USA 623 

As shown in Fig. 17, the rectangular test site is located in the eastern region of the intersection of 624 

Interstate-10 and Route-146 in Baytown, Texas (Stuedlein, 2008). Baytown is situated to the north of 625 

Upper Galveston Bay, which is part of the San Jacinto River, with the San Jacinto River flowing south 626 

into Galveston Bay and north into Lake Houston. The test site is located in the Quaternary coastal plain 627 

of Texas, which forms a band-shaped zone about 110-150 km wide, parallel to the Gulf of Mexico 628 

coastline (Stuedlein et al., 2012a). The soil at the test site consists of the Beaumont Clay Layer, which 629 

is composed of brownish-red and brownish-gray clay, occasionally interspersed with fine sand and silt 630 

layers. The Beaumont Clay Layer was deposited in the floodplains at the beginning of the Wisconsin 631 

glacial period. Additionally, the terrace has been influenced by the long-term lowering of the Gulf of 632 

Mexico during the post-depositional glacial period, causing global preconsolidation (O’Neill, 2014). 633 

As the Beaumont Clay Layer dried, it developed a series of slickensides, fissures, and a few joints. 634 

A series of in-situ tests, including the standard penetration test (SPT), thin-walled tube sampling, 635 

and cone penetration test (CPTu), were conducted at the test site to characterize the subsurface 636 

conditions (Stuedlein et al., 2012a). As shown in Fig. 18, this study focuses on the results from 9 sets 637 

of CPTu tests, using the cone tip resistance measurements as an example for subsurface modeling. 638 

According to the survey results, the test site was divided into four different soil layers. The very stiff 639 

desiccated clay crust extends to an average depth of about 0.66 m from the surface. The second layer, 640 

the upper clay layer, extends to an average depth of 3.74 m and consists of medium stiff lean clay. 641 

Notably, CPT-3 reveals a 1-meter-thick soft zone at a depth of 1.66 m. Samples recovered from the 642 



38 

 

upper clay layer typically contain many cracks and occasional slickensides. The third layer consists of 643 

loose silty sand/sandy silt (SM/ML), extending from an average depth of 3.74 to 4.5 m. Below 4.5 m, 644 

the lower clay layer is present, consisting of stiff, slightly silty, and fat clay (CH) (Stuedlein et al., 645 

2012b, 2012a). CPTu data can be directly downloaded from the ISSMGE TC304 database 646 

(http://140.112.12.21/issmge/tc304.htm). 647 

 648 

Fig. 17 Geographical layout of the test site in Baytown, Texas, USA: (a) The location of the test site 649 

in Texas, USA; (b) The location of samples in Baytown; (c) The distribution of the collocated 650 

borehole and CPTs. Map data from Google Earth.651 
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 652 

Fig. 18 Nine CPT measurements and the average stratigraphy of the site (raw data can be accessed 653 

from http://140.112.12.21/issmge/tc304.htm). 654 

The test site has a length of 13 m in the x (east-west) direction and 26 m in the y (north-south) 655 

direction. In the z direction, the focus is mainly on the clay layer and silty sand/sandy silt layer at 656 

depths between 0.68 m and 5.32 m, consistent with Stuedlein et al. (2012a). The resolution is set at 657 

0.25 m in both the x and y directions, and 0.04 m in the z direction. As shown in Fig. 17, a total of 7 658 

sets of measurements, including CPT_3 and CPT_F1-F6, are used to construct the subsurface model, 659 

while the remaining data from CPT-1 and CPT-2 are used for model validation. As shown in Fig. 18, 660 

some of the measurement paths are incomplete. For example, CPT_F2 is missing data below a depth 661 

of 5.08 m, and CPT_F4 is missing data below a depth of 3.72 m. In engineering practice, measurement 662 

data often have missing sections due to limitations in equipment, operation, and site conditions. It is 663 

worth noting that the proposed method does not require complete measurement data, making it widely 664 

applicable to situations with missing data. 665 

As shown in Fig. 19, the subsurface modeling results and their uncertainty based on the SCNN 666 

model are presented. For detailed configuration of the SCNN model and the subsurface modeling code, 667 
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please refer to Appendix B. Fig. 19(a) shows the average of the subsurface modeling results from 50 668 

SCNN models with different initialized trainable parameters, while Fig. 19(b) shows the standard 669 

deviation of the 50 modeling results. It can be observed that there is a thin interlayer at a depth of 4 m, 670 

which perfectly aligns with the field exploration results (SM/ML is distributed within the 3.74–4.5 m 671 

depth range). Furthermore, the model exhibits small uncertainty at the locations of the training samples. 672 

Since CPT_2 and CPT_1 are not involved in the training process, there is higher uncertainty at their 673 

respective locations. Additionally, compared to CPT_2, the location of CPT_1 is farther from the 674 

training samples, resulting in greater uncertainty in the model’s prediction of the CPT_1 sample path. 675 

 676 

Fig. 19 Subsurface modeling results of the proposed method in the Baytown, TX, USA case: (a) 677 

Subsurface modeling results based on 6 CPT measurement data; (b) Uncertainty of subsurface 678 

modeling results. 679 

 As shown in Fig. 20, model prediction performance and uncertainty on the test set are presented. 680 

Due to missing sample paths in CPT_F2 and CPT_F4, these missing positions are excluded from the 681 

model training and considered as part of the test set. In the upper parts of CPT_F2 and CPT_F4 682 

(training data), the model's predictions exactly match the measured data, indicating that the model has 683 

successfully learned the high-dimensional nonlinear mapping between GCFs (input features) and 684 

corresponding qc (output) at these positions. Furthermore, the model shows good agreement with the 685 

measured data at the CPT_1 and CPT_2 positions, with most of the measurement data included within 686 
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the 95% confidence interval. Additionally, the model successfully predicted the presence of the silty 687 

sand/sandy silt layer below 3.72m in CPT_F4. 688 

 689 

Fig.20 Prediction results and uncertainty of the proposed method at test locations. 690 

6.2 Christchurch, New Zealand 691 

As shown in Fig. 21, the test site is located in Christchurch, New Zealand, where 34 sets of CPT 692 

data are collected from a 120 m × 120 m square site. The measurement data can be accessed directly 693 

from the New Zealand Geotechnical Database (NZGD) (NZGD, 2023). According to the Robertson 694 

method  (Robertson, 1990; Robertson and Wride, 1998) for soil classification, the soil behavior type 695 

index (Ic) generally ranges from 1.1 to 2.6. The surface layer is primarily composed of dense sand to 696 

gravelly sand, while the layer beneath is mainly clean sand to silty sand, occasionally interspersed with 697 

silty sand to sandy silt. It is important to note that there are significant data gaps near the surface in the 698 

34 CPT measurements. To better validate the proposed method, test data from depths of 5-15m below 699 

the surface are collected for subsurface modeling. The site resolution is set at 1 m in both the x and y 700 

directions, and 0.1 m in the z direction. 701 
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 702 

Fig.21 Geographical layout of 34 CPT surveys in Christchurch, New Zealand: (a) The location of the 703 

test site in New Zealand; (b) The location of samples in Christchurch; (c) The distribution of the 704 

collocated CPTs. (Note: CPT codes used are consistent with the New Zealand Geotechnical 705 

Database)(NZGD, 2023). 706 

Fig. 22(a) shows the CPT sample paths used for subsurface modeling in the Christchurch case, 707 

where some sample paths are incomplete. It is noteworthy that the proposed method does not require 708 

complete data at sampling locations, allowing it to be applied with more flexibility in practice. 709 

CPT_7501, CPT_33766, and CPT_36736 are reserved for the model testing, while the remaining 31 710 

CPT soundings are used for model training. Fig. 22(b) presents the average subsurface modeling results 711 

of the SCNN and ET models, where the qc values are generally low at depths above 3 m and increase 712 

with depth in the 3-10 m range, indicating the trend in soil distribution. Figs. 23(a)-(c) show the 713 

predicted results of the model at the three test locations: CPT_7501, CPT_33766, and CPT_36736, 714 

along with their 95% confidence intervals. It can be observed that the predicted sample paths align 715 
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well with the measured data, with most test data falling within the 95% confidence interval. 716 

Additionally, the model exhibits greater uncertainty at CPT_7501 and CPT_33766 due to the limited 717 

number of boreholes in their vicinity. In contrast, the location of CPT_36736 is in close proximity to 718 

CPT_3986 used for subsurface modeling, resulting in lower uncertainty at this position. This further 719 

validates the rationale behind the proposed method for assessing subsurface modeling uncertainty. 720 

 721 

Fig.22 Performance of the proposed method in real 3D cases: (a) represents the measured CPT 722 

sample paths from the New Zealand case; (b) shows the average modeling results of ET and SCNN 723 

based on 31 training data. 724 

 725 

Fig.23 The subsurface modeling results and uncertainties at three test locations. 726 

7 Conclusions 727 

This study proposes an enhanced data-driven framework that uses random field theory to recover 728 

subsurface geotechnical properties in the presence of sparse in-situ test data. Additionally, statistical 729 
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analyses are conducted to reduce the computational complexity of the proposed method and eliminate 730 

additional parameters.  Finally, the superiority of the proposed method is validated through a series of 731 

synthetic cases and two real cases. Based on the findings, the following conclusions can be drawn: 732 

(1) The proposed subsurface modeling framework is capable of integrating random field theory 733 

into data-driven models through geotechnical correlation fields, providing a variety of basis functions 734 

for subsurface modeling. Validation through 2D and 3D synthetic cases, as well as two real cases, 735 

shows that the method generally exhibits higher R2 and lower RMSE and MAPE compared to the 736 

alternative Kriging and BCS methods. 737 

(2) The strategy of first performing sparse sampling and then projecting into the principal 738 

component space effectively reduces the computational complexity of PCA operations in the process 739 

of obtaining GCFs. This approach also avoids the challenges associated with storing and processing 740 

large correlation matrices for large or high-resolution sites. 741 

(3) The influence of random field parameters (SoF and ACF) on subsurface modeling results is 742 

investigated. Since geotechnical measurement data are generally sparse in the horizontal direction and 743 

denser in the vertical direction, using larger horizontal SoF (greater than 2 times the borehole spacing) 744 

and smaller vertical SoF (site vertical resolution) to generate GCFs can significantly improve modeling 745 

accuracy. Additionally, in cases of sparse measurement data, the type of ACFs has a negligible 746 

influence on the modeling results. 747 

(4) The framework proposed is flexible, allowing for the application of different machine learning 748 

models for subsurface modeling after generating GCFs. Validation against a series of 3D sites revealed 749 

that the modeling results of the proposed SCNN model exhibit a higher R2 compared to an extreme 750 
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random tree model. Furthermore, the average predictions from both the extreme random tree and 751 

shortcut-connected neural network models demonstrated lower RMSE and MAPE. Therefore, it is 752 

recommended to employ a stacking strategy using multiple algorithms to enhance the robustness of 753 

underground modeling.  754 

It should be noted that when subsurface conditions involve weak interlayers or soil layers with 755 

significant differences in properties, the spatial distribution of the subsurface stratigraphic boundaries 756 

can be predefined. Then, the proposed method can be used to model the spatial variability of soil 757 

properties within each layer. Additionally, measurement data for weak interlayers often constitute only 758 

a small portion of the total data, leading to potential prediction errors due to data imbalance. Further 759 

exploration of improvement strategies for data-driven subsurface modeling methods under conditions 760 

of data imbalance is needed. 761 
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Appendix A.  774 

Table A1. Frequently Used Autocorrelation Functions (ACFs) - Adapted from Cami et al. (2020) 775 

Model Autocorrelation function  𝜌𝑖,𝑗 Freque-
ncy of 
usage 

Single 
exponenti
al (SNX) 

exp [−2(|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥 + |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)] 47 % 

Spherical 
(SPH) {  

  [1 − 98 |𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥 + 27128(|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥)3] [1 − 98 |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦 + 27128(|𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)3]  |𝜏𝑖,𝑗𝑥 | ≤ 43 𝑆𝑂𝐹𝑥 and |𝜏𝑖,𝑗𝑦 | ≤ 43 𝑆𝑂𝐹𝑦0              otherwise  15 % 

Squared 
exponenti
al (SQX) 

exp [−𝜋( 𝜏𝑖,𝑗𝑥 2𝑆𝑂𝐹𝑥2 + 𝜏𝑖,𝑗𝑦 2𝑆𝑂𝐹𝑦2)] 15 % 

Cosine 
exponential 

(CSX) 
cos (|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥) cos(|𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)exp(−(|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥 + |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)) 10 % 

Binary noise 

(BIN) { 
 (1 − |𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥)(1 − |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)   |𝜏𝑥| ≤ 𝑆𝑂𝐹𝑥 and |𝜏𝑦| ≤ 𝑆𝑂𝐹𝑦0                                   otherwise  9 % 

Second–order 
Markov 
(SOM) 

(1 + 4 |𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥)(1 + 4 |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)exp [−4(|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥 + |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)] 4 % 

Third–order 
Markov 

(TOM) 
(1 + 163 |𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥 + 25627 (|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥)2)(1 + 163 |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦 + 25627 (|𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)2)exp(−163 (|𝜏𝑖,𝑗𝑥 |𝑆𝑂𝐹𝑥 + |𝜏𝑖,𝑗𝑦 |𝑆𝑂𝐹𝑦)) New 

Note: 𝜌𝑖,𝑗 represents the correlation between soil cells i and j. 𝜏𝑖,𝑗𝑥  and 𝜏𝑖,𝑗𝑦  are the spacing of soil cell i and j in the x 776 

and y directions. 𝑆𝑂𝐹𝑥 and 𝑆𝑂𝐹𝑦  are the scales of fluctuation in the x and y directions, respectively. 777 

Appendix B.  778 

The code used in this study can be found in https://github.com/Data-Driven-RFT/Sparse-Learning, 779 

which includes: ① a case for generating GCFs, and ② the complete subsurface modeling process 780 

based on the Baytown, TX, USA case. 781 

Recently, ensemble learning algorithms with powerful nonlinear regression capabilities have been 782 

widely used in geotechnical engineering (Xie et al., 2024), such as Random Forest (RF), Extra Trees 783 



47 

 

(ET), and Gradient Boosting (GB). Both ET and RF algorithms are based on the BAGGING (Bootstrap 784 

Aggregating) ensemble technique. The RF algorithm constructs multiple subsets using random 785 

sampling with replacement, and each subset is used to build a corresponding regression tree. In contrast, 786 

the ET algorithm trains each regression tree on the entire dataset, which reduces prediction bias. 787 

Additionally, the ET algorithm introduces extra randomness in the tree-building process by randomly 788 

selecting split thresholds to compute the split points for each variable, and then selecting the best split 789 

point based on the scoring criterion to reduce prediction bias. Compared to RF, when the number of 790 

regression trees is sufficiently large, ET can generate continuous and smooth prediction results. 791 

Therefore, the ET algorithm is better suited for modeling continuous geotechnical sites or random 792 

fields. A detailed introduction to the ET algorithm can be found in Simm et al. (2014). In this study, 793 

the ET model is constructed using the Python-based Scikit-learn v1.1.3 library (Pedregosa et al., 2018). 794 

As shown in Fig. A1, this study uses a shortcut-connected neural network model (SCNN) for 795 

subsurface modeling. The SCNN integrates input features with high-level features extracted by hidden 796 

layers, thus mitigating the risk of gradient vanishing and explosion, and improving training efficiency 797 

and model performance. The SCNN model formulation is as follows: 798 

 799 
Fig. A1 The SCNN model architecture for subsurface modeling (Note: P1 to Pk correspond to the 𝑘 800 
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principal components in the PV vector.) 801 𝒉1 = ReLU(𝐏𝐕, 𝜽1, 𝜷1) (A1) 802 𝒉2 = ReLU(𝒉1, 𝜽2, 𝜷2) (A2) 803 𝒉3 = ReLU(concatenate(𝐏𝐕, 𝒉2), 𝜽3, 𝜷3) (A3) 804 𝒐 = Linear(𝒉3, 𝜽4, 𝜷4) (A4) 805 

where h represents the hidden layer feature vector of the neural network. θ and β are the feature weights 806 

and bias terms for each layer, respectively, with no trainable θ and β parameters in the input layer. The 807 

concatenation operation in the third hidden layer directly combines the input feature PV with the 808 

feature vector 𝒉2 from the second hidden layer. The output of the model is denoted as 𝒐. The model 809 

consistently uses the ReLU activation function due to its computational simplicity and rapid 810 

convergence rate (P. Zhang et al., 2022). Model training is based on the Nadam optimizer, an extension 811 

of the Adam optimizer that incorporates Nesterov momentum and RMSprop. The hyperparameters for 812 

the model are determined using grid search. The number of neurons in the hidden layers is set to 64, 813 

the learning rate is 0.001, and the number of iterations is 500. In this study, the SCNN model is 814 

constructed using the Python-based Tensorflow v2.8.0 library (Abadi et al., 2016). 815 
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